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Abstract
Generative deep learning is reshaping drug design.
Chemical language models (CLMs) – which gen-
erate molecules in the form of molecular strings
– bear particular promise for this endeavor. Here,
we introduce a recent deep learning architec-
ture, termed Structured State-Space Sequence
(S4) model, into de novo drug design. In addi-
tion to its unprecedented performance in various
fields, S4 has shown remarkable capabilities to
learn the global properties of sequences. This
aspect is intriguing in chemical language mod-
eling, where complex molecular properties like
bioactivity can ‘emerge’ from separated portions
in the molecular string. This observation gives
rise to the following question: Can S4 advance
chemical language modeling for de novo design?
To provide an answer, we systematically bench-
mark S4 with state-of-the-art CLMs on an array of
drug discovery tasks, such as the identification of
bioactive compounds, and the design of drug-like
molecules and natural products. S4 showed a su-
perior capacity to learn complex molecular prop-
erties, while at the same time exploring diverse
scaffolds. Finally, when applied prospectively to
kinase inhibition, S4 designed eight of out ten
molecules that were predicted as highly active by
molecular dynamics simulations. Taken together,
these findings advocate for the introduction of S4
into chemical language modeling – uncovering its
untapped potential in the molecular sciences.

1. Introduction
Discovering molecules in the vast chemical universe – es-
timated to comprise up to 1060 small molecules (Bohacek
et al., 1996) – is a ‘needle in the haystack problem.’ Chemi-
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cal language models (CLMs) allow exploring this chemical
universe efficiently (Skinnider et al., 2021), by enabling
the design of desirable molecules without hand-crafted
rules (Yuan et al., 2017; Merk et al., 2018a; Grisoni et al.,
2021; Ballarotto et al., 2023b; Grisoni, 2023). To achieve
this, CLMs represent the molecules as strings that linearize
molecular structures (Weininger, 1988) and use the next
character prediction task to learn how to design molecules.

The most popular CLM architecture is long short-term mem-
ory (LSTM) (Hochreiter & Schmidhuber, 1997; Merk et al.,
2018a; Yuan et al., 2017; Grisoni et al., 2021; Segler et al.,
2018) networks. While LSTMs have fast generation capa-
bilities, they face challenges in learning global molecular
properties due to their information bottleneck (Bahdanau
et al., 2015; Gómez-Bombarelli et al., 2018; Chen et al.,
2023). Transformers (Vaswani et al., 2017) overcome this
bottleneck by multi-head attention (Bagal et al., 2021; Yang
et al., 2021), at the cost of increased generation complexity;
thereby limiting chemical space exploration. These aspects
make it necessary to innovate CLM architectures (Chen
et al., 2023).

Structured state-space sequence model (S4) is a recent deep
learning architecture with outstanding performance in audio,
image, and text generation (Gu et al., 2022). S4 has a ‘dual
nature’: it (a) is trained over the entire input sequences to
learn complex global properties and (b) generates strings
efficiently – thereby combining some respective strengths of
Transformers and LSTMs. Motivated by such ‘best of two
worlds’ behavior, here we ask the following question: Can
S4 advance the current state-of-the-art in chemical language
modeling? We find evidence that it can.

Here, we apply S4 to chemical language modeling on
SMILES strings and benchmark it on various tasks rele-
vant to drug design – from learning bioactivity to chemical
space exploration. Moreover, we further corroborate the
promise of S4 via the prospective de novo design of kinase
inhibitors, validated using molecular dynamics simulations.
Our results show the promise of S4 for chemical language
modeling, especially in capturing bioactivity and complex
molecular properties. To the best of our knowledge, this is
the first time that state space models have been applied to
molecular tasks, and we expect their relevance for chemical
language modeling to increase in the future.
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2. Structured state-space sequence model (S4)
S4s are an extension of discrete state-space models, widely
adopted in control engineering (Hamilton, 1994). Discrete
state-space models map an input sequence u to an output
sequence y, via the learnable parameters A ∈ RN×N , B ∈
RN×1, C ∈ R1×N , and D ∈ R1×1, as follows:

xk = Axk−1 +Buk

yk = Cxk +Duk (1)

Discrete state-space models define a linear recurrence: at
k-th step, the k-th element of the input sequence uk is fed
into the model and used to update the hidden state xk and
to generate an output, yk. A,B,C, and D control how
the input and the hidden state are combined to provide an
output.

Besides their recurrent formulation, discrete state-space
models can be formulated as a convolution with the same set
of parameters. By ‘unrolling’ the linear recurrence (equa-
tion (1)), the output sequence y can be obtained via a learn-
able convolution over the input sequence u:

y = u ∗K, K = f(A,B,C). (2)

This convolutional representation reveals a key aspect of
state-space models: they can learn explicitly from the entire
sequence (via a global convolution filter K) while preserv-
ing recurrent generation capabilites.

S4 models expand upon ‘vanilla’ discrete state-space models
to tackle vanishing gradient issues and high computational
costs by introducing additional structure to A and B (Gu
et al., 2020). This structure has made S4s reach state-of-the-
art in several generative tasks by a large margin (Gu et al.,
2020; 2021; 2022).

3. Results and Discussion
We evaluated S4 for its ability to learn from and gener-
ate drug-like molecules in an array of tasks, and in terms
of multiple molecular properties. LSTMs and Generative
Pretrained Transformers (GPTs) were used as benchmarks,
since they are the de facto approaches in chemical language
modeling for de novo design (Skinnider et al., 2021; Flam-
Shepherd et al., 2022; Grisoni, 2023; Chen et al., 2023).
Furthermore, LSTM (recurrent training and generation) and
GPT (holistic training and generation) constitute the ideal
benchmarks for S4, due to S4’s dual formulation (convo-
lution during training and recurrence during generation),
which allows inspecting the effect of each of these aspects
on the overall performance. Finally, the prospective de
novo design of putative MAPK1 inhibitors, corroborated by
molecular dynamics simulations, was performed to test the
potential of S4 in real-world drug discovery scenarios.
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Figure 1. SMILES design errors, grouped by category and CLM
architecture. Each CLM trained on ChEMBL was used to design
102,400 SMILES strings and the invalid designs are categorized
per error. The values indicate the number of errors in each category.

3.1. Designing drug-like molecules

S4 was analyzed for its ability to design drug-like small
molecules (SMILES length lower than 100 tokens) extracted
from ChEMBL database (Gaulton et al., 2017), by focusing
on its ability to (a) learn the chemical syntax, (b) capture
structural features relevant for bioactivity, and (c) designing
structurally diverse molecules.

3.1.1. LEARNING THE SMILES SYNTAX

All investigated CLMs were trained on 1.9M canonical
SMILES strings extracted from ChEMBLv31. The gen-
erated strings were evaluated according to their (a) validity,
i.e., the number (and frequency) of SMILES correspond-
ing to chemically valid molecules; (b) uniqueness, which
captures the number (and frequency) of structurally-unique
molecules among the designs; and (c) novelty, correspond-
ing to the number (and frequency) of unique and valid de-
signs that are not included in the training set. A high number
of ‘chemically-valid’ designs suggests that the model has
learned how to generate plausible molecules, while high
uniqueness and novelty values indicate little redundancy
among the designs and with the training set, respectively.
Although these metrics are vulnerable to trivial baselines
(Renz et al., 2019), they provide insights into a model’s
capacity to learn the SMILES ‘syntax’.

All CLMs generated more than 91% valid, 91% unique
and 81% novel molecules (Table S1) and their designs ap-
proximated the training and test sets in terms of selected
molecular properties (Figure S1). These results agree with
the literature on CLMs (Brown et al., 2019; Skinnider et al.,
2021), and demonstrate the robustness of the model training
procedure. S4 designs the most valid, unique, and novel
molecules, by generating more novel molecules than the
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Figure 2. Retrospective enrichment analysis for all models across five selected macromolecular targets. The fine-tuned models were used
to rank the held-out actives and inactives of the respective protein targets. The percentage of known actives ranked per considered number
of test set molecules (10, 50, 100) was computed across ten runs. Bar heights report the median across runs and error bars report the first
and third quartiles.

benchmarks (from approximately 4,000 to 12,000 more),
and displays a good ability to learn the ‘chemical syntax’ of
SMILES strings.

To shed additional light on the strengths and limitations of
S4 in comparison with the benchmarks, we analyzed the
sources of invalid molecule generation for all methods in
terms of branching and ring errors, erroneous bond assign-
ment, and other (miscellaneous) syntax issues (Figure 1).
Interestingly, each method seems to show different types
of errors leading to SMILES invalidity. LSTM struggles
the most with branching, and performs the best with bond
assignment, while GPT struggles the most with rings and
bond assignment, and has intermediate performance other-
wise. S4 struggles more than LSTM with bond assignment,
and generates remarkably fewer errors than both bench-
marks in branching and ring design. Our hypothesis is that
bond assignment indicates good learning of ‘short-range’
dependencies, while branching and ring opening and closure
require better capturing of the ‘long-range’ relationships.
This suggests that S4 captures long-distance relationships
well, in agreement with existing evidence in other domains
(Gu et al., 2020; 2021; 2022).

3.1.2. CAPTURING BIOACTIVITY

We evaluated S4 for its ability to learn elements of bioactiv-
ity. With CLMs this is often achieved with transfer learning
(Weiss et al., 2016), which allows transferring knowledge
acquired from one task to another task with fewer available
data. Via transfer learning, after pre-training a CLM on
a large corpus of SMILES strings, the model can be then
‘fine-tuned’ on a smaller, and task-focused set (e.g., bioac-
tive molecules) by additional training (Segler et al., 2018).
Here, we performed five fine-tuning campaigns, focusing on
distinct macromolecular targets from the LIT-PCBA (Tran-

Nguyen et al., 2020) dataset: (1) pyruvate kinase muscle
isoform 2 (PKM2), (2) mitogen-activated protein kinase 1
(MAPK1), (3) glucocerebrosidrase (GBA), (4) mechanis-
tic target of rapamycin (mTORC1), and (5) cellular tumor
antigen p53 (TP53).

Evaluating the bioactivity of de novo designs (besides syn-
thesis and wet-lab testing) is non-trivial, since this property
cannot be fully captured by traditional molecular descrip-
tors, and might not be accurately predicted by quantitative
structure-activity relationship models (van Tilborg et al.,
2022; Weng et al., 2024). Hence, we used experimentally-
tested molecules to evaluate the capacity of a CLM to learn
elements of bioactivity retrospectively. Several studies have
shown that the likelihoods learned by a CLM during fine-
tuning can be used to prioritize designs with high chances of
being bioactive (Laban et al., 2022; Moret et al., 2021; Bal-
larotto et al., 2023a). Based on the same principle, here we
used the likelihoods learned by the CLMs to rank existing
molecules and evaluate their capacity to prioritize bioactive
compounds over inactive ones.

For each of the selected targets, bioactive molecules were
used for fine-tuning, with ten random training-validation-
test splits. After fine-tuning the CLMs on each target, for
each training-test split, we proceeded as follows:

1. With each fine-tuned model and per each target, we
predicted the likelihoods of the SMILES strings in the
respective test set. The considered test sets resemble a
real-world scenario in terms of hit-rate, and they com-
prise 9 (mTORC) to 54 active molecules (PKM2) and
10,240 inactive molecules (except for TP53, containing
3,301 inactive molecules, Table S2);

2. We ranked the molecules of the test set according to
the predicted likelihoods;
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3. For each target and each test set, we computed the
fraction of actives ranked among the top 10, top 50,
and top 100 molecules. The higher the number of
active molecules ranked in early portions of the test
set by a CLM, the better the model has learned what is
relevant for bioactivity on the investigated target.

Our results show variable performance depending on the
target (Figure 2). The most challenging target is TP53, on
which no model could consistently retrieve actives among
the top 10 scoring molecules. Notably, this target has the
most challenging test set, where inactive molecules are sim-
ilar to the actives of both the training and the test sets (Fig-
ure S2), potentially indicating the presence of activity cliffs
(Maggiora, 2006). MAPK1 and mTORC1 also challenge
the CLMs; here, S4 retrieved more active molecules than
the benchmarks, especially in the early portions of the test
set. PKM2 and GBA are the easiest datasets; here, all CLMs
identified bioactive molecules in their top 10, with S4 achiev-
ing the highest median across the board. A Wilcoxon signed-
ranked test (Woolson, 2007) on the pooled scores across
datasets supports the superior performance of S4 compared
to the benchmarks (p < 0.05), and of GPT compared to
LSTM (p < 0.05).

Under the constraints of the study design, these results in-
dicate that processing the input SMILES ‘holistically’ (as
GPT and S4 do) leads to capturing complex properties like
bioactivity better, with a better performance obtained by S4.

3.1.3. CHEMICAL SPACE EXPLORATION

We analyzed the ability of S4 to explore the chemical space,
in terms of generating structurally diverse and bioactive
molecules. To this end, we employed a commonly-used
strategy with CLMs, that is, varying the sampling tempera-
ture (T ) to control chemical diversity (Moret et al., 2020).
T affects which elements of a string are generated by a
weighted random sampling. When T → 0 the most likely
element (based on the CLM prediction) is selected as the
next element of the sequence, while the higher the T , the
more random the selections. T = 1 corresponds to using
the CLM predictions as the sampling probability of each
element at each generation step.

We experimented with an increasing sampling temperatures
(from T = 1.0 to T = 2.0 with a step of 0.25). Each T value
was used to generate 10,240 SMILES strings per model
across the five targets and all training-test splits. Then, we
evaluated the designs based on three metrics (Figure 3):

• The validity of the generated strings, which captures
how robust the model is to increasing degrees of ran-
domness in preserving a correct syntax.

• Rediscovery rate. De novo design models are of-
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Figure 3. Model performance when varying the temperature value.
(a) Analysis of the SMILES validity across temperature. (b) Vari-
ation of rediscovery rate. The models were evaluated for their
capability to rediscover bioactive molecules not used for model
training or design molecules similar in structure (with a Tanimoto
similarity of extended connectivity fingerprints higher than 60%).
(c) Analysis of the number of diverse groups of scaffolds gener-
ated per method. Scaffolds were clustered together if they had a
Tanimoto similarity (computed on extended connectivity finger-
prints) larger than 60%. For each plot, the solid line indicates the
median obtained across the five analyzed protein targets (PKM2,
MAPK1, mTORC1, and TP53) with ten runs each, and the shaded
area indicates the inter-quartile range. The statistics per individual
target can be found in Figure S4.

ten evaluated for their capacity to reproduce existing
molecules with experimentally verified biological ac-
tivities (Brown et al., 2019). Here, to ‘relax’ the cri-
terion of rediscovery, we considered held-out actives
with substructure similarity higher than 60% to a de
novo design (Tanimoto similarity on extended connec-
tivity fingerprints (Rogers & Hahn, 2010)) to compute
rediscovery. Higher rediscovery rates in increased tem-
peratures indicate that the model can explore regions
related to bioactivity despite increased randomness.

• Scaffold diversity. Designing molecules with novel
scaffolds bears relevance in lead identification (Schnei-
der et al., 2006), and can be used as a proxy to evaluate
CLMs (Polykovskiy et al., 2020). Here, the novel de-
signs were hierarchically clustered based on their scaf-
fold similarity, to group designs with similar Bemis-
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Table 1. Natural product design with CLMs. The models were trained on 32,360 natural product SMILES strings from the COCONUT
database (Sorokina et al., 2021) and used to generate 102,400 SMILES strings de novo. The number and fraction of valid, unique,
and novel molecular designs are calculated for each model. Mean and standard deviation of designs’ (a) natural-product-likeness (Ertl
et al., 2008), (b) the number of sp3 carbons, (c) molecular weight, (d) size of the largest fused ring system, and the corresponding
Kolmogorov-Smirnov distance to the training and test sets (KStrain and KStest, respectively) are reported. The same statistics from train
and test sets (32,360 and 5,000 natural products, respectively) are reported for comparison. For each CLM and each metric, the best value
is highlighted in boldface. All descriptors were computed on valid, unique, and novel SMILES.

Metric S4 LSTM GPT Training Test

Syntax
Valid 82,633 (81%) 76,264 (74%) 70,117 (68%) n.a. n.a.
Unique 53,293 (52%) 51,326 (50%) 50,487 (49%) n.a. n.a.
Novel 40,897 (40%) 43,245 (42%) 43,168 (42%) n.a. n.a.

NP
Likeness

Value 1.6 ± 0.7 1.5 ± 0.7 1.5 ± 0.7 1.6 ± 0.7 1.6 ± 0.7
KStrain 4.03% 5.89% 9.44% 0.00% 0.81%
KStest 4.51% 6.60% 10.13% 0.81% 0.00%

No. sp3

Carbons

Value 42 ± 16 44 ± 17 43 ± 16 38 ± 16 37 ± 15
KStrain 13.96% 17.31% 14.51% 0.00% 1.02%
KStest 14.08% 17.45% 14.34% 1.02% 0.00%

Molecular
Weight

Value 1114 ± 315 1180 ± 360 1119 ± 307 1061 ± 295 1063 ± 290
KStrain 9.23% 16.97% 11.02% 0.00% 1.40%
KStest 9.04% 16.67% 10.75% 1.40% 0.00%

Size of the
Largest Fused
Ring System

Value 5 ± 2 5 ± 2 5 ± 2 5 ± 2 5 ± 2
KStrain 8.05% 9.42% 11.19% 0.00% 0.60%
KStest 7.93% 9.44% 11.21% 0.60% 0.00%

Murcko scaffolds (Bemis & Murcko, 1996). We then
counted the number of obtained scaffold clusters, the
higher, the better.

The models display similar trends with increasing T values
for all the analyzed factors across datasets, with varying
magnitude (Figure 3). In general, the validity decreases
with increasing temperature (as previously observed (Moret
et al., 2020)), with the highest effect observed for GPT
(median validity across training setups getting lower than
40%, Figure 3a).

Both S4 and LSTM show higher robustness than GPT
to increasing temperature values (with LSTM performing
slightly better for T ≥ 1.75), suggesting that sequential
generation can boost chemical space exploration. S4 out-
performs LSTM in terms of rediscovery rate (Figure 3b), in
agreement with our previous results on bioactivity (Figure 2).
We also compute the exact rediscovery rate (identical molec-
ular structure) and observe that no model can consistently
generate held-out actives. When it comes to the diversity
of the designs (Figure 3c), LSTM can generate the high-
est number of structurally unique scaffolds (median across
datasets and setups: 6602, T = 1.75) and S4 is the close
second-best model (6520, T = 1.75). While GPT obtains
a suboptimal performance across the board, LSTM seems
better for chemical space exploration when bioactivity is

not the main objective, while S4 can better capture bioactiv-
ity and preserve a good chemical space exploration at the
same time, combining the strengths of the two benchmarks
with its dual structure. These results confirm the promise
of S4 when it comes to generating structurally diverse and
bioactive drug-like molecules.

3.2. Designing natural products

S4 was further tested on more challenging molecular enti-
ties than drug-like molecules. To this end, we evaluated its
capacity to design natural products (NPs), which are invalu-
able sources of inspiration for medicinal chemistry (Harvey
et al., 2015; Atanasov et al., 2021). Compared to synthetic
small molecules, NPs tend to possess more intricate molec-
ular structures and ring systems, as well as a larger fraction
of sp3-hybridized carbon atoms and chiral centers (Lee &
Schneider, 2001; Henkel et al., 1999; Chen et al., 2022).
These characteristics introduce longer SMILES sequences
on average, with more long-range dependencies, and make
natural products a challenging test case for CLMs (Merk
et al., 2018b; Ochiai et al., 2023).

We trained the CLMs on large natural products (32,360
SMILES strings with length > 100, chosen to comple-
ment the previous analysis) from the COlleCtion of Open
Natural ProdUcTs (COCONUT) database (Sorokina et al.,
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2021). We then used the CLMs to design 102,400 SMILES
strings de novo and computed the fraction of valid, unique,
and novel designs (Table 1). All CLMs can design natu-
ral products, with lower performance compared to drug-
like molecules. S4 designs the highest number of valid
molecules by approximately 6,000 to 12,000 molecules (7%
to 13% better), and LSTM achieves the highest novelty by
approximately 2,000 molecules (2%) over S4.

To further investigate the characteristics of the designs, we
computed the natural-product likeness (Ertl et al., 2008),
which captures how similar a molecule is to the chemi-
cal space covered by natural products in terms of its sub-
structures (the higher the NP-likeness, the more similar).
The novel designs of S4 have significantly higher (Mann-
Whitney U test, p < 0.01) values of NP-likeness than the
benchmarks, closer to the values of the training and test
sets on average (Table 1). Moreover, the NP-likeness values
better match the distribution of the COCONUT molecules
in terms of Kolmogorov-Smirnov (KS) distance (Smirnov,
1939), which quantifies how much the cumulative distribu-
tions of two observations differ (between 0% and 100%; the
lower, the closer the distributions).

We also evaluated the novel designs in terms of structural
properties important for natural products (Lee & Schneider,
2001; Henkel et al., 1999; Chen et al., 2022), namely: the
number of sp3-hybridized carbon atoms, molecular weight,
and size of the largest fused ring system. Here, S4 achieved
the lowest KS distance to the training and test sets across the
board, indicating that its designs match the training natural
products best. These results confirm the ability of S4 to
learn complex molecular properties for de novo design.

3.3. Prospective de novo design

Inspired by the effectiveness of S4 in capturing bioactivity
and exploring the chemical space, we conducted a prospec-
tive in silico study to design inhibitors of MAPK1. The
previously pre-trained S4 model was fine-tuned with the
molecular strings of 68 manually-curated inhibitors from
ChEMBL and 256K designs were generated. The designs
were ranked and filtered via log-likelihood. The ten top-
scoring molecules were considered for further evaluation
using molecular dynamics simulations. We performed sim-
ulations also for the closest fine-tuning neighbor of the
considered designs as a reference, . The absolute protein-
ligand binding free energy (expressed as ∆G; the lower
the stronger the predicted binding) for molecules 1-16 was
computed via Umbrella Sampling (Kästner, 2011) (Table 2).

8 out of 10 designs (except 1 and 5) showed a high predicted
affinity, with ∆G values ranging from ∆G = −10.3± 0.6
kcal/mol (7) to ∆G = −23± 4 kcal/mol (2). Interestingly,
these affinities are comparable to or surpassing those of
the closest active neighbor (∆G = −9.1 ± 0.8 kcal/mol

Table 2. Prospective design with S4. ∆G of the interaction (the
lower, the better) was determined via molecular dynamic simu-
lations. Mean and standard deviations of three runs are reported
for de novo designs 1-10 and their nearest training inhibitor for
comparison.

S4 design Most similar training active
ID ∆G [kcal/mol] ID ∆G [kcal/mol]

1 -5.6 ± 0.9 11 -9.1 ± 0.8
2 -23 ± 4 12 -12 ± 2
3 -19.6 ± 0.9 13 -10.5 ± 0.7
4 -13 ± 2 14 -11 ± 3
5 -7 ± 2 15 -13 ± 2

6 -11 ± 3 14 -11 ± 3
7 -10.3 ± 0.6 11 -9.1 ± 0.8
8 -11.2 ± 0.4 15 -13 ± 2
9 -17 ± 2 13 -10.5 ± 0.7
10 -15 ± 2 16 -9.1 ± 0.2

to ∆G = −13 ± 2 kcal/mol); With 8 out of 10 designs
predicted as bioactive on the intended target by molecular
dynamics simulations, with comparable or higher predicted
affinities than their closest fine-tuning molecules, these re-
sults further support the potential of S4 for de novo design.

4. Conclusions
This study pioneered the introduction of structured state-
space sequence models (S4s) into chemical language mod-
eling. The unique dual nature of S4s, involving convolution
during training and recurrent generation, makes them partic-
ularly intriguing for de novo design with SMILES strings.

Our systematic analysis against GPT and LSTM on a variety
of drug discovery tasks revealed S4’s remarkable strengths:
while recurrent generation (LSTM and S4) is superior in
learning the chemical syntax and exploring diverse scaffolds,
learning holistically on the entire SMILES sequence (GPT
and S4) excels in capturing certain complex properties, like
bioactivity. S4 with its dual nature, makes ‘the best of both
worlds’: it demonstrated comparable or better performance
than LSTM in designing valid and diverse molecules, and
systematically outperformed both benchmarks in capturing
complex molecular properties. The application of S4 to
MAPK1 inhibition, validated by MD simulations, further
showcases its potential to design potent bioactive molecules.

Several aspects of S4 await to be explored in the molec-
ular sciences, such as its potential with longer sequences
(e.g., macrocyclic peptides and protein sequences) and on
additional molecular tasks (e.g., organic reaction planning).
We envision the relevance of S4 for molecule discovery
to increase in the future, and to potentially replace widely
established chemical language models like LSTM and GPT.
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A., and Ré, C. Combining recurrent, convolutional, and
continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:
572–585, 2021.
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