
Base3: a simple interpolation-based ensemble method for robust
dynamic link prediction

Emma Kondrup
emma.kondrup@mila.quebec

ABSTRACT
Dynamic link prediction remains a central challenge in tempo-
ral graph learning, particularly in designing models that are both
interpretable and effective. Existing approaches often rely on com-
plex neural architectures, which are computationally intensive and
difficult to interpret. In this work, we build on the strong recurrence-
based foundation of the EdgeBank baseline [16], by supplementing
it with inductive capabilities. We do so by leveraging the predictive
power of non-learnable signals from two perspectives that comple-
ment EdgeBank’s historical edge recurrence: global node popular-
ity, as introduced in the PopTrack [4] model, and co-occurrence
patterns through our proposed module, t-CoMem. t-CoMem is a
lightweight memory module that tracks temporal co-occurrence
patterns and neighborhood activity. Building on this, we intro-
duce Base3, an interpolation-based model that fuses EdgeBank,
PopTrack, and t-CoMem into a unified scoring framework. This
combination effectively bridges local and global temporal dynamics
– repetition, popularity, and context – without relying on train-
ing. Evaluated on the Temporal Graph Benchmark, Base3 achieves
performance competitive with state-of-the-art deep models, even
outperforming them on some datasets. Importantly, it considerably
improves on existing baselines’ performance under more realistic
and challenging negative sampling strategies – offering a simple
yet robust alternative for temporal graph learning.

The code used in this work is available here.
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1 INTRODUCTION
Many real-world networks (i.e., social and financial platforms, or
communication logs) are dynamic by nature and evolve continu-
ously over time. While static graph-based models have achieved
notable success in capturing structural dependencies [11, 20], they
fall short in representing the temporal evolution of interactions.
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This gap has spurred the development of several temporal graph
learning methods [10], with many tackling graph-based tasks with
dynamic information [16]. However, many of these methods rely on
deep neural architectures that require extensive message passing,
large-scale training, and careful tuning [17, 19, 21]. Their high com-
putational cost often makes them impractical for real-world deploy-
ment, and their complexity can considerably limit interpretability
[4].

In this work, we challenge the notion that such complexity is
necessary. We propose lightweight, training-free alternatives that
exploit simple yet powerful temporal signals, namely edge recur-
rence and node popularity. Building on the success of two recent
non-learnable baselines – EdgeBank, which memorizes past edges
[16], and PopTrack, which models temporal popularity [4] – we
introduce t-CoMem, a memory-based module that captures co-
occurrence and neighborhood-level activity over time. We further
present Base3, an interpolation-based model that combines Edge-
Bank, PopTrack, and t-CoMem into a unified scoring framework.

Despite their simplicity, our models perform competitively with
state-of-the-art deep learning methods on the Temporal Graph
Benchmark (TGB) [8]. Notably, they show exceptional robustness
across challenging evaluation settings, including historical and in-
ductive negative sampling – scenarios where existing models often
degrade. This demonstrates that carefully designed non-learnable
models can offer not only interpretability and efficiency but also
strong generalization in realistic dynamic graph tasks.

2 RELATEDWORK
Heuristic Approaches for Link Prediction. Before the rise of
neural models, link prediction in graphs was typically approached
using heuristic-based methods. Some of these remain strong, in-
terpretable baselines today [12]. These heuristics exploit simple
topological signals to estimate the likelihood of a link forming be-
tween two nodes. Among the most well-known are the Common
Neighbors and Preferential Attachment measures. While these are
limited in performance, especially in complex settings, they are
quite straightforward in respect to both not requiring any training
and offering interpretable insights.

An important principle behind many link prediction heuristic
approaches is that of Triadic Closure, which suggests that if two
nodes share a common neighbor, they aremore likely to, themselves,
form a direct connection [6]. It reflects tendencies toward triangle
formation in real-world networks, especially social networks, which
often exhibit high levels of triadic closure.
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Building on this, the Common Neighbors score measures the size
of the intersection between the neighbor sets of two nodes:

CN(𝑢, 𝑣) = |Γ(𝑢) ∩ Γ(𝑣) | (1)

where Γ(𝑥) denotes the set of neighbors of node 𝑥 . This heuristic
is particularly effective in networks where triadic closure is com-
mon [12]. Another widely used measure is Preferential Attachment,
which is grounded in generative network theory. It assumes that
high-degree nodes are more likely to form new links—a phenome-
non often described as “the rich get richer”. Its formulation is:

PA(𝑢, 𝑣) = |Γ(𝑢) | · |Γ(𝑣) | (2)

This heuristic is especially relevant in scale-free networks, such as
citation graphs or web data [1]. Along with the Adamic Adar Index,
defined as

𝐴𝐴(𝑢, 𝑣) =
∑︁

𝑣∈Γ (𝑢 )∩Γ (𝑣)

1
log |Γ(𝑤) | (3)

and the Resource Allocation Index, defined as

𝑅𝐴(𝑢, 𝑣) =
∑︁

𝑤∈Γ (𝑢 )∩Γ (𝑣)
=

1
|Γ(𝑤) | (4)

these are shown to reach results comparable with state-of-the-art
methods, while offering more interpretability [3, 5]. They also offer
insight into the structural biases that more complex models aim to
learn or surpass [12, 13].

Static Graph Neural Networks (GNNs) have become founda-
tional tools for learning on relational data. In static graphs, where
the node and edge sets remain fixed, GNNs learn by aggregating
and transforming features from local neighborhoods [11]. Their
inherent ability to model natural dependencies between entities in
the graph makes them particularly effective at capturing local struc-
tural patterns. Variants of the original GNN architecture quickly
emerged, notably incorporating attention mechanisms [20] which
allowed the model to learn dynamic weighting of neighbors based
on their relative importance and thus moved beyond uniform ag-
gregation. GraphSAGE, another widely adopted variant, introduced
neighborhood sampling for inductive representation learning, en-
abling generalization to unseen nodes in large-scale static graphs
[7].

Despite their usefulness, these models remain assuming a fixed
topology, which limits their applicability to real-world domains
such as communication networks, transportation orweb data, where
interactions and relationships are inherently dynamic. These evolv-
ing structures call for models that can adapt to temporal changes
in the graph, motivating research in dynamic and temporal GNNs.

Temporal Graph Learning focuses on modeling spatial and
temporal dependencies in evolving networks. Following the tax-
onomy in [10], methods are broadly divided into Discrete-Time
Dynamic Graphs (DTDGs) and Continuous-Time Dynamic Graphs
(CTDGs), depending on how they represent temporal evolution.

DTDG methods represent temporal dynamics using a sequence
of graph snapshots sampled at fixed intervals. This discretized
approach enables the reuse of static GNNs in conjunction with
recurrent or temporal modules to capture historical patterns over

time [15, 18]. While DTDGs offer computational efficiency and a
straightforward temporal abstraction, they often struggle to capture
fine-grained or asynchronous event dynamics, and may smooth
over important temporal details [19]. Recent work, such as the
recently-proposed Unified Temporal Graph [9], seeks to bridge this
gap by adapting snapshot-based models to handle irregular event
streams.

In contrast, CTDG methods capture interactions at precise times-
tamps, treating the graph as an asynchronous sequence of inter-
actions. This finer granularity better reflects the irregular, event-
driven nature of many real-world systems, such as financial trans-
actions, messaging platforms, or online user behavior [17]. Notable
CTDG models include TGAT, which introduces temporal atten-
tion and time encoding [21] and TGN, which incorporates memory
modules and message queues for long-term temporal context [17].
More recent models like GraphMixer [2] use parameter-efficient
mixing layers to combine structural and temporal signals, achieving
strong performance on large-scale dynamic graphs. DyGFormer
[22] and TNCN [23] further improve temporal modeling by intro-
ducing transformer-based spatiotemporal attention and context-
aware temporal convolutions, respectively. Together, these models
highlight the importance of explicitly modeling temporal granular-
ity andmemory in CTDG frameworks to capture the full complexity
of evolving graph data.

Despite their expressive power, however, these usually heavy
and complex models require extensive training data, computational
capabilities, and careful tuning.

Dynamic Link Prediction is one of the principal tasks in Tem-
poral Graph Learning, and consists of predicting the existence of an
edge between two existing nodes at a given timeframe. The added
complexity of dynamic behavior and evolving communities makes
this task considerably harder than static link prediction.

Negative Sampling Strategies play a crucial role in the eval-
uation of temporal learning models, as highlighted in [16]. They
directly impact the difficulty of the prediction task and thus the
interpretability of performance metrics. The most commonly used
method has been random negative sampling, where negative edges
(non-existent links) are simply uniformly sampled from the set of
all possible node pairs [17, 21]. While efficient, random sampling
may yield trivial negatives – node pairs that are structurally or
temporally unrelated – which can inflate confidence signals and
misrepresent a model’s generalization ability [16].

To address these limitations, recent work has proposed more
challenging and realistic alternatives. These alternatives are crucial
for confidently validating temporal graph models under realistic
settings. The EdgeBank framework [16], which marked an impor-
tant step in highlighting these limitations, formalizes two such
strategies: inductive and historical sampling. Inductive sampling
evaluates a model’s ability to generalize to unseen nodes by con-
structing negative samples that include entities not observed during
training. This setting simulates real-world cold-start or deployment
scenarios where models must infer relationships for entirely new
entities. Historical sampling, on the other hand, draws negatives
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from node pairs that have interacted in the past but are not linked
in the current prediction window. These "near-positive" negatives
are more ambiguous, requiring the model to distinguish between
truly inactive and merely temporarily inactive links. Both strategies
increase the robustness and credibility of evaluation by focusing
on more realistic and informative failure cases, aligning with the
broader need for standardized, challenging benchmarks in temporal
graph learning [9].

EdgeBank and PopTrack represent two of the most simple-yet-
competitive non-learnable baselines for dynamic link prediction.

EdgeBank, introduced by Poursafaei et al. [16], is grounded in the
principle following which past links are likely to re-occur. It main-
tains a memory of all previously seen edges—its edge bank—and
predicts future links by checking whether a candidate edge ex-
ists in this memory. EdgeBank has two forms, EdgeBank tw which
keeps an edge bank over a recent determined time window, and
EdgeBank∞ for which the edge bank spans the entire timeframe.
This memorization-based approach proves highly effective in do-
mains with strong recurrence patterns. However, EdgeBank is fun-
damentally non-inductive: it cannot predict links involving node
pairs never observed during training, limiting its generalization to
novel interactions. Despite this, EdgeBank achieves highly com-
petitive performance, particularly in domains with recurring rela-
tionships – and has thus since become a widely-used baseline in
the temporal graph learning literature [8, 16]. Existing efforts to
supplement EdgeBank with inductive capabilities have consisted
in incorporating it with temporal collaborative filtering, a method
which, while interesting, has yet to show itself to be highly com-
petitive in terms of performance [14].

PopTrack [4], on the other hand, builds on the principle that node
popularity correlates with connectivity. It predicts a link from node
𝑢 to node 𝑣 if the incident node 𝑣 ranks among the top-𝐾 most
popular nodes at time 𝑡 , based on recent interaction frequency.
Popularity is tracked using a decayed count of incoming edges, em-
phasizing recency while retaining longer-term trends. This makes
PopTrack particularly well-suited for non-stationary environments,
and where temporal bursts or shifting popularity drive link forma-
tion more than repeated edge patterns. Unlike EdgeBank, PopTrack
can generalize to unseen links as long as the destination node has
accumulated sufficient popularity—providing a lightweight but ef-
fective form of inductive reasoning.

3 METHODS
Our proposed t-CoMem module and Base3 model build on the
inductive biases of the two non-learnable baselines – EdgeBank
and PopTrack – by embedding them within a simple, interpretable,
and training-free framework. This framework is designed with
two key goals in mind: (1) to evaluate whether straightforward
memory and aggregation mechanisms can match or outperform
complex neural architectures, and (2) to offer viable solutions for
low-resource or real-time deployment scenarios where efficiency
and interpretability are paramount.

3.1 t-CoMem
t-CoMem (Temporal Co-occurrenceMemory) is a non-parametric
module designed to combine twomain ideas: temporal co-occurrence
tracking and recent popularity weighting.

t-CoMem maintains a dynamic memory by tracking how fre-
quently node pairs co-occur within a fixed time window (set to
1,000,000 by default), capturing short- to mid-range temporal depen-
dencies through co-appearance patterns. To enrich this signal, it in-
corporates a soft popularity score from PopTrack, weighting nodes
by their recent activity (their popularity score) rather than relying
on binary top-𝐾 membership. Unlike PopTrack, which considers
only the destination node, t-CoMem also factors in the source’s
recent interactions—addressing a limitation highlighted in [4] and
promoting more context-aware predictions.

t-CoMem Implementation Details

Hyper-parameters:
(1) Time window tw, determines the wanted recency

period to consider;
(2) Co-occurence weight 𝜆, determines how strongly

co-occurence affects scoring.

Data Structures:
(1) A mapping from each node 𝑢 to a deque of its most

recent destination nodes, D[𝑢], timestamped and
bounded by the time window.

(2) A dictionary storing the co-occurrence count for
each node pair, C[𝑢] [𝑣].

Memory updates: memory is built through batch
updates. For each batch of 200 edges, for each edge (𝑢, 𝑣, 𝑡):
• Append (𝑡, 𝑣) to D[𝑢]
• C[𝑢] [𝑣] ← C[𝑢] [𝑣] + 1
• C[𝑣] [𝑢] ← C[𝑣] [𝑢] + 1

Scoring: combines neighborhood popularity and di-
rect co-occurrence. To do so, t-CoMem:
• Retrieves all recent destinations from D[𝑢] within
the time window.
• For each recent neighbor 𝑛𝑖 , increment the score by
𝑛𝑖 ’s PopTrack popularity 𝑝 , exponentially decayed
by how recently it was observed:

decayed_score =
∑︁
𝑛𝑖

𝑑 · 𝑝𝑖 (5)

where 𝑑 = exp
(
− 𝑡−𝑡𝑖tw

)
. This decay introduces re-

cency bias, making recommendations more relevant
in the common context in which recent interactions
carry more predictive power, and ensuring smooth
forgetting which aligns with real-world patterns.
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• Retrieves the co-occurrence count 𝑐 between 𝑢 and
𝑣 , and computes its influence 𝑓 as:

𝑓 = 𝜆 · 𝑐

1 + 𝑐 (6)

• Returns the combined score using:

score t-CoMem =
1

1 + 1∑
𝑑 ·𝑝+𝑓

(7)

which squashes the result to the range [0, 1].

This way, recent activity is given importance while multi-hop
propagation can occur through the propagation of PopTrack pop-
ularity within these recent neighbour lists. t-CoMem’s design ad-
dresses key limitations of purely popularity-based or recurrency-
based models like PopTrack or EdgeBank respectively, especially
PopTrack’s inability to condition predictions on the source node.

3.2 Base3
Base3 is an ensemble interpolation model that linearly combines
the prediction scores from EdgeBank, PopTrack, and t-CoMem.
Each component contributes a weighted vote to the final score,
offering a hybrid prediction that balances recurrence (EdgeBank),
popularity (PopTrack), and co-occurrence (t-CoMem) – thus fusing
complementary inductive signals in a modular fashion. Our pro-
posed Base3 presents itself as a strong model that outperforms a
majority of existing models, learnable and non-learnable alike.

3.3 Interpolation Models
To combine the signals from EdgeBank, PopTrack, and t-CoMem,
we define an interpolated score:

score Base3 (𝑢, 𝑣, 𝑡) = 𝛼 · 𝑠 EB + 𝛽 · 𝑠 PT + 𝛿 · 𝑠 CM (8)
where:
• 𝑠 EB = 𝑠 EB (𝑢, 𝑣) = the EdgeBank score: 1 if (𝑢, 𝑣) has been
observed before, 0 otherwise.

• 𝑠 PT = 𝑠 PT (𝑣) = the PopTrack score for the destination node
𝑣 : 1 if 𝑣 is in the top-𝐾 nodes, 0 otherwise.

• 𝑠 CM = 𝑠 CM (𝑢, 𝑣, 𝑡) = the t-CoMem score, which depends on
the source’s recent interactions and the decayed popularity
of intermediate neighbors.

• (𝛼, 𝛽, 𝛿) are interpolation weights chosen based on the inter-
polation strategy.

Base3 computes a weighted sum of EdgeBank, PopTrack, and
t-CoMem’s outputs according to an interpolation scheme. We ex-
periment with three such schemes:

• Uniform assigns equal weight to each component (𝛼 = 𝛽 =

𝛿 = 1
3 ), assuming that EdgeBank, PopTrack, and t-CoMem

are equally informative across all contexts.

• EB_conf weights the components based on EdgeBank confi-
dence. This model is based on the assumption that if a po-
tential edge that is being scored for prediction is already in

the edge bank, its EdgeBank score is more significative than
otherwise, and thus that repeated interactions are highly pre-
dictive when available. Considering the population process
of the edge bank, this presents itself as a promising signal. If
an edge exists in EdgeBank (𝑠EB = 1), its contribution is thus
up-weighted relative to the others. A more detailed insight
into the weight repartition is made available in Appendix A.

• multi_conf extends EB_conf by also factoring in the pop-
ularity of 𝑣 from PopTrack. When both EdgeBank and Pop-
Track show strong signals (i.e., the edge exists and the des-
tination node is in the top-𝐾 popular nodes), both their
weights are increased. If neither signal is strong, t-CoMem is
favored as a fallback. Likewise, more details on this model’s
weight formulation process is available in Appendix A.

We explore the performance of each model in our ablation stud-
ies, finding that confidence-based models achieve higher perfor-
mance. Our proposed Base3 model uses multi_conf by default, as
it is the interpolation model which most strongly compounds the
three components, as well as empirically performing the best.

4 EXPERIMENTS
4.1 Datasets
We evaluate our proposed methods across the TGB benchmark,
a collection of diverse benchmark datasets for robust and repro-
ducible evaluation [8]. TGB contains a range of 5 datasets for dy-
namic link prediction, which vary in size and surprise, guaranteeing
a realistic overview of our models’ performance across different
settings. Here, surprise refers to the metric developed by [16] which
quantifies the degree of novelty in the test set of a temporal graph,
relative to the training set. It is proportional to the difficulty of
predicting dynamic links on the dataset, and is defined as follows:

surprise =
|𝐸test \ 𝐸train |
|𝐸test |

(9)

A breakdown of the TGB datasets for dynamic link prediction,
and their level of surprise, is put forth in Table 2.

Table 2: Overview of TGB datasets [8]

Name #Nodes #Edges #Steps Surprise

wiki-v2 9,227 157,474 152,757 0.108
review-v2 352,637 4,873,540 6,865 0.987
coin 638,486 22,809,486 1,295,720 0.120
comment 994,790 44,314,507 30,998,030 0.823
flight 18,143 67,169,570 1,385 0.024

4.2 Results
We report performance using the standard evaluation metric in
TGB, Mean Reciprocal Rank (MRR) on both the validation and test
sets for our main experiments – we also look at Area Under the
Receiver Operating Characteristic curve (AUROC) scores, in our
ablation studies. For each dataset, we compare our proposed models,
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Table 1: MRR score comparison with learnable models, where the first, second and third best performances are highlighted. *
denotes our contributions.

Method tgbl-wiki-v2 tgbl-review-v2 tgbl-coin
Validation MRR Test MRR Validation MRR Test MRR Validation MRR Test MRR

Base3 * 0.727 0.743 0.101 0.108 0.754 0.773
t-CoMem * 0.381 0.432 0.090 0.108 0.689 0.702
DyGFormer [22] 0.816 ± 0.005 0.798 ± 0.004 0.219 ± 0.017 0.224 ± 0.015 0.730 ± 0.002 0.752 ± 0.004
TNCN [23] 0.731 ± 0.001 0.718 ± 0.001 0.325 ± 0.003 0.377 ± 0.010 0.740 ± 0.002 0.762 ± 0.004
TGN [17] 0.435 ± 0.069 0.396 ± 0.060 0.313 ± 0.012 0.349 ± 0.020 0.607 ± 0.014 0.586 ± 0.037
GraphMixer [2] 0.113 ± 0.003 0.118 ± 0.002 0.428 ± 0.019 0.521 ± 0.015 0.721 ± 0.005 0.763 ± 0.001

Method tgbl-comment tgbl-flight
Validation MRR Test MRR Validation MRR Test MRR

Base3 * 0.426 0.450 0.809 0.794
t-CoMem * 0.341 0.447 0.846 0.840
DyGFormer [22] 0.613 ± 0.003 0.670 ± 0.001 OOT OOT
TNCN [23] 0.642 ± 0.003 0.697 ± 0.006 0.831 ± 0.003 0.820 ± 0.004
TGN [17] 0.356 ± 0.019 0.379 ± 0.021 0.731 ± 0.01 0.705 ± 0.020
GraphMixer [2] 0.701 ± 0.010 0.765 ± 0.009 OOT OOT

Figure 1: Test MRR by dataset for non-learnable dynamic
link prediction methods (Base3 model components).

t-CoMem and Base3, against existing non-learnable baselines
(EdgeBank and PopTrack [4, 16]) as well as state-of-the-art trainable
models DyGFormer, TNCN, TGN, and GraphMixer [2, 17, 22, 23].
A key point to note about these results is that, as with original
reports of EdgeBank’s performance, we do not report standard
deviations. This is because Base3 and its components are entirely
deterministic: their predictions do not vary across runs or random
seeds. Consequently, repeated executions yield identical outputs,
and we therefore present only single-run results.

Figure 1 presents the MRR scores across the five datasets of the
non-learnable baselines. Comparing Base3’s individual components
against each other strongly highlights t-CoMem as taking the lead in
performance, while also putting forward the strength of compound-
ing them together. Indeed, Base3 always outperforms its individual
components by a considerable margin, except on tgbl-flight, on
which t-CoMem itself performs best. Thus, our mixture-of-experts

approach consistently outperforms existing baselines while main-
taining strong levels of comprehensibility. While a non-linear learn-
ing schememay further improve this and push Base3 to consistently
outperform t-CoMem, such a method would limit interpretability.
Notably, our results show:

• On tgbl-wiki-v2, Base3 achieves a high test MRR (0.743).
Both EdgeBank and PopTrack perform more poorly on this
dataset, which exhibits modest novelty (surprise = 0.108).
Base3’s success here stems from its ability to yield Edge-
Bank’s recurrent pattern recognition strengths, while falling
back on t-CoMem’s neighborhood-aware scores when ex-
plicit memorization (EdgeBank) or popularity (PopTrack)
fail.

• With the highest surprise score (0.987), the tgbl-review-v2
dataset tests inductive generalization to unseen interactions.
Base3 significantly improves over both EdgeBank and Pop-
Track, reaching 0.108 MRR. The improvement is largely due
to t-CoMem, which compensates for EdgeBank’s total fail-
ure in inductive settings and for PopTrack’s limited scope.
Here, Base3 benefits from its adaptive weighting strategy
(multi_conf).

• On tgbl-coin, Base3 outperforms its individual compo-
nents, and is closely follows by t-CoMem, while PopTrack
and EdgeBank are performing considerably (more than 10%)
lower. Tgbl-coin has a considerably low surprise rate as
well (0.120), coherent with other datasets on which Base3
excels.

• Tgbl-comment is another high-suprise dataset (0.823), on
which Base3 outperforms the two baselines by a significant
margin. Notably, t-CoMem alone nearly matches Base3, sug-
gesting that memory of co-occurrence patterns is critical
in this setting. EdgeBank and PopTrack underperform due
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to limited recurrence and fluctuating node popularity. This
supports t-CoMem’s importance and standalone strength.

• Tgbl-flight is the only dataset where Base3 does not out-
perform its best component. t-CoMem alone achieves the
highest MRR among all non-learnable methods (with a score
of 84%). Base3 also performs strongly, despite both EdgeBank
and PopTrack’s MRRs staying below 40%. We conjecture that
the extreme node and edge volume, along with a very low
surprise score (0.024), make recurrence highly informative,
and t-CoMem’s source-aware memory is a strong signal that
gets diluted by PopTrack and EdgeBank.

Having established Base3 outperforms non-trained baselines, we
look to determine whether it can compete with complex learnable
models as well. Specifically, in Table 1, we compare our ensemble
model Base3 with the state-of-the-art DyGFormer, TNCN, TGN,
and GraphMixer [2, 17, 22, 23], models which currently stand at
the lead of the TGB leaderboards for dynamic link predictions.
Table 1 shows that Base3 achieves consistently strong performance,
outperforming diverse models across multiple settings. Notably:

• On tgbl-wiki-v2, Base3 ranks second overall, trailing only
DyGFormer. While EdgeBank and PopTrack each perform
modestly in isolation, their combination with t-CoMem in
Base3 captures both recurring and contextual patterns more
effectively. Remarkably, it outperforms TGN, TNCN, and
GraphMixer, despite being completely training-free. This
suggest complex graph analysis may be unnecessary in con-
texts where simple pattern recognition already excels (espe-
cially considering wiki’s low surprise).

• On tgbl-review-v2 and tgbl-comment, the highest-surprise
sets, neural models beat Base3. Base3 particularly underper-
forms on tgbl-review-v2, suggesting that in high-surprise
contexts, simple pattern recognition may not be enough for
robust link prediction.

• On tgbl-coin, Base3 delivers the highest test MRR across
all methods, including state-of-the-art deep architectures.
The dataset’s moderate surprise score and consistent struc-
ture favor methods that blend memorization (EdgeBank)
with temporal context (t-CoMem). Base3’s design capitalizes
on this by assigning meaningful weight to recurrence and
co-occurrence without being misled by volatile popularity
spikes.

• On tgbl-flight, not only is Base3 in the top 3 ranking, but
t-CoMem itself ranks first, outperforming the TNCN and
TGN models. This dataset, with its vast scale and low sur-
prise score (0.024), is highly structured—historical recurrence
is strongly predictive. In such cases, t-CoMem’s ability to re-
tain fine-grained, source-aware memory becomes dominant.
Given the large size of tgbl-flight, however, more consum-
ing models (DyGFormer and GraphMixer) were unable to
run to completion due to computational limitations, further
emphasizing the efficiency advantage of our approach. The
high performance on the behalf of both t-CoMem and Base3

is especially interesting considering how low each of the
baselines (EdgeBank and PopTrack) scores, comparatively.

These results confirm that combining recurrence (EdgeBank),
popularity (PopTrack), and source-aware co-occurrence (t-CoMem)
yields a more generalizable predictor than relying on any single
heuristic alone.

4.3 Ablation Studies
To understand the role of each of Base3’s hyper-parameters, we
perform some ablation studies, as illustrated in Table 3. These exper-
iments are ran with the multi_conf interpolation scheme. There
are three hyperparameters, each of which has a considerable effect
on Base3’s performance:

• The first hyperparameter is the memory span. This is equiv-
alent to the same hyperparameter introduced for EdgeBank
[16], and determines how far back the memory reaches, as a
percentage of the entire history. We explore with memory
span values [0.01, 0.1, 1.0] and find that, considerably so, a
higher memory span increases performance. This is gener-
ally true, though we see a slight decrease from a 0.1 span
to a 1.0 one, when K is larger. As such, we find the optimal
memory span to be either 0.1 or 1.0, fixing it to 0.1 as that is
optimal under optimal choices for other hyperparameters.

• The second hyperparameter is co-occurence weight, and
stems from t-CoMem’s logic of weighting co-occurence scores.
Similarly, by trying different weights in
[0.25, 0.50, 0.75, 1.0], we find that a higher co-occurenceweight
yields higher MRR scores, and thus fix Base3’s default to 1.0.

• The last hyperparameter is the K value, which stems from
PopTrack’s logic. In the PopTrack model, a score is positive
if the destination is in the top-𝐾 most popular nodes. Inter-
estingly, while the original authors of the model reported
that the optimal 𝐾-value was 100 [4], we find that Base3’s
performance with 𝐾 = 100 is much lower (about 50% so)
than with 𝐾 = 1000. We suppose this stems from the differ-
ent ways in which Base3 leverages these top-𝐾 nodes and
PopTrack scores themselves.

• As such, we select the optimal combination of hyperparam-
eters and set Base3’s defaults to them – specifically, we set
a memory span of 0.1, a co-occurence weight of 1.0 and a
𝐾-value of 1000.

4.4 Comparing Interpolation Models
We then look at our three proposed interpolation models in more de-
tail. Table 4 illustrates our results, looking at the uniform, multi_conf
and EB_conf models on both the tgbl-wiki-v2 and tgbl-review
datasets. As can be observed, uniform and multi_conf yield the
same performance on tgbl-wiki-v2, both being lower than EB_conf.
This trend, however, is not reproduced in other datasets, as we em-
pirically observed, and report for tgbl-review. Indeed, on tgbl-review,
both uniform and EB_conf perform a few points lower than multi_conf.
Considering tgbl-review is harder than tgbl-wiki-v2 (it has a
higher surprise), these insights are quite important, and determined
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Table 3: Ablation studies of Base3 on tgbl-wiki-v2 under varying co-occurence weights, memory spans and K values. The best
performance is boldened and yields the default parameter combination used in other experiments.

Memory span Co-occurrence weight K MRRval MRRtest

0.01 0.25 100 0.212 0.214
0.01 0.5 100 0.233 0.222
0.01 0.75 100 0.233 0.222
0.01 1.0 100 0.233 0.222

0.1 0.25 100 0.215 0.218
0.1 0.5 100 0.243 0.228
0.1 0.75 100 0.243 0.228
0.1 1.0 100 0.243 0.228

1.0 0.25 100 0.214 0.218
1.0 0.5 100 0.244 0.229
1.0 0.75 100 0.245 0.229
1.0 1.0 100 0.245 0.229

0.01 0.25 1000 0.399 0.446
0.01 0.5 1000 0.644 0.639
0.01 0.75 1000 0.649 0.644
0.01 1.0 1000 0.649 0.644

0.1 0.25 1000 0.392 0.453
0.1 0.5 1000 0.721 0.737
0.1 0.75 1000 0.727 0.743
0.1 1.0 1000 0.727 0.743

1.0 0.25 1000 0.387 0.436
1.0 0.5 1000 0.729 0.720
1.0 0.75 1000 0.736 0.727
1.0 1.0 1000 0.736 0.727

Table 4: Ablation studies of Base3 on tgbl-wiki-v2 and tgbl-review-v2 under varying interpolation models

Model Memory span Co-occurrence weight K tgbl-wiki-v2 tgbl-review-v2

MRRval MRRtest MRRval MRRtest

Uniform 0.01 1.0 1000 0.649 0.644 0.053 0.083
0.1 1.0 1000 0.727 0.743 0.048 0.084
1.0 1.0 1000 0.736 0.727 0.034 0.047

Multi_conf
0.01 1.0 1000 0.649 0.644 0.102 0.108
0.1 1.0 1000 0.727 0.743 0.101 0.108
1.0 1.0 1000 0.736 0.727 0.101 0.107

EB_conf
0.01 1.0 1000 0.719 0.686 0.053 0.084
0.1 1.0 1000 0.749 0.752 0.048 0.084
1.0 1.0 1000 0.742 0.738 0.035 0.047

us setting Base3’s default strategy to multi_conf to produce a more
robust model.

4.5 Studies under different negative sampling
strategies

As highlighted previously, the choice of the negative sampling
strategy used is of great importance when evaluating a temporal
graph model. As such, we look at Base3’s performance under the
three different negative sampling strategies principally used in the
literature–random sampling, as well as inductive and historical.

As put forth in our ablation studies, the settings used in these ex-
periments are set to the optimal empirical combination: the memory
span is set to 0.1, the co-occurence weight to 1.0, and the 𝐾 value to
1000. The interpolation model used is multi_conf. Here, we look
at the model’s Area Under the Receiver Operating Characteristic
(AUROC) performance, as this is the metric used in the literature
that developed inductive and historical negative sampling, namely
[16].

As shown in Table 5, the existing baselines exhibit a marked drop
in test MRR when the negative sampling strategy is altered—most
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Table 5: AUROC performance of each model under varying negative sampling strategies on tgbl-wiki-v2.

Negative Sampling Strategy Model AUROCval AUROCtest

Random

Base3 0.922 0.915
t-CoMem 0.914 0.909
EdgeBanktw 0.875 0.866
PopTrack 0.551 0.560

Inductive

Base3 0.808 0.721
t-CoMem 0.923 0.800
EdgeBanktw 0.876 0.421
PopTrack 0.567 0.498

Historical

Base3 0.797 0.781
t-CoMem 0.768 0.750
EdgeBanktw 0.740 0.775
PopTrack 0.505 0.488

notably under inductive sampling. EdgeBank tw performs partic-
ularly poorly, achieving less than half its random sampling per-
formance, while PopTrack suffers a nearly 10% decrease. In stark
contrast, both t-CoMem and Base3 maintain robust performance
across all sampling settings, with AUROC scores consistently above
72%. This resilience under inductive sampling highlights the effec-
tiveness of their design and confirms the success of our core objec-
tive: endowing EdgeBank tw with inductive generalization through
the integration of memory-based co-occurrence (t-CoMem) and
popularity-aware interpolation (Base3).

5 CONCLUSION
We introduce a lightweight yet effective framework for enhancing
non-learnable temporal link prediction models with inductive ca-
pabilities. By integrating co-occurrence-aware memory (t-CoMem)
and popularity-driven reasoning into the EdgeBank baseline, we
developed Base3, a training-free ensemble that combines recur-
rence, global popularity, and local temporal context into a unified
scoring mechanism. Extensive evaluation across diverse datasets
and under challenging negative sampling regimes demonstrates
that Base3 not only outperforms traditional baselines but also rivals
the performance of state-of-the-art deep learning models—without
requiring training, tuning, or backpropagation. Notably, its strong
performance under inductive and historical sampling confirms the
success of our central objective: to enable robust generalization to
unseen nodes and interactions. These results advocate for a reeval-
uation of complexity in temporal graph learning, suggesting that
well-designed non-parametric models can offer a scalable, inter-
pretable, and competitive alternative for dynamic link prediction
in real-world applications.
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A INTERPOLATION MODELS
Here, we provide a more detailed overview of the EB_conf and
multi_conf interpolationmodels, specifically regarding theweight-
ing mechanism. These schemes assign different value to the weight
vector [𝛼, 𝛽, 𝛿] where 𝛼 is the weight given to the EdgeBank score,
𝛽 that to PopTrack, and 𝛿 that to t-CoMem.

The initial weighting scheme is uniform, which simply linearly
interpolates between the three scores by giving each of them a
weight of 1

3 . It is the most naive and uniformly weight-assigning
approach.

EB_conf(eb_score) is a confidence-based weighting scheme
that is centered around EdgeBank. It uses one confidence signal,
eb_score ∈ [0, 1], which is the discrete score given by the Edge-
Bank module; 1 if the edge in question is present in the edgebank,
and 0 otherwise. Given this signal, the scheme choose between two
weight vectors:𝑤 conf = [0.5, 0.2, 0.3] and𝑤 not = [0.2, 0.3, 0.5]. Es-
sentially, the logic of these two vectors is as follows: if EdgeBank is
confident, it should be the principal component relied on.We simply
equate principal to 1

2 . Then, the rest of the weights is repartitioned
between PopTrack and t-CoMem, with an empirically-motivated
preference for t-CoMem (see the results of individual components
in Figure 1). For𝑤 not, the inverse logic follows: since EdgeBank is
not confident, it should not be the principal component, and given
t-CoMem’s empirical superiority, we set that third component to be
the principal one – thus achieving a weight of 1

2 . Likewise, the rest
of the weights is shared between EdgeBank and PopTrack, with a
preference for PopTrack, given the lack of confidence in EdgeBank’s
score.

Multi_conf(eb_score, pop_score) follows a similar logic,
while incorporating two confidence signals: the existing eb_score,
as well as pt_score, it’s PopTrack analog. Recalling PopTrack’s
logic, it gives a score of 1.0 if the destination node being inquired
is in the top-𝐾 most popular nodes, and 0 otherwise. This score
is the second confidence signal multi_conf relies on. Similarly
to EB_conf, the model assigns different fixed weights depending
on the confidence flags. We now have four cases, as presented in
Table ??, which are based on heuristic conditional weighting that
reflects the confidence signals. When both signals are reliable, Edge-
Bank and PopTrack are given the highest weights, while t-CoMem
gets 20%. When only one of the two signals is positive, the other
is downweighted: if EdgeBank is stronger, it gets 45%, while, if
PopTrack is, it is given 70%. This difference is partially empirically
motivated, and partially due to the consideration that t-CoMem
relies on PopTrack (and thus, that strongly weighting both could be
redundant). Finally, in the case where both signals are unreliable,
t-CoMem is given more importance than EdgeBank. Generally, this
scheme prioritizes the PopTrack weight. This choice is a considera-
tion of PopTrack’s strong performance in high-surprise datasets,
most notably tgbl-review. Considering t-CoMem’s high perfor-
mance in low-surprise settings, it becomes important to combine
these strengths.
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