Representing Positional Information in
Generative World Models for Object Manipulation

Stefano Ferraro!

Abstract: The ability to predict outcomes of interactions between embodied
agents and objects is paramount in the robotic setting. While model-based control
methods have started to be employed for tackling manipulation tasks, they have
faced challenges in accurately manipulating objects. As we analyze the causes
of this limitation, we identify the cause of underperformance in the way current
world models represent crucial positional information, especially about the target’s
goal specification for object positioning tasks. We propose two solutions for
generative world models: position-conditioned (PCP) and latent-conditioned (LCP)
policy learning. In particular, LCP employs object-centric latent representations
that explicitly capture object positional information for goal specification. This

Pietro Mazzaglia'

Tim Verbelen?

1 Ghent University, > VERSES, 3 ServiceNow
stefano.ferraro @ugent.be

Bart Dhoedt!

naturally leads to the emergence of multimodal capabilities.

1 Introduction

Sai Rajeswar

Among RL algorithms, model-based approaches aim to provide greater data efficiency compared

to their model-free counterparts [1, 2].

With the advent of world models (WM) [3], model-

based agents have demonstrated impressive performance across various domains [4—7], including

real-world robotic applications [8, 9].

When considering robotic object manipulation
tasks, it seems natural to consider an object-
centric approach to world modeling. Object-
centric world models, like FOCUS [10] learn
a distinct dynamical latent representation per
object. This contrasts with the popular Dreamer
method [6], where a single flat representation,
referring to the whole scene is extracted.

Model-based generative agents, like Dreamer
and FOCUS, learn a latent model of the envi-
ronment dynamics by reconstructing the agent’s
observations and use it to generate latent se-
quences for learning a behavior policy in imagi-
nation [4, 11, 6]. However, these kinds of agents
have shown consistent issues in succeeding in
object manipulation tasks, both from proprio-

ceptive/vector inputs [12] and from images [13].

3y
A4 a9 pi=(1,1) 2
pO) v =
*lpe \, 4
____________ ;% S) or (s°P]
- {q Jj \ o
° obj obj 5
p pgbl/ N4

Figure 1: The world model compresses input obser-
vations into a single or per object latent state repre-
sentation. The compressed representation serves as
input to the policy for action selection. (top) Goal
information is provided through the input state vec-
tor. (bottom): Both single and object-centric rep-
resentations can be paired to a target-conditioned

policy.

After analyzing the causes of failure of generative agents, we propose two solutions to improve

performance:

* a simpler solution, where the target is expressed as a vector of spatial coordinates, that
presents no major changes to the model architecture and minimal changes to policy learning;

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

3

* atailored solution employing an object-centric approach that integrates positional informa-
tion about the objects into the latent space of the world model. This approach enables the
possibility to specify goals through multimodal targets, e.g. vector inputs or visual goals.

2 Analysis of the Current Limitations

To provide insights into the limitations of

current world model-based agents in object- Reconstruction errors
positioning tasks, we consider the performance SUCCESS T2IE 0.3 (rISLPOSION 5 NN PoSTion
of Dreamer and FOCUS on a pose-reaching and
an object-positioning task. For pose-reaching,
we opted for the Reacher environment from the
DMC suite [14]. In this task, we consider the
end-effector of the manipulator as the entity to
be positioned at the target location. For the more
complex object positioning task, we opted for
a cube-manipulation task from Robosuite [15].
The given cube has to be placed at the specified Figure 2: (left): examples of virtual targets. (top-
target location to succeed in the task. right): Dreamer’s success rate and reconstruction
. performance over target and entity position (end-
In both env1r0nmer.1tsf the target position is uni- o fe o position for reacher and cube position for
formly sampled within the workspace at every (he cube environment). (bottom-right): Equiva-

new episode. We test the environments in two Jent for the FOCUS object-centric model.
different scenarios: first, with a virtual visual

target that is rendered in the environment, and second, without a visual target, where the target
location is provided only as a vector in the agent’s inputs. Training details are provided in appendix
G. Based on Fig. 2, we highlight the significant gap in performance between the tasks with the virtual
visual targets rendered in the environment and the tasks using only spatial coordinates as a target. The
agents struggle to solve the tasks without a virtual target. It can also be noticed a negative correlation
between the agents’ ability to reconstruct positional information and the performance on the task.

| g
o

0.15 41 0154
0.10 0.10

L)
Dreamer
o
o

0.05 0.05 1

oo lm M MW 1 Mo

=4
5}

0.20 0.20
0.15 41 015

. I 0.10 0.104

:

(@
FOCUs
° t
o

0.05 0.05 1

0.00 "4—.— 0.00 .

Reacher w/ Cube move w/
virtual target Reacher W i3 target

o
5

Cube move

There is a significant difference in the relative significance of the target information compared to
the entire observation, in terms of their dimensionality. The information pertaining to a positional
target comprises a maximum of three values (i.e., the xyz coordinates of the target). Conversely, when
considering a visual cue, there are three values (i.e., RGB values) for each pixel that represents the
target cue. Consequently, the relative significance of the target information is, at least, greater in
the case of a large visual target, i.e. larger than a single pixel. This difference in the dimensionality
affects the computation of the loss, and thus the weight of each component in the decoder’s loss.
For the entity, the agents have access to this information in the visual observation. Indeed, it’s not
surprising that both agents reconstruct the entity position accurately. To confirm our hypothesis that
the improved predictions are due to the greater significance of the visual targets in the overall loss,
we provide additional experiments in appendix C.

Discussion. A concurrent work [16] conducted an extensive study between the interplay of the reward
and the observation loss in a world model. Our analysis provides an additional insight, as we identify
within the observation loss, an unbalance between the different decoded components. In this work,
rather than focussing on how to balance the losses (Appendix D), we consider different approaches
to alleviate this issue. The central idea is to find alternative ways to provide positional information
about the target directly to the reward computation and policy learning modules, rather than relying
on the reconstruction of the targets obtained by the model.

3 Conditioned Policy

Position Conditioned Policy (PCP). The first declination of our proposed solutions is the condition-
ing of the policy directly on the positional coordinates of the desired target. By default, the world

model encodes the target’s positional information in the latent states, which are then fed to the policy
for behavior learning. Instead, as shown in the bottom of Fig. 1, we propose to concatenate the object
positional coordinates pgbj to the latent states s; as an input to the policy network. We refer to this

strategy as Position-Conditioned Policy (PCP): wpcp(a|s:, pgbj)

When employing PCP, the policy has direct access to the target’s positional information p"bj This
can also be leveraged for reward computation. Rather than learning a reward head, we can use the
world model’s decoder to predict the object’s position at time t, obtaining p; % Then, the reward
rpcp can be estimated as the distance between the target given to the policy and the reconstructed
position of the entity of interest: rpcp = dist(p;” — pot7)

Latent Conditioned Policy (L.CP). Condition-

ing the policy on explicit features has its lim- 3 oo ® micp(adsy, s2)
itations, particularly when extending features " dm" . \-'/T
beyond positional ones, or when working with . & it s; Ps j
different goal specifications, e.g. visual ones. Py’ @ 0 E
Therefore, expressing features implicitly could @ B (s, brarlSeure

represent a more robust approach. To address . = t S
this, we propose a latent conditioned method -J s9’

for behavior learning. This approach is anal- object eq]}Enc ”f,,;t_(;:w,s;w)

ogous to the one adopted in LEXA [17] for " extractor

goal-conditioned behavior learning. However, gjore 3. CP leverages an object-centric represen-
we tailor our strategy for object manipulation (ation. With the latent position encoder network,
by designing an object-centric approach. We the agent learns to predict the latent of each object
refer to our novel implementation as Latent- in the scene given the sole object position. The
Conditioned Policy (LCP). policy is then conditioned on an object latent target

obtained from the target goal observation. Distance

In LEXA, policy conditioning occurs on the g, tions are expressed as cosine similarities.

entire (flat) latent state, using either cosine or

temporal distance methods. However, in manipulation tasks involving small objects, the cosine
approach is inadequate because it prioritizes matching the robot’s position over visually smaller
aspects of the scene, such as an object’s position, rather than on bigger visual components of the
scene, e.g. the robot pose. The temporal approach was introduced to mitigate this issue. However,
this approach generally requires a larger amount of data to converge, as the training signal is less
informative, being based only on the temporal distance from the goal [17]. We argue that object-
centric latent representations offer greater flexibility to condition the policy, thanks to the disentangled
latent information. With LCP, we can condition the policy solely on the object’s latent states, enabling
fine-grained target conditioning focused exclusively on the entity of interest.

Latent Positional Encoder. To obtain object latent features for a given target position, we introduce
the Latent Positional Encoder model, as shown in Fig. 3. This model enables inferring an object’s
latent state directly from the object’s positional information, namely p(87 b | pObJ).

During training, the latent positional encoder is trained to minimize the negative cosine distance

s0bj _obj
St St

between the predicted and the reference object latent state: L,,s = BRI

Compared to the original loss function of FOCUS (defined in Appendix E), the world model loss
becomes: Locwm = Lrocus + Lpos

Latent-Conditioned Policy Learning. The introduction of the latent positional encoder enables
the conditioning over the target object’s latent. By encoding a desired target position pgbj, the target
object’s latent state sgbj is inferred. The latter serves as the conditioning factor for the policy network:
mrop(adst, s"bj). To incentivize the policy to move the entity of interest to the target location, we

maximize the negative latent distance between §; % and 80b7 The distance function used is cosine

Aan obj

S

31m11ar1ty rLcp becomes then: rLcp = W
g

Visual targets. Additionally with respect to PCP, LCP enables conditioning the policy on visual
targets. In this case, the agent does not use the latent position encoder. Instead, given a visual
observation representing the goal target position for the object, the world model can infer the
corresponding world model state, using the encoder and the posterior. Then given such a state, the
object extractor allows extracting the target latent state s;bj , which is used in the reward computation.

Dreamer LEXA LEXA FOCUS
Dreamer FOCUS w/ PCP (cosine) (temporal) w/ LCP
Reacher 026+0.19 029%0.19 | 08%0.14 | 092+0.04 042+02 091 x0.04
4 Results Cube move | 0.3520.08 0.35%0.15 | 0.54%0.08 | 037£0.03 039%0.1 0.61=0.12
Shelf place | 04£0.14 03%0.18 | 0.580.13 | 04%0.11 _ 04%0.11 _ 0.65%0.14
Pick&Place | 026 £0.21 02102 | 0.48£0.26 | 034024 034025 045%0.29

We now present the evaluation of the Taple 1: Average score for 100 goal points equally dis-
trained models (training details in Ap- (ributed over the workspace. Performance is averaged over
pendix G) for a set of 4 environments 3 seeds, + indicates the std. error.

(Appendix F). The score function considered is presented in Appendix, Eq. 2 .

Spatial-coordinates goal specification. By providing the different agents with goals uniformly
distributed in the workspace we extract the overall performance of each method. Results are presented
in Table 1. Overall, the FOCUS agent equipped with PCP or LCP gives the best performance,
followed by Dreamer + PCP. In the "Shelf place" environment, the latent representation of LCP
represents best. Given that the camera is further away from the scene, we believe the agent is
better able to deal with the inaccuracies that come from the inaccurate position readings (bigger
segmentation mask — better granularity in position).

Visual goal specification. An emergence prop-
erty of FOCUS + LCP is the possibility to define Lo, Reacher Cubemove Sheffplace Pick&Place Overal
goals via different modalities. The policy T.cp , 0s
can be conditioned on the goal object latent §gbj g 06
coming from the encoding of the visual goal z,. £ 1 1
We compare our method with visual goal con- o

ditlonlng against LEXA COSlne and tempOI‘al === FOCUS+LCP (pos) LEXA (cos) LEXA (temp) mmm FOCUS+LCP (obs)

The goal locations are provided to the simulator Figure 4: The mean score was achieved over 10
which renders the corresponding goal observa- episodes with goal observations for latent condi-
tions by "teleporting” the object to the correct tioning. The performance of our method with
location. The agent is then asked to matched spatial-coordinate goals (pos) is shown as a ref-
the visual goal, after resetting the environment. erence. Performance is averaged over 3 seeds.
Results are shown in Fig. 4, where the positional conditioning results are shown for reference.

LEXA matches the flat latent vector to the goal one. This proves helpful in the Reacher environment,
where the only part that moves is the agent, and thus LEXA cosine achieves the best performance.
LEXA cosine fails in the other tasks, given the presence of multiple entities in the observations and
visual goals, i.e. the robotic arm and the object. where the model focuses on matching the visually
predominant features i.e. the robotic arm. FOCUS+LCP performs better than both LEXA with cosine
and temporal distance in all environments but the Reacher. When compared to the performance of
FOCUS+LCP with spatial-coordinates goals, there is a decrease of ~10% in performance.

5 Conclusion

We analyzed the challenges in solving visual robotic positional tasks using generative world model-
based agents. We found these systems suffer from information bottleneck issues when considering
positional information for task resolution (i.e. goal position). The approaches we presented overcome
this issue by providing the policy network with more direct access to the target information. Positional
Conditioning Policy (PCP), allows direct conditioning on the target spatial coordinates. We showed
PCP improves performance for any class of world models, including Dreamer-like "flat" world
models and FOCUS-like object-centric world models. Latent Conditioning Policy (LCP), is an
object-centric approach that we implement on top of FOCUS. This allows the conditioning of the
policy on object-centric latent targets, enabling multimodal goal definition.

References

[1] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods, 2018.

[2] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor, 2018.

[3] D. Ha and J. Schmidhuber. World models. 2018. doi:10.5281/ZENODO.1207631. URL
https://zenodo.org/record/1207631.

[4] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. 2020. URL https://arxiv.org/pdf/1912.01603.pdf.

[5] S. Rajeswar, P. Mazzaglia, T. Verbelen, A. Piché, B. Dhoedt, A. Courville, and A. Lacoste.
Mastering the unsupervised reinforcement learning benchmark from pixels. 2023.

[6] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[7] P. Lancaster, N. Hansen, A. Rajeswaran, and V. Kumar. Modem-v2: Visuo-motor world models
for real-world robot manipulation, 2024.

[8] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel. Daydreamer: World models for
physical robot learning, 2022.

[9] Y. Seo, J. Kim, S. James, K. Lee, J. Shin, and P. Abbeel. Multi-view masked world models for
visual robotic manipulation, 2023.

[10] S. Ferraro, P. Mazzaglia, T. Verbelen, and B. Dhoedt. Focus: Object-centric world models for
robotics manipulation, 2023.

[11] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
In ICLR, 2021.

[12] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous
control, 2024.

[13] Y. Seo, D. Hafner, H. Liu, F. Liu, S. James, K. Lee, and P. Abbeel. Masked world models for
visual control, 2022.

[14] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa. dm_control: Software and tasks for continuous control. Software
Impacts, 6:100022, 2020. ISSN 2665-9638. doi:https://doi.org/10.1016/j.simpa.2020.100022.
URL https://www.sciencedirect.com/science/article/pii/S2665963820300099.

[15] Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiriany, and Y. Zhu. robo-
suite: A modular simulation framework and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020.

[16] H. Ma, J. Wu, N. Feng, C. Xiao, D. Li, J. Hao, J. Wang, and M. Long. Harmonydream: Task
harmonization inside world models, 2024. URL https://arxiv.org/abs/2310.00344.

[17] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving
goals via world models, 2021.

[18] D.P. Kingma and M. Welling. Auto-encoding variational bayes, 2022.

[19] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In ICML, pages 2555-2565, 2019.

http://dx.doi.org/10.5281/ZENODO.1207631
https://zenodo.org/record/1207631
https://arxiv.org/pdf/1912.01603.pdf
http://dx.doi.org/https://doi.org/10.1016/j.simpa.2020.100022
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://arxiv.org/abs/2310.00344

[20] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.

[21] OpenAl I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. A. Tezak, J. Tworek, P. Welinder, L. Weng,
Q. Yuan, W. Zaremba, and L. M. Zhang. Solving rubik’s cube with a robot hand. ArXiv,
abs/1910.07113, 2019.

[22] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to benchmark
reinforcement learning, 2020. URL https://arxiv.org/abs/1912.01588.

[23] J. Fan. A review for deep reinforcement learning in atari:benchmarks, challenges, and solutions,
2023. URL https://arxiv.org/abs/2112.04145.

[24] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore
via self-supervised world models. In ICML, 2020.

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/2112.04145

Appendix
A Preliminaries

The agent is a robotic manipulator that, at each discrete timestep ¢ receives an input x; from the
environment. The goal of the agent is to move an object in the environment from its current position
p2% to a target goal position poa.

In this work, we focus on observations composed of both visual and vector entities. Thus, x; = (o, v¢)
is composed of the visual component o; and of the vector v;. The latter is a concatenation of
proprioceptive information of the robotic manipulator g, the object’s position p; % and the target
position pgbj. The target position can also be expressed through a visual observation x4, from which

the agent should infer the corresponding pzbj to succeed in the positioning task.

A.1 Generative World Models

Generative world models learn a latent representation of the agent inputs using a variational auto-
encoding framework [18]. Dreamer-like agents [11, 6] implement the world model as a Recurrent
State-Space Model (RSSM) [19]. The encoder f(-) is instantiated as the concatenation of the
outputs of a CNN for high-dimensional observations and an MLP for low-dimensional proprioception.
Through the encoder network, the input x; is mapped to an embedding e;, which then is integrated
with dynamical information with respect to the previous RSSM state and the action taken ay, resulting
in s; features.

Encoder: e; = f(x4)
Posterior: py(Si+1|Se, Aty €14+1)s
Prior: pg(siy1|se, ar),
Decoder: pg(Z¢|st).
Generally, the system either learns to predict the expected reward given the latent features [4], using a

reward predictor pg(7¢|s;). Alternatively, some world-model based methods adopt specialized ways
to compute rewards in imagination, as the goal-conditioned objectives in LEXA [17].

Rewards are computed on rollouts of latent states generated by the model and are used to learn the
policy 7 and value network v in imagination [4, 11, 6].

In our experiments, we consider a world model with a discrete latent space [11]. We also implement
advancements of the world model representation introduced in DreamerV3 [6], such as the application
of the symlog transform to the inputs, KL balancing, and free bits to improve the predictions of the
vector inputs and the robustness of the model.

A.2 Object-centric World Models

Compared to Dreamer-like flar world models, the world model of FOCUS [10] introduces the
following object-centric components:

Object latent extractor: pg(s?™ |sg,),
Object decoder: py (2777, mf7|s077).

Here, xtObj = (o} % ptObj) represents the object-centric inputs and it is composed of segmented RGB

images 07 and object positions p? . The variable ¢°% indicates which object is being considered.

Thanks to the object latent extractor unit, object-specific information is separated into distinct
latent representations s} % Two decoding units are present. The introduced object-centric decoder
po (2% 2% |s2%7) reconstructs each object’s related inputs 2 and segmentation mask m?*. The
original Dreamer-like decoder takes care of the reconstruction of the remaining vector inputs, i.e.

proprioception ¢; and given goal targets pgbj .

We provide additional descriptions of the world model and policy learning losses, hyperparameters,
and training details in the Appendix.

A.3 Object Positioning Tasks

In general terms, we consider positioning tasks the ones where an entity of interest has to be moved
to a specific location. Two positioning scenarios are considered in this analysis: pose reaching and
object positioning. Pose-reaching tasks can be seen as simplified positioning tasks where the entity
of interest is part of the robotic manipulator itself. Pose-reaching tasks are interesting because these
only require the agent to have knowledge of the proprioceptive information to infer their position in
space and reach a given target. When interacting with objects instead, there is the additional necessity
of knowing the position of the object entity in the environment. Then, the agent needs to be able to
manipulate and move the entity to the provided target location.

For object positioning tasks, especially when considering a real-world setup, there is a significant
advantage in relying mainly on visual inputs. It is convenient because it avoids the cost and difficulty
associated with tracking additional state features, such as the geometrical shape of objects in the
scene or the presence of obstacles. Some synthetic benchmarks additionally make use of "virtual”
visual targets for positioning tasks [14, 20], which strongly facilitates the learning of these tasks,
leveraging rendering in simulation. However, applying such "virtual" targets in real-world settings is
not often feasible. Non-visual target locations can be provided as spatial coordinates. Alternatively,
an image showing the target location could be used to specify the target’s position.

Rewards and evaluation criteria. When applying RL algorithms to a problem, a heavily engineered
reward function is generally necessary to guide the agent’s learning toward the solution of the task
[21]. The object positioning setup allows us to consider a natural and intuitive reward definition
that scales across different agents and environments. We define the reward as the negative distance
between the position of the entity of interest and the goal target position:

4 = —distance(object, target) = —||p?*’ —pgijQ. (1

In the spirit of maintaining a setup that is as close as possible to a real-world one, to retrieve positional
information p, of the objects we rely on image segmentation information, rather than using the
readings provided from the simulator. For each entity of interest, the related position is extracted by
computing the centroid of the segmentation mask and subsequently transformed according to the
camera extrinsic and intrinsic matrices to obtain the absolute position with respect to the workspace.

For evaluation purposes, we use the goal-normalized score function:

obj _ obj
normalized score = exp (— W) 2
(72 1P

As detailed in the Appendix, the above function allows us to rescale performance between 0 and 1,
where 1 = expert performance, a common evaluation strategy in RL [22, 23].

B Normalized score

Scaling performance using expert performance is a common evaluation strategy in RL [22, 23]. In
our problem, we define the reward as the negative distance:

g y _
re =—r(p”) = —[lp;” — |2 3)

For a given goal pgbj , 7t €] — inf,0]. In order to compare different tasks, where distances may
have different magnitudes, we divide the rewards r; by the typical reward range. This is given by
Tmaz — Tmin, WheTe Tmin = r(pgbj), with pg being the initial position of the object (this is normally

around the origin, and ryq, = r(p*) = 0.

Mean Score Value Prediction

200 Goal
= pixels
0.8 1 0 diameter
150 A — 10
0.6 1 8
— 6
04 100 .
—_— 2
0.2 501 —1
— 0
0.0 - 0-

Figure 5: Dreamer virtual visual goal modulation experiments on the Reacher environment. Value
prediction from the value network is shown to highlight the policy’s awareness of the lack of
information with respect to the target goal.

Thus, we obtain:

st =1t/ (Fmaz — Tmin))
=r(p™)/(0—r(pg")) = ®)
= —[p?" = p|l2/(0 + [0 — g ||2) ©6)
= —[Ip{™ = pg" 12/l |12 @)

Finally, we apply the exp operator, to make values positive and bring them in the [0, 1] range, where
1 is the expert score:

obj _ obj
lp¢™ — pg ||2> ®

Obj”2

normalized score = exp (- ”
Py

C Target size ablation

In Figure 5, we present a study where the Dreamer model is trained on the Reacher environment with
varying visual target sizes.

We observe that the reduction in pixel information regarding the target adversely affects the target
representation within the model, resulting in a deficiency of this information being conveyed to the
policy network. The policy struggles to learn to position the entity at the correct location, and we
observe that this is correctly reflected in the value function’s predictions. This means the policy
is aware that is not being able to reach the goal. With small targets (< 5 pixels diameters), the
representation tends to put more attention on other visually predominant aspects of the environment,
struggling to predict the position of the target. In the case of a single pixel target, the amount of target
information equals the one of a positional vector and, as expected, the task performance is equally
low.

Reacher Cube move
10 10 Goal scale
0.8 0.8 coefficient
)) ’ —— 1000
S 0.6 0.6 1 100
v | —— 50
& 0.4 0.4 — 10
© 0. .
= — 1
0.2 A 0.2 1

0.0 - 0.0 -

Figure 6: Dreamer trained with goal scaling modulation on the Reacher and Cube move environments.

D Loss rescaling ablation

To overcome the identified information bottleneck, different strategies can be considered. The
simplest one is the re-scaling of the loss components in the decoder to incentivize the model’s
encoding of the target information. This approach requires finding the optimal scaling factor between
the different decoding components, given the complexity of the environment at hand (i.e. 2D or 3D)
and the amount of relevant pixels. In Figure 6, we present supporting experiments based on Dreamer,
where we vary the importance of the target in the loss of the world model, using different coefficients.
We observe that very high coefficients improve the target’s reconstruction and thus allow the agent to
learn the task. However, the optimal loss coefficient may vary, depending on the complexity of the
environment and the presence of information-rich observations. As this naive solution may require
extensive hyperparameter tuning for each new scenario, we aim to find more robust strategies for
overcoming this issue.

E FOCUS objective

Training of the FOCUS architecture is guided by the following loss function:
Lrocus = Layn + Lstate + Lobj- 9
Lyn refers to the dynamic component of the RSSM, and equals too:
»Cdyn = DKL[p¢(St+1 |8t, Qg €t+1)||p¢(8t+1 |3t7 at)]~ (10)
the backpropagation is balanced and clipped below 1 nat as in DreamerV3 [6].

The object loss component is instantiated as the composition of NLL over the mask and RGB mask
reconstructions:

N
~ obj ~ obj| _obj
Lopj = — log p(my) — log E my pe(£:™|sy™) (11)
N—— — N————
obj=0 .
mask masked reconstruction

Finally, the decoder learns to reconstruct the rest of vector state information v; by minimization of
the negative log-likelihood (NLL) loss:

Laae = —log po(qe, g |s1) (12)

F Baselines and Environments

For the evaluation of the proposed method we consider several manipulation environments (Figure 7):

* Reacher (DMControl): which, as described previously, represents a pose-reaching position-
ing task.

* Cube move (Robosuite): where considered target locations are on the 2D plane of the table,

no height placement is considered.

L]
Figure 7: Simulation environments with relative workspace, delimited by an orange dotted line, and

the reference frames indicated with arrows.

10

* Shelf place and Pick&Place (Metaworld): The robotic manipulator has to place the cube
at the given target location. Considered target locations are on the 2D space in front of the
robotic arm.

In all environments, the reward signal is defined as the distance between the entity of interest (in the
Reacher environment, this is the end-effector) and the target location. All considered environments
lack any visual target; the target is provided as an input vector containing spatial coordinates.

‘We benchmark our methods against various baselines:

* Dreamer: based on a PyTorch DreamerV2 implementation, but integrated with input vector
symlog transformation and KL balancing of the latent dynamic representation, from the
DreamerV3 paper.

* FOCUS: An object-centric world model implementation based on DreamerV2, also inte-
grated with input vector symlog transformation and KL balancing of the latent dynamic
representation.

* LEXA: Based on DreamerV2, this is a latent goal-conditioned method. The conditioning is
based on the full latent target. Both proposed distance methods (cosine and temporal) are
considered. We adopted our own PyTorch implementation for LEXA.

G Training details and Hyperparameters

All methods are trained following an offline RL training scheme. The offline datasets contain 1M
steps in the environment, which are collected using the object-centric exploration strategy proposed
in [10]. The datasets are loaded in the replay buffer of the offline agents, and the training is conducted
for 250K steps. Both world model and agent are updated at every training step. V100-16GB GPUs
have been used for all experiments. Our proposed methods (i.e. Dreamer/FOCUS + PCP, FOCUS +
LCP) took roughly 18 hours to complete each training run.

The hyperparameters used for the main implementation of the world models and agent are the same
used in DreamerV2 [11] official implementation. Symlog function is applied at every input. KL
balancing as in DreamerV3 [6] is implemented.

With reference to FOCUS model, we have the following additional parameters:
* Object-extractor: MLP composed of 2 layers, 512 units, ReLU activation;
With reference to FOCUS + LCP model, we have the following additional parameters:

* Object-encoder: MLP composed of 4 layers, 400 units, ReLU activation;
* Distance method object-encoder objective: Cosine similarity (also tested MSE)

* Distance method actor policy objective: Cosine similarity (also tested MSE)

H Heatmaps positioning tasks

To highlight the performance distribution over the different goals in the environment, in Fig. 8 we
present heatmaps with the score function for each target location in the workspace. Results are
presented for all the different tasks. As expected, both Dreamer and FOCUS have poor performances,
resulting in only a few positions being reached with a high score. All the proposed methods have a
similar distribution, reaching goals spread all over the environment.

11

Dreamer FOCUS Dreamer + PCP FOCUS + PCP FOCUS + LCP

Reacher

Shelf place

FEELE
P

()

vl
o
o
%}
~
2
a

)
>
9]
1S
@
o
>
S

WmANE
o] 1O

!

=}
=}
o
N
o
>
[=}
o
[=}
©
=
o

Figure 8: Heatmaps of the mean achieved score for uniformly spread targets in the workspace.
References frames refers to the one presented in the figures of Table 1. The score notation is
expressed as the notation presented in Eq. 2. Results are averaged over 3 seeds.

I Offline Training Curves

Offline training curves are presented in Figure 9. In general FOCUS + PCP/LCP have faster
convergence when compared to all other methods. Only for the Reacher environment, LEXA cosine
converge faster.

Reacher Cube move

1 —— Dreamer
o 08 —— FOCUS
o —— Dreamer + PCP
Sos —— LEXA cosine
c —— LEXA temporal
g 04 —— FOCUS + LCP
=, —— FOCUS + PCP

0.0 - -

0 100k 250k O 100k 250k

10 Shelf place Pick&Place
o 0.8 1
o
5 04a{7 é B e
= B acacs

0.2 4 1

0.0

0 100k 250k O 250k 500k

Figure 9: Offline training curves. Standard deviation is omitted for graphical reasons. Mean score
refers to eq. 2 and is computed over 5 evaluation episodes, performed during the offline training. For
each episode, a random goal is selected out of a pool of 10 manually engineered ones.

J Explorations strategies

In the presented work each model is trained offline from a pre-recorded dataset. The dataset of
choice is obtained from pure exploration behavior. In Fig. 10 we compare the general performance

12

of LCP when trained on datasets acquired using different exploration strategies. We consider the
object-centric entropy maximization method proposed by Ferraro et al. [10] and Plan2Explore [24].

E - OC entropy
0.8 1 maximization
g I p2e
2061 = =
x
5 0.4 I T

0.2

0.0 T T T T T
Reacher Cube move Shelf place Pick&Place Overall

Figure 10: Mean score achieved over 10 episodes for models trained with both datasets obtained
from FOCUS exploration method (Object-Centric entropy maximization) and Plan2Explore. The
score is expressed according to equation 2.

Overall exploring by maximizing the entropy over the object’s latent, gives better performance in

the downstream task. We hypothesize this is related to the focus the exploration strategy puts on the
object of interest while disregarding background aspects in the scene.

13

	Introduction
	Analysis of the Current Limitations
	Conditioned Policy
	Results
	Conclusion
	Preliminaries
	Generative World Models
	Object-centric World Models
	Object Positioning Tasks

	Normalized score
	Target size ablation
	Loss rescaling ablation
	FOCUS objective
	Baselines and Environments
	Training details and Hyperparameters
	Heatmaps positioning tasks
	Offline Training Curves
	Explorations strategies

