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ABSTRACT

A fundamental challenge in protein design is the trade-off between generating
structural diversity while preserving motif biological function. Current state-of-
the-art methods, such as partial diffusion in RFdiffusion, often fail to resolve this
trade-off: small perturbations yield motifs nearly identical to the native structure,
whereas larger perturbations violate the geometric constraints necessary for bi-
ological function. We introduce Protein Generation with Embedding Learning
(PGEL), a general framework that learns high-dimensional embeddings encoding
sequence and structural features of a target motif in the representation space of
a diffusion model’s frozen denoiser, and then enhances motif diversity by intro-
ducing controlled perturbations in the embedding space. PGEL is thus able to
loosen geometric constraints while satisfying typical design metrics, leading to
more diverse yet viable structures. We demonstrate PGEL on three representative
cases: a monomer, a protein-protein interface, and a cancer-related transcription
factor complex. In all cases, PGEL achieves greater structural diversity, better des-
ignability, and improved self-consistency, as compared to partial diffusion. Our
results establish PGEL as a general strategy for embedding-driven protein gener-
ation allowing for systematic, viable diversification of functional motifs.

1 INTRODUCTION

Designing proteins that achieve precise biological functions while allowing for structural diversity
has long been a central goal in computational protein design. Recent advances in structure pre-
diction models like AlphaFold (Jumper et al., 2021; Abramson et al., 2024), RoseTTAFold (Baek
et al., 2021), ESMFold (Lin et al., 2023) and Boltz (Wohlwend et al., 2024; Passaro et al., 2025)
have revolutionized protein generative models and paved the way for improved diffusion models
in protein design. Among them, RFdiffusion (Watson et al., 2023), which results from fine-tuning
RoseTTAFold, has shown strong performance in both unconditional and conditional generation.

Yet, targeted local modification remains a challenge. A common approach is partial diffusion in
RFdiffusion, in which a native or designed structure undergoes only a few denoising steps to induce
diversification (Watson et al., 2023; Vazquez Torres et al., 2024). However, this method faces a fun-
damental diversity-fidelity trade-off: small structural perturbations keep near-native conformations,
but lack diversity, while larger perturbations induce excessive geometric drift that disrupts functional
features (Lin et al., 2024). Overcoming this limitation requires rethinking how diffusion models can
introduce controlled variation while still anchoring designs to essential geometric constraints.

A promising direction comes from recent advances in conditional image generation. Models such
as Stable Diffusion and Latent Diffusion Models (LDMs) generate images from noise guided by
text prompts (Ho et al., 2020; Rombach et al., 2022). Beyond standard prompting, textual inversion
learns new prompt embeddings to represent unseen visual concepts (Gal et al., 2022; Jin et al.,
2024). Once learned, these embeddings can be diversified to generate outputs that preserve the
original concept while exploring novel variations. Here we adopt this embedding-centric view in
the context of protein generation.

We present Protein Generation with Embedding Learning (PGEL), a general framework represent-
ing the first adaptation of textual inversion principles to protein diffusion models. PGEL introduces
two key approaches with broad applicability: (1) learning high-dimensional embeddings that cap-
ture the sequence and structural characteristics of target protein regions of interest, thus shifting the
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paradigm from coordinate-space to embedding-space perturbations, and (2) relaxing evolutionary
and structural constraints by masking embeddings. Although we present our work here using RFdif-
fusion’s representation space, our method is general and readily adaptable to other protein diffusion
models, and can thus leverage the rich representational capacity of pre-trained diffusion models
without expensive retraining or fine-tuning.

We focus on motif diversification. Here, a motif denotes a set of residues with a particular geometric
arrangement, which may govern functional activity. The objective is to generate a set of backbones
that keep a fixed scaffold in real space within tight bounds, and realize diverse yet functionally plau-
sible conformations of a motif, while satisfying standard designability criteria so that downstream
sequence design and structure prediction can recover the intended structures. Some existing ap-
proaches address related challenges, but differ in scope and implementation: structure inpainting
methods (e.g., masked region generation) fully marginalize a region by masking and regenerating
it de novo, discarding the specific native geometry (Zhang et al., 2023), whereas flexible backbone
loop remodeling in Rosetta (KIC/Next-Generation KIC) samples local conformations under explicit
geometric and energetic restraints to achieve high-fidelity but relatively localized exploration (Man-
dell et al., 2009; Stein & Kortemme, 2013; Leman et al., 2020). Hence these tools do not explicitly
target controlled exploration of a neighborhood around an existing functional motif while keeping a
surrounding scaffold nearly fixed.

Thus, we compare chiefly to partial diffusion in RFdiffusion, the prevailing stochastic baseline for
local variation which has been recently applied in therapeutically relevant design settings, including
de novo creation of high-affinity peptide binders and venom toxin neutralizers (Vazquez Torres et al.,
2024; 2025). Across three representative scenarios involving a monomeric protein (calmodulin), a
protein—protein binding site (barstar-barnase), and a p53 binder within the p53-MDM2 complex,
PGEL (1000 samples) produces more designable structures (motif pLDDT > 70, scRMSD < 1A,
mRMSD < 2A) than partial diffusion: 1000 vs 411 (monomer), 990 vs 331 (binding site), and 802
vs 252 (binder). PGEL also yields more structurally diverse TM-score clusters distinguishable from
native, and shows better self-consistency after inverse folding and refolding (meeting mRMSD and
pAE thresholds), while maintaining predicted binding affinities comparable to native and exceed-
ing those obtained with partial diffusion. Our results support embedding learning combined with
masking as a general, efficient strategy for systematic motif diversification.

2 BACKGROUND

Functional motifs. Conditional generation around functional residues, often framed as motif scaf-
folding, has been a focal point for recent protein design methods. In that setting, the motif and
scaffold are defined as disjoint subsets with the scaffold varied while the motif geometry is pre-
served. Approaches like RFdiffusion (where the motif coordinates are fixed), the Monte Carlo-
based Twisted Diffusion Sampler (Wu et al., 2023) applied to FrameDiff, and Genie2 (Lin et al.,
2024) have made progress on this task, though performance remains task-dependent and can yield
few or no backbones meeting success criteria in specific cases. In our motif diversification task, the
scaffold is held fixed and the motif is diversified to explore multiple, function-preserving geometric
realizations, enabling improvements in e.g., affinity, specificity or stability, while maintaining the
broader structural context.

Protein embeddings. The limited availability of structural data motivated the development of mod-
els that transform sequences into sequence embeddings that encode structural information. These
embeddings have been employed for various tasks such as property prediction using a Gaussian Pro-
cess regression model (Yang et al., 2018) and residue-residue contact prediction via a Bidirectional
Long Short-Term Memory (BiLSTM) architecture (Bepler & Berger, 2019). Transformers (Vaswani
et al., 2017) have been used in generating sequence embeddings, including for antibody-specific
applications like paratope prediction (Leem et al., 2022). Transfer learning has also been shown
to significantly improve performance across architectures by enabling the use of pre-trained em-
beddings that capture fundamental sequence-structure relationships (Detlefsen et al., 2022). Other
approaches explicitly include structural information (Ali et al., 2024), such as contact maps-derived
embeddings, and have shown enhanced performance in particular downstream tasks such as struc-
ture similarity assessment (Kandathil et al., 2025), structure searching (Greener & Jamali, 2024),
property prediction (Blaabjerg et al., 2024; Danner et al., 2025), and domain classification (Lau
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et al., 2024). Similarly, protein function annotation and local flexibility prediction have benefited
from Graph Convolutional Networks, which combine structure-derived graphs to propagate contex-
tual signals from protein sequence embeddings obtained with pre-trained models (Gligorijevic et al.,
2021; Michalewicz et al., 2025).

Diffusion models for proteins. Earlier works adapted Denoising Diffusion Probabilistic Mod-
els (DDPMs) to protein design by conditioning on local structural elements or coarse fold con-
straints (Wu et al., 2024; Anand & Achim, 2022; Trippe et al., 2023; Luo et al., 2022) yet, while
encouraging, they produced few sequences that refolded to target backbones. RFdiffusion subse-
quently emerged as the diffusion approach that reliably yields designable structures and sequences
that recover the intended geometry. In RFdiffusion, a highly accurate protein structure prediction
method (RoseTTAFold (Baek et al., 2021)) is fine-tuned to undo random perturbations of atomic
coordinates introduced via 3D Gaussian noise (i.e., to denoise). RFdiffusion can be constrained to
specific binding targets, or symmetry specifications, and once trained it can be viewed as a frozen
denoiser. RoseTTAFold/AlphaFold-style models (including RFdiffusion) learn so-called state and
pair embeddings (related to per-residue and residue-residue properties of the protein structure, re-
spectively) and MSA embeddings related to multiple sequence alignment (Jumper et al., 2021).

Textual inversion. Gal et al. (2022) builds on LDMs (Rombach et al., 2022), a specific class of
DDPMs, to perform textual inversion. In the context of text-to-image models, let x represent an
image, s a text prompt, €g a pre-trained denoising network, and € an image encoder. LDMs aim to
minimize the following loss:

Lipm = Ezwe(m),s,ewN(O,l),t “|€ - 69(2t7 t, CG(S))HQ (1)

Here, cy(s) represents a pre-trained text encoder that conditions the denoiser ¢y based on the text
prompt s, and z; is a noised version of the image embedding z at timestep t. The goal of textual
inversion is to learn a new text embedding v, corresponding to a particular concept s, such that it
minimizes the LDM loss (equation 1). This means conditioning €y on v, so the generated image
T closely resembles the original image x. Neutral prompts, such as “A photo of s,” or “A portrait
of s.” are used while keeping €y and cg frozen. Multi-Concept Prompt Learning (Jin et al., 2024)
extends this idea to handle multiple concepts by incorporating three regularization techniques: at-
tention masking, bind adjective, and prompts contrastive loss.

3 METHODS

We now present our method, Protein Generation with Embedding Learning (PGEL), and describe
how we learn the embedding representation of a motif in Section 3.1. In Section 3.2, we propose an
approach to increase motif diversity, and Section 3.3 details the evaluation metrics.

3.1 PROTEIN GENERATION WITH EMBEDDING LEARNING (PGEL)

We generalize the notion of textual inversion with LDMs to proteins, treating the structure as anal-
ogous to an image, and the sequence as analogous to a text prompt. Let R, be a region of interest,
or motif, defined as a continuous or discontinuous set of L, amino acids within a protein. The motif
has structure x. and sequence s., where the coordinates of x, are obtained from an experimental
Protein Data Bank (PDB) entry, and the sequence s, is masked when passed as an input to PGEL,
i.e., the amino acid range of the motif is specified, but not its exact composition.

PGEL learns a representation of R, in embedding space, which we denote as v,. The remainder of
the protein constitutes the scaffold, with structure x. and sequence s. of length L., from which the
protein LDM frozen ENCODER computes an embedding representation v.

The procedure (see Figure 1 and Algorithm 1) starts by building a noised protein structure in which
the scaffold coordinates are retained while the motif coordinates are subjected to 7" rounds of Gaus-
sian noise injection, following Trippe et al. (2023). At each timestep ¢, the protein LDM frozen
DENOISER predicts a denoised motif structure iio), conditioned jointly on the learnable motif em-
bedding v, and the fixed embedding v.. These embeddings include state, pair and MSA embeddings.
Then, by using structure (1) and the intermediate structure [z, :fcio)], a reverse diffusion step RE-

VERSESTEP, which does not contain any learnable parameters, yields (*=1) (see Algorithm 3). In
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practice, we employ pre-trained building blocks of RFdiffusion for both the ENCODER and DE-
NOISER, though alternative models could be substituted if desired.
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Figure 1: Outline of the PGEL learning and generation procedures during one reverse diffusion step.

Embedding optimization. The embedding v, is learned by minimizing:

L= »CMSE + )\DM»CDM + )\torsion»ctorsion (2)
This loss function is composed of three terms, described hereafter, which compare different features
of the ground truth structure x,. and the predicted structure ;%SFO) (v.) of the motif with the coefficients
ADM, Aworsion € R>( controlling the relative weight of the terms.

Data fidelity term (backbone atoms). For each motif residue ¢ € R, we consider the A = 4
backbone atoms (nitrogen N, a-carbon C,,, carbon C, oxygen O). Let :sz(oa) € R3 denote the predicted

position of atom a in residue i and z; , € R? its ground truth counterpart. We then compute the
mean squared error (MSE) between the backbone atoms of the ground truth and predicted motif:

. 1 2
Lise(w., 2 (v.)) = AL > X

i€R. a€{N,C,,C,0}

~(0
mz(',a)(v*) — Tia

3)

Distance matrix between a-carbons. Let :250& € R3 denote the predicted position of the a-carbon

atom in residue i, and x; ¢, € R3 its ground truth counterpart. We define the following loss term
based on a-carbon Distance Matrices (DM), inspired by the distrogram notion (Senior et al., 2020):

Lom(z., 317 (0.)) = % SN ( ] = [lzic. —:cj,call)2 “)

* {€ER. jER.

~(0 ~(0
29 (v) — &% (v)

In contrast to Lysg, Lpm is invariant under rigid motions (translations and rotations), thus encour-
aging global shape consistency.

Backbone torsion angles. Let QBZ and 1[)1 denote the predicted backbone torsion angles at residue ¢,
computed from J:«SP) (vx), and let ¢; and v; be the corresponding ground truth values (Ramachandran
et al., 1963). We impose a constraint on angular torsions through a cosine-based loss term akin to

that of AlphaFold (Jumper et al., 2021):
| Lt

ﬁtorsion(x*,fgo)(v*)) = Z {1 — cos ((;ASZ("U*) - Qf)i) +1 - cos (12)1(”*) - 7/11)} (5)

=2

This term penalizes sterically implausible geometries, helping improve performance under the pre-
dicted local distance difference test (pLDDT). We do not include the third backbone angle w as it is
typically considered fixed at 180 degrees (Cutello et al., 2006).

Once the embeddings are learned, we employ Algorithm 2 to generate novel proteins containing a
diversification of the region of interest R, (see Figure 1).

3.2 ENHANCING THE DIVERSITY OF GENERATED MOTIFS

MSA embeddings in sequence-to-structure predictors contain evolutionary covariation information
about residues, thereby capturing geometric constraints such as residue proximity. In RFdiffusion,
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Algorithm 1 PGEL — Embedding learning
Input: region of interest/motif . with masked sequence s, and structure x.., fixed scaffold with
sequence s. and structure x., pre-trained ENCODER and DENOISER.
Output: learned embedding v, for region R,.
initialize v, with zeros.
while not converged do
Build noised structure () := [z.., xiT)] with associated sequence s := [s, $.].
v, = ENCODER(s,, Z.)
for toz T down to 1 do
Zs’ = DENOISER(V¢, )
2(t=1) = REVERSESTEP(2(*), [z., 2)])
Update v, by taking a gradient step V,,, £(x, 7 (vs))
end for
end while
Return v,

Algorithm 2 PGEL — Generation with embedding masking
Input: region of interest/motif R, with learned embeddings v, fixed scaffold with sequence s,
and structure x., pre-trained ENCODER and DENOISER.
Output: generated structure.

Build noised structure () := [z, xiT)}.

Draw at random the sample masking type w ~ Ber(3) (row if 0, column if 1).
Sample masking rate o ~ U[0, 1].
Define M., (-) as a zero mask with type w and rate «.
v. = ENCODER(S,, %)
for t =T"down to 1 do
#%) = DENOISER (M, o (ve), )
2(t=1) = REVERSESTEP(2®, [z, #{”)])
end for
Return z(*)

however, such embeddings are derived solely from the input sequence s := [s.., s.] rather than from
a full stack of aligned sequences, and can be represented as a dyisa X L matrix, where dysa is the
depth of the MSA embeddings and L := L, + L. the total protein length. With PGEL, we show that
the diversity of generated structures can be increased by applying perturbations to the scaffold MSA
embeddings v, € R%saxle  These embeddings couple through attention mechanisms with state
and pair embeddings produced by an internal RFdiffusion encoder, and also interact with the learned
motif embedding v,, which provides an independent conditioning signal for the frozen denoiser.

Embedding masking. We studied the effect of applying zero masks, i.e. masks zeroing specific
elements, to the scaffold MSA embeddings during generation (see Algorithm 2). Row masking
corresponds to masking specific features for all residues, whereas column masking zeroes out all
features of specific residues. Both strategies lift some constraints on inter-residue distances, and
modulate which co-variation patterns remain accessible. We sample w ~ Ber(%) to choose the
masking mode (w = 0 for row masking and w = 1 for column masking) and o ~ U0, 1], the
masking rate, to set the fraction of rows or columns masked. This defines the operator Mw,a(')y
which implements zero masking with type w and rate c. As such, masking v, relaxes the geometric
constraints of the generated motif.

3.3 EVALUATION METRICS

Designability. To quantify designability in the motif diversification task, we first require a motif
pLDDT > 70 as computed by an RFdiffusion internal block, following the threshold adopted for
related tasks by Lin et al. (2024). We also require the scaffold RMSD to be scRMSD < 1A, to
ensure that the residues surrounding the motif remain fixed. Finally, we set the threshold for the
motif RMSD to mRMSD < 2A, to allow for structural diversification of the motif.
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Figure 2: Summary of the evaluation metrics. PGEL takes as input a PDB entry and the amino acid
range corresponding to the motif. From 1000 PGEL-generated backbones, designable candidates
are filtered by root mean square deviation (RMSD) and pLDDT thresholds, and structural diversity
is assessed via hierarchical clustering. Backbones are also required to be distinguishable from the
native. Cluster representatives undergo self-consistency evaluation: sequences assigned to the des-
ignable backbones with ProteinMPNN are refolded, and at least one predicted structure must satisfy
set mRMSD and predicted alignment error (pAE) conditions relative to the generated backbone.

Diversity. To quantify structural diversity among generated proteins (Figure 2), we compute the
pairwise TM-scores (Zhang & Skolnick, 2004) across all designable candidates, and employ hier-
archical clustering (Lin et al., 2024) with several linkage thresholds ¢,,, to group similar backbones
under this score. Diversity is measured by the number of clusters. We evaluate also the TM-score
with respect to the native motif: a cluster is considered distinguishable from native if, for TM-score
threshold ¢, € [0, 1], at least one cluster member exhibits lower similarity than t,, relative to the
native. This analysis ensures that we capture the structural distinctiveness of the backbones.

Self-consistency. For the distinguishable backbones we use the procedure in Trippe et al. (2023)
based on inverse folding to assess self-consistency between generated and predicted structures.
Specifically, we use ProteinMPNN with default parameters (Dauparas et al., 2022) to assign
8 plausible sequences to each backbone, followed by a sequence-to-structure model, here Al-
phaFold3 (Abramson et al., 2024), to predict 8 full proteins. A designed backbone is deemed self-
consistent if it satisfies for at least one of the 8 predicted structures: mRMSD < 2A and pAE < 5
(Figure 2). Previous studies included this procedure under the designability assessment (Watson
et al., 2023; Lin et al., 2024). However, this is computationally expensive and, when prioritizing
diversity, often inefficient: many backbones either fail the initial sScRMSD or mRMSD filters or ex-
hibit negligible structural diversity. In motif diversification, diversity among generated proteins and
distinguishability with respect to the native are decisive. We therefore invert the pipeline to enforce
these criteria first and reserve the costly self-consistency evaluation only for diverse candidates.

Binding affinity. For protein-protein complexes, we run PRODIGY (Vangone & Bonvin, 2015;
Xue et al., 2016) to estimate the binding affinity AG expressed in kcal/mol, with larger
values indicating stronger binding. It is desirable that new designs present binding affinity values
comparable to, or larger in magnitude than, those of the native complex. Note that learning is not
optimized to enhance binding affinity; rather, this serves as an a posteriori assessment.

4 EXPERIMENTS

We focus on three representative test cases proposed in Watson et al. (2023) for different tasks:
(1) Calmodulin, a monomer that plays a pivotal role in regulating the activity of nearly 100 diverse
target enzymes and structural proteins (Fallon & Quiocho, 2003); (2) the barstar-barnase complex,
in which the binding interface of barstar was diversified to probe its interaction with the extracellular
ribonuclease barnase (Caro et al., 2023); (3) the cancer-related transcription factor pS3 bound to its
negative regulator MDM2 (Klein & Vassilev, 2004; Li et al., 2010).

4.1 PROTOCOL

We established a protocol to systematically compare our method with RFdiffusion’s partial diffusion
using the metrics introduced in Section 3.3. For partial diffusion, we generated 1000 protein back-
bones by uniformly sampling the number of diffusion timesteps, T' ~ U{2,3,...,49}, as T = 50
corresponds to the full diffusion process in RFdiffusion. In this way, we cover a spectrum of struc-
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Table 1: Comparison of partial diffusion in RFdiffusion and PGEL. The number of self-consistent

clusters (diversity) is computed at TM-score threshold ¢,,, = 0.6.

Designability

(No. of viable structures out of 1000)

Diversity

(No. of self-consistent clusters)

Monomer Binding site  Binder | Monomer Binding site Binder
Partial diffusion 411 331 252 0 6 1
PGEL 1000 990 802 2 10 6

tural perturbations ranging from near-native backbones to unrelated ones. For PGEL, we performed
the learning of v, with Stochastic Gradient Descent with learning rate [, = 4 x 10~* and momen-
tum p = 0.9, Apy = 0.01 and Aopsion = 0.05 (Algorithm 1), and we then generated 1000 protein
backbones (Algorithm 2).

For both sets of 1000 generated structures, we evaluated designability and, among those deemed
designable, we computed TM-scores between all generated motifs and with respect to the native
structure. We then plotted the number of clusters as a function of the TM-score. For structures
that were designable and diverse according to a typical TM-score threshold ¢,,, = 0.6 (Lin et al.,
2024), we performed inverse folding through ProteinMPNN to generate compatible sequences, fol-
lowed by AlphaFold3 inference to assess whether the predicted sequences refolded into the intended
backbones, fulfilling the self-consistency requirement defined in Section 3.3.

4.2 EXAMPLE 1: MONOMER

Calmodulin (PDB entry: 1PRW), a monomeric protein containing a double EF-hand motif spanning
residues 16-35 and 52-71, was considered as the representative test case for single-chain proteins.
All the 1000 backbones candidates generated by PGEL resulted to be designable, well exceeding
the 411 obtained by partial diffusion (Table 1). All of the backbones generated by partial diffusion
satisfied the pLDDT constraint, consistent with the fact that RFdiffusion’s training favors high-
confidence local structures, but 589 of them failed to meet the expected motif RMSD threshold. In
these cases, the added noise during diffusion excessively perturbed the initial backbone, leading to
conformations that no longer preserved the intended geometry of the EF-hand motif.

We then evaluated the structural diversity of the designable backbones, recording the number of
clusters as a function of the TM-score threshold (Figure 3A). PGEL consistently produced a higher
number of clusters across thresholds, demonstrating that embedding perturbations through masking
introduce greater variability in backbone conformations. On the other hand, partial diffusion yielded
structures too similar to the native backbone, and hence not distinguishable from it.

We carried out the self-consistency assessment at ¢,, = 0.6, as per protocol. For PGEL, the two
clusters had backbones that successfully refolded into the intended conformations after sequence
design and AlphaFold3 inference. Figure 3B illustrates these two successful cases, along with ex-
amples of backbones generated by partial diffusion that either did not satisfy the mRMSD metric
condition or the distinguishability from native.

4.3 EXAMPLE 2: BINDING SITE

Barstar is a small protein that binds the active site of barnase to prevent the latter from breaking RNA.
This toxin-antitoxin pair (PDB entry: 7MRX) has been increasingly exploited in cancer therapy for
targeted cytotoxicity (Kalinin et al., 2023). As target for motif diversification, we took the barstar’s
binding interface region comprising residues 25 to 46 (see Watson et al. (2023)).

Of the 1000 backbones generated with PGEL, 990 were classified as designable, nearly tripling the
331 obtained with partial diffusion. Correspondingly, Figure 4A demonstrates that PGEL consis-
tently outperforms partial diffusion across the entire range of ¢,, € [0, 1], with pronounced differ-
ences observed at ,,, > 0.9 and within 0.45 < t,, < 0.55, around canonical TM-score thresholds.
At t,, = 0.6, PGEL yielded 15 structural clusters compared to 13 for partial diffusion, which were
reduced to 10 and 6, respectively, after self-consistency checks (Table 1).
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Figure 3: Results for example 1. (A) Number of clusters, both total and distinguishable from native,
as a function of the TM-score threshold ¢,,, for PGEL and partial diffusion. (B) Left: two successful
PGEL designs at ,,, = 0.6 using column masking with rates « = 0.5 and o = 0.75. Right: two
partial diffusion failed backbones at ¢,,, = 0.6, one obtained with 7" = 25 timesteps that violates the
motif RMSD constraint, and one with 7" = 2 timesteps that is not distinguishable from the native.

In Figure 4A, we also display an overlay version of the native motif and 10 representative motifs de-
rived from these clusters, highlighting the sequence variability both among generated barstar binding
interfaces and relative to the native PDB structure. When predicting in silico the binding affinity of
the generated complexes with PRODIGY, two of the generated structures exhibited binding affini-
ties higher than the native complex (see Figure SA and Table 3), while the remaining eight retained
at least 80% of the original affinity AGyative- In contrast, only one complex generated by partial
diffusion had a binding affinity value comparable to that of the native (AGgesign > 0.9AGhative)-
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Figure 4: (A) Example 2: Left: Number of clusters identified PGEL and partial diffusion in the
binding site example, both total and distinguishable from native, as a function of the TM-score
threshold ¢,,,. Right: generated binding site backbones (overlaid with native), alongside the native
sequence and sequences that refold to self-consistent structures. (B) Same as A but for example 3.

4.4 EXAMPLE 3: BINDER

The interaction between the transcription factor p53 and its negative regulator MDM2 is a key molec-
ular process in cancer progression. Specifically, pharmacological disruption of the p53-MDM2 com-
plex restores p53 activity and has been proven beneficial in cancer therapy (Hu et al., 2021).
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Starting from PDB entry 1 YCR, we addressed the motif diversification task by redesigning the com-
plete p53 under the RMSD constraints described in Section 3.3. PGEL generated 802 designable
backbones out of 1000 trials, with most non-designable cases attributable to low pLDDT confidence
scores (Table 1). Partial diffusion produced only 252 designable backbones with considerably re-
duced structural diversity (a single cluster at TM-score threshold ¢,,, = 0.6, see Figure 4B). PGEL,
by comparison, gave six clusters at ¢,,, = 0.6, all of which passed the self-consistency checks.

When assessing the binding affinity a posteriori, five out of six representatives of PGEL clusters
exhibited lower affinity compared to the sole valid instance of partial diffusion (Figure 5B, Table 3).
Notably, sequence SSMWELWQEIEGE (see Figure 4B), designed with PGEL in combination with
ProteinMPNN, folded, as predicted by AlphaFold3, into a structure with a binding affinity compara-
ble to that of the native structure, despite sharing only around 15% of sequence identity. This result
highlights PGEL’s ability to generate backbones that can accommodate sequences unrelated to the
native while refolding into structures that preserve function.

A Binding site (TMRX) B Binder (IYCR)
‘ °
L1f 1 11p
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Figure 5: Ratios of the binding affinity predicted with PRODIGY of the native structure vs the
AlphaFold3-predicted structures from backbones (one per cluster) generated by PGEL and partial
diffusion for example 2 (A) and example 3 (B).

Computational remarks. Across the three case studies, column masking was more effective than
row masking (see Table 2, with 80% of successful outcomes with w = 1).

The time required per timestep during the generation process is nearly indistinguishable between
PGEL and partial diffusion: average timestep 0.7 s for partial diffusion and 0.71 s for PGEL on a
single NVIDIA GeForce RTX 3090 GPU with 24GB of memory.

5 LIMITATIONS AND FUTURE WORK

PGEL inherits the biases and limitations of the underlying frozen RFdiffusion denoiser, including
its training data distribution and architectural constraints. Moreover, learning embeddings requires
additional optimization time, which ranged in our examples from 2 minutes (example 2) to 2 hours
(example 3) on a single GPU, with a trade-off between speed and improved results. Our experiments
were limited to motifs of up to 40 residues, with practical limits of around 50 residues given available
memory, though scaling to longer motifs should be feasible with larger hardware or engineering
optimization. Beyond this, our evaluation is entirely in silico (pLDDT/RMSD/TM-score filtering,
AlphaFold3 refolding, and PRODIGY AG) and thus predictive rather than experimental.

Future work will investigate alternative ways of perturbing embeddings, as this strategy for motif
diversification remains largely unexplored, as well as different strategies for sampling the masking
parameters w and «. For instance, instead of sampling o uniformly between 0 and 1, one could bias
it toward smaller masking rates (e.g., using a Poisson distribution with rate A, where A\ tunes how
conservative or aggressive the masking is), thus providing finer control over structural perturbations.
A more systematic mapping between PGEL’s w and « and partial diffusion’s 7" would also clarify
the relationship between the diversity-fidelity trade-off in both methods. Finally, experimental vali-
dation will be pursued in follow-up work.

Code availability. Upon publication, we will release code and configurations to facilitate repro-
ducibility.
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A REVERSESTEP ALGORITHM

Let z(t) = {(r, (t) (t)) , denote the n01sy protem backbone structure at diffusion step ¢, where

each residue [ is represented by a rotation rl ) ¢ SO(3), with SO(3) the special orthogonal group

in three dimensions, and a translation “z( ) € R3. Let #(0) = {( © 4 0))}lL 1 denote the predicted

denoised structure. Let {3Y}7_, be a variance schedule with y(*) = 1 —3(*) and 5(* Hizl (8,
For translations, let ul(t_l) be sampled from a Gaussian distribution with covariance /3 OF 3. For
rotations, let s; denote the score approximation presented in Watson et al. (2023), ¢; 4 isotropic

Gaussian perturbations and { f4}5_, a basis of the Lie algebra SO(3).

Algorithm 3 REVERSESTEP function (Watson et al., 2023)

Input: noisy structure z(*), denoised prediction (%),

Output: updated structure z(*=1).

fori=1,...,Ldo
(r! (t) (f)) (t)

( (O) A(O)) A(O)
aftD <\/W7“/3(‘)A(0) VAU (0 g )

15 1 7<>
1 Updatlng rotations below
ROTATIONS COREAPPROXIMATION(7,

€115 €12, €13 ~ N(Q 1)

(til)_rz(t)eXpIS{(UtZ o7 1) t 3l+\/ —of IZd 1€ldfd}
-1 t—1)  (i—1

2 2 (D 6D

end for
Return z(¢—1)

(t) A(O) o?)
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B PGEL EVALUATION RESULTS

Table 2: Detailed results of PGEL successes for examples 1, 2 and 3.

PDB & mRMSD  Motif mRMSD
design ID (X)  pLDDT Sequence AF3 (A) PAE
1PRW
1 7 0.75 ] 1 .78 79 FRVIAGGEDGLVTLEQLARY/VRRVAGRGGRLISFEDFLAT 1 .54 4.43
860 0.5 1 1.96 81 ARWLDKGGSGAVFOEQLOEEVAAALEGGKEAKLEEWFLNY 1.25 4.84
TMRX
0 055 0 0.74 79 GLPESVSGNNQALYDSIMYDVE 0.89 3.17
31 04 O 1.35 78 GLPDTVKGLYAIGREAGYYYGD 0.83 3.30
100 095 1 1.26 73 GLPSTVTGLAGIGEDIRKGLLE 1.78 3.73
114 075 1 0.83 75 GASEGDAPATYLAEDYCRYDLD 1.22 3.79
145 04 O 0.78 78 EFPEWVNGTLDAIYDGILYYTE 0.69 4.93
308 0.5 1 1.57 74 GIPESFKATTEAIGDWIRSNAD 1.25 4.97
352 085 1 1.53 75 GLPEEFTGNPYAIGEEAKRRLD 1.98 3.81
730 0.8 1 1.85 72 GIPEYLMGPDESLLDWLKSLSD 1.42 4.90
744 0.8 1 0.88 75 EVPGLEITGLSSLESTIRGYGS 1.96 2.42
814 0.3 1 0.77 78 GIKNLELSGLDAIKAAIDDLSG 1.13 3.79
1YCR
14 0.3 1 1.36 75 GSLEELLAQLDGG 1.56 2.88
36 07 1 1.09 72 MGLMELLLGVPGS 1.25 3.19
285 03 1 1.59 72 ASGLELLKKFKLP 1.60 3.53
334 065 1 1.03 72 SSLMELLEKIDIE 1.25 2.88
619 02 1 0.59 87 ESFEELWKKIPGS 1.70 2.45
695 025 1 1.04 74 SSMWELWQEIEGE 0.86 2.42
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C BINDING AFFINITY RESULTS

Table 3: PRODIGY -predicted binding affinities for examples 2 and 3.

PDB & AG
design ID Method (kcal/mol)
TMRX

Native - -11.4

0 PGEL 93
31 PGEL -11.4
100 PGEL -10.8
114 PGEL -9.5
145 PGEL -10.1
308 PGEL -10.4
352 PGEL -12.8
730 PGEL -11.6
744 PGEL -9.5
814 PGEL -9.7

1 Partial diff. -9.5
18 Partial diff. -10.9
307 Partial diff. -8.5
327 Partial diff. -8.1
513 Partial diff. -9.7
780 Partial diff. -9.4

1YCR

Native - -1.7

14 PGEL -7.1
36 PGEL -5.9
285 PGEL -6.8
334 PGEL -6.8
619 PGEL -6.6
695 PGEL -1.6
101 Partial diff. -6.4
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