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Abstract

We introduce the Blackwell discount factor for Markov Decision Processes (MDPs).1

Classical objectives for MDPs include discounted, average, and Blackwell opti-2

mality. Many existing approaches to computing average-optimal policies solve3

for discount-optimal policies with a discount factor close to 1, but they only work4

under strong or hard-to-verify assumptions such as unichain or ergodicity. We high-5

light the shortcomings of the classical definition of Blackwell optimality, which6

does not lead to simple algorithms for computing Blackwell-optimal policies and7

overlooks the pathological behaviors of optimal value functions with respect to the8

discount factors. To resolve this issue, we show that when the discount factor is9

larger than the Blackwell discount factor γbw, all discount-optimal policies become10

Blackwell- and average-optimal, and we derive a general upper bound on γbw. Our11

upper bound on γbw, parametrized by the bit-size of the rewards and transition12

probabilities of the MDP instance, provides the first reduction from average and13

Blackwell optimality to discounted optimality, without any assumptions, along with14

new polynomial-time algorithms. Our work brings new ideas from polynomials15

and algebraic numbers to the analysis of MDPs. Our results also apply to robust16

MDPs, enabling the first algorithms to compute robust Blackwell-optimal policies.17

1 Introduction18

Markov Decision Processes (MDPs) provide a widely-used framework for modeling sequential19

decision-making problems (Puterman, 2014). In a (finite) MDP, the decision maker repeatedly20

interacts with an environment characterized by a finite set of states and a finite set of available21

actions. The decision maker follows a policy that prescribes an action at a state at every period. An22

instantaneous reward is obtained at every period, depending on the current state-action pair, and the23

system transitions to the next state at the next period. MDPs provide the underlying model for the24

applications of reinforcement learning (RL), ranging from healthcare (Gottesman et al., 2019) to25

game solving (Mnih et al., 2013) and finance (Deng et al., 2016).26

There are several optimality criteria that measure a decision maker’s performance in an MDP. In27

discounted optimality, the decision maker optimizes the discounted return, defined as the sum of the28

instantaneous rewards over the infinite horizon, where future rewards are discounted with a discount29

factor γ ∈ [0, 1). In average optimality, the decision maker optimizes the average return, defined30

as the average of the instantaneous rewards obtained over the infinite horizon. The average return31

ignores any return gathered in finite time, i.e., it does not reflect the transient performance of a policy32

and it only focuses on the steady-state behavior. The most selective optimality criterion in MDPs is33

Blackwell optimality (Puterman, 2014). A policy is Blackwell-optimal if it optimizes the discounted34

return simultaneously for all discount factors sufficiently close to 1. Since a discount factor close35
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to 1 can be interpreted as a preference for rewards obtained in later periods, Blackwell-optimal36

policies are also average-optimal. However, average-optimal policies need not be Blackwell-optimal.37

Blackwell optimality can be a useful criterion in environments with no natural, or known, discount38

factor. Also, any algorithm that computes a Blackwell-optimal policy also immediately computes an39

average-optimal policy. This is one of the reasons why better understanding the Blackwell optimality40

criterion is mentioned as “one of the pressing questions in RL” in the list of open research problems41

from a recent survey on RL for average reward optimality (Dewanto et al., 2020).42

Average-optimal policies can be computed via linear programming (section 9.3, (Puterman, 2014)).43

However, virtually all of the recent algorithms for computing average-optimal policies require strong44

assumptions on the underlying Markov chains associated with the policies in the MDP instance,45

such as ergodicity (Wang, 2017), the unichain and aperiodicity properties (Schneckenreither, 2020),46

weakly communicating MDPs (Wang et al., 2022), or assumptions on the mixing time associated47

with any deterministic policies (Jin and Sidford, 2020, 2021). These assumptions are motivated by48

technical considerations (e.g., ensuring that the average reward is uniform across all states) and can49

be restrictive in practice (Puterman, 2014) and NP-hard to verify, such as unichain (Tsitsiklis, 2007).50

Existing methods for computing Blackwell-optimal policies rely on linear programming over the51

field of power series including negative coefficients (Hordijk et al., 1985), or on an algorithm based52

on a nested sequence of optimality equations (O’Sullivan and Veinott Jr, 2017) which requires to53

solve multiple linear programs sequentially. These algorithms are complex, difficult to implement,54

and have no complexity guarantees or known implementations.55

In summary, existing algorithms for average optimality require restrictive assumptions, and algorithms56

for Blackwell-optimality are very complex. This is in stark contrast with the vast literature on solving57

discounted MDPs, where general and well-understood methods exist, including value iteration, policy58

iteration, and linear programming (chapter 6, (Puterman, 2014)). This is the starting point of this59

paper, which aims to develop new algorithms for computing average-optimal and Blackwell-optimal60

policies through a reduction to discounted MDPs. We make the following three main contributions.61

1) A new definition of Blackwell optimality via the Blackwell discount factor γbw ∈ [0, 1). Our first62

main contribution is to highlight that the standard definition of Blackwell optimality cannot be used63

to compute Blackwell-optimal policies with simple algorithms. Standard definitions have focused on64

necessary condition for Blackwell optimal policies to be discount optimal. However, we show that65

this condition needs to be revised when one seeks to compute a Blackwell-optimal policy. We do so by66

highlighting the potential pathological behaviors of the value functions: a Blackwell-optimal policy67

may be optimal on an arbitrary number of arbitrary disjoint intervals, and other non-Blackwell optimal68

policies may also be discount-optimal for some discount factors very close to 1. Demonstrating this69

issue is important because previous literature has repeatedly overlooked it. To address this issue, we70

introduce and show the existence of a discount factor γbw such that discount optimality for γ > γbw71

is sufficient for Blackwell optimality. Knowing the discount factor γbw is vital because it enables72

one to compute Blackwell- and average-optimal policies simply by solving a discounted MDP with73

γ ∈ (γbw, 1), for which there exist well-studied, simple, and efficient algorithms.74

2) Upper-bound the Blackwell discount factor. As our second main contribution, we provide a strict75

upper bound on γbw given an MDP instance. We show that an upper bound must depend on r and P ,76

and we compute a bound that is parametrized by the number of states and the number of bits required77

to represent the MDP instance. Solving a discounted MDP with a discount factor larger or equal78

than our strict upper bound returns a Blackwell-optimal policy. Crucially, our strict upper bound79

requires no assumptions on the underlying structure of the MDP, which is a significant improvement80

on existing literature. Interestingly, the construction of our upper bound relies on novel techniques81

for analyzing MDPs. We interpret γbw ∈ [0, 1) as the root of a polynomial equation p(γ) = 0 in γ,82

show p(1) = 0, and use a lower bound sep(p) on the distance between any two roots of a polynomial83

p, known as the separation of algebraic numbers. This shows that γbw < 1− sep(p), where sep(p)84

depends on the MDP instance. Since Blackwell optimality implies average optimality, we also obtain85

the first reduction from average optimality to discounted optimality, without any assumption on the86

MDP structure. Our upper bound on γbw is itself of polynomial size in the bit-size of the MDP data.87

Combining this bound with interior-point methods for solving discounted MDPs, we obtain new88

weakly-polynomial time algorithms for computing Blackwell-optimal and average-optimal policies.89

3) Blackwell discount factor for robust MDPs. We consider the case of robust reinforcement learning90

where the transition probabilities are unknown and, instead, belong to an uncertainty set. As our91
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third main contribution, we show that the robust Blackwell discount factor γbw,r exists for popular92

models of uncertainty, such as sa-rectangular robust MDPs with polyhedral uncertainty (Goyal and93

Grand-Clément, 2023b, Iyengar, 2005). For this setting, we generalize our upper bound on γbw for94

MDPs to an upper bound on γbw,r for robust MDPs. Since robust MDPs with discounted optimality95

can be solved via value iteration and policy iteration, we provide the very first algorithms to compute96

Blackwell-optimal policies for robust MDPs.97

We conclude this section with a discussion on related works. Several papers study the reduction98

of average optimality policy to discounted optimality under strong assumptions. Early attempts99

include (Ross, 1968), assuming that all transition probabilities are lower bounded by ε > 0. Recent100

extensions assume bounded times of first returns (Akian and Gaubert, 2013, Huang, 2016), or101

weakly-communicating MDPs (Wang et al., 2022). Note that checking that an MDP instance is102

weakly-communicating can be done in polynomial-time (Kallenberg, 2002), in contrast to the unichain103

assumption (Tsitsiklis, 2007). The case of deterministic MDPs is treated in (Friedmann, 2011, Perotto104

and Vercouter, 2018, Zwick and Paterson, 1996). Other reductions require assumptions on the mixing105

times of the Markov chains induced by deterministic policies (Jin and Sidford, 2021). (Boone and106

Gaujal, 2022) propose a sampling algorithm to learn a Blackwell-optimal policy, in a special case in107

which it reduces to bias optimality. Under the condition that the robust MDP is unichain and that108

there is a unique average optimal policy, (Wang et al., 2023) show the existence of Blackwell-optimal109

policies for sa-rectangular robust MDPs, which is connected to the existence results in (Tewari and110

Bartlett, 2007) and (Goyal and Grand-Clément, 2023b) for polyhedral uncertainty. In contrast to111

the existing literature, one of the core strengths of our results is that we do not need any structural112

assumption on the Markov chains of the underlying MDP to obtain our reduction from Blackwell113

optimality and average optimality to discounted optimality.114

2 Preliminaries on MDPs115

An MDP instance is characterized by a tupleM = (S,A, r,P ), where S is a finite set of states and116

A is a finite set of actions. The instantaneous rewards are denoted by r ∈ RS×A and the transition117

probabilities are denoted by P ∈ (∆(S))
S×A, where ∆(S) is the simplex over S. At any time118

period t, the decision maker is in a state st ∈ S, chooses an action at ∈ A, obtains an instantaneous119

reward rstat ∈ R, and transitions to state st+1 with probability Pstatst+1
∈ [0, 1]. A deterministic120

stationary policy π : S → A assigns an action to each state. Importantly, there exists an optimal121

deterministic stationary policy for all the criteria considered in this paper (discounted, Blackwell,122

and average optimality) (Puterman, 2014), so we simply refer to them as policies and denote them123

as Π = AS . A policy π ∈ Π induces a vector of expected instantaneous reward rπ ∈ RS , defined124

as rπ,s = rsπ(s),∀ s ∈ S, as well as a Markov chain over S, evolving via a transition matrix Pπ ∈125

RS×S , defined as Pπ,ss′ = Psπ(s)s′ ,∀ s, s′ ∈ S. We also write r∞ = max{|rsa| | (s, a) ∈ S ×A}.126

Given a discount factor γ ∈ [0, 1) and a policy π ∈ Π, the value function vπγ ∈ RS represents the127

discounted value obtained starting from each state: vπγ,s = Eπ,P
[∑+∞

t=0 γ
trst,at

∣∣∣ s0 = s
]
,∀ s ∈ S.128

We start with discounted optimality, the most popular optimality criterion in RL.129

Definition 2.1. Given γ ∈ [0, 1), a policy π ∈ Π is γ-discount-optimal if vπγ,s ≥ vπ
′

γ,s,∀ π′ ∈130

Π,∀ s ∈ S. We call Π?
γ ⊂ Π the set of γ-discount-optimal policies.131

The discount factor γ ∈ [0, 1) represents the preference for current rewards compared to future132

rewards. The difficulty of choosing the discount factor γ is well recognized in RL (Tang et al., 2021).133

In some applications, it is reasonable to choose values of γ close to 1, e.g., in finance (Deng et al.,134

2016), in healthcare (Garcia et al., 2021, Neumann et al., 2016) or in game solving (Brockman135

et al., 2016). In other applications, γ is merely treated as a parameter introduced for algorithmic136

purposes, e.g., controlling the variance of the policy gradient estimates (Baxter and Bartlett, 2001),137

or ensuring convergence of algorithms. A discount-optimal policy can be computed efficiently with138

value iteration, policy iteration, and linear programming (Puterman, 2014). Notably, these algorithms139

do not require any assumptions on the MDP instanceM.140

Another fundamental optimality criterion is average optimality, where the average reward gπ ∈ RS141

of a policy π ∈ Π is gπs = limT→+∞
1

T+1E
π,P

[∑T
t=0 rst,at

∣∣∣ s0 = s
]
,∀ s ∈ S. This limit always142
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exists for stationary policies (Puterman, 2014). A policy π is average-optimal if gπ ≥ gπ
′
,∀ π′ ∈ Π.143

Average optimality has been extensively studied in the RL literature, as it alleviates the introduction144

of a potentially artificial discount factor. Classical algorithms include relative value iteration (Dong145

et al., 2019, Yang et al., 2016), and gradient-based methods (Bhatnagar et al., 2007, Iwaki and Asada,146

2019). We refer to (Dewanto et al., 2020) for a survey on average optimality in RL.147

Several technical complications arise from considering average optimality instead of discounted148

optimality. First, the average reward gπ of a policy is not a continuous function of the policy π (e.g.,149

chapter 4, (Feinberg and Shwartz, 2012)). This can make gradient-based methods inefficient, since150

a small change in the policy may result in drastic changes in the average reward. Additionally, the151

Bellman operator associated with the average optimality criterion is not a contraction and may have152

multiple fixed points. These complications can be circumvented by assuming structural properties on153

the MDP instance, such as bounded times of first returns and weakly-communicating MDPs (Akian154

and Gaubert, 2013, Wang et al., 2022). Some of these assumptions may be hard to verify in a155

simulation environment where only samples are available, or NP-hard to verify even when the MDP156

instance is fully known, as is the case for the unichain assumption (Tsitsiklis, 2007). One of our157

goals in this paper is to provide a method to compute average-optimal policies via solving discounted158

MDPs, without any restrictive structural assumptions on the MDP instance. We will do so via the159

notion of Blackwell optimality.160

3 Classical theory of Blackwell optimality161

In this section, we describe the classical definition of Blackwell optimality in MDPs and summarize162

its main limitations. We first give this definition of a Blackwell-optimal policy and outline the proof163

of its existence. This proof will serve as a building block of our main result in Section 4. We then164

highlight the main limitations of the existing definition of Blackwell optimality.165

Existing definition and algorithms. We start with the following classical definition.166

Definition 3.1. A policy π is Blackwell-optimal if there exists γ ∈ [0, 1), such that π ∈ Π?
γ′ , ∀ γ′ ∈167

[γ, 1). We call Π?
bw the set of Blackwell-optimal policies.168

In short, a Blackwell-optimal policy is γ-discount-optimal for all discount factors γ sufficiently close169

to 1 (Blackwell, 1962). This notion has become popular in the field of reinforcement learning, mainly170

due to its connection to average optimality (Dewanto and Gallagher, 2021). Blackwell optimality171

bridges the gap between the different optimality criteria: it is defined in terms of discounted optimality,172

yet, crucially, Blackwell-optimal policies are average-optimal (theorem 10.1.5, (Puterman, 2014)).173

Therefore, any advances in computing Blackwell-optimal policies transfer to advances in computing174

average-optimal policies. A Blackwell-optimal policy is guaranteed to exist for finite MDPs.175

Theorem 3.2 ((Blackwell, 1962)). When |S| < +∞, |A| < +∞, there exists at least one Blackwell-176

optimal policy: Π?
bw 6= ∅.177

We highlight the proof of Theorem 3.2 based on section 10.1.1 in (Puterman, 2014). Summarizing178

this proof is important because it is not well-known and serves as a building block for our results.179

Step 1. Let π, π′ ∈ Π, s ∈ S. Through this paper use the notation φπ,π
′

s for φπ,π
′

s : γ 7→ vπγ,s − vπ
′

γ,s.180

We first show that φπ,π
′

s has finitely many zeros in [0, 1). This is a consequence of the next lemma.181

Lemma 3.3. For π ∈ Π and s ∈ S, γ 7→ vπγ,s is a rational function on [0, 1), i.e., it is the ratio of182

two polynomials.183

Lemma 3.3 follows from the Bellman equation for the value function vπ: vπ = rπ + γPπv
π . There-184

fore, vπ is the unique solution to the equation Ax = b, for b = rπ and A = I − γPπ . Lemma 3.3185

then follows directly from Cramer’s rule for the solution of a system of linear equations: since A is186

invertible, then Ax = b has a unique solution x, which satisfies xs = det(As)/ det(A),∀ s ∈ S,187

with det(·) the determinant of a matrix and As the matrix formed by replacing the s-th column of A188

by the vector b. A consequence of Lemma 3.3 is that the function φπ,π
′

s is a rational function, and189

therefore its zeros are the zeros of a polynomial. This shows that φπ,π
′

s is either identically equal to 0,190

or it has only has finitely many roots in [0, 1).191
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Step 2. We now conclude the proof of Theorem 3.2. Let π, π′ ∈ Π, s ∈ S. If φπ,π
′

s is not identically192

equal to 0, let γ(π, π′, s) ∈ [0, 1) be its the largest zero of φπ,π
′

s in [0, 1): γ(π, π′, s) = max{γ ∈193

[0, 1)|vπγ,s − vπ
′

γ,s = 0}. We let γ(π, π′, s) = 0 if φπ,π
′

s is identically equal to 0 in [0, 1). We now let194

γ̄ = max
π,π′∈Π,s∈S

γ(π, π′, s). (3.1)

We have γ̄ < 1 since there is a finite number of (stationary, deterministic) policies and |S| < +∞.195

Let π be γ-discount-optimal for a certain γ > γ̄. We have, for any s ∈ S, vπγ,s ≥ vπ
′

γ,s,∀ π′ ∈ Π. By196

definition of γ̄, the map φπ,π
′

s cannot change a sign on [γ̄, 1) (because it cannot be equal to 0), for any197

policy π′ ∈ Π and any state s ∈ S, i.e., we have vπγ′,s ≥ vπ
′

γ′,s,∀ π′ ∈ Π,∀ γ′ ∈ (γ, 1). This shows198

that π remains γ′-discount-optimal for all γ′ > γ, and, therefore, π is Blackwell-optimal.199

Remark 3.4. At this point, the reader may wonder if some Blackwell optimal policies are “better"200

than others, e.g., for instance, if we can find a Blackwell optimal policy that is γ-discount optimal for201

γ as small as possible. Interestingly, all Blackwell optimal policies are γ-discount optimal (or not) for202

the same discount factors. This follows from the key property that the value functions of Blackwell203

optimal policies coincide for all γ ∈ (0, 1) at all states s ∈ S. Indeed, these value functions must204

coincide on an entire interval close enough to 1, and they are rational functions. Hence, if they are205

equal for an infinite number of discount factors, they are equal on the entire interval (0, 1).206

To the best of our knowledge, there are only two existing algorithms to compute a Blackwell-optimal207

policy. The first algorithm (Hordijk et al., 1985) formulates MDPs with varying discount factors as208

linear programs (LPs) over the field of power series with potentially negative coefficients, known as209

Laurent series. The simplex method for solving LPs over power series explores [0, 1) and computes210

the subintervals of [0, 1) where an optimal policy can be chosen constant (as a function of γ). It211

returns a Blackwell-optimal policy in a finite number of operations, but there are no complexity212

guarantees for this algorithm. The second algorithm is based on n-discount optimality, described with213

a set of (|S|+ 1)-nested equations indexed by n = −1, ..., |S| − 1 that need to be solved sequentially214

by solving three LPs at each stage n (O’Sullivan and Veinott Jr, 2017). This gives a polynomial-time215

algorithm for computing Blackwell-optimal policies, requiring solving 3(|S|+ 1) linear programs of216

dimension O (|S|). A simpler description is in section 10.3.4 in (Puterman, 2014), but only finite217

convergence is proved. We are not aware of any available implementations of these algorithms.218

Limitations of existing approaches. We now highlight the shortcomings of the existing definition of219

Blackwell optimality. In particular, we demonstrate that the current approach is insufficient to reduce220

Blackwell optimality to discount optimality, we show that it does not lead to simple algorithms, and221

we show that it completely overlooks the potential pathological behaviors of the value functions.222

First, Definition 3.1 leads to methods that are significantly more involved than solving discounted223

MDPs. The two existing algorithms for computing Blackwell-optimal policies handle complex224

objects, e.g., the simplex algorithm over the field of power series and nested optimality equations with225

multiple subproblems that need to be solved sequentially. The intricacy of both algorithms makes226

them difficult to implement, and these algorithms are not widely used in practice.227

Second, Definition 3.1 implicitly introduces, for each Blackwell-optimal policy π ∈ Π?
bw, a discount228

factor γ(π) ∈ [0, 1), defined as the smallest discount factor after which π remains discount-optimal:229

γ(π) = min{γ ∈ [0, 1) | π ∈ Π?
γ′ ,∀ γ′ ∈ [γ, 1)}. (3.2)

We now show that γ(π) provides insufficient information to compute a Blackwell-optimal policy.230

Proposition 3.5. There exists an MDP instance M, a Blackwell-optimal policy π ∈ Π?
bw, and231

discount factors γ1, γ2 ∈ [0, 1) with γ1 < γ(π) < γ2 such that:232

1. the policy π is γ1-discount-optimal, and233

2. there exists π′ 6= π that is γ2-discount-optimal and not Blackwell-optimal.234

Proposition 3.5 shows the naive approach of solving a γ-discounted MDP for discount factor γ > γ(π)235

does not compute a Blackwell-optimal policy. That is, the policy π′ in Proposition 3.5 is optimal for236

γ2 > γ(π) but is not Blackwell-optimal. It also shows that γ(π) is not even the smallest discount237

factor for which π is discount-optimal. Note that we are the first to highlight this shortcoming of238

the classical definition of Blackwell optimality. We also note that Proposition 3.5 remains true even239

under the assumption that MDP instance is unichain, as we prove in Appendix A.Overall, we have240
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shown that the discount factor γ(π), appearing in the classical definition of Blackwell optimality,241

cannot be exploited to compute a Blackwell-optimal policy.242

The limitation outlined above calls for the definition of another discount factor that can adequately243

describe when does the set of discount-optimal policies equals to the set of Blackwell optimal policies.244

We introduce this Blackwell discount factor in the next section. The proof of Proposition 3.5 is based245

on the following very simple example, with |S| = 8, |A| = 3, and deterministic transitions.246

Example 3.6. We consider the MDP instance from Figure 1, presented in Appendix A. The decision247

maker starts in state 0 and chooses one of three actions {a1, a2, a3}; there is no choice in other states,248

all transitions are deterministic, and the rewards are indicated above the transition arcs. The reward249

for a1 is 1 and the process transitions to the absorbing state 7, which gives a reward of 0. The reward250

for a2 is 0, and the process transitions to states 1, 2, 3 before reaching the absorbing state 7. The251

value functions equal to va2γ = r1γ+r2γ
2, va3γ = r4γ+r5γ

2, va1γ = 1. Choosing (r1, r2) = (6,−8)252

and (r4, r5) = (8/3,−16/9) gives the value functions shown in Figure 1 (left figure). In particular,253

va2γ is the parabola that is equal to 0 at γ = 0, and equal to 1 at γ ∈ {1/4, 1/2}, and va3γ is the254

parabola that is equal to 0 at γ = 0 and equal to its maximum 1 at γ = 3/4. This shows that a1255

is Blackwell-optimal with γ(a1) = 1/2. Additionally, for γ1 ∈ [0, 1/4], a1 is γ1-discount-optimal.256

Finally, a3 is γ2-discount-optimal for γ2 = 3/4, but it is not Blackwell-optimal.257

In the next proposition, we show that the subintervals of [0, 1) where a policy is discount-optimal may258

be much more complex than usually alluded to in the literature. In particular, there exists a simple259

MDP instance with only two policies, but where a Blackwell-optimal policy may be discount-optimal260

in an arbitrary number of arbitrary disjoint subintervals of [0, 1).261

Theorem 3.7. For any odd integer N ∈ N and any sequence 0 = γ0 < γ1 < ... < γN−1 < γN = 1,262

there exists an MDP instance (S,A, r,P ) with |S| = N + 1 and |A| = 2, and two policies π1, π2263

such that π1 is the unique optimal policy on any of the intervals (γ2i, γ2i+1) for i = 0, ..., (N − 1)/2264

and π2 is the unique optimal policy on (γ2i−1, γ2i), for i = 1, ..., (N − 1)/2.265

Theorem 3.7 shows that the algorithm that explore the entire interval of (0, 1) to compute discount-266

optimal policies (Hordijk et al., 1985) may visit a number of subintervals that is impractical. We267

present a detailed proof in Appendix B. The proof relies on interpreting value functions as polynomials268

and using Lagrange interpolation polynomials to tune the instantaneous rewards to ensure that the269

value functions intersect at the given discount factors. Overall, our results in this section highlight the270

pitfalls of the existing approach to Blackwell optimality and the potential pathological behaviors of271

the value functions, even in simple MDP instances. We ameliorate this issue in the next section.272

4 Introducing the Blackwell discount factor273

This section introduces the notion of the Blackwell discount factor, which we use to reduce Blackwell274

optimality and average optimality to discounted optimality. This reduction leads to algorithms to275

compute Blackwell-optimal and average policies that are significantly simpler than the state-of-the-art.276

Intuitively, we need the following condition to reduce Blackwell optimality to discounted optimality:277

there must exist a discount factor γbw ∈ [0, 1) such that any γ-discount-optimal policy for γ > γbw is278

also γ′-discount-optimal for any other γ′ > γbw. The following definition formalizes this intuition.279

Definition 4.1. The Blackwell discount factor γbw ∈ [0, 1) is equal to γbw = inf{γ ∈ [0, 1) | Π?
γ′ =280

Π?
bw,∀ γ′ ∈ (γ, 1)}, where Π?

bw is the set of Blackwell-optimal policies.281

We establish the existence of a Blackwell discount factor in the next theorem.282

Theorem 4.2. The Blackwell discount factor γbw in Definition 4.1 exists in any finite MDP.283

Proof. We show that there exists a discount factor γ ∈ [0, 1) such that Π?
γ′ = Π?

bw,∀ γ′ ∈ (γ, 1).284

Let γ̄ defined as in Equation (3.1). We show ∀ γ ∈ [γ̄, 1),Π?
γ = Π?

bw. Let γ′ ∈ (γ̄, 1) and let π be a285

policy that is γ′-discount-optimal. By definition, we have vπγ′,s ≥ vπ
′

γ′,s,∀ π′ ∈ Π,∀ s ∈ S. Since286

γ′ > γ̄, the map φπ,π
′

s does not change sign on [γ̄, 1). This shows that π is γ-discount-optimal for287

all γ ∈ (γ̄, 1). Therefore, π is Blackwell optimal, and any γ-discount-optimal policy is Blackwell288

optimal, for any γ ∈ (γ̄, 1), i.e., this shows Π?
γ̄ ⊂ Π?

bw. The inclusion Π?
bw ⊂ Π?

γ̄ follows from289
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the definition of γ̄: if π is Blackwell-optimal but not discount-optimal for γ̄, then it must become290

discount-optimal for a larger γ′ > γ̄, which is impossible since γ̄ is the largest discount factors where291

the value functions of any two stationary policies can intersect.292

Difference from the existing definition. It is important to elaborate on the difference between293

Definition 3.1 (classical definition of Blackwell optimality) and Definition 4.1 (Blackwell discount294

factor). While the proof for the existence of γbw is relatively concise, the distinction between γbw295

and γ(π) has been utterly overlooked in the literature, where it is common to find statements that296

suggest that γ > γ(π) implies Blackwell optimality of all discount-optimal policies, e.g. in Dewanto297

and Gallagher (2021), Wang et al. (2023). To the best of our knowledge, we are the first to properly298

introduce the Blackwell discount factor γbw, to show its sufficiency to compute Blackwell-optimal299

policies, to emphasize the shortcomings of the classical approach to Blackwell optimality, and to300

clarify the distinction between γbw and γ(π). In particular, in Definition 3.1, a Blackwell-optimal301

policy π is optimal for any γ ∈ [γ(π), 1). However, for some γ ∈ [γ(π), 1), there may be other302

optimal policies that are not Blackwell-optimal, as shown in Proposition 3.5. We show an MDP303

instance like this in Example 3.6, where γbw = 3/4 but where γ(a1) = 1/2, and a1 is the only304

Blackwell-optimal policy. Hence in all generality, we may have γ(π) < γbw, and γ(π) 6= γbw. Note305

that the authors in (Dewanto and Gallagher, 2021, Dewanto et al., 2020) also introduce the notation306

“γbw” but they use it to denote γ(π).307

Reduction to discounted optimality. If γbw is known for a given MDP instance, it is straightforward308

to compute a Blackwell-optimal policy, by solving a discounted MDP with γ > γbw. Therefore, the309

notion of Blackwell discount factor provides a method to reduce the criteria of Blackwell optimality310

and average optimality to the well-studied criterion of discounted optimality. As we have discussed311

before, efficient methods for solving discounted MDPs such as value iteration or linear programming312

have been extensively studied. These algorithms are much simpler than the two existing algorithms313

for computing Blackwell-optimal policies. Note that it is enough to compute an upper bound on γbw.314

In particular, if we are able to show that γbw < γ′ for some γ′ ∈ [0, 1), then following the definition315

of γbw, we can compute a Blackwell-optimal policy by solving a discounted MDP with a discount316

factor γ = γ′. Therefore, in the rest of Section 4, we focus on obtaining an upper bound on γbw.317

Main result: upper bound on γbw. We now obtain an instance-dependent upper bound on γbw,318

i.e., we construct a scalar η(M) ∈ (0, 1) for each MDP instance M = (S,A, r,P ), such that319

γbw < 1− η(M). Our main contribution in this section is Theorem 4.4, which gives a closed-form320

expression for η(M) as a function of the maximum bit-size of the data of the MDP instanceM. We321

start by showing that it is impossible to obtain a bound on γbw that is independent of r or P .322

Proposition 4.3. For any η > 0, there exists an MDP instance M = (S,A, r,P ) with |S| =323

2, |A| = 2 and deterministic transitions, such that γbw > 1− η.324

Proof. Let S = {s1, s2},A = {a1, a2}. In state s1, action a1 transitions to s1 (with reward 0)325

and action a2 transitions to s2 (with reward −1). There is no action to choose in state s2 which is326

absorbing with a reward ε > 0. It is straightforward to check that a2 is Blackwell optimal, with327

γbw = (1 + ε)−1, so that γbw can be chosen arbitrarily close to 1 by choosing small values for ε.328

We show that Proposition 4.3 still holds even under the assumption that the MDP instances are329

weakly-communicating in Appendix C. Proposition 4.3 shows that an instance-dependent bound on330

γbw must depend on the “coarseness” of r and P . This suggests parametrizing our upper bound by331

the bit-sizes of the MDP instance. MDPs with finite bit-sizes parameters are the MDP instances that332

can be exactly encoded in a computer and practically solved by existing algorithms. We first recall the333

definitions pertaining to bit-size, necessary to describe the complexity of classical weakly-polynomial334

time algorithms like interior-point methods (section 4.6 in (Ben-Tal and Nemirovski, 2001)) and335

the ellipsoid method (Bland et al., 1981). The bit-size of r ∈ N is blog2 (r)c, the number of bits336

necessary to represent r with standard binary encoding. The bit-size of a rational number is the sum337

of the bit-size of its numerator and its denominator. The maximum bit-size of an MDP instance is the338

maximum bit-size of any rsa and Psas′ for (s, a, s′) ∈ S × A × S. Its total bit-size is the sum of339

the bit-sizes of the components of r and P . For instance, in the riverswim instance, the maximum340

bit-size of the reward is 14, since the largest rewards are bounded by 104 in the terminal states. Our341

main theorem in this section provides a strict upper bound on γbw as follows.342
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Theorem 4.4. LetM = (S,A, r,P ) be an MDP instance with finite bit-size and let m ∈ N be the343

maximum bit-size of the instanceM. Then we have γbw < 1− η(M), with η(M) ∈ (0, 1) defined as344

η(M) =
1

2NN/2+2 (L+ 1)
N
, N = 2|S| − 1, L = 2 · |S| · r∞ ·m2|S| · 4|S|.

Our proof uses ideas that are new in the MDP literature, such as the separation of algebraic numbers.345

We provide an outline of the proof below and defer the full statement to Appendix D.346

In the first step of the proof, by carefully inspecting the proofs of Theorem 3.2 and of Theorem 4.2,347

we note that an upper bound for γbw is γ̄, as defined in (3.1): γ̄ = maxπ,π′∈Π,s∈S γ(π, π′, s), where348

for π, π′ ∈ Π and s ∈ S, γ(π, π′, s) is the largest discount factor γ in [0, 1) for which φπ,π
′

s (γ) = 0349

when φπ,π
′

s : γ 7→ vπγ,s − vπ
′

γ,s is not identically equal to 0, and 0 otherwise. Therefore, we focus on350

obtaining an upper bound on γ(π, π′, s) for any two policies π, π′ ∈ Π and any state s ∈ S.351

In the second step, following Lemma 3.3, the value functions γ 7→ vπs , γ 7→ vπ
′

s are rational functions,352

i.e., they are ratios of two polynomials. Therefore, we interpret φπ,π
′

s (γ) = 0 as a polynomial353

equation in γ, i.e., as p(γ) = 0 for a certain polynomial p. With this notation, γ(π, π′, s) ∈ [0, 1) is354

a root of p. We show that γ = 1 is always a root of p, even though value functions are a priori not355

defined for γ = 1. We then precisely characterize the degree N and the sum L of the absolute values356

of the coefficients of the polynomial p, depending on the MDP instanceM.357

Theorem 4.5. The polynomial p has degreeN = 2|S|−1. Moreover,m2|S|p has integral coefficients.358

The sum of the absolute values of the coefficients ofm2|S|p is bounded by L = 2 · |S|·r∞ ·m2|S| ·4|S|.359

In the third step, we lower-bound the distance between any two distinct roots of p. To do this, we rely360

on the following separation bounds of algebraic numbers.361

Theorem 4.6 ((Rump, 1979)). Let p be a polynomial of degree N with integer coefficients. Let L be362

the sum of the absolute values of its coefficients. The distance between any two distinct roots of p is363

strictly larger than η > 0, with η = 2N−N/2+2 (L+ 1)
−N .364

Recall that γ(π, π′, s) and 1 are two always roots of p, with γ(π, π′, s) < 1. Combining Theorem 4.5365

with Theorem 4.6, we conclude that γ(π, π′, s) < 1−η(M) for η(M) > 0 defined as in Theorem 4.4.366

Therefore, γ̄ < 1− η(M), and γbw < 1− η(M). This concludes our proof of Theorem 4.4.367

Discussion. Using Theorem 4.4, we obtain the first reduction from Blackwell optimality to dis-368

counted optimality: solving a discounted MDP with γ ≥ 1−η(M) returns a Blackwell-optimal policy.369

Blackwell optimality implies average optimality, so we also obtain the first reduction from average op-370

timality to discounted optimality without any assumptions on the structure of the underlying Markov371

chains of the MDP. We also discuss the complexity results for computing a Blackwell-optimal policy372

using our reduction. Policy iteration returns a discounted optimal policy in O
(
|S|2|A|

1−γ log
(

1
1−γ

))
373

iterations (Scherrer, 2013), but it may be slow to converge when γ = 1 − η(M) as in Theo-374

rem 4.4, since η(M) may be close to 0. Various algorithms exist to obtain convergence faster than375

O(1/(1− γ)), such as accelerated value iteration (Goyal and Grand-Clément, 2023a) and Anderson376

acceleration (Zhang et al., 2020). However, note that blog2(η(M))c, the bit-size of the scalar η(M),377

is polynomial in the bit-size of the MDP instanceM. Since discounted MDPs can be formulated as378

linear programs, which can be solved in polynomial-time in the input size of the MDP (Ye, 2011), we379

obtain a weakly-polynomial time algorithm for computing Blackwell-optimal policies. We present380

the proof of the following theorem in Appendix E.381

Theorem 4.7. LetM = (S,A, r,P ) be an MDP instance with total bit-size Q(r,P ) ∈ N. Then382

we can compute a Blackwell-optimal policy in O
(
|S|5|A|2Q(r,P )

)
arithmetic operations.383

Note that with Theorem 4.4 and Theorem 4.7, we have reduced the complex problem of computing384

a Blackwell optimal policy to a much simpler and well-studied problem: solving a linear program,385

which can be done in weakly-polynomial time. Potential improvements for our upper bound on386

γbw are an important future direction: more precise separation bounds than Theorem 4.6 could be387

obtained for the specific polynomial p appearing in the proof of Theorem 4.4, or for a specific MDP388

instances, e.g. ergodic or unichain MDPs. Going beyond the case of finite sets of states and actions is389

interesting but this may be difficult, as in both cases there may not exist a Blackwell optimal policy390

anymore (Chitashvili, 1976, Maitra, 1965).391
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The case of robust MDPs. In practice, the value function vπγ may be very sensitive to the values392

of the transition probabilities P . To emphasize this dependence, in this section we note vπ,Pγ for393

the value function associated with a policy π and a transition probability P , defined similarly as in394

Section 2. Robust MDPs (RMDPs) ameliorate this issue by considering an uncertainty set U , which395

can be seen as a plausible region for the transition probabilities P ∈ U . We focus on the case of396

sa-rectangular MDPs (Iyengar, 2005), where U = ×(s,a)∈S×AUsa for Usa ⊆ ∆(S). The worst-case397

value function vπ,Uγ ∈ RS of a policy π is defined as vπ,Uγ,s = minP∈U v
π,P
γ,s ,∀ s ∈ S. In discounted398

RMDPs, the goal is to compute a robust discounted optimal policy, defined as follows.399

Definition 4.8. Given γ ∈ [0, 1), a policy π ∈ Π is robust γ-discount-optimal if vπ,Uγ,s ≥ vπ
′,U
γ,s ,∀ π′ ∈400

Π,∀ s ∈ S. We write Π?
γ,rob the set of robust γ-discount-optimal policies.401

Robust Blackwell optimality is studied in (Goyal and Grand-Clément, 2023b, Tewari and Bartlett,402

2007), to address the sensitivity of the robust value functions as regards the discount factors. Its403

connection to average reward RMDPs is discussed in (Tewari and Bartlett, 2007, Wang et al., 2023).404

Definition 4.9. A policy π ∈ Π is robust Blackwell-optimal if there exists γ ∈ [0, 1), such that405

π ∈ Π?
γ′,r,∀ γ′ ∈ [γ, 1). We call Π?

bw,r the set of robust Blackwell-optimal policies.406

(Goyal and Grand-Clément, 2023b) shows the existence of a Blackwell-optimal policy for RMDPs,407

under the condition that U is sa-rectangular and has finitely many extreme points. This is the case for408

popular polyhedral uncertainty sets, e.g., when Usa is based on the `p distance, for p ∈ {1,∞} (Givan409

et al., 1997, Ho et al., 2018, Iyengar, 2005), for some estimated kernel P 0 and some radius αsa > 0:410

Usa = {p ∈ ∆(S) | ‖p− P 0
sa‖p ≤ αsa}. (4.1)

Definition 4.10. We define the robust Blackwell discount factor γbw,r ∈ [0, 1) as γbw,r = inf{γ ∈411

[0, 1) | Π?
γ′,r = Π?

bw,r,∀γ′ ∈ (γ, 1)}.412

We provide a detailed proof of the existence of the robust Blackwell discount factor in Appendix F.413

The proof strategy is the same as for the existence of the Blackwell discount factor for MDPs. We414

can obtain the same upper bound on γbw,r, by studying the values of γ for which γ 7→ vπ,Pγ,s −415

vπ
′,P ′

γ,s cancels, for any two policies π, π′ ∈ Π and any two extreme points P ,P ′ of U . Writing416

γ(π, π′, s,P ,P ′) for the largest zero in [0, 1) of the function γ 7→ vπ,Pγ,s − vπ
′,P ′

γ,s if it is not417

identically equal to zero, or γ(π, π′, s,P ,P ′) = 0 otherwise, an upper bound on γbw,r for RMDPs418

can be computed as γ̄r, defined as γ̄r = maxπ,π′∈Π,s∈S maxP ,P ′∈Uext γ(π, π′, s,P ,P ′) with Uext419

the set of extreme points of U . This leads to the following theorem.420

Theorem 4.11. LetM =
(
S,A, r,P 0

)
be an MDP instance with maximum bit-sizem ∈ N. Assume421

that U is sa-rectangular, where for each (s, a) ∈ S ×A, Usa is constructed as in (4.1) based on `1422

or `∞ distance, and with the scalars (αsa)s,a of maximum bit-size m. Then γbw,r ≤ 1− η(M), with423

η(M) defined as in Theorem 4.4 with m′ = 2m instead of m.424

Based on Theorem 4.11, we obtain the first reduction from robust Blackwell optimality to robust425

discounted optimality. Since discounted RMDPs can be solved with value iteration or policy iteration,426

we provide the first algorithms to compute a robust Blackwell-optimal policy for RMDPs with sa-427

rectangular uncertainty, when the uncertainty set is based on the `1 or the `∞ distance. Note that there428

is no complexity statements for solving the existing convex formulation for RMDPs (Grand-Clément429

and Petrik, 2022), so we are not able to provide a complexity statement akin to Theorem 4.7.430

5 Conclusion431

We highlight the shortcomings of the existing approach to Blackwell optimality and we introduce the432

Blackwell discount factor to ameliorate this issue. We provide an upper bound for MDPs and RMDPs433

in all generality, parametrized by the bit-sizes of the instances. Any progress in solving discounted434

MDPs, one of the most active research directions in RL, can be combined with our results to obtain435

new algorithms for computing average- and Blackwell-optimal policies. Our proof techniques, based436

on the separation of algebraic numbers, are novel and they could be tightened for specific instances437

or different optimality criteria, such as bias optimality or n-discount optimality. Applications to438

distributionally robust MDPs also appear promising.439
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A Unichain instance for Proposition 3.5567
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Figure 1: MDP instance (left) and value functions (right) for Example 3.6.

We present the MDP instance for Example 3.6 in Figure 1. We can also extend Example 3.6 to568

a unichain MDP as follows: we add a transition from state 7 to state 0, with a reward of 0. We569

also add three intermediate states from 0 to 7 for action a1, so that it takes as many periods to570

reach state 7 from state 0 for the three actions a1, a2, a3. Note that this new MDP is unichain. We571

represent it in Figure 3a. Additionally, for this new MDP instance, we have va1γ = 1/(1− γ5), va2γ =572

(r1γ+ r2γ
2)/(1−γ5), va3γ = (r4γ+ r5γ

2)/(1−γ5), which are the same expressions as in Example573

3.5, up to the common denominator (1− γ5)−1. Therefore, we have proved that the same conclusion574

as Proposition 3.4 holds for unichain MDPs.575

B Proof of Theorem 3.7576

Proof. Consider the following MDP instance, represented in Figure 2a. The initial state is state577

0, where there are two actions to be chosen, a1 or a2. Action a1 yields an instantaneous reward578

of 1 and then the decision maker transitions to the absorbing state N , where there is a reward of579

0. Otherwise, choosing action a2 yields an instantaneous reward r0 and takes the decision maker580

through a deterministic sequence of states 1, ..., N −1 with rewards r1, ..., rN−1, before transitioning581

to state N . For a given γ ∈ [0, 1), the closed-form expressions for the value functions va1γ , v
a2
γ are582

va1γ = 1 and va2γ =
∑N−1
t=0 rtγ

t.583

Note that γ 7→ va2γ is a polynomial of degree N − 1. Using Lagrange interpolation polynomials584

(section 0.9.11, (Horn and Johnson, 2012)), we can find coefficients r0, ..., rN−1 such that γ 7→585

va1γ is equal to 1 for all N − 1 discount factors γ1, ..., γN−1 and equal to 0.9 at γ0 = 0. The586

value function va2γ resulting from this construction is highlighted in Figure 2b for N = 5 and587

(γ0, γ1, γ2, γ3, γ4, γ5) = (0, 0.2, 0.4, 0.6, 0.8, 1.0). Let us note q : γ 7→ va1γ − va2γ . Our choice of588

the rewards ensures that q is a polynomial of degree N − 1, with q(0) > 0, and q(γ) = 0 for589

γ ∈ {γ1, ..., γN−1}. Because γ 7→ q(γ)− 1 is a polynomial of degree N − 1 with N − 1 different590

real roots, it changes signs at every root. This shows that γ 7→ va1γ − va2γ is positive on (γ0, γ1),591

negative on (γ1, γ2), then positive on (γ2, γ3), etc.. Action a1 is optimal on (γN−1, γN ) = (γN−1, 1)592

because N is odd. This concludes the proof of Theorem 3.7.593

594

C Weakly-communicating instances for Proposition 4.3595

Consider the MDP instance from the proof of Proposition 4.3. We now add a deterministic transition596

from state s2 to state s1, with a reward of 0 for action a1 and a reward of ε for action a2. The new597

MDP instance is represented in Figure 3b.598

First, this MDP instance is weakly-communicating since {s1, s2} is strongly connected under policy599

a2. In this new MDP instance, we still have va1γ = 0 but va2γ = (−1 + εγ)/(1 − γ). Hence a2 is600
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Figure 2: MDP instance for our proof of Theorem 3.7 (Figure 2a) and the value functions for N = 5
(Figure 2b).
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(a) Unichain instance for Proposition 3.5
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(b) Weakly-communicating instance for
Proposition 4.3

Figure 3: MDP instances to generalize Proposition 4.3 and Proposition 3.5.

Blackwell optimal when γ ≥ 1/ε. By choosing ε larger than 1 and ε→ 1, we obtain γbw → 1. This601

shows that we can extend Proposition 4.3 to weakly-communicating MDPs.602

D Proof of Theorem 4.4603

In this appendix, we provide the proof for Theorem 4.4. As noted in Section 4, to bound γbw,604

it is enough to obtain an upper bound on γ(π, π′, s) for any π, π′ ∈ Π and s ∈ S such that605

γ 7→ vπγ,s − vπ
′

γ,s is not identically equal to 0, since γbw ≤ maxπ,π′∈Π,s∈S γ(π, π′, s). Since m is the606

maximum bit-size of the input data, we can write, for any (s, a, s′) ∈ S ×A× S , Psas′ = nsas′/m,607

for nsas′ ∈ N, nsas′ ≤ m, and rsa = qsa/m, |qsa| ≤ r∞. Examples of MDPs with finite bit-sizes608

include any real instances used for applications where the transition probabilities are estimated as609

empirical frequencies from some data, e.g. examining patients’ transfers in hospitals as in (Hu et al.,610

2018) and (Grand-Clément et al., 2022), MDPs for hypertension treatment (Garcia et al., 2021),611

diabetes management (Steimle et al., 2021) and cancer detection (Goh et al., 2018), as well as the612

machine maintenance studied in (Wiesemann et al., 2013) and (Delage and Mannor, 2010). We now613

proceed to proving Theorem 4.4.614

Step 1. We start by studying in more detail the properties of the value functions. The following615

lemma follows directly from Cramer’s rule, as explained in Section 3.616

Lemma D.1. We have617

vπγ,s =
det (M(γ, s, π))

det (I − γPπ)
, (D.1)

with M(γ, s, π) the matrix formed by replacing the s-th column of I − γPπ by the vector rπ .618
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From Lemma D.1, we have619

vπγ,s =
n(γ, s, π)

d(γ, π)

for n(γ, s, π) = det (M(γ, s, π)) and d(γ, π) = det (I − γPπ). We choose the letter n for nomina-620

tor and the letter d for denominator.621

Note that γ 7→ n(γ, s, π) is a polynomial of degree at most |S|−1, while γ 7→ d(γ, π) is a polynomial622

of degree at most |S|.623

We have, by definition,624

vπγ,s − vπ
′

γ,s =
n(γ, s, π)

d(γ, π)
− n(γ, s, π′)

d(γ, π′)

=
n(γ, s, π)d(γ, π′)− n(γ, s, π)d(γ, π)

d(γ, π)d(γ, π′)

Therefore, vπγ,s− vπ
′

γ,s = 0 for γ ∈ [0, 1) implies that γ is a root of the following polynomial equation625

in γ:626

p(γ) = 0, (D.2)
for p the polynomial defined as627

p(γ) = n(γ, s, π)d(γ, π′)− n(γ, s, π′)d(γ, π). (D.3)

Step 2. We now study the properties of the polynomial p. Note that it is straightforward that p is a628

polynomial of degree N = 2|S| − 1. We first study the properties of the polynomial γ 7→ d(π, γ).629

We have the following lemma.630

Lemma D.2. We have631

d(γ, π) > 0,∀γ ∈ [0, 1),∀ π ∈ Π,

and d(1, π) = 0,∀ π ∈ Π.632

Proof of Lemma D.2. This lemma follows from the relation between the determinant of a matrix and633

its eigenvalues, through the characteristic polynomial:634

d(γ, π) = det (I − γPπ) =
∏

λ∈Sp(Pπ)

(1− γλ)
αλ ,

with αλ the algebraic multiplicity of the (potentially complex) eigenvalue λ in the spectrum Sp(Pπ)635

of Pπ. Since Pπ is the transition matrix of a Markov chain, we know that the modulus of any636

eigenvalue λ of Pπ is smaller or equal to 1. This shows that d(γ, π) > 0,∀ γ ∈ [0, 1),∀ π ∈ Π. To637

show d(1, π) = 0, we simply note that 1 ∈ Sp(Pπ) since Pπ is the transition matrix of a Markov638

chain.639

From Lemma D.2 and the definition of p as in (D.3), it is straightforward that p(1) = 0.640

Lemma D.3. γ = 1 is a root of p.641

We now bound the sum of the absolute values of the coefficients of p. We have the following theorem.642

Theorem D.4. The polynomial m2|S| · p has integral coefficients, potentially negative. The sum of643

the absolute values of the coefficients of m2|S|p is bounded by644

L = 2 · |S| · r∞ ·m2|S| · 4|S|.

Theorem D.4 is based on the following three propositions. We note Ck` the binomial coefficient645

defined as Ck` = `!/k!(`− k)!.646

Proposition D.5. For any π ∈ Π, the function γ 7→ d(π, γ) is a polynomial of degree |S|. Moreover,647

γ 7→ m|S| · d(π, γ) is a polynomial with integral coefficients (potentially negative), and the absolute648

value of its coefficient of degree k is bounded by m|S|Ck|S|.649

Therefore, the sum of the absolute values of the coefficients of γ 7→ m|S| · d(π, γ) is upper bounded650

by651

Ld = m|S| · 2|S|.
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Proposition D.6. For any policy π ∈ Π and any state s ∈ S, the function γ 7→ n(γ, s, π) is652

a polynomial of degree |S| − 1. Moreover, γ 7→ m|S| · n(γ, s, π) is a polynomial with integral653

coefficients (potentially negative), and the absolute value of its coefficient of degree k is bounded by654

m|S| · |S| · r∞ · Ck|S|−1 · 2.655

Therefore, the sum of the absolute values of the coefficients of γ 7→ m|S| ·n(γ, s, π) is upper bounded656

by657

Ln = m|S|−1 · |S| · r∞ · 2|S|.
Proposition D.7. Let P =

∑n
i=0 aiX

i, Q =
∑m
j=0 bjX

j . Then PQ =
∑n+m
k=0 ckX

k, ck =658 ∑
i,j;i+j=k aibj . Additionally, suppose that

∑n
i=0 |ai| ≤ LP ,

∑m
j=0 |bj | ≤ LQ. Then659

n+m∑
k=0

|ck| ≤ LPLQ.

Combining Proposition D.5, Proposition D.6 and Proposition D.7 with the definition of the polynomial660

p in (D.3) yields Theorem D.4.661

To conclude Step 2 of our proof, let us prove Proposition D.5 and Proposition D.6. Proposition D.7662

simply follows from the multiplication rule for polynomials.663

Proof of Proposition D.5. By definition,664

d(γ, π) = det (I − γPπ) =

|S|∑
k=0

ak (γPπ) ,

where M 7→ ak (M) is the (|S| − k)-th coefficient of the characteristic polynomial of a matrix M .665

By definition, ak(M) is the sum of all the principal minors of size k of M (section 0.7.1, (Horn and666

Johnson, 2012)). This first shows that ak (γPπ) = γkak (Pπ) , and therefore, that667

d(γ, π) =

|S|∑
k=0

γkak (Pπ) .

We will show that668

ak(Pπ) ≤ Ck|S|,∀ k = 1, ..., |S|.
Let g be a principal minor of Pπ of size k. By definition, g is the determinant of a submatrix M669

of size k of Pπ, obtained by deleting rows and columns with the same indices: g = det(M). For670

any matrix square M , we always have det(M) = det(M>). Now Hadamard’s inequality shows671

that det(M>) ≤
∏k
i=1 ‖Coli(M>)‖2, with Coli(M>) the i-th column of M>, and therefore we672

have det(M>) ≤
∏k
i=1 ‖Coli(M>)‖1. Note that the columns of M> have `1-norm smaller than673

1, since Pπ is a stochastic matrix, and M is a submatrix of Pπ . Therefore, g ≤ 1. Because there are674

Ckn possible principal minors of size k of Pπ , we have ak(Pπ) ≤ Ckn,∀ k = 1, ..., n.675

Of course, we may have ak(Pπ) /∈ Z. However, for any principal minor g = det(M) of Pπ, we676

have, by definition the determinant,677

det(M) =
∑
σ∈Sk

ε(σ)

k∏
i=1

Mσ(i)i

where ε(σ) is the signature of the permutation σ and Sk is the symmetric group, i.e., the group of all678

permutations of {1, ..., k}. This shows, by definition m as the maximum bit-size of the input data,679

that m|S| det(M) ∈ Z, and therefore that m|S|ak(Pπ) ∈ Z and that m|S|ak(Pπ) ≤ m|S|Ck|S|.680

Proof of Proposition D.6. Using Laplace cofactor expansions (section 0.3.1, (Horn and Johnson,681

2012)), we have that n(γ, s, π) is equal to682 ∑
s′∈S

(−1)s+s
′
· rs′,π(s′) · det

(
(I − γPπ)S\{s′}×S\{s}

)
, (D.4)
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where (I − γPπ)S\{s′}×S\{s} is the matrix obtained from I − γPπ by removing the s-th column683

and the s′-th row.684

Note that γ 7→ det
(

(I − γPπ)S\{s′}×S\{s}

)
is a polynomial of degree |S| − 1 in γ. Similarly as685

for the proof of Proposition D.5, γ 7→ m|S|n(γ, s, π) is a polynomial of degree |S| − 1 with integral686

coefficients.687

Let us consider I\{s′,s} the matrix of dimension (|S|− 1)× (|S|− 1), obtained by removing the s-th688

column and the s′-th row from the identity matrix of dimension |S|, and let us call Es′ the matrix of689

dimension (|S| − 1)× (|S| − 1), where all rows are 0>, except the s-th row, equal to e>s′ .690

Then det
(

(I − γPπ)S\{s′}×S\{s}

)
is equal to691

det
(

(I − γPπ)S\{s′}×S\{s} + Es′ −Es′

)
and therefore is equal to692

det
(
I\{s′,s} + Es′ − (γPπ)S\{s′}×S\{s} −Es′

)
.

We notice that I\{s′,s} + Es′ is a matrix whose rows are exactly the rows of the identity matrix of693

R|S|−1, up to a certain permutation σ ∈ S|S|−1. Let P σ ∈ R(|S|−1)×(|S|−1) the permutation matrix694

defined as Pij = 1 if σ(j) = i and 0 otherwise. Then for any matrix M , we have det(P σM) =695

det(P σ) det(M) = ε(σ) det(M), with ε(σ) the signature of the permutation σ. Since we always696

have ε(σ) ∈ {−1, 1}, this shows that det
(

(I − γPπ)S\{s′}×S\{s}

)
is equal to697

ε(σ) det
(
I −

(
(γPπ)S\{s′}×S\{s} + Es′

))
.

The map γ 7→ det
(
I −

(
(γPπ)S\{s′}×S\{s} + Es′

))
is equal to698

|S|−1∑
k=0

ak

(
(γPπ)S\{s′}×S\{s} −Es′

)
where similarly as for the proof of Proposition D.5, ak(M) is the k-th coefficient of the characteristic699

polynomial of a matrix M , i.e., ak(M) is equal to the sum of all the principal minors of M of700

dimension k × k. Let701

M = (γPπ)S\{s′}×S\{s} −Es′ .

Note that (Pπ)S\{s′}×S\{s} is a substochastic matrix, i.e., it has non-negative entries and the sum of702

the entries of each row is smaller or equal to 1. Note that M differs from (γPπ)S\{s′}×S\{s} only at703

the coefficient of index (s, s′). Using Hadamard’s inequality, we find that that704

ak(M) ≤ 2 · Ck|S|−1,m
|S|ak(M) ∈ N. (D.5)

We conclude by combining Equation (D.5) with Equation (D.4).705

Step 3. We now lower bound the distance between any two roots of p by a scalar η > 0. Since we706

know that for γ(π, π′, s) ∈ [0, 1) and 1 are two roots of P , this will show that γ(π, π′, s) < 1− η.707

Our proof is based on the following theorem.708

Theorem D.8 ((Rump, 1979)). Let p be a polynomial of degree N with integer coefficients, possibly709

with multiple roots. Let L be the sum of the absolute values of its coefficients. Then the distance710

between any two distinct roots of p is strictly larger711

1

2NN/2+2 (L+ 1)
N
.
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Recall that both γ(π, π′, s) ∈ [0, 1) and 1 are roots of the polynomial p. Therefore, we can combine712

Theorem D.8 with Theorem D.4 to obtain γ(π, π′, s) < 1− η(M), with713

η(M) =
1

2NN/2+2 (L+ 1)
N

with714

N = 2|S| − 1,

L = 2 · |S| · r∞ ·m2|S| · 4|S|.
This concludes the proof of Theorem 4.4.715

Remark D.9. Note that (Akian et al., 2019) use Theorem D.8 to obtain a lower bound on the average716

rewards of any two different policies, in the setting of two-player stochastic games.717

Remark D.10. Theorem 1 in (Rump, 1979) provides a separation bound in the case where the718

polynomial p has complex coefficients. Unfortunately, the separation bound from Theorem 1 in719

(Rump, 1979) is not directly usable here, because it depends on the discriminant D(p) of the720

polynomial p, a quantity that is hard to lower-bound (in all generality). We decide to use the bound721

from Theorem 3 in (Rump, 1979) because it does not depend on D(p) but directly on the `1-norm722

of p and of the degree of p, which can be computed in closed-form and can be bounded as in723

Proposition D.6 and Proposition D.5.724

E Proof of Theorem 4.7725

Proof of Theorem 4.7. Following table 4 in (Ye, 2011), we know that interior-point methods for the726

linear programming formulation of MDPs return an optimal policy in O
(
|S|3|A|2 (Q(r,P , γ))

)
727

arithmetic operations, with Q(r,P , γ) equal to the total bit-size of the MDP instance, i.e., the sum of728

the bit-sizes of all instantaneous rewards, transition probabilities, and the discount factor. By choosing729

γ = 1−η (M) and noticing that log(η(M)) = O
(
|S| log(r∞) + |S|2 log(m)

)
= O

(
|S|2 log(m)

)
,730

we see that interior-point methods for the linear programming formulation of MDPs return an optimal731

policy in O
(
|S|5|A|2 (Q(r,P ))

)
, where Q(r,P ) is the total bit-size of MDP instance.732

F Proof for robust MDPs733

Proof of the existence of γbw,r. Let734

γ̄r = max
π,π′∈Π,s∈S

max
P ,P ′∈Uext

γ(π, π′, s,P ,P ′),

where γ(π, π′, s,P ,P ′) is the largest zero of the function γ 7→ vπ,Pγ,s − vπ
′,P ′

γ,s if it is not identically735

equal to zero, or γ(π, π′, s,P ,P ′) = 0 otherwise. Recall that Uext is the (finite) set of extreme points736

of U . We will show that Π?
γ,r = Π?

bw,r,∀ γ > γ̄r. Let π be a robust discount-optimal policy for some737

γ > γ̄r. We will prove that π is a Blackwell-optimal policy. Since π is robust γ-discount-optimal, we738

have739

vπ,Uγ,s ≥ vπ
′,U
γ,s ,∀ π′ ∈ Π,∀ s ∈ S.

By definition vπ,Uγ,s = minP∈U v
π,P
γ,s ,∀ s ∈ S. From (Iyengar, 2005), we know that the arg min740

in minP∈U v
π,P
γ,s is attained at an extreme point of U . Therefore, by definition of γ̄r, the function741

γ 7→ vπ,Uγ,s − vπ
′,U
γ,s cannot be equal to 0 on (γ̄r, 1), and therefore it does not change sign, since it is a742

continuous function. This shows that for all γ > γ̄r, we have743

vπ,Uγ,s ≥ vπ
′,U
γ,s ,∀ π′ ∈ Π,∀ s ∈ S.

This shows the existence of the robust Blackwell discount factor γbw,r and that γbw,r < γ̄r.744

Proof of Theorem 4.11. We start by showing the following lemma.745
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Lemma F.1. LetM =
(
S,A, r,P 0

)
be an MDP instance with maximum bit-size m ∈ N. Assume746

that U is sa-rectangular, where for each (s, a) ∈ S × A, Usa is constructed as in (4.1), with the747

scalars (αsa)s,a of maximum bit-size m.748

Then the maximum bit-size complexity to describe the transition probabilities associated with the749

extreme points of Usa is m′ for p =∞ and 2m′ for p = 1.750

Proof of Lemma F.1. In the proof of this lemma, we use the fact that the worst-case kernel P ? of751

a policy π can be chosen as the arg min of the optimization problem minp∈Usπ(s)
p>vπ,Uγ , where752

vπ,Uγ is the worst-case value function of π. In particular, let v ∈ RS .753

The case p = ∞. In this case, there exists a sorting solution to minp∈Usa p
>v for any (s, a) ∈754

S ×A and any v ∈ RS , by sorting v, see for instance proposition 3 in (Goh et al., 2018), equation (9)755

in (Givan et al., 1997), or appendix C in (Behzadian et al., 2021). In particular, let (s, a) ∈ S ×A756

and define σ the permutation of S such that vσ(1) ≤ ... ≤ vσ(|S|), and define i as the smaller integer757

in {1, ..., |S|} such that758

i∑
s′=1

(
P 0
saσ(s′) + αsa

)
+

|S|∑
s′=i+1

(
P 0
saσ(s′) − αsa

)
≥ 1.

Then a solution to minp∈Usa p
>v is pσ(s′) = P 0

saσ(s′) + αsa if s′ < i, pσ(s′) = P 0
saσ(s′) − αsa if759

s′ > i, and760

pσ(i) = 1−
∑

s′∈S\{i}

pσ(s′).

This closed-form shows that for any vector v ∈ RS , a solution of minp∈Usa p
>v can be found as a761

vector with rational entries with a denominator of at most m.762

The case p = 1. In this case, one can show that the optimization problem minp∈Usa p
>v can be763

formulated as a linear program. Therefore, there exists an optimal basic feasible solution p which has764

the following form by lemma 5.4 and lemma 5.5 in (Ho et al., 2021). There exist j1, j2 ∈ S such that765

j1 6= j2 and for each i ∈ I = S \ {j1, j2}:766

pi = 0 or pi = P 0
sai

pj1 ≥ P 0
saj1 and pj2 ≤ P 0

saj2 .

Then, in order for p ∈ Usa we need the following equalities to hold767

pj1 + pj2 = 1−
∑
i∈I

pi

(pj1 − P 0
saj1) + (P 0

saj2 − pj2) = αsa −
∑
i∈I
|pi − P 0

sai| .

Combining the equalities above yields that768

2pj1 = αsa −
∑
i∈I
|pi − P 0

sai|+ P 0
saj1 − P

0
saj2

+ 1−
∑
i∈I

pi .

Because the right-hand side of the equation above is a sum of rational numbers with a denominator of769

at most m, pj1 is also rational with a denominator at most 2m. Using an analogous argument for pj2 ,770

we get that there exists an optimal solution that is rational with a denominator of at most 2m.771

Theorem 4.11 then follows by applying Theorem 4.4 with on the MDP instance (S,A, r,P ′) with772

P ′ an extreme point of U . Lemma F.1 exactly describes the maximum bit-size of any transition773

P ′sas′ for (s, a, s′) ∈ S ×A× S in the case of sa-rectangular uncertainty set based on `1-distance or774

`∞-distance as in (4.1). This concludes the proof of Theorem 4.11.775
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