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ABSTRACT

Recent studies of distributed computation with formal privacy guarantees, such as
differentially private (DP) federated learning, leverage random sampling of clients
in each round (privacy amplification by subsampling) to achieve satisfactory levels
of privacy. Achieving this however requires precise and uniform subsampling of
clients as well as a highly trusted ochestrating server, strong assumptions which
may not hold in practice. In this paper, we explore a more practical protocol,
self check-in, to resolve the aforementioned issues. The protocol relies on client
making independent and random decision to participate in the computation, freeing
the requirement of server-initiated subsampling, and enabling robust modelling of
client dropouts. Our protocol has immediate application to employing intermediate
trust models, i.e., shuffle and distributed DP models, for realizing distributed
learning in practice. To this end, we present a novel analysis based on Rényi
differential privacy (RDP) that improves in privacy guarantee over those using
approximate DP’s strong composition at various parameter regimes for self check-
in. We also provide a numerical approach to track the privacy of generic shuffling
mechanism including distributed learning with Gaussian mechanism, which can
be of independent interest as it is the first evaluation of a generic mechanism as
far as we know within the local/shuffle model under the distributed setting in the
literature. Empirical studies are given to demonstrate the efficacy of learning as
well.

1 INTRODUCTION

Cross-device federated learning (FL) or distributed learning is a scalable and privacy-friendly com-
putational framework of large-scale machine learning. In this framework, clients/users send model
updates or gradients to the governing server keeping their data decentralized, while the server aggre-
gates the gradients to update the model, and sends the updated model back to the clients to initiate
next round of training (Kairouz et al., 2021c; McMahan et al., 2017a). There have been efforts
combining FL with differential privacy (DP) (Dwork et al., 2006a;b) to achieve rigorous privacy
guarantees (McMahan et al., 2017b). Typically, a subsampling procedure is taken, where in each
round of training, only clients sampled in a uniform and random manner by the server participate
in the training. Once all sampled clients finish training and sending out the gradients, the server
aggregates the gradients to update the model, assuming that the server does not leak information
(such as the subsampled clients) other than the model to adversaries (server is trustworthy). This
randomness of subsampling leads to privacy amplification, critical at achieving acceptable levels of
utility under meaningful DP guarantees (Abadi et al., 2016; Bassily et al., 2014; Kasiviswanathan
et al., 2011; Wang et al., 2019). That there is a trustworthy server collecting raw data and adding
noises to the aggregated gradients achieves “central" DP for the system.

Such a system may not be easily realizable in practice however. As noted in Balle et al. (2020b);
Kairouz et al. (2021b;c), the server-initiated sampling is “impossible in practice". Clients can fail to
follow the server’s command or drop out due to issues such as network disconnection or battery outage.
Typically, the server also discards stragglers, or clients that take a much longer time to complete the
training due to reasons such as hardware capabilities, as they affect the time of completing a round of
training (Bonawitz et al., 2017). Subsequently, the number of participating in each round becomes
a variable, an effect not taken into account when quantifying the privacy of the system using the
standard approach.
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In this paper, we explore a novel distributed protocol, self check-in, to tackle the aforementioned
issues. First, our protocol lets clients utilize their own randomness to decide (with a certain probability)
whether to participate in the server-initiated training, without being specifically indexed by the server.
This client “autonomy" consequently reduces the system’s reliance on the orchestrating server,
additionally guaranteeing each client with (weak) local differential privacy (LDP). As explained later,
our protocol also allows for the modelling of drop-out as a random (probabilistic) event.

Self check-in is immediately applicable to distributed learning with intermediate trust models, of
which we particularly study two intermediate trust models requiring weaker (compared to central
DP) trust assumptions, shuffle model and distributed DP 1 Combining self check-in with these trust
models leads us to proposing practical protocols in FL, namely shuffled check-in and distributed
check-in, respectively, relaxing the requirements for a highly trusted entity (hence impractical) as in
most previous works. In the following we give a brief description of these models.

The shuffle model is responsible for data anonymization (Cheu et al., 2019; Erlingsson et al., 2019)
before revealing the collected data to the untrusted analyzer. Deploying a shuffler in practice is
simpler implementation-wise and requires fewer trust assumptions compared to an (trusted) aggregator.
For example, the Prochlo (Bittau et al., 2017) implementation leverages the trusted hardware to
perform shuffling: raw data are not exposed to the shuffler, in contrast to the aggregator, as its sole
responsibility is to mask the data origin (shuffling can be performed on encrypted data by, e.g.,
removing only metadata or identifiers, such that sensitive contents are not exposed to the shuffler).
Other realizations of the shuffle model include the utilization of mix-nets (Chaum, 1981; Cheu et al.,
2019) and peer-to-peer protocols (Liew et al., 2022), which also do not expose raw data to other
entities.

Distributed DP protocols (Kairouz et al., 2021c) attempt to recover some properties of a centralized,
highly trusted aggregator in a distributed setting. Here, clients craft LDP reports based on their
private data, encrypt them with a certain cryptographic protocol such that individual reports are secure
cryptographically, and only the aggregated results are exposed to the untrusted analyzer. While the
individual perturbed report is often not meaningful in terms of local DP guarantees, the aggregated
noises provide sufficient DP guarantees under this trust model.

Our contributions are as follows.

• We propose self check-in, a general privacy amplification technique to address practical
issues of distributed systems leveraging clients’ randomness. We further propose shuffled
check-in and distributed check-in protocols as concrete realizations of self check-in with
intermediate trust models for practical distributed learning.

• We give a detailed privacy analysis of our proposal, particularly utilizing Rényi differential
privacy (RDP) to account for the composition of privacy loss. This leads to a tight result
compared to conventional approximate DP approaches. Furthermore, we propose a numer-
ical approach of calculating the RDP bound of shuffled check-in with generic local DP
randomizer, which can be of independent interest.

• We evaluate our proposal with machine learning tasks under the distributed setting to
demonstrate its efficacy and performance against baselines.

Related work. Shuffle model: Girgis et al. (2021c) have considered the same shuffled check-in
protocol, but there are several distinct differences in the privacy analysis: there, only an order
approximation of the privacy accounting based on strong composition of ϵ0-LDP randomizer is given.
In contrast, we give a precise and analytical result based on RDP that leads to tighter accounting, and
is extendable to generic (ϵ0, δ0)-LDP randomizers. 2 We also provide a comprehensive empirical
evaluation that shows significant improvement in budget saving. Distributed DP.: Bonawitz et al.
(2017) showed that cryptographic primitives such as secure aggregation (SecAgg) enables the server
to collect aggregated data (perturbed locally) without revealing individual information. While the

1Our protocol achieves local DP (LDP) without any additional trust models (Kasiviswanathan et al., 2011).
However, it is well-established that LDP leads to substantial utility loss. We pursue the use of intermediate trust
models instead to maintain a certain level of utility without relying on a highly trusted entity.

2Although there exist methods of converting a (ϵ0, δ0)-LDP randomizer to an ϵ0-LDP one, it is generally
loose as the conversion leads to a term contributing to δ proportional to the number of user. See, e.g., Balle et al.
(2020b); Cheu et al. (2019).
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SecAgg protocol itself takes drop-outs into account, existing privacy analyses typically ignore such
effects by considering only fixed number of subsampled users (Agarwal et al., 2018; 2021; Kairouz
et al., 2021a; McMahan et al., 2017b). Let us finally remark that client making independent decision
to participate in distributed computation has also been considered in Balle et al. (2020b), but our
sampling scheme is simpler and does not require strong trust assumptions.

2 PROBLEM SETUP AND PRELIMINARIES

Problem setup. We consider the task of learning under the distributed setting, where there are n
clients each holding a data record xi for i ∈ [n] (user DP is guaranteed instead of sample-level
DP when each user holds more than a data record). The whole decentralized dataset is denoted
by D = (x1, . . . , xn). The purpose of the system is to train a model with parameter θ ∈ Θ by
minimizing a certain loss function l : Dn ×Θ → R+ via stochastic gradient descent (SGD), while
providing clients with formal privacy guarantees.

Two intermediate trust models are considered:

• Shuffle model: Clients send their perturbed gradients to the trusted shuffler in which the
gradients are shuffled before being forwarded to an untrusted aggregator.

• Distributed DP: Clients encrypt their perturbed gradients via certain cryptographic means
(e.g., SecAgg) such that only the aggregated result is available to the untrusted aggregator.

It is noted that we treat the the shuffler and distributed DP as black boxes guaranteed to execute the
protocols faithfully; there are already a myriad of work on the concrete realizations of these trust
models (Bell et al., 2020; Bittau et al., 2017; Bonawitz et al., 2017; Liew et al., 2022) and further
discussion would require more specific trust assumptions which are out of scope of this work. This
simplification allows us to focus on analyzing the privacy guarantees provided by these trust models.

We next present important definitions and known results of differential privacy.

Definition 1 (Central Differential Privacy (Dwork et al., 2014)). Given ϵ ≥ 0 and δ ≥ 0, a
randomization mechanism, M : Dn → S with domain Dn and range S satisfies central (ϵ, δ)-
differential privacy (DP) if for any two adjacent databases D,D′ ∈ Dn with n data instances and for
any subset of outputs S ⊆ S, the following holds:

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ. (1)

We say that an (ϵ, δ)-DP mechanism satisfies approximate DP, or is (ϵ, δ)-indistinguishable. (ϵ, δ)-DP
is also simply referred to as “DP" when the context is clear. Moreover, we mostly work with the
"replacement" version of DP, where adjacent databases have one data instance replaced by another
data instance.

When D consists of only a single element, the mechanism, also known as a local randomizer, is said
to be satisfying local DP:

Definition 2 (Local Differential Privacy (LDP) (Kasiviswanathan et al., 2011)). A randomization
mechanism A : D → S satisfies local (ϵ, δ)-DP if for all pairs x, x′ ∈ D, A(x) and A(x′) are
(ϵ, δ)-indistinguishable.

We often refer to a mechanism satisfying (ϵ, 0) LDP as an ϵ-LDP randomizer. We next introduce
Rényi differential privacy (Bun & Steinke, 2016; Dwork & Rothblum, 2016; Mironov, 2017), the
main privacy notion used in this paper.

Definition 3 (Rényi Differential Privacy (RDP) (Mironov, 2017)). A randomization mechanism
M : D → S is ϵ-Rényi differential privacy of order λ ∈ (1,∞) (or (λ, ϵ)-RDP), if for any adjacent
databases D, D′ ∈ D, the Rényi divergence of order λ between M(D) and M(D′) is upper-bounded
by ϵ:

Dλ(M(D)||M(D′)) =
1

λ− 1
log

(
Eϕ∼M(D′)

[(
M(D)(ϕ)

M(D′)(ϕ)

)λ
])

≤ ϵ, (2)

where M(D)(ϕ) denotes M taking D as input to output ϕ with certain probability.
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We sometimes write ϵ as ϵ(λ) to indicate that it is a function of λ. The main strength of RDP lies in
its composition property, which is cleaner than approximate DP. The formal description is as follows.
Lemma 1 (Adaptive composition of RDP (Mironov, 2017)). Given two mechanisms M1,M2 taking
D ∈ D as input that are (λ, ϵ1),(λ, ϵ2)-RDP respectively, the composition of M1 and M2 satisfies
(λ, ϵ1 + ϵ2)-RDP.

While the privacy accounting involving composition is preferably done in terms of RDP, we often
need to convert the RDP notion back to the approximate DP notion in the final step. This is achieved
with the following.
Lemma 2 (RDP-to-DP conversion (Balle et al., 2020a; Canonne et al., 2020)). If a mechanism M is
(λ, ϵ (λ))-RDP, M is also (ϵ, δ)-DP, where 1 < δ < 0 is arbitrary and ϵ is given by

ϵ = min
λ

(
ϵ (λ) +

log (1/δ) + (λ− 1) log (1− 1/λ)− log (λ)

λ− 1

)
. (3)

Given an approximate DP mechanism, we may wish to convert it to the RDP to obtain tighter
composition-based privacy accounting. The conversion is performed with the following lemma.
Lemma 3 (DP-to-RDP conversion (Asoodeh et al., 2021)). If a mechanism M is (ϵ, δ)-DP, M is
also (λ, ϵ (λ))-RDP, where λ > 1 and ϵ(λ) is given by

ϵ(λ) = min
r∈(δ,1)

(
rλ(r − δ)1−λ + (1− r)λ(eϵ − r + δ)1−λ

)
. (4)

3 SELF CHECK-IN

3.1 MODEL-INDEPENDENT PROTOCOL AND EXPRESSION

Let us begin by describing the protocol of self check-in. In each round t, a message is broadcast to
all clients to ask for participation in the learning. Each client flips a biased coin to decide whether
to participate in the training. The probability of a client participating in the training successfully is
modeled by a parameter γ (0 ≤ γ ≤ 1), which we call the check-in rate. The participating probability
follows the Bernoulli distribution, Bern(γ). In Section 3.2, we discuss how to determine γ in practice.

Clients decided to participate download the model θt, calculate the gradient, apply local randomizer
to it (e.g., clip the gradient norm and add Gaussian noise), and send it (encrypted) to a shuffler or
aggregator, depending on the trust model. Then, the aggregator updates the model parameters to θt+1

using the messages processed by the shuffler or SecAgg. The underlying (trust) model-dependent
mechanism is denoted by base mechanism. Next, we give the model-independent expression of the
RDP of self check-in.
Theorem 1 (RDP of self check-in). Let D,D′ be adjacent databases consisting of n clients, and γ
the (effective) check-in rate. The RDP of order λ of the self check-in mechanism is bounded by

ϵ(λ) ≤ 1

λ− 1
log

(
n∑

k=0

(
n

k

)
γk(1− γ)n−kEqsk

[(
psk
qsk

)λ
])

. (5)

Here, psk is the output probability distribution of the subsampled without replacement (of k data
instances) base mechanism. qsk is the output probability distribution induced by the same mechanism
but on D′.

Proof. Let us first give the following observation. Under the shuffle model, k data instances perturbed
by a LDP randomizer A : D → S check in to undergo shuffling for k ∈ [n]; under distributed DP,
k data instances check in to be processed by, e.g., SecAgg, to return a perturbed aggregated output
without exposing individual information, agg : Dk → S for k ∈ [n]. Notice that there are two output
variables for the self check-in mechanism M: k ∈ [n], the number of data instances, and ϕ ∈ S , the
randomized content of each data instance (shuffler) or the aggregated output (distributed DP).

As clients check in independently with a probability of γ, the total number of clients checking in
distributes as a binomial distribution. Hence, following the observation given above on the output
variables, the neighboring mechanism may be written as

M(D)(k, ϕ) ∼
(
n

k

)
γk(1− γ)n−kpsk, M(D′)(k, ϕ) ∼

(
n

k

)
γk(1− γ)n−kqsk.
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This gives the expression of Equation 5 following the definition of RDP. To complete the proof, we
need to show that psk is the probability distribution of a subsampled (without replacement) mechanism.
For brevity, we write psk and qsk as pk and qk respectively. We note that both pk and qk are mixture
distributions consisting of distribution with (and without) the differing data instance. More precisely,
let the differing data instance be the n-th item of D,D′. Let E be the subset containing the n-th item
(Ec the subset with the complementary item). Subsequently,

pk = (1− γ)pk(·|Ec) + γpk(·|E), qk = (1− γ)qk(·|Ec) + γqk(·|E)

and pk(·|Ec) = qk(·|Ec). This expression is by definition the distribution corresponding to the
subsampling without replacement scenario (Wang et al., 2019). Plugging the above expressions to
Equation 2, we obtain Equation 5 as desired. ■

Remark 1. Theorem 1 states that the self check-in’s RDP is effectively composed of the RDP of a
subsampled version of the base mechanism weighted by a binomial distribution. As stated before,
one can simply plug the model-dependent base mechanism into this model-independent expression to
calculate the specific RDP, as will be demonstrated in the next section.

Remark 2. It is recently shown that performing even tighter privacy accounting is possible via
privacy loss distributions (which may be seen as a scaled RDP divergence of order 1) and fast
Fourier transforms (Gopi et al., 2021; Koskela et al., 2020). These techniques are however limited to
distributions that can be reduced to a one-dimensional problem, and therefore not applicable to self
check-in as in Equation 5, a high-dimensional mixture distribution of n components. See Section 5
of Koskela et al. (2021), where a similar problem occurs in the shuffle model. It is henceforth more
appropriate to attack the privacy composition problem of self check-in with RDP.

3.2 PRACTICAL CONSIDERATIONS

In our protocol, each client carries a p-biased coin such that she would decide to participate in the
training only when head is returned. Even after a client decides to participate, she may drop out
due to various reasons as discussed in Introduction. Assuming that clients have a certain constant
and independent probability of dropping out, p′, the effective check-in rate is then γ = p(1− p′). A
practitioner can choose to determine the empirical γ (by monitoring the number of client checking in
in each round), or conservatively use p as the check-in rate to yield a valid privacy upper bound (as
smaller check-in rate leads to larger amplification). These henceforth allow for robust modelling of
dropouts. Moreover, instead of treating p′ as a constant, one could further better model the dropout
rate as, e.g., a time-dependent function, as in reliability engineering (Bazovsky, 2004), but we leave
this system-dependent and slightly orthogonal consideration for future work.

4 SELF CHECK-IN WITH INTERMEDIATE TRUST MODELS

Using Theorem 1, we next show how to integrate self check-in with intermediate trust models as a
realization of private FL.

4.1 RDP FOR SHUFFLED CHECK-IN

Let shuff be the shuffling mechanism that randomly permutes any number of received messages and
outputs them. The shuffled check-in mechanism can then be written formally as

M(D) := shuff({A(xi)|σi = 1, i ∈ [n]}), σi ∼ Bern(γ). (6)

Discrete ϵ0-LDP randomizer. We first consider shuffling of discrete-value xi perturbed by an
ϵ0-LDP randomizer, of which has been applied to distributed learning (Bhowmick et al., 2018;
Erlingsson et al., 2020; Girgis et al., 2021b). Roughly speaking, the following procedures are taken in
these algorithms: clients clip the lp-norm (p ∈ [1,∞]) of the gradient, apply an ϵ0-LDP mechanism
to randomize and represent the clipped gradient with a finite number of bits, and send it to the server.
We provide the RDP bounds on these types of mechanism, beginning with the upper bound.

Theorem 2 (Upper Bound). For any ϵ0 ≥ 0, n ∈ N, l ≤ n such that nγ = l (0 ≤ γ ≤ 1),
and any integer λ ≥ 2, the RDP of the shuffled check-in mechanism is upper-bounded by ϵ(λ) ≤
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1
λ−1 log

(
E
[(

M(D)
M(D′)

)λ])
, where

E

[(
M(D)

M(D′)

)λ
]
≤ 1 + 4

(
λ

2

)
γ2 (eϵ0 − 1)

2
(
e−ϵ0−∆2nγ/2 + e−ϵ0/l̃

)

+

λ∑
j=3

(
λ

j

)
γjjΓ (j/2)

(
2
(
e2ϵ0 − 1

)2
e2ϵ0

)j/2 (
e−∆2nγ/2 + l̃−j/2

)
+Υ1e

−∆2nγ/2 +Υ(1−∆)nγ+1. (7)

Here, 0 ≤ ∆ ≤ 1 is arbitrary, l̃ = ⌊ (1−∆)nγ
2ϵ0

⌋+ 1, Γ (z) =
∫∞
0

xz−1e−xdx is the Gamma function,

Υk is given by Υk =

((
1 + γ e2ϵ0−1

eϵ0

)λ
− 1− λγ e2ϵ0−1

eϵ0

)
e−

k−1
8eϵ0 .

Proof sketch. Here, we give an outline of the proof. We notice from Equation 5 that inside the
logarithm is a summation over k of the expected moments of a subsampled without replacement (with
k data instances), shuffle mechanism. We first obtain a bound on the latter using the results from
Girgis et al. (2021a). Then, the summation over k is bounded using the properties of the expected
moments and the Chernoff bound (see Lemma 4). The full proof is available in Appendix C. ■

Remark 3. Evaluating Equation 5 for shuffled check-in is cumbersome as it involves a summation
over the total population, n. We introduce approximation techniques to speed up the evaluation as in
Equation 7, which are based on Lemmas 4 and 5 in Appendix C. Similar techniques are applicable to
distributed check-in too, as will be shown in the next subsection.

We next provide the corresponding lower bound.
Theorem 3 (Lower Bound). For any ϵ0 ≥ 0, n ∈ N, l ≤ n such that 0 ≤ γ ≤ 1, and any integer
λ ≥ 2, the RDP of the shuffled check-in mechanism is lower-bounded by

ϵ(λ) ≥ 1

λ− 1
log

(
1 + (1− e−∆2nγ/(2+∆))

(
λ

2

)
γ2 (eϵ0 − 1)

2

(1 + ∆)nγeϵ0

)
, (8)

where 0 ≤ ∆ ≤ 1 is arbitrary.

Proof sketch. The lower bound is calculated assuming that the underlying ϵ0-LDP discrete mech-
anism is a binary randomized response. Again, we first obtain the expression of the subsampled
without replacement (with k data instances), shuffle binary randomized response. Using the properties
of the expression as well as the Chernoff bound (see Lemma 4), we place a lower bound on the RDP.
For the full proof, see Appendix C. ■

Generic (ϵ0, δ0)-LDP randomizer. The bounds given above apply only to shuffled check-in with
discrete ϵ0-LDP randomizer. Here, we extend our consideration to generic, (ϵ0, δ0)-LDP randomizer
not limited to discrete ϵ0-LDP mechanism. One important application of such a consideration is the
FL variant of Differentially Private SGD (DP-SGD) (Abadi et al., 2016; McMahan et al., 2017b),
where continuous and isotropic Gaussian noises are added to the clipped gradients.

Given an (ϵ0, δ0)-LDP randomizer, our strategy is to first convert it to the corresponding RDP
parameters using Lemma 3. The RDP parameters are then plugged into Equation 5 to calculate the
resulting ϵ(λ). Note that the subsampling and shuffling mechanisms’ approximate DP properties are
relatively well studied. By converting them into RDP and utilizing Theorem 1, one can calculate the
RDP of shuffled check-in in a rather straightforward way. Note also that Equation 4 of Lemma 3
involves a optimization problem that cannot be written in a closed form. Our procedure is henceforth
mainly numerical (in contrast to the analytical bounds for ϵ0-LDP randomizer). We propose two
approaches of tackling the problem, but showing only one in the following due to space constraints
(another approach can be found in Appendix B).

Subsampled shuffling conversion. Our approach converts the subsampled shuffle mechanism’s DP
to RDP using the following procedure:
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1. Evaluate subsampled shuffle DP.
2. Convert subsampled shuffle DP to subsampled shuffle RDP.
3. Substitute it into Equation 5 to evaluate the composition of RDP.

The approximate DP of subsampled shuffling can be calculated using the result of Feldman et al.
(2022) for shuffling and Theorem 9 of Balle et al. (2018) for subsampling, with both having O(1)
time complexity. 3 The second step is a calculation of O(λ) in terms of time complexity (Wang et al.,
2019), while the third step involves evaluating the summation with respect to n as in Equation 5,
which is of O(n). Hence, in terms of time complexity with respect to λ, the overall approach takes
O(nλ). 4

4.2 RDP FOR DISTRIBUTED CHECK-IN

Distributed DP is perhaps the most studied method for realizing DP within the distributed setting.
While various approaches exist (Agarwal et al., 2018; 2021; Bao et al., 2022; Kairouz et al., 2021a),
most of them employ the Gaussian mechanism as the baseline. We henceforth analyze the use of
Gaussian mechanism as the underlying randomization mechanism of the distributed check-in protocol
for the ease of comparison (other mechanisms may be analyzed analogously). Under distributed DP,
we emphasize that only the aggregated values are exposed to the adversary.

Formally, we consider each client randomizing her data instance xi of dimension d with isotropic
Gaussian noise of variance σ2: x̃i = xi +N (0, σ2Id). Here, w.l.o.g., the global sensitivity of xi is
assumed to be 1 (i.e., the clipping size C is set to 1). The distributed check-in mechanism can be
written as

M(D) := agg({A(xi)|σi = 1, i ∈ [n]}), σi ∼ Bern(γ). (9)
Next, we present the distributed check-in Gaussian RDP defined under replacement DP.
Theorem 4 (Distributed check-in Gaussian RDP (replacement DP)). Consider the mechanism in
Equation 9 where agg is a mean operation on collected values. Then, the RDP is

ϵ(λ) ≤ 1

λ− 1
log

(
n∑

k=1

(
n

k

)
γk(1− γ)n−ke(λ−1)ϵSGγ,k

)
(10)

where ϵSG is

ϵSGγ,m(λ) ≤ 1

λ− 1
log

1 + γ2

(
λ

2

)
min

{
4(e4/(mσ2) − 1), 2e4/(mσ2)

}
+

λ∑
j=3

2γj

(
λ

j

)
e2j(j−1)/(mσ2)


The expression may be further approximated by

ϵ(λ) ≤ 1

λ− 1
log
(
e(λ−1)ϵSGγ,1−∆2nγ/2 + e(λ−1)ϵSGγ,(1−∆)nγ+1

)
(11)

with ∆ ∈ [0, 1].

Proof. At the server side, assume k instances are received at certain round. The server aggregates
the data and outputs 1

k (
∑k

i=1 xi +N (0, kσ2)) = 1
k

∑k
i=1 xi +N (0, σ2/k). This mechanism has

global sensitivity 2/k under replacement DP. Hence, we can consider w.l.o.g. the following two base
mechanisms with neighboring databases

Mb ∼ N (0, σ2/k), M′
b ∼ N (2/k, σ2/k).

The RDP of the base mechanism is therefore ϵ = 2λ
kσ2 (Mironov, 2017). Applying Lemma 1 and the

subsampling lemma of Wang et al. (2019) leads to Equation 10. To obtain Equation 11, one uses
monotonicity of the expression and Lemma 4 in Appendix C. ■

3 The result of privacy amplification by shuffling by Feldman et al. (2022) is valid only when ϵ0 ≤
log (n/16 log(2/δ)). For parameters violating this condition, we assume that no amplification occurs, i.e.,
ϵ = ϵ0. This is well corroborated by the numerical experiments performed in Feldman et al. (2022).

4Here, we do not include the time complexity of optimizing Equation 4 for convenience as it is irrelevant to
the subsequent discussions. We note however that Equation 4 is convex optimization problem which can be
solved efficiently.
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(a) Approx. DP versus n for ϵ0 =
1, γ = 10−3, T = 105, δ = 1/n

(b) Approx. DP versus γ for ϵ0 =
1, n = 107, T = 105, δ = 1/n

(c) Approx. DP versus T for n =
107, γ = 10−3, δ = 1/n

Figure 1: Comparison of several bounds on the approximate DP of the shuffled check-in mechanism.
We compare the upper (blue) and lower (red) bound of our formulation (RDP) with the bound based
on strong composition (Girgis et al., 2021c) (green dashed).

Remark 4. Theorem 4 is derived under replacement DP. Generally speaking, removal DP (where
the adjacent database has one data instance added/removed) provides tighter bound. To derive
distributed check-in under removal DP however requires an additional trust assumption: the number
of check-ins must be hidden from the adversary (otherwise, the adversary could distinguish between
the neighboring databases by simply counting the number of check-ins). We provide the result for
removal DP in Appendix B.

5 NUMERICAL RESULTS

In this section, we present numerical evaluation results of our proposal to demonstrate the performance
of the RDP bounds. We also apply our techniques to training machine learning models under the
distributed setting. A link to our code can be found in Appendix A.

5.1 RDP VERSUS APPROXIMATE DP

Shuffled check-in. In Figure 1, we plot the approximate DP bounds of shuffled check-in in various
parameter regimes. The approximate DP is calculated by solving for the optimal λ in Equation 3. We
mainly compare with Girgis et al. (2021c), which uses strong composition for privacy accounting. As
can be seen in the figure, our upper bound is approximately 3 times tighter than that of accounting
using strong compostion, and our lower bound is 10 times tighter.

Distributed check-in. To make comparison with RDP-based privacy accounting, we first invent a
method of privacy accounting of distributed check-in based on approximate DP and strong composi-
tion.

We first find two high probability bounds 1− δ1, 1− δ2 such that the number of clients checking in
is higher than l1, and lower than l2, respectively. Then, with probability 1− δ1, the aggregated value
is conservatively estimated to be perturbed with Gaussian noise of variance l1σ

2. Moreover, with
1− δ2, the subsampling rate is l2/n. Let the resulting DP satisfying the above condition be (ϵ3, δ3).
Then, the overall DP can be written as (ϵ3, δ1 + δ2 + δ3).

We set n = 6× 105, σ = 1, γ = 10−3, δ = 10−8, following Wang et al. (2019). The result as shown
in Figure 2a is that, similar to those observed previously (Wang et al., 2019), strong composition
leads to tighter bounds initially. However, as the number of composition increases (typical in FL
applications), the RDP bounds can be an order of magnitude tighter.

5.2 PRIVATE DISTRIBUTED LEARNING

We perform experiments of distributed machine learning tasks to evaluate our proposal’s empirical
performance. The MNIST handwritten digit dataset (LeCun et al., 1998) is used, assuming that each
client is holding one data instance. A convolutional neural network with architecture similar to the
one used in Erlingsson et al. (2020) is employed (see Appendix D) as the model to be trained privately.
Under the shuffle model, we evaluate two learning algorithms, LDP-SGD and Federated DP-SGD.
Under distributed DP, we perform an evaluation with the vanilla (distributed) Gaussian mechanism.
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(a) RDP vs. approximate DP (distributed DP) (b) Federated DP-SGD

Figure 2: Distributed check-in’s ϵ with respect to the number of composition (left), and privacy-utility
trade-off of private distributed learning with the Federated DP-SGD algorithms on the MNIST dataset
(right). Our approaches (blue) perform better compared to baseline approaches (green).

Due to space constraints, we here present only results of federated learning with Federated DP-SGD
(shuffled check-in Gaussian mechanism), relegating other results (including a study of hyperparameter
dependence, evaluation with CIFAR10) to Appendix D.

Federated DP-SGD. We adapt DP-SGD (Abadi et al., 2016; Bassily et al., 2014; Song et al.,
2013) to distributed learning. Here, the Gaussian mechanism is applied to each client’s clipped
gradient to achieve (ϵ0, δ0)-LDP. Let us remark that, despite its wide usage (under the central DP
setting) and simplicity, we do not realize any existing work using the Gaussian mechanism in the
LDP/shuffle model literature, possibly due to the difficulty of evaluating an (ϵ0, δ0)-LDP randomizer.
Hence, we believe that our evaluation is of independent interest as well. One fact worth mentioning
for the adaptation to the distributed setting is that as we are working with replacement DP, the
sensitivity should be set to twice of those given in Abadi et al. (2016), which is defined in terms of
addition/removal DP (Dwork et al., 2006b; Vadhan, 2017).

Baseline method. Before proceeding to present the experiment, we devise a baseline method of
privacy accounting without using Theorem 1 to make comparisons with our proposal. To do so, we
modify existing techniques of subsampling and shuffling to perform the accounting, similar to the
one given in Section 5.1 (see Appendix D for the full description).

Experimental details and results. We evaluate the resulting DP using the approach introduced at the
end of Section 4.1 and the above baseline. Two experiments are performed. In the first experiment,
the parameters are set to be similar to the one in the evaluation using LDP-SGD: ϵ0 = 2, n = 60, 000,
γ = 0.1, C = 0.05 and the experiment is run for 5,540 rounds. The result is shown in Figure
2b, showing that our proposed accounting is much tighter. In the second experiment, we set the
parameters of the experiment as follows: ϵ0 = 8, n = 107 (by bootstrapping from the train dataset),
γ = 10−4, C = 0.05. Under this setting, we reach around 90% of test accuracy after running the
training for 2,000 rounds. An accuracy-round curve and other details can be found in Appendix D.
We obtain the final ϵ as 0.67 with our approach, in contrast with accounting with the baseline method
presented above, which yields ϵ = 0.80. This again demonstrates the effectiveness of our approach.
As a side note, we find that in general Federated DP-SGD performs better at large ϵ0.

6 CONCLUSION

This paper attempts to give a privacy analysis of distributed learning under a more practical setting by
taking client “autonomy" into account, as well as utilizing intermediate trust models. While we are
making a step towards privacy amplification under a more realistic setting, our protocol has by no
means resolved all problems in privacy amplification applied to practical distributed learning. Some
of them include the impact of violation of trust assumptions on the shuffler, and malicious clients on
distributed learning. We hope that this work can spur the study of privacy amplification with practical
distributed protocols in mind within the research community.
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