
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPONENTS BEAT PATCHES: EIGENVECTOR
MASKING FOR VISUAL REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Masked Image Modeling has gained prominence as a powerful self-supervised
learning approach for visual representation learning by reconstructing masked-out
patches of pixels. However, the use of random spatial masking can lead to failure
cases in which the learned features are not predictive of downstream labels. In
this work, we introduce a novel masking strategy that targets principal compo-
nents instead of image patches. The learning task then amounts to reconstructing
the information of masked-out principal components. The principal components
of a dataset contain more global information than patches, such that the informa-
tion shared between the masked input and the reconstruction target should involve
more high-level variables of interest. This property allows principal components
to offer a more meaningful masking space, which manifests in improved quality
of the learned representations. We provide empirical evidence across natural and
medical datasets and demonstrate substantial improvements in image classifica-
tion tasks. Our method thus offers a simple and robust data-driven alternative to
traditional Masked Image Modelling approaches.

1 INTRODUCTION

Masked Image Modeling (MIM; Pathak et al., 2016; He et al., 2021; Bao et al., 2022; Xie et al.,
2022) draws inspiration from masked language modeling (e.g., BERT; Devlin, 2018), where parts
of a sentence are masked, and a model has to learn to predict the missing words. Similarly, in MIM,
portions of an image are masked out, and a model has to reconstruct the missing parts from the
visible ones. To do well at this task, it is thought that the model is forced to learn a meaningful
representation of the visual content in the process (Kong et al., 2023). Empirically, this approach
indeed tends to produce representations that perform particularly well when fine-tuned on various
downstream tasks, such as image classification and semantic segmentation (He et al., 2021).

The MIM paradigm has led to significant advances in the field of self-supervised learning (SSL)
of visual representations (Pathak et al., 2016; Zhou et al., 2021; He et al., 2021; Bao et al., 2022;
Xie et al., 2022; Baevski et al., 2022; Dong et al., 2023) and has been particularly effective when
combined with Vision Transformers (ViT; Dosovitskiy et al., 2021). A prominent example of this
is the Masked Autoencoder (MAE; He et al., 2021), which consists of two core components: a ViT
encoder-decoder architecture and a masking strategy that randomly selects a fixed ratio of square
image patches. The encoder processes the visible patches (along with their positional embeddings)
into a representation that the decoder can use to accurately reconstruct the masked-out content.

While the inner workings of MIM in general, and MAEs in particular, remain under-explored and
poorly understood (Zhang et al., 2022; Yue et al., 2023), Kong et al. (2023) recently suggested
a potential explanation from a latent variable model perspective: by splitting an image into two
parts and asking the model to predict one from the other, MAEs are compelled to pick up on any
information shared between the two that is helpful to solve the image modeling task. If the partition
into parts (i.e., the masking strategy) is chosen carefully, this shared information will include
high-level latent variables, such as object class. Since solving common downstream tasks with a
simple (e.g., linear) predictor precisely requires identifying such high-level information, this offers
a possible explanation for the observed effectiveness of MIM/MAE representations.
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Figure 1: Overview of the Principled Masked Autoencoder (PMAE). A Principled Masked Au-
toencoder (PMAE) differs from a vanilla MAE by performing the masking in the space of principal
components xPC = PCA(x) rather than in the observation space. The masked principal component
representations m⊙ xPC and (1−m)⊙ xPC are then projected back into the observation space and
serve as the reconstruction target and input for an encoder-decoder architecture, respectively.

With this in mind, it seems reasonable to ask: Is patch-wise masking in pixel space really the
best strategy for MIM? In natural language, each word in a sentence tends to carry semantic
information, and the information shared between sets of words often conveys the general message
of the sentence. However, this does not necessarily apply to the visual domain. In images,
individual pixels (and sometimes even entire patches) may contain information redundant that of
other pixels. For example, many background pixels will often be identical. Moreover, objects can
be masked out completely, such that any information about them is lost and reconstruction becomes
impossible (see, e.g., Fig. 2, left). The widely adopted strategy of masking image patches (i.e.,
spatial masking) may thus be sub-optimal and lead to representations that capture information that
is irrelevant for downstream tasks of interest.

Some works have thus sought to devise better masking strategies by relying on auxiliary information
such as (learned or inferred) image segmentations (Li et al., 2021; Kakogeorgiou et al., 2022; Shi
et al., 2022). Without prior knowledge or more complex training pipelines to identify the structure
of an image, randomly masking a fixed proportion of patches remains the default practice. However,
relying on this strategy assumes—rather unrealistically—that the information shared between any
random partition of patches naturally aligns with high-level variables of interest (Kong et al., 2023).

In this work, we introduce a new data-driven masking strategy for MIM. Rather than working
directly in pixel space, we propose to first project images into a latent space and then perform the
masking on the transformed data. Specifically, we opt for off-the-shelf data projections using prin-
cipal component analysis (PCA) and mask a random subset of the principal components. We refer
to the resulting method as Principled Masked Autoencoder (PMAE), see Fig. 1 for an overview.

We argue that the space of principal components constitutes a more meaningful domain for
masking, since it allows for partitioning the information in an image based on global features rather
than local patches of pixels. This helps overcome some of the aforementioned failure modes of
spatial masking and results in learning more useful high-level representations. Indeed, by masking
globally rather than locally, we avoid scenarios where the masked out and visible information are
either too strongly correlated (where visible information is redundant with what is masked out)
or too weakly correlated (where visible information fails to predict what is masked out). Recent
work has also highlighted the beneficial partitioning of image information by PCA: Balestriero &
LeCun (2024) demonstrate that low-eigenvalue components capture features crucial for common
downstream tasks (see also Fig. 7); and Chen et al. (2024b) highlight the importance of the space in
which image distortions are applied, referring to PCA as a valuable transformation to consider. To
the best of our knowledge, our work is the first to leverage such insights to devise a simple, robust,
and effective data-driven alternative to pixel-space-masking in MIM.

We evaluate PMAE in experiments on natural and medical image datasets where it consistently
yields substantial performance gains over spatial masking. For linear probing experiments, we report
an average performance gain of 26% over the widely adopted strategy of masking out 75% of images
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Figure 2: (Left) Masking in pixel space. TinyImageNet sample (left) with a random spatial mask
partially removing relevant information (middle) and a random spatial mask removing all semantic
information (right). The latter constitutes an example in which MIM would fail to learn useful
representations. (Right) MedMNIST datasets . Example images from the (from left to right) Der-
maMNIST, PathMNIST, and BloodMNIST datasets used for image classification (Yang et al., 2023).

patches. Interestingly, we find that without any hyperparameter tuning, PMAE outperforms spatial
masking with optimal hyperparameters in all but one dataset. These results support the belief that
modeling masked-out principal components facilitates the learning of meaningful representations.

2 BACKGROUND

Principal Component Analysis. Principal Component Analysis (PCA; Pearson, 1901; Hotelling,
1933) aims to expose data components that exhibit high variation. Given a centered data ma-
trix X ∈ RN×D consisting of N observations of dimension D, PCA iteratively seeks weight
vectors vl ∈ RD for l = 1, ..., L ≤ D, called principal components (PC), which maximize the
variance of the linear projection Xvl of the columns of X, subject to being orthogonal to the
previously found v1, ...,vl−1 and of unit-length. The solution to this problem is given by the
eigenvalue decomposition of the empirical covariance matrix Σ := X⊤X, i.e., Σ = VΛV⊤, where
Λ = diag(λ1, ..., λD) contains the ordered eigenvalues λ1 > ... > λD, and the corresponding
eigenvectors are the columns of V ∈ RD×D. In other words, the first L principal components
are given by the eigenvectors of X⊤X corresponding to the L largest eigenvalues. Eigenvectors
with higher eigenvalues can thus be seen as capturing the dominant modes of variation in the data.
Further, the variance explained by each principal component can be shown to be proportional to its
corresponding eigenvalue λl. Whereas PCA is often used with L<M for dimensionality reduction,
we will focus on the lossless case with L = M throughout. The projection XPC of X onto its
principal components (“into PC space”) is then given by XPC=XV, and the inverse transformation
back into observation space by X = XPCV

⊤. As V is an orthonormal basis, the columns of
XPC might be statistically independent if and only if the columns of X are themselves linear
combinations of independent factors. In this work, we focused our exploration on the natural image
domain, where the assumption that each pixel is a non-linear combination of a set of independent
factors is widely considered realistic. Please refer to Appx. A.1 for further details regarding PCA.

Representation Learning. Representation learning (Bengio et al., 2013) aims at learning an em-
bedding function f : x 7→ z, which maps data observation x ∈ RD to latent representation z ∈ RK .
These latent representations are meant to capture some of the explanatory factors underlying the
data, thus making z well-suited for use in downstream tasks such as predicting y (e.g., the class or
location of objects), often thought of as a being a function of the data’s explanatory variables.

Masked Image Modelling. Prominent approaches to representation learning in the image domain
rely on the masked image modeling paradigm (Pathak et al., 2016; Zhou et al., 2021; He et al.,
2021; Bao et al., 2022). We choose the widely adopted Masked Autoencoder (He et al., 2021) as a
representative of MIM. The encoder-decoder architecture in MAE allows the model to reconstruct
masked portions of data observations by leveraging the learned latent representations:

LMAE(x,m;θ,ϕ) = ∥mc ⊙ gθ (fϕ (m⊙ x))−mc ⊙ x∥22 , (2.1)

where x is a data observation and m and mc = (1 − m) are complementary binary masks used
to extract the visible and masked-out parts of the data, respectively. The embedding function f ,
parametrized by ϕ, encodes the visible portions of the input together with their positional embed-
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Figure 3: Mask Design Strategies. An overview of the different mask design strategies used in our
experimental setup: spatial masking (green) and principal component masking (blue). std refers to
the standard approach of masking out 75% of image patches, ocl denotes masking with the optimal
masking ratio, rd represents a randomized strategy where the masking ratio is randomly sampled for
each batch, and target refers to the reconstruction target;

dings, while the decoder function g, parametrized by θ, reconstructs the missing parts from their
positional embeddings and the latent representation z = fϕ (m⊙ x).

The binary mask m = {mi}Di=1 partitions the D pixels into two disjoint sets of (1 − r)D visible
and rD masked out pixels, where r is referred to as the masking ratio. Patch-wise masking, which
masks patches of pixels instead of individual pixels, introduces the patch size as an additional hy-
perparameter. r then defines the amount of patches to be masked out. Prior work has relied on
hyperparameter sweeps to identify the masking ratio and patch size that optimize downstream per-
formance (He et al., 2021; Zhang et al., 2022). These efforts have led to the widely adopted approach
of masking out 75%(r=0.75) of image patches.

Intuition behind MIM. Despite the MIM paradigm with random spatial masking producing
strong results on representation learning benchmarks (Dong et al., 2023), it is based on the rather
unrealistic assumption that for any partition of an image’s patches into two disjoint sets, the infor-
mation shared by these sets contains y (Kong et al., 2023). In Fig. 2, we observe that while some
masks (middle image) may allow shared information to include the object type and corresponding
class label, there are many partitions where predicting the label (e.g., the class label ”goose” in
Fig. 2) from the visible patches is almost as uncertain as a random guess (left image). Moreover,
even for well-designed masks, a substantial proportion of masked-out patches contain information
redundant with visible pixels. We conjecture that, as a result, Masked Image Modeling with spa-
tial masking leads to a suboptimal learning approach that is misaligned with common downstream
tasks, is characterized by slow convergence and suffers from high sensitivity to hyperparameters, as
suggested by prior work (He et al., 2021; Balestriero & LeCun, 2024) and confirmed in Section 5.

3 ROBUST MASKED IMAGE MODELLING

To address the challenges presented in Section 2, we propose Principled Masked Autoencoders
(PMAE). PMAE builds on the MIM learning paradigm, but differs from prior approaches by per-
forming the masking operation in a learned latent space, resulting in the following objective:

LPMAE(x,m;θ,ϕ) = ∥gθ (fϕ (h (m,x)))− h(mc,x)∥22 , (3.1)

where h(m,x) = t−1(m ⊙ t(x)) = t−1(m ⊙ xPC), and t is an invertible function, t : RD →
RD mapping the input x to a representation space xPC = t(x). Eq. (3.1) and Eq. (2.1) differ in
that the masking operates within the latent space. Similar to Eq. (2.1), the embedding function f ,
parametrized by ϕ, encodes the visible portions of the input together, while the decoder function g,
parametrized by θ, reconstructs the missing parts.

Note that while the masking is performed in latent space, Vision Transformers (Dosovitskiy et al.,
2021) generally perform remarkably well in pixel space, and we thus keep the reconstruction task in
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Figure 4: Mask Design in PMAE. 1. Principal Component Analysis is performed 2. For each batch,
principal components are randomly shuffled and a subset is selected to construct the input (light
blue), while the remaining components serve to construct the reconstruction target (dark blue). In
PMAEocl, the input components are chosen to explain ((1 − r) × 100)% of the data’s variance. r
is optimized for downstream performance, here Ropt is set to 0.15. In PMAErd, the input explain
between 10% and 90% of the variance. r is sampled from U(0.1, 0.9) for each batch independently.

the observation space. Consequently, after the masking in latent space, t−1 projects xPC back to the
observation space. Fig. 1 provides a visual overview of our approach.

Intuition behind PMAE. In contrast to the traditional spatial masking presented in Section 2, an
appropriate function t can encourage information shared between visible and masked-out informa-
tion to contain y. More specifically, if the latent space captures unique global information in each
dimension, masking any of these dimensions retains information about all parts of the image. Hence,
Eq. (3.1) allows us to learn more meaningful representations for a suitable choice of t.

The appeal of the proposed approach then boils down to finding t. While there may be many ap-
propriate choices for t, we found that applying PCA and projecting samples using the resulting
principal components is a suitable choice for the latent space. In particular, each dimension captures
specific factors of variation observed within the dataset and is typically tied to global features as
shown in Fig. 7. Masking one factor of variation thus prevents us from completely removing all
information about variables of interest within a sample, as most principal components will retain
some information about them. We will present the positive impact of this reasoning in Section 5,
where we compare principal component and observation space masking empirically. In Section 6,
we will provide additional intuition as to why PCA leads to a suitable masking strategy.

4 EXPERIMENTAL SETUP

We now outline the setup used to validate PMAE. Our experiments follow the evaluation proposed
by He et al. (2021), ensuring the comparability of results between our PMAE and baselines. Details
regarding this experimental setup and computational training costs can be found in Appx. A.2.

Mask Design. State-of-the-art MIM models, like MAE (He et al., 2021), typically employ random
image patch masking, which serves as our baseline. Based on ablation studies from He et al. (2021),
the standard practice involves masking out 75% of image patches (denoted as MAEstd). We also
examine an oracle-based masking strategy (denoted as MAEocl), where the masking ratio is fine-
tuned to optimize linear probing downstream performance. This setting serves as an upper-bound to
the downstream performance. Additionally, we introduce a randomized masking approach, MAErd,
in which the masking ratio is independently sampled for each batch, within a range of 10% to 90%
of image patches being masked out. This strategy is exempt from any hyperparameter tuning and
offers insights into the downstream performance when using suboptimal masking hyperparameters.

A similar approach is applied to PMAE, where we consider both oracle (PMAEocl) and random-
ized (PMAErd) masking strategies. In PMAE, we define the masking ratio as the proportion of data
variance to be masked out. Indeed, while for spatial masking, the masking ratio represents the pro-
portion of patches to be masked out, with PCA, each principal component accounts for a percentage
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Figure 5: Impact of the Masking Ratio. MAE (top) and PMAE (bottom) linear probing accuracy
for varying masking ratios. The masking ratio is a sensitive and data-dependent hyper-parameter.
While for MAE a clear masking guideline is hard to extract, for PMAE we observe a close to optimal
performance across datasets for 10 to 20% of the data variance masked.

of the data variance. In the oracle approach, we define the optimal percentage of variance to be
masked based on downstream performance on a held-out dataset. In the randomized strategy, we
simply ensure at least 10% and at most 90% of the data variance is masked out. This percentage is
independently sampled for each batch.

Fig. 3 provides examples of the images obtained from these masking strategies. Note that Fig. 3
helps visualise how MAE masks out patches of local information while PMAE operates globally
over the image. Fig. 4 provides further practical insights into how the masking of principal compo-
nents is performed for the oracle and randomized settings. After PCA, the order of principal compo-
nents is randomly shuffled for each batch. The components are then partitioned into two disjoint sets,
explaining 100×(1−r)% and 100×r% of the variance for masking ratio, r. The masking ratio is fixed
for PMAEocl and independently sampled for each batch from the [0.1, 0.9] range in PMAErd. Both
partitions are then projected back to the observation space to serve as input and reconstruction target.

Training & Evaluation. We train ViT-T/8 encoder and decoder backbones (Dosovitskiy et al.,
2021). We fix the patch size to 8×8 pixels. Following common practice, we use image flipping
random image cropping as data augmentation (He et al., 2021). We train representations for 800
epochs and provide an overview of the evolution of performance across training in Appx. A.7. We
then evaluate learned representations on image classification using a linear probe and multi-layer
perceptron (MLP) classifier on top of the encoder’s output [CLS] token which is frozen. Following
He et al. (2021), we fix the training duration of the linear and MLP probes to 100 epochs. Appx. A.7
also reports downstream performance obtained with a k-NN classifier.

5 RESULTS

In this section, we will outline and analyze the empirical advantages of PMAE compared to standard
MAEs in image classification tasks. Specifically, we provide evidence that masking within the space
of principal components facilitates the learning of discriminative features, resulting in improved
performance on downstream tasks. Our findings are supported by empirical evidence across diverse
datasets, including two natural image datasets of 32×32 and 64×64 image resolutions, and three
medical datasets taken from MedMNIST (Yang et al., 2023) of 64×64 image resolution (see Fig. 2
for example MedMNIST images).

Tab. 1 presents the classification accuracy using both a linear probe and a MLP classifier. Across
datasets, we observe substantial improvements with PMAEocl in linear probing compared to the
standard MAEstd, with an average increase of 26% (+10 percentage points). Additionally, PMAEocl
outperforms MAEocl by 10.9% (+6.6 percentage points). We see similar gains with the randomized
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Table 1: Linear and MLP probe top-1% accuracy for CIFAR10, TinyImageNet and MedMNIST
datasets for random masking in pixel (MAE) and principal component (PMAE) space with the
standard 75% masking ratio (std), oracles (ocl) and randomized masking ratios (rd). ∗ refers to ours.

CIFAR10 TinyImageNet DermaMNIST BloodMNIST PathMNIST

Linear

MAEstd 41.7 11.5 72.4 73.4 83.4

MAEocl 50.7 15.5 73.7 78.6 86.4

PMAE∗
ocl 55.1 17.4 77.4 91.0 97.0

MAErd 41.9 7.5 72.4 83.2 85.6

PMAE∗
rd 56.0 15.1 74.5 85.9 87.5

MLP

MAEstd 34.0 15.5 72.2 68.6 92.6

MAEocl 55.2 22.2 74.4 75.8 95.1

PMAE∗
ocl 61.5 22.1 79.6 91.0 98.8

MAErd 38.5 11.6 66.9 70.6 95.7

PMAE∗
rd 62.2 19.5 75.3 84.4 97.0

hyperparameter strategy. PMAE consistently outperforms MAE across all datasets, yielding
an average performance increase of 47.8% (+5.68 percentage points), even when sub-optimal
hyperparameters are used. These findings also extend to the non-linear evaluation setting, (see the
lower half of Tab. 1).

These empirical findings lead to several conclusions. First, we observe that the recommended
masking of 75% of image patches is largely sub-optimal across datasets. Figs. 5 and 10 report
an ablation study of the masking ratios for MAE and PMAE. Fig. 5 (top) shows that, across all
five datasets, a 75% masking ratio is sub-optimal. For PMAE, the masking ratio seems to be a
more stable hyperparameter. Fig. 5 (bottom) shows that across all evaluated datasets we observe
the best or near-optimal performance for PMAE at 10% to 20% of the variance masked. Second,
we validate the empirical benefits brought by PMAE. Interestingly, we notice that PMAE without
any hyperparameter tuning (PMAErd) outperforms or performs similarly to MAE with optimum
masking ratio in all but one case (i.e., TinyImageNet with MLP probing). Finally, investing in
hyperparameter tuning for PMAE leads to substantial performance gains over MAE.

Fig. 6 provides a deeper look into downstream performance across different training epochs and
the variability of results with varying masking ratios. As shown in Fig. 6 (left), the advantages
of PMAE become evident after just a few hundred training epochs. Notably, training PMAE
for 200 epochs exceeds the performance of MAE after 800 epochs. Additional figures for other
datasets can be found in Appx. A.7. Furthermore, Fig. 6 (right) explores how downstream accuracy
fluctuates with different masking ratios. Our analysis reveals that PMAE displays comparable or
lower standard errors across these conditions in contrast to MAE. Collectively, these results suggest
that PMAE’s masking strategy enhances the alignment between image reconstruction and image
classification tasks more effectively than the MAE objective.

6 UNDERSTANDING PMAE

In this section, we aim to provide more intuition as to why masking components rather than image
patches leads to more robust objectives. In Section 2, we discuss the hypothesis under which MIM
operates (Kong et al., 2023) and present an example failure case of spatial masking in Fig. 2. We
highlight how masking image patches can lead to a misalignment between the MIM objective and
the learning of meaningful representations. If all patches covering an object are masked out, it is
uncertain whether the remaining patches share any information with the object. Contrary, if the
masked out information is redundant with the information carried by visible patches, it is likely that
the information shared does not contain the object class but rather perceptual features (e.g., colors
or textures).

Different from spatial masking, masking principal components leads to the removal of global
image features, instead of only acting locally as in spatial masking. Fig. 7 serves as an example
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Figure 6: (Left) Learning curves. Linear probe accuracy for CIFAR10 classification across the
number of training epochs. PMAE outperforms MAE’s final performance even after short training
times. (Right) Ablation study of the masking ratio. Average and standard error of the linear probe
accuracy across masking ratios for MAE and PMAE. We observe lower or equivalent standard errors
for PMAE than for MAE across CIFAR10 (1), TinyImageNet (2) and MedMNIST (3-5) datasets.

highlighting the correspondence between principal component and perceptual features. In this
example, the principal components with the highest eigenvalues capture the colors within the image
while the bottom PCs highlight the edges. Early work in image processing (Turk & Pentland, 1991)
has demonstrated this connection between an image’s dominant modes of variation and its low
spatial frequency components, providing further intuition for how information is partitioned in the
space of PCs of natural images.

By removing a subset of principal components, PMAE prevents the removal of all the information
characterizing an object and prevents redundant information to remain after masking. Instead,
PMAE drops a set of unique image components. By taking advantage of the information partitioning
in PCA, PMAE thereby mitigates MAE’s failure cases, ultimately leading to increased accuracy.
Although the potential of the principal component space for Masked Image Modelling (Balestriero
& LeCun, 2024) or Image Denoising (Chen et al., 2024b) has been recently explored, our work is
the first to propose an effective masking strategy that directly leverages PCA.

7 RELATED WORK

Self-supervised learning. Self-supervised learning (SSL) leverages auxiliary tasks to learn from
unlabeled data, often outperforming supervised methods on downstream tasks. SSL can be divided
into two categories: discriminative and generative (Liu et al., 2021). Discriminative methods (Chen
et al., 2020a; Caron et al., 2021) focus on enforcing invariance or equivariance between data views
in the representation space, while generative methods (He et al., 2021; Bizeul et al., 2024) rely
on data reconstruction from, often, corrupted observations. Though generative methods histori-
cally lagged in performance, recent work has bridged the gap by integrating strengths from both
paradigms(Assran et al., 2022; Dong et al., 2023; Oquab et al., 2023; Chen et al., 2024a; Lehner
et al., 2023). Interestingly, recent discriminative methods employ multi-cropping strategies to create
distinct data views (Oquab et al., 2023; Assran et al., 2023), which is reminiscent of image masking.
Balestriero & LeCun (2024) point out the misalignment between auxiliary and downstream tasks in
reconstruction-based SSL and suggest novel masking strategies to help realign these objectives.

Masked Image Modelling. MIM extends the successful masked language modeling paradigm to
vision tasks. Early methods, such as Context Encoder (Pathak et al., 2016), used a convolutional
autoencoder to inpaint a central region of the image. The rise of Vision Transformers (ViTs) (Doso-
vitskiy et al., 2021) has driven significant advancements in MIM. BEiT (Zhou et al., 2021; Bao
et al., 2022) combines a ViT encoder with image tokenizers (Ramesh et al., 2021) to predict discrete
tokens for masked patches. SimMIM (Xie et al., 2022) simplifies the task by pairing a ViT encoder
with a regression head to directly predict raw pixel values for the masked regions. MAE (He et al.,
2021) introduces a more efficient encoder-decoder architecture, with a shallow decoder. MIM’s
domain-agnostic masking strategies have also proven effective in multi-modal tasks (Baevski et al.,
2022; Bachmann et al., 2022).
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Figure 7: From Principal Components to Spatial Features. Overview of the spatial features as-
sociated with distinct regions of the principal component (PC) spectrum; Images depict the features
encapsulated by the top PCs (light blue), middle PCs (mild blue) and bottom PCs (dark blue).

Mask Design Strategies. A critical component of the Masked Image Modeling paradigm is the
design of effective masking strategies. Early MIM approaches have relied on random spatial mask-
ing techniques, such as masking out the central region of an image (Pathak et al., 2016), image
patches (He et al., 2021; Xie et al., 2022), and blocks of patches (Bao et al., 2022). Inspired by
advances in language modeling, recent efforts have explored semantically guided mask design. Li
et al. (2021) use self-attention maps to mask irrelevant regions, while Kakogeorgiou et al. (2022)
focus on masking semantically rich areas. Shi et al. (2022) design masks through adversarial learn-
ing, where the resulting masks resemble semantic maps, a concept extended by Li et al. (2022a)
through progressive semantic region masking. Further advancing this direction, Wang et al. (2023)
and Madan et al. (2024) introduce curriculum learning-inspired mask design methods. These meth-
ods often require additional training steps, components, or more complex objectives. More closely
related to our work, Chang et al. (2022); Chen et al. (2024b) explore the use of pre-existing image
representations for Masked Image Modeling and image denoising. Chen et al. (2024b) introduce
additive Gaussian noise to principal components as an alternative to the traditional Denoising Au-
toencoders. Chang et al. (2022) utilize masked token modeling by leveraging the discrete latent
space of a pre-trained VQVAE to develop an image generation model.

8 DISCUSSION

In this work, we have investigated different masking strategies for Masked Image Modelling
(MIM). To this end, we have introduced the Principled Masked Autoencoder (PMAE) as an
alternative to masking random patches of pixels. PMAE is rooted in Principal Component Analysis
(PCA; Pearson, 1901; Hotelling, 1933), which is a widely used data-driven linear transformation.
Unlike recent alternatives that require additional supervision, learnable components, or complex
training pipelines (Li et al., 2021; 2022a; Kakogeorgiou et al., 2022; Li et al., 2022b), PMAE stays
close to the core principles of MIM: the combination of a randomized masking strategy and an
encoder-decoder architecture. Despite its simplicity, we demonstrate that PMAE yields substantial
performance improvements over spatial masking on image classification tasks. Further, in a PMAE,
the masking ratio—typically a sensitive and difficult-to-tune hyperparameter in MIM—appears
more robust and has a natural interpretation as the ratio of variance explained by the masked input.

Since PCA is easily applicable to any data modality, our proposal of masking principal components
is not specific to MIM. Instead, it can be viewed as a general strategy that should also be applicable
to other types of modalities beyond images, as well as to other self-supervised learning (SSL)
approaches. Indeed, data masking is commonly adopted in discriminative SSL methods. Whereas
early approaches, such as SimCLR (Chen et al., 2020a) or MoCo (Chen et al., 2020b), relied on
combinations of image transformations (e.g., color jitter, flips, crops, etc.) as data augmentation
strategies, more recent state-of-the-art methods like DINO (Caron et al., 2021; Oquab et al., 2023)
and I-JEPA (Assran et al., 2023) have shifted to relying solely on image cropping, which can be
considered a type of masking. The integration of principal component masking instead of image
cropping into such SSL pipelines constitutes a promising future direction of research.

In the present work, we have focused on PCA as a meaningful masking space. However, our core
idea of masking a transformed version of the data (rather than the raw data) can be viewed as laying
the groundwork for other, more generic approaches to information masking in self-supervised

9
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representation learning. Moving beyond PCA, a natural extension would be to learn a suitable latent
space in which the masking is performed. This route has the added potential of leveraging recent
theoretical insights (Kong et al., 2023) by more explicitly enforcing that the shared information
between visible and masked-out latent components contains high-level latent variables that are most
useful for the downstream tasks of interest. Other off-the-shelf non-linear transformations, such
as the Fourier transform (Bracewell & Kahn, 1966), Wavelet transform (Daubechies, 1992), Kernel
Principal Component Analysis (Schölkopf et al., 1997), or Diffusion Maps (Coifman & Lafon,
2006), represent alternative candidate transformations. Future research should explore whether
the properties of these spaces provide comparable or additional advantages over PCA. Preliminary
results on Kernel PCA, presented in Appx. A.7.4, demonstrate performance gains over PMAE,
motivating further exploration. A particularly appealing aspect of some of these methods (e.g.,
Fourier & Wavelet transforms and Diffusion Maps) is the use of fixed bases, which could eliminate
the computational overhead of PCA—whose cost scales cubically with the data dimensionality—
and improve scalability to larger datasets.

10
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A APPENDIX

A.1 PRINCIPAL COMPONENT ANALYSIS

Figure 8: PCA and independent sources: PCA finds an orthonormal basis — a rotation matrix
— that maximizes the variance in the data. When the original data is a linear combination of
independent components (middle & right), referred to as data sources, PCA might successfully
identify these sources, resulting in statistically independent variables when the data is projected
onto its principal components. However, if the original data is a non-linear combination of
independent sources (left), the projection onto the principal components results in statistically
dependent variables making it possible to approximately predict one PC from others.

Principal Component Analysis (PCA; Pearson, 1901; Hotelling, 1933) finds a set of orthonormal
vectors (V) that maximize the variance of the data. Projecting data samples X onto V effectively
rotates the original data such that each variable captures the maximum possible variance while re-
maining orthogonal to the previous dimensions. When the original data is a linear combination
of independent factors (referred to as sources), PCA can but does not necessarily recover these
sources. PCA recovers mutually statistically independent sources if and only if the original data is
jointly Gaussian, since uncorrelatedness implies independence only for the Gaussian distribution.
This situation arises, e.g., when the data is a linear combination of Gaussian sources.

In Fig. 8 (middle & right), the observed variables x and y are linear combinations (y=3x + z) of
independent sources x and z, where x follows a uniform distribution and z is drawn from a normal
distribution. In the middle example, PCA finds principal axes, PC1 and PC2, which are orthogonal,
and the projections align with the independent sources x and z. In the right example, the projections
do not align with the independent sources x and z.

However, as shown in Fig. 8 (left), when y is a non-linear combination of sources (y=x2 + z), no
rotation matrix can transform the data to recover statistically independent variables. Projecting the
data onto principal axis will hence result in statistically dependent variables making it possible to
approximately predict one PC from others.

In this work, we incorporate PCA into the framework of Masked Image Modeling (MIM). Specifi-
cally, we propose a task that involves reconstructing masked principal components using the visible
ones. This task is meaningful only if it is feasible to approximate the masked PCs based on the
visible ones, which occurs when the masked PCs are statistically dependent on the visible PCs.

A.2 EXPERIMENTAL SETUP

A.2.1 DATASETS

CIFAR-10 is a widely used benchmark dataset containing 50,000 training and 10,000 validation
32x32 RGB images depicting 10 object classes, such as airplanes, cars, and animals.
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TinyImageNet is a smaller subset of the ImageNet dataset, containing 200 classes of 64x64 RGB
images. It consists of 100,000 training images and 10,000 validation images, making it a challenging
benchmark for classification tasks with more fine-grained object categories compared to CIFAR-10.

The MedMNIST (Yang et al., 2023) datasets are a collection of medical imaging datasets, each
focusing on different types of biomedical data. Three subsets from MedMNIST are used:

BloodMNIST consists of 12,000 training and 1,700 validation 64x64 RGB images across 8
classes and represents microscopic images of blood cells, making it useful for classification tasks in
hematology.

DermaMNIST contains 7,000 training and 1,000 validation 64x64 RGB images across 7 classes
and depicts dermatological images of various skin conditions, serving as a tool for diagnosing skin
diseases.

PathMNIST comprises 90,000 training and 10,000 validation 64x64 RGB images across 9 classes
and depicts histopathological images of colorectal cancer tissue, aiding in classification tasks rele-
vant to pathology.

We apply an equivalent data augmentation strategy to all datasets and for all learning objectives
during training; Following He et al. (2021), our augmentation strategy consists of a random cropping
followed by image resizing using bicubic interpolation. The scale of the random cropping is fixed to
[0.2, 1.0]. We add horizontal flipping and we normalize images using each dataset’s training mean
and standard deviation; For evaluation, we resort to image normalization only. For all datasets and
methods we define image patches as patches of 8x8 pixels.

A.3 MODEL ARCHITECTURE

We train a tiny Vision Transformer encoder architecture (ViT-T) with image patch size 8x8 (ViT-
T/8). The specifics of this architecture can be found in Tab. 2.

config value

hidden size 192
number of attention heads 3
intermediate size 768
norm pixel loss True
patch size 8x8

Table 2: Model architecture hyperparameters ViT-T/8.

A.4 TRAINING HYPERPARAMETERS

We train the ViT-T encoder-decoder architecture for 800 epochs with the hyperparameters found in
Tab. 3. These hyperparameters are taken from (He et al., 2021). We use the linear lr scaling rule:
lr = base lr×batchsize / 256 (Goyal, 2017). Note that for our oracle masking setting, we conduct an
ablation study across a masking ratio range of [0.1, 0.9].

A.5 EVALUATION HYPERPARAMETERS

We evaluate the learned representation (i.e., [CLS] token) using a linear probe, multi-layer percep-
tron classifier and k-Nearest Neighbors algorithm on top of the frozen representation. The training
samples of each dataset are used to training and the validation samples for testing. For linear and
mlp probing experiments, we train the probes for 100 epochs following common practices (He et al.,
2021). For the k-NN algorithm we tune the number of neighbors in the range [2, 20]. More details
regarding the linear probing evaluation hyperparameters can be found in Tab. 4. We use the linear
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config value

batch size 512
base learning rate 0.00015
optimizer AdamW [39]
betas (AdamW) β1, β2 = 0.9, 0.95

weight decay 0.05
learning rate (warmup) 0.0003
warmup steps 40

Table 3: Training hyperparameters.

config value

batch size 512
base learning rate 0.1
optimizer SGD [6]
betas (SGD) 0.9
learning rate 0.2
warmup steps 10
weight decay 0

Table 4: Linear probing hyperparameters.

Figure 9: Training time. We report the raining time in minutes for 800 training epochs using a
ViT-T/8 architecture. For standard MAE we report numbers for various masking ratios.

lr scaling rule: lr = base lr×batchsize / 256 (Goyal, 2017). Note that for PMAE, we evaluate the ap-
proach on raw images and do not perform any filtering of principal components prior to evaluation.

A.6 COMPUTATIONAL RESOURCES

All training runs were conducted on single NVIDIA GeForce RTX 3090/NVIDIA GeForce RTX
4090/Quadro RTX 6000 GPUs or NVIDIA TITAN RTX each of which possesses a 24GB RAM.
Fig. 9 reports the time taken for 800 training epochs using a ViT-T/8 architecture on a Quadro RTX
6000 GPU for CIFAR10 and TinyImageNet with the standard MAE and the PMAE methods.

A.7 ADDITIONAL RESULTS

A.7.1 MASKING RATIO ABLATION

In Fig. 5b we report the image classification accuracy with a linear probe for our PMAE for different
masking ratios in the [10, 50] range. In Fig. 10 we extend this range for completeness to [10, 90].
Conclusions drawn from Fig. 5b remain: the optimal masking ratio across datasets lies between
10 and 20% of the variance masked. Above these ratios, we observe a performance drop across
datasets.

A.7.2 TRAINING DYNAMICS

Tab. 5 shows the classification accuracy for CIFAR10, TinyImageNet, BloodMNIST, DermaMNIST
and PathMNIST datasets using a k-NN classifier in place of a linear probe or MLP probe as pre-
sented in Section 5.

17

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2010.05374


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 10: Impact of the Masking Ratio. PMAE linear probing accuracy for varying masking
ratios. We observe a close to optimal performance across datasets for 10 to 20% of the data variance
masked.

Fig. 11 displays the linear probe accuracy for varying training epoch checkpoints. Similar to Fig. 11b
we observe that PMAE after 200 epochs outperforms MAE after 800 epochs. For TinyImageNet,
PMAE after 200 epochs performs near MAE after 800 training epochs.

Table 5: k-Nearest Neighbors top-1% accuracy for CIFAR10, TinyImageNet, DermaMNIST, Blood-
MNIST, and PathMNIST for random masking in pixel (MAE) and principal component (PMAE)
space with the standard 75% masking ratio (std), oracles (ocl) and randomized (rd) masking ratios.
We report the accuracy after 800 epochs of training using a ViT-T/8 is reported.

CIFAR10 TinyImageNet DermaMNIST BloodMNIST PathMNIST

k-NN

MAEstd 38.3 10.0 71.1 65.7 92.1

MAEocl 47.6 12.5 69.9 73.6 94.6

PMAE∗
ocl 48.1 9.6 74.7 84.5 99.1

MAErd 40.3 7.6 71.6 82.7 96.0

PMAE∗
rd 49.6 9.5 70.6 76.0 94.8

(a) TinyImageNet (b) BloodMNIST (c) DermaMNIST (d) PathMNIST

Figure 11: Performance Curves. Linear probe accuracy (%) for TinyImageNet, BloodMNIST,
DermaMNIST and PathMNIST across training epochs. In MedMNIST datasets we observe that
PMAE after 200 epochs outperforms MAE after 800 epochs. For TinyImageNet, PMAE after 200
epochs performs near MAE after 800 training epochs.

A.7.3 RECONSTRUCTING IN PIXEL VS. PRINCIPAL COMPONENT SPACE

We further investigate the impact of the domain (i.e., pixel vs. pc space) in which the reconstruction
error is minimized on downstream performance. In Fig. 12, we present an alternative to Fig. 1 in
which the training objective receives a set of principal components in place of pixels. In Fig. 12, the
decoder’s output is projected onto the data’s principal axes. The training objective then minimizes
the Euclidean distance between the ground truth and the predicted masked principal components.
Instead with Fig. 1, the training objective minimizes the Euclidean distance between the ground
truth masked principal components projected back to pixel space and the decoder’s output. The
learning objective then becomes Eq. (A.1), a modified version of Eq. (3.1):
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Figure 12: Overview of the Principled Masked Autoencoder (PMAE) with masked principal
components as reconstruction target. A Principled Masked Autoencoder (PMAE) differs from a
vanilla MAE by performing the masking in the space of principal components xPC = PCA(x) rather
than in the observation space. The visible principal components (1 −m) ⊙ xPC are then projected
back into the observation space and serve as the input for an encoder-decoder architecture. Masked
principal components, m⊙ xPC, serve as the reconstruction target.

LPMAE(x,m;θ,ϕ) = ∥mc ⊙ t(gθ (fϕ (h (m,x))))−mc ⊙ t(x)∥22 , (A.1)

Tab. 7 presents the downstream image classification performance achieved when training represen-
tations with Eq. (A.1). In particular, it reports results obtained using a linear and MLP probe in the
oracle setting (i.e., with optimal masking ratios). PMAE consistently outperforms MAE across all
five datasets, demonstrating substantial improvements. Notably, the performance gains over MAE
are larger than those observed for representations trained with Eq. (3.1), reported in Tab. 1. In Tab. 1
we report an average performance gain of 6.6 percentage points across datasets over the MAE base-
line, while Tab. 7 reports an average performance gain of 9.6 percentage points. These findings
further support our claims that the space of principal components constitutes a meaningful masking
space for Masking Image Modelling learning paradigms. Note that the optimal masking ratios used
in Tab. 1 for each dataset, are the ones reported in Fig. 5b.

Table 6: Linear and MLP probe top-1% accuracy for CIFAR10, TinyImageNet and MedMNIST
datasets for random masking in pixel (MAE) and principal component (PMAE) space with the stan-
dard 75% masking ratio (std) and oracles (ocl). The reconstruction target for PMAE lies here in the
space of principal components. ⋆ refers to ours.

CIFAR10 TinyImageNet DermaMNIST BloodMNIST PathMNIST

Linear
MAEstd 41.7 11.5 72.4 73.4 83.4

MAEocl 50.7 15.5 73.7 78.6 86.4

PMAE⋆
ocl 59.0 22.5 95.5 78.6 96.8

MLP
MAEstd 34.0 15.5 72.2 68.6 92.6

MAEocl 55.2 22.2 74.4 75.8 95.1

PMAE⋆
ocl 64.1 25.1 92.5 80.2 98.6

Table 7: Linear and MLP probe top-1% accuracy for CIFAR10, TinyImageNet and MedMNIST
datasets for random masking in pixel (MAE) and principal component (PMAE) space with the stan-
dard 75% masking ratio (std) and oracles (ocl). The reconstruction target for PMAE lies here in the
space of principal components. ⋆ refers to ours.

CIFAR10 TinyImageNet DermaMNIST BloodMNIST PathMNIST

MAEocl 80.5 42.8 79..9 98.1 99.7

PMAEocl 84.8 44.5 82.3 98.1 99.7
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Table 8: Linear and MLP probe top-1% accuracy for CIFAR10 for random masking in pixel (MAE),
in principal component space (PMAE) and in kernelized PCA space (KMAE) with the standard 75%
masking ratio (std) and oracles (ocl). The reconstruction targets for PMAE and KMAE lie in the
space of principal components. ∗ refers to ours.

MAEstd MAEocl PMAE∗
ocl KMAE∗

ocl

Linear 41.7 50.7 59.0 64.0

MLP 34.0 55.2 64.1 68.6

A.7.4 BEYOND PCA

Our work shows evidence the PCA offers a meaningful masking space. In Section 6, we motivate our
choice by observing that principal components capture global rather than local features of an image.
In this section, we go beyond PCA and explore non-linear matrix factorization methods as a proof
of concept for future research. In particular, we explore kernel PCA (Schölkopf et al., 1997) with a
Radial Basis Function. In kernel PCA, the spectral decomposition is performed not on the data itself
but rather on a modified version of it: the standardized data is mapped to a high-dimensional space
via a non-linear kernel function.

In Tab. 8, we present results on the CIFAR10 dataset and show the image classification accuracy
using a linear and MLP probe. We compare a vanilla MAE with our PMAE and KMAE which
relies on Kernel PCA for optimal masking ratios. For KMAE, we use the setting presented in
Appx. A.7.3 and minimize the Euclidean distance between masked principal components and the
decoder’s output principal components.

The results reveal a significant performance improvement when employing a non-linear image trans-
formation. KMAE achieves an average gain of 13.3 and 5 percentage points compared to the stan-
dard Masked Autoencoder (He et al., 2021) and PMAE, respectively. Although these findings are
preliminary and based on a single mid-scale dataset, they highlight the potential of non-linear trans-
formations and further emphasize the value of spectral decomposition as a meaningful for Masked
Image Modeling paradigms.
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