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Abstract

Deep generative models like variational autoen-
coders (VAEs) are widely used for density estima-
tion and dimensionality reduction, but infer latent
representations via amortized inference algorithms,
which require that all data dimensions are observed.
VAEs thus lack a key strength of probabilistic
graphical models: the ability to infer posteriors
for test queries with arbitrary structure. We demon-
strate that many prior methods for imputation with
VAEs are costly and ineffective, and achieve su-
perior performance via query-adaptive variational
inference (QAVI) algorithms based directly on the
generative decoder. By analytically marginalizing
arbitrary sets of missing features, and optimizing
expressive posteriors including mixtures and den-
sity flows, our non-amortized QAVI algorithms
achieve excellent performance while avoiding ex-
pensive model retraining. On standard image and
tabular datasets, our approach substantially out-
performs prior methods in the plausibility and di-
versity of imputations. We also show that QAVI
effectively generalizes to recent hierarchical VAE
models for high-dimensional images.

1 INTRODUCTION

Structured probabilistic models, like graphical mod-
els (Koller and Friedman, 2009), are the basis for many ma-
chine learning applications. Formalizing the data generation
process enables incorporation of domain knowledge and al-
lows unsupervised learning from unlabeled data. Probabilis-
tic models also enable diverse inference queries by users,
for instance imputation queries (or, inpainting in the image
domain) where arbitrary subsets of features are observed
and the values of missing features are predicted. A number
of inference algorithms (Pearl, 1988; Koller and Friedman,

2009) have been developed for models with discrete or Gaus-
sian latent variables, which efficiently compute marginals
of query variables given heterogeneous observations. While
exact inference is intractable for many complex models,
optimization-based variational methods (Wainwright and
Jordan, 2008) often provide effective approximations.

Variational bounds were classically optimized via coor-
dinate ascent variational inference (CAVI, Jordan et al.
(1999)) algorithms that iteratively update posterior approx-
imations for individual variables. CAVI updates are effec-
tive for many parametric models composed from conjugate
priors, and can have efficient message-passing implementa-
tions (Ghahramani and Beal, 2001; Winn and Bishop, 2005).
But, CAVI updates are based on integrals that often lack
closed forms, requiring Monte Carlo approximations (Pais-
ley et al., 2012; Kucukelbir et al., 2017) of uncertain quality.

Stochastic subsampling of data helps scale variational learn-
ing to big datasets (Hoffman et al., 2013), but iterative CAVI
updates may still be slow for complex models. Amortized
variational inference (Mnih and Gregor, 2014) seeks to boost
training efficiency by determining variational posteriors via
an inference (or recognition) network, which is shared (or
amortized) across many similar inference tasks. Variational
autoencoders (VAEs, Kingma and Welling (2014); Rezende
et al. (2014)) are deep generative models that utilize amor-
tized inference to jointly train a generative “decoder” and
inference “encoder”. Sophisticated generalizations to the
encoder and decoder networks (Kingma and Welling, 2019;
Sønderby et al., 2016; Vahdat and Kautz, 2020; Child, 2021)
have produced hierarchical VAEs that realistically model
complex image data via dozens of stochastic layers.

While amortized inference has enabled the learning of im-
pressive deep generative models, it sacrifices the flexibil-
ity of CAVI to handle arbitrary inference queries. Because
VAEs are typically trained from fully-observed data, the
encoder assumes complete and uncorrupted observation of
every data dimension (e.g., pixel). Simple heuristics (see
Sec. 2) are sometimes used for learning VAEs with missing
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data (Mattei and Frellsen, 2019; Nazábal et al., 2020; Col-
lier et al., 2020), such as filling missing features with zeros.
However, we show that in addition to requiring expensive
encoder retraining for peak performance, these approaches
are inaccurate unless the test inference queries are simple or
known in advance (during model training). Amortized infer-
ence also produces sub-optimal variational bounds, and this
“amortization gap” may be significant (Cremer et al., 2018;
Krishnan et al., 2017). While quick-and-approximate infer-
ence may be sufficient to provide a noisy gradient signal in
the midst of a long training process, it is problematic when
applied to test queries, especially in domains like medicine
where accurate uncertainty quantification is crucial.

To address these challenges, we propose query-adaptive
variational inference (QAVI) methods that approximate the
posterior of missing data with arbitrary patterns, given only
a trained generative decoder and sparse observations. Our
QAVI approach has the same inferential flexibility as classic
CAVI algorithms, and critically does not require a database
with many examples of the missing-data pattern of interest.
But unlike classic CAVI algorithms, QAVI is applicable
to any (differentiable) model with continuous latent vari-
ables, including deep generative models like hierarchical
VAEs. While some prior work has improved VAE training
by reducing amortization gaps (Kim et al., 2018; Marino
et al., 2018), our application of non-amortized inference to
missing-data queries for deep generative models is novel.

We begin in Sec. 2 by reviewing prior work on handling
missing data with (hierarchical) VAEs. Sec. 3.1 then de-
velops QAVI algorithms that optimize variational bounds
for the missing feature values, rather than filling them via
greedy heuristics. In Sec. 3.2, we develop an alternative
QAVI algorithm that directly optimizes the posterior of the
latent data encoding, without amortization. Doing this al-
lows exact marginalization of missing feature values, and
enables flexible posterior approximations including mixture
models (Jaakkola and Jordon, 1999; Gershman et al., 2012)
and normalizing flows (Rezende and Mohamed, 2015). Re-
sults in Sec. 4 then show substantial qualitative and quan-
titative improvements in capturing multimodal posterior
uncertainty for VAE models of tabular data, as well as state-
of-the-art hierarchical VAE models of images (Child, 2021).

2 BACKGROUND AND RELATED WORK

2.1 THE VARIATIONAL AUTOENCODER (VAE)

VAEs model the distribution of typically high-dimensional
observed data x using continuous, lower-dimensional latent
variables z, via the following generative model:

z ∼ p(z), x ∼ pθ(x | z). (1)

For standard VAEs, the latent code z ∈ Rd has a factorized
Gaussian prior p(z). Given z, data is generated via a decoder

(deep) neural network with weights θ. The decoder maps z
to a likelihood pθ(x|z) such as a factorized Gaussian.

The VAE log-likelihood log pθ(x) = log
∫
pθ(x|z)p(z) dz

is intractable. Learning thus typically employs amortized VI,
where an encoder with parameters ϕ approximates the pos-
terior over latent codes qϕ(z|x) ≈ pθ(z|x). We jointly learn
θ, ϕ by maximizing the evidence lower-bound (ELBO):

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)||p(z)).
(2)

Here, KL is the Kullback–Leibler divergence, calculated
analytically when qϕ(z|x) and p(z) are both Gaussian. The
ELBO provides a lower bound on the evidence log pθ(x)
that is tight when the variational posterior qϕ(z|x) is ex-
act. This expectation can be approximated via Monte Carlo
samples from qϕ(z|x). Gradients with respect to θ, ϕ can
then be estimated by the reparameterization “trick” of sam-
pling from qϕ(z|x) via linear transforms of standard normal
variables (Kingma and Welling, 2014; Rezende et al., 2014).

2.2 HIERARCHICAL VAES

Hierarchical VAEs (HVAEs, Sønderby et al. (2016);
Klushyn et al. (2019)) extend the VAE by partitioning the
latent code into L disjoint groups z = (z1, z2, ..., zL), in-
creasing model expressiveness for complex data like im-
ages (Vahdat and Kautz, 2020; Child, 2021). HVAEs gen-
erate these stochastic codes sequentially as pθ(x|z) =

pθ(z1)(
∏L
ℓ=2 pθ(zℓ|z<ℓ))pθ(x|zL), with a similar encoder:

qϕ(z|x) = qϕ(z1|x)
∏L
ℓ=2 qϕ(zℓ|z<ℓ, x). Each conditional

in the decoder pθ(zℓ|z<ℓ), and the encoder qϕ(zℓ|z<ℓ, x), is
typically Gaussian with mean and variance determined by
(non-linear) neural networks. The HVAE ELBO equals

LH(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z1|x)||pθ(z1))

−
L∑
ℓ=2

Eqϕ(z<ℓ|x)[KL(qϕ(zℓ|z<ℓ, x)||pθ(zℓ|z<ℓ))], (3)

where qϕ(z<ℓ|x) =
∏ℓ−1
i=1 q(zi|z<i, x) is the approximate

posterior up to latent group (ℓ− 1). Reparameterization is
then used to provide Monte Carlo gradient estimates.

We can rewrite the conditional prior and approximate poste-
rior for layer ℓ to make the set of relevant networks explicit:

pθ(zℓ|z<ℓ) = N (zℓ| µθℓ(z<ℓ), σθℓ(z<ℓ)), (4)
qϕ(zℓ|z<ℓ, x) = N (zℓ| µϕℓ

(fϕℓ
(x), gϕℓ

(z<ℓ)), σϕℓ
(...)).

Here, fϕℓ
and gϕℓ

are networks that extract feature repre-
sentations of the observation x and the previous layers z<ℓ,
respectively. These features determine the mean and scale of
the conditional Gaussian posterior via µϕℓ

, σϕℓ
. Networks

µθℓ , σθℓ similarly generate the prior parameters for layer ℓ.
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2.3 METHODS FOR INFERRING MISSING DATA

After training, synthetic data may be easily generated from
pθ(x) by sampling z from the learned VAE or HVAE prior,
and x ∼ pθ(x|z). However, the learned encoder does not
provide a direct mechanism for conditional queries about
missing features, given partial or corrupted test data.

Let x = (xO, xM ) be a test data point with observed fea-
tures xO and missing features xM . We are particularly in-
terested in scenarios where the specific feature dimensions
that are missing and observed will vary across test instances.
Given a trained (hierarchical) VAE, for which xO and xM
are conditionally independent given z, missing data is opti-
mally predicted via the conditional distribution:

pθ(xM | xO) =
∫

pθ(xM | z)pθ(z | xO) dz. (5)

This approach (and QAVI) are valid as long as data is
missing-at-random (MAR, Little and Rubin (2019); Mattei
and Frellsen (2019)); the mechanism that removes features
must be independent of xM . Like most related work, our
experiments use missing-completely-at-random (MCAR)
feature masks whose distribution is independent of x. Ex-
actly evaluating the predictive distribution (5) is infeasible
due to the non-linear decoder, and intractable code posterior.

Heuristic Preprocessing. Imputation heuristics, such as
replacing missing features with statistical summaries like
their mean or mode, are widely used. Some work on train-
ing VAEs given partially missing data (Mattei and Frellsen
(2019); Nazábal et al. (2020); Collier et al. (2020)) propose a
Fill-Zeros heuristic, simply replacing missing features with
zeros as input to the VAE encoder. While Fill-Zeros may be
effective for learning models of MNIST digits (where zeros
are common) when pixels are missing uniformly at random,
our experiments show that in even slightly more complex
scenarios, its performance is very poor.

Monte Carlo methods. Rezende et al. (2014) first pro-
posed a simple scheme to approximately sample from
pθ(xM | xO) by starting with a random imputation, which
is then stochastically encoded and decoded (or autoencoded)
several times. Because the encoder only approximates the
true posterior distribution pθ(z | x), this pseudo-Gibbs
sampler will not sample from the true posterior of missing
features, and encoder inaccuracies may cause its equilib-
rium distribution to be far from pθ(xM | xO). This ap-
proach was improved by Mattei and Frellsen (2018), who
proposed a Metropolis-Hastings correction to each step of
the pseudo-Gibbs sampler, inducing a Metropolis-in-Gibbs
sampler that asymptotically samples from pθ(xM | xO).
While Metropolis-in-Gibbs converges to the true posterior,
it does so at a rate that may be impractically slow.

Amortized Inference for Imputation. Heuristic prepro-
cessing may be avoided by learning a new “partial” encoder
approximating pθ(z | xO). Collier et al. (2020) concate-

nates zero-filled data with a binary mask indicating missing
features, and optimizes the standard VAE ELBO of Eq. (2),
but with the log-likelihood term calculated on only the ob-
served data xO. While this approach was developed to train
VAEs with missing data, it is trivially applicable to test-time
missing data imputation by retraining the encoder with the
masked test data, generating a Re-tuned Encoder.

Posterior Matching (Strauss and Oliva, 2022) instead artifi-
cially masks the complete training data x as xO, and tunes
a partial-encoder qψ(z | xO) to “match” the pre-trained
encoder by maximizing Ez∼qϕ(z|x)[log qψ(z | xO)]. In con-
current work, Harvey et al. (2022) introduced an equiva-
lent approach, calling it Inference in a Pretrained Artifact
(IPA). Ivanov et al. (2019) optimize the partial-encoder as in
Posterior Matching, but simultaneously retrain the encoder
and decoder to produce a conditional model p(xM | xO).
Their model includes skip connections between the partial-
encoder and decoder networks, as in the HVAE feature
representations fϕl

in Eq. (4). We adapt their VAEAC (ar-
bitrarily conditioned) training to HVAEs by fine-tuning all
three networks, starting from a pre-trained HVAE.

These amortized approaches to missing data imputation
with VAEs have several drawbacks compared to our QAVI
method. 1) They incur a substantial initial overhead for train-
ing the partial-encoder. 2) Partial-encoder training requires
access to a relatively large set of partially-observed exam-
ples, and/or continued access to the training set along with a
known missing-feature distribution. 3) They are sensitive to
shifts in the distribution of queries (missing-feature patterns)
between training and evaluation. If evaluated on previously
unseen missing-feature patterns, performance may suffer
substantially (see Fig. 4). 4) As we will demonstrate, even
without distribution shifts, performance can be sub-optimal.

3 QUERY ADAPTIVE VI

Our query adaptive variational inference (QAVI) utilizes
the pre-trained VAE decoder, defines variational free param-
eters for each inference query, and refines them. We give an
overview in Fig. 1 and show that it is adaptive across differ-
ent queries without the need for additional partial-encoder
networks. QAVI defines an explicit variational posterior over
the unobserved variables qλ(z, xM ) with query-specific pa-
rameters λ. Fig. 1 shows two possible factorizations of the
latent codes z and missing features xM , leading to a pair of
QAVI algorithms that we elaborate below.

3.1 VI VIA MISSING FEATURE POSTERIORS

Suppose first that the variational posterior factorizes as
qλ(xM , z | xO) = qλ(xM )qλ(z | xM , xO).

We fix qλ(z | xM , xO) to the amortized encoder qϕ(z|x),
which has been pre-trained to approximate the relationship

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).



θϕ

z

xM xO

Generative 
Model : 

Inference 
Model :

qλ(xM)

θθ

qλ(z)(a) (b)

z ∼ qϕ(z |xO, xM)

En
co
de
r

D
ec
od

er
xM ∼ qλ(xM)

(a)

z ∼ qλ(z)

(b)

D
ec
od

er

z z

xM xM

pθ(xM |z)qϕ(z |xM)

Figure 1: Overview of Feat. QAVI (a, Sec. 3.1) and non-
amortized QAVI (b, Sec. 3.2). Top: Generative model for
unobserved variables xM , z and observed data xO (shaded).
We show two possible inference models for the joint vari-
ational distribution qλ(xM , z) on latent variables. In (a),
missing features are modeled directly by specifying qλ(xM ).
In (b), queries are modeled indirectly via a tunable latent
code distribution qλ(z). QAVI is easily adapted to existing
VAEs by reusing generative (decoder) networks pθ, and
possibly inference (encoder) networks qϕ. Bottom: Compu-
tational flow of QAVI for each posterior factorization. In
Feat. QAVI (a), samples from qλ(xM ) are autoencoded
by the pre-trained VAE to compute the ELBO. In non-
amortized QAVI (b), samples from qλ(z) are only passed
through the decoder; the pre-trained encoder is not needed.

between x and z. Our Feat. QAVI method then defines an ex-
plicit posterior qλ(xM ) on missing features. This approach
directly captures uncertainty in the posterior of missing
features (see Fig. 1) and their impact on the latent code.

In experiments, we found that fitting qλ(xM ) via the stan-
dard ELBO (see supplement for derivation) resulted in poste-
riors with unrealistically small variance. Following Higgins
et al. (2017), we thus employ hyperparameters β to more
strongly encourage the latent-code posterior to align with the
prior, and γ to increase the entropy of the missing-feature
posterior. The variational objective LM is then:

LM (λ;x) = Eqλ(xM )

[
Eqϕ(z|xO,xM )[log pθ(xO, xM |z)]

− βKL(qϕ(z|xM , xO) || p(z))
]
+ γH(qλ(xM )), (6)

where H is the entropy. We approximate LM with S Monte
Carlo samples as in standard VAE training:

LM (λ;x) ≈ 1

S

S∑
s=1

[
log pθ(xO, x

(s)
M |z

(s))

− βKL(qϕ(z|xO, x(s)
M ) || p(z))

]
+ γH(qλ(xM )), (7)

where x
(s)
M ∼ qλ(xM ), z(s) ∼ qϕ(z|xO, x(s)

M ), and KL and
H are calculated in closed form. Automatic differentiation
is used to compute gradients with respect to λ, tuning the
missing-feature distributions to observed data indirectly.

While Feat. QAVI directly models the uncertainty in the
posterior distribution of missing features, its optimization

requires repeated computation of the encoder and decoder.
It also inherits any suboptimalities of the trained encoder.
Perhaps surprisingly, we will show that in this context, a
fully non-amortized inference method can have both greater
computational efficiency and greater accuracy.

3.2 NON-AMORTIZED VI

We can construct an alternative variational posterior via the
following factorization (see Fig. 1):

qλ(xM , z) = qλ(z)qλ(xM |z),
By defining a variational posterior on z, we no longer use
the encoder (except possibly for initialization), and re-use
the pre-trained decoder by fixing qλ(xM | z) = pθ(xM | z).
As derived in the supplement, this leads to the following
non-amortized QAVI variational objective:

LN (λ;x) = Eqλ(z)[log pθ(xO|z)]− βKL(qλ(z)||p(z)).
(8)

To evaluate LN we must only explicitly sample from the
latent code; missing data may be analytically marginalized.
Non-amortized QAVI seeks latent-code distributions that
assign high likelihood to the observed features xO, and are
aligned with the prior via weight β > 1. In the simplest case
where qλ(z) is a diagonal-covariance Gaussian, Eq. (8) is
approximated via S samples from qλ(z), and the code mean
and variance λ optimized via stochastic gradient ascent.

While VAE training implicitly encourages approximately
Gaussian posteriors given complete observations, for queries
given missing data, posteriors are often multi-modal and
poorly approximated by a Gaussian qλ(z). To address this,
we extend non-amortized QAVI to more expressive varia-
tional distributions that better capture the true posterior.

Flow Posteriors. The flow-based variational posterior aims
to construct a complex distribution by transforming a simple
Gaussian through a series of invertible mappings. We let
zt = Tt(zt−1, λt) for t = 1, . . . , T , where z0 is sampled
from a Gaussian base distribution with parameters λ0. λt is
the set of parameters specifying flow layer Tt, T is the total
number of flow transformations, and λ = {λ0, λ1, ..., λT }.

The idea of improving amortized variational inference in
VAEs with the help of normalizing flows (Tabak and Turner,
2013; Tabak and Vanden-Eijnden, 2010) was first proposed
by Rezende and Mohamed (2015). We instead employ au-
toregressive transformations in each layer Tt to capture high-
dimensional dependencies in the latent space, producing
inverse autoregressive flows (IAF, Kingma et al. (2016)).
We approximate both terms in LN (λ;x) of Eq. (8) via S
samples from qλ(zT ); each Gaussian sample from the base
distribution is transformed by T flow layers. Query-specific
parameters λ are optimized by stochastic backpropagation.

Gaussian Mixture Posteriors. Parameterizing the latent
space distribution qλ(z) as a mixture of Gaussians enables
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us to explicitly model different hypotheses in the latent
space. Let qλ(z) =

∑T
t=1 wtN (z | µt,Λt), where µt and

Λt are the means and (diagonal) covariances of the T mix-
ture components (posterior modes), wt are mixture weights
(
∑T
t=1 wt = 1), and λ = {wt, µt,Λt}Tt=1. Increasing T

allows inference of more accurate posterior approximations.

Optimizing mixture parameters λ is not straightforward as
discrete resampling from mixture weights cannot be contin-
uously reparameterized. We use implicit reparameterization
gradients (IRG, Figurnov et al. (2018)) to efficiently com-
pute gradients of the mixture component means and covari-
ances. While in principle IRG could also be used to estimate
gradients of mixture weights (Graves, 2016), in practice this
estimator has enormous variance when posterior modes are
widely separated. We instead adapt an importance-sampling
gradient estimator (Ścibior et al., 2021) for mixture weights;
see supplement for details. Multiple samples S from the
variational posterior are necessary to capture the impact of
multiple posterior modes on the ELBO (8).

Hierarchical VAE Posteriors. For the hierarchical
VAEs (Sønderby et al., 2016) introduced in Sec. 2, neither
Gaussians nor Gaussian-mixtures are flexible enough to cap-
ture the non-linear dependencies between latent variables
at different levels of the hierarchy. We therefore propose
a new, more expressive (non-amortized) variational family
for HVAEs that removes dependency on the observation x,
while retaining the expressive and non-linear dependencies
of the HVAE model. Our variational posterior factorizes as:

qλ(z) = qλ(z1)

L∏
ℓ=2

qλ(zℓ|z<ℓ). (9)

As in the HVAE decoder, we let qλ(zℓ|z<ℓ) be conditionally
Gaussian for all l. More complex conditional distributions
(such as flows or mixtures) could also be used, but this
conditionally Gaussian structure alone allows for expressive,
multi-modal posterior approximations.

We propose a simple, generic strategy for constructing a fam-
ily of non-amortized distributions given a pre-trained HVAE.
Our approach applies to many recent hierarchical VAE archi-
tectures, including the “very-deep” HVAE (Child, 2021) that
we use in experiments. To specify the non-amortized QAVI
posterior, we begin with the amortized posterior defined in
Eq. (4). Holding gϕℓ

, µϕℓ
, σϕℓ

fixed, we replace the features
extracted from the observation with a new tunable parame-
ter λℓ. A further set of weighting parameters γℓ, γ′

ℓ ∈ [0, 1]
interpolate these output parameters with those of the prior.
Thus our hierarchical QAVI posterior for layer ℓ becomes:

µℓ = γ′
ℓµϕℓ

(λℓ, gϕℓ
(z<ℓ)) + (1− γ′

ℓ)µθℓ(z<ℓ),

σℓ = γℓσϕℓ
(λℓ, gϕℓ

(z<ℓ)) + (1− γℓ)σθℓ(z<ℓ),

qλ(zℓ | z<ℓ) = N (zℓ | µℓ, σℓ). (10)

Re-using the pre-trained networks gϕℓ
, µϕℓ

, σϕℓ
allows the

full amortized encoder to be used for initialization of λℓ
by simply setting λℓ ← fϕℓ

(xO, x̃M ). x̃M may be any

100 Iterations

100 Iterations

300 Iterations

300 Iterations

500 Iterations

500 Iterations

700 Iterations

700 Iterations

Without KL-balancing 

warmup

With KL-balancing 

warmup

Figure 2: Comparison of QAVI optimization for HVAEs
without (top) and with (bottom) our KL-balanced warmup.

initialization for the missing features, even Gaussian noise.

Our approach of interpolating posterior (µϕℓ
, σϕℓ

) and prior
(µθℓ , σθℓ) network outputs is vital when reusing µϕℓ

and
σϕℓ

from the original inference model. In the original, fully-
observed training phase, posterior variances may become
extremely small for the highly overparameterized HVAE
model. But with missing data, latent variables correspond-
ing to unobserved features should have distributions close to
the prior. Expressing the variational posterior as a weighted
combination of prior and posterior network outputs allows
our variational family to easily produce appropriate posteri-
ors for latent variables corresponding to both observed and
missing features, without needing to re-train µϕℓ

and σϕℓ
.

Hierarchical VAE Warmup. For hierarchical VAEs with
a multi-scale architecture, we find that a warmup phase of
optimization with a modified objective greatly accelerates
posterior fitting. This idea is broadly proposed by Vahdat
and Kautz (2020), and refined as follows: LH(θ, ϕ;xO) =

Eqλ(z)[log pθ(xO|z)]−
1

d1
KL(qλ(z1) || pθ(z1))

−
L∑
ℓ=2

1

dℓ
Eqλ(z<ℓ)[KL(qλ(zℓ|z<ℓ) || pθ(zℓ|z<ℓ))], (11)

where dℓ is proportional to the size of the latent space at
layer ℓ. Intuitively, when inpainting large segments of an
image, high-level structures should be determined first and
details refined later. But for the unmodified ELBO, higher
resolution latent layers contribute substantially more to the
loss, leading to slow convergence. Fig. 2 illustrates the dra-
matic effect of this change during QAVI optimization.

4 EXPERIMENTS & RESULTS

4.1 EXPERIMENTAL SETUP

We evaluate QAVI1 using six tabular datasets from the UCI
Machine Learning Database (Kelly et al., 2017). For tab-

1Code available: https://github.com/SakshiAgarwal/QAVI
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ular data, we follow the experimental setup of Mattei and
Frellsen (2019) to train our VAEs, but use a Gaussian varia-
tional posterior instead of Student’s t.

We also consider three image datasets: real-valued MNIST
(LeCun et al. (2010)), Street View House Numbers (SVHN)
(Netzer et al., 2011), and FFHQ-256 (Karras et al., 2019).
We use a single-stochastic-layer VAE for MNIST and
SVHN, with a WideResNet architecture (Zagoruyko and
Komodakis, 2016) that is known to work well with images.
We train them with fully-observed images from the training
set (70,000 MNIST images and 73,257 SVHN images) and
maximize the ELBO of Eq. (2). For FFHQ-256, we adopt
the “very-deep” hierarchical architecture of Child (2021),
but for efficient comparison we re-trained a smaller variant
of their original HVAE (5.9M vs. 115M parameters).

While QAVI handles missing-at-random (MAR) data nat-
urally, we setup our experiments to be consistent with
most prior work on imputation with VAEs. For MNIST
and SVHN we consider two missing-completely-at-random
(MCAR) patterns: 1) two randomly placed patches (each of
size 10x10 for MNIST, 15x15 for SVHN); 2) a randomly ro-
tated mask of half of the image. We use a more challenging
random mask distribution (Zhao et al., 2021) for FFHQ-256.
For tabular datasets, we corrupt the test set by removing half
of the features in each row uniformly at random.

Baselines. We compare QAVI with several methods from
the literature: i) The Fill Zeros heuristic (Nazábal et al.,
2020); ii) Monte Carlo methods: pseudo-Gibbs (Rezende
et al., 2014) and Metropolis-in-Gibbs (Mattei and Frellsen,
2018); iii) Amortized inference methods: Re-tuned Encoder
(Collier et al., 2020) and Posterior Match[ing] (Strauss
and Oliva, 2022).We consider three variants of posterior
matching to evaluate the importance of knowing the missing-
feature pattern during training. Posterior Match (True) trains
the posterior matching encoder with exactly the same query
distribution used for test evaluation. Posterior Match (Rand.)
assumes that only the fraction of missing features is known;
features are removed at random with this probability. The
generic Posterior Match uses the image masking distribution
of Zhao et al. (2021), which assumes contiguous masked re-
gions without specific knowledge of queries to be evaluated.

We compare also QAVI to state-of-the-art approaches
to inpainting with HVAEs: Posterior Match[ing] and
VAEAC (Ivanov et al., 2019). Both Posterior Match and
VAEAC benefitted from training with the same random mask
distribution (Zhao et al., 2021) used in evaluation. As our
“very-deep” HVAE architecture already links the encoder
and decoder, we do not include extra deterministic skip
connections as in the original VAEAC architecture.

Hyperparameters. QAVI optimization for VAE models
uses S = 100 Monte Carlo samples to estimate our varia-
tional objective and gradients, and optimizes variational
parameters λ for 300 steps using Adam (Kingma and
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Figure 3: Kernel density visualizations of the prior and
approximate posteriors for five QAVI variants, fit using
S = 1000 samples from the optimized variational distribu-
tion. We show one test sample chosen from two UCI tabular
datasets, Banknote (top) and Concrete (bottom), containing
two missing features (labeled on axes). We observe that
the true data point (red) is often enclosed by the different
posteriors, but sometimes missed by Feat. QAVI. We ap-
proximate the true posterior via a highly expressive QAVI
mixture of 100 Gaussians, fit by extended optimization.

Ba, 2015). We refer to our posterior on missing features
(Sec. 3.1) as Feat. QAVI, and our Gaussian/Flow/Mixture
non-amortized variational posteriors (Sec. 3.2) on latent
codes z as Gaus./Flow/Mix. QAVI. For HVAE models, QAVI
optimization uses S = 28 samples to estimate the ELBO,
and optimizes for 1000 total steps (including 500 warmup
steps as in Fig. 2). See supplement for additional details.

Metrics. For a quantitative analysis, we estimate the
marginal log-likelihood of the missing features xM using
the importance sampling estimator of Burda et al. (2016):

log pθ(xM ) ≥ Ez(s)∼q(z)

[
log

1

S

S∑
s=1

pθ(xM , z(s))

q(z(s))

]

≈ log
1

S

S∑
s=1

pθ(xM , z(s))

q(z(s))
, z(s) ∼ q(z). (12)

The true log-likelihood of missing features is constant for
all inference methods, since the generative model pθ(x) is
fixed, but better posterior approximations lead to tighter
lower bounds for a fixed number of samples S. Fig. 4 shows
estimated log-likelihoods versus the number of samples.

As the importance-weighted likelihood estimator becomes
expensive and unreliable to evaluate for high-dimensional
models like HVAEs, we use perceptual metrics to evaluate
inpainting results for HVAEs on the FFHQ dataset. Table
2 reports three metrics on a test set of 1000 images: FID
(Heusel et al., 2017) as well as P-IDS and U-IDS (Zhao
et al., 2021). We modify P-IDS and U-IDS slightly to reduce
sensitivity to the test set size; see supplement for details.

4.2 RESULTS

QAVI improves imputation quality. Fig. 4 and Table 1
compare the log-likelihood of missing features across
MNIST, SVHN, and tabular datasets. We see that heuristic
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Table 1: Test missing data log-likelihoods (LL, higher is better) and normalized root mean-square error (NRMSE, lower
is better) for 6 tabular datasets from the UCI repository, estimated using S =10,000 samples. NRMSE per test row is the
minimum across S samples. QAVI variants have superior performance (highlighted in bold) for almost all data.

Breast Cancer Red wine White wine Banknote Concrete Yeast
LL NRMSE LL NRMSE LL NRMSE LL NRMSE LL NRMSE LL NRMSE

Mix. QAVI -9.16 0.39 -6.35 0.26 -7.03 0.35 -2.25 0.10 -2.70 0.17 +2.42 0.46
Flow QAVI -9.14 0.39 -6.47 0.26 -7.03 0.35 -2.24 0.10 -2.65 0.17 +2.55 0.46
Gaus. QAVI -9.21 0.39 -6.56 0.30 -6.94 0.30 -2.35 0.10 -2.82 0.17 +2.82 0.46
Feat. QAVI -16.32 0.37 -13.20 0.28 -8.80 0.38 -8.27 0.15 -15.14 0.23 -7.81 0.47
Posterior Match -15.14 0.33 -14.83 0.42 -9.19 0.39 -4.42 0.14 -15.05 0.40 -430.36 0.47
Re-tuned Encoder -12.82 0.40 -12.96 0.40 -9.59 0.39 -4.26 0.14 -11.48 0.35 -33.62 0.50
Metropolis-in-Gibbs -23.94 0.44 -74.22 0.68 -19.83 0.58 -49.51 0.68 -265.62 0.62 -1.86 0.54
pseudo-Gibbs -12.61 0.33 -33.53 0.36 -10.68 0.36 -44.16 0.40 -249.06 0.36 -5.11 0.48
Fill Zeros -32.56 0.40 -21.97 0.36 -10.09 0.37 -17.46 0.32 -23.33 0.32 -11.27 0.48
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Figure 4: For two image mask distributions and several inference methods (top), we plot importance-weighted log-likelihood
estimates for missing pixels and varying samples S. We average over 1000 MNIST (left) or SVHN (right) test images.
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Figure 5: Digit completion results on MNIST (left) and SVHN (right) images for inference queries with pixels obscured
by the Rotating-Half or Random-Patches distributions. We show 5 samples from each inferred posterior. Monte Carlo and
amortized inference methods propose one sometimes-valid digit completion; amortized VI is typically more accurate. The
performance of Posterior Match varies widely depending on the missing-feature distribution it is trained on. In contrast,
QAVI automatically adapts to queries, and proposes multiple valid imputations that effectively capture posterior uncertainty.
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Figure 6: Inpainting results on the FFHQ-256 dataset, comparing our non-amortized deep QAVI inpainting with VAEAC
and Posterior Matching. We also compare QAVI results for the reduced-size models used in Table 1 to inpaintings from the
original “very-deep" HVAE of Child (2021). We show the true and masked images, and 5 posterior samples for each method.

imputation and Monte Carlo methods perform poorly. Re-
tuned Encoder and Posterior Match show relatively higher
likelihoods, but do not match QAVI across any dataset or
missingness pattern. Feat. QAVI is competitive for tabular
data, but for high-dimensional images it is susceptible to
local optima. Fig. 7 similarly shows that QAVI provides
reliably strong performance for downstream tasks.

QAVI can capture multi-modal posterior uncertainty.
We show imputations for four test examples in Fig. 5 to
highlight differences in inference methods, and to explore
the uncertainty in the inferred posterior over the missing
features. We see that Gaussian and Flow QAVI defined on
the latent space are capable of capturing uncertainty in the
missing features. With a mixture of Gaussians variational
family, QAVI produces multiple visually-plausible imputa-

tions. The classification performance in Fig. 7 shows high
relative classification accuracy for expressive posteriors de-
spite the increased variance in samples.

QAVI benefits extend to HVAEs. We find that QAVI also
integrates well with hierarchical VAE models. The results in
Table 2 show that our QAVI approach for HVAEs produces
imputations with higher perceptual scores than prior meth-
ods for leveraging HVAEs for inpainting. Figure 6 shows
that samples produced by QAVI are qualitatively more vi-
sually plausible, and also capture substantial diversity in
possible feature imputations.

Amortized imputation is sensitive to training queries.
Fig. 4 compares the performance for Posterior Matching
when trained with different masking distributions. We see
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Table 2: Quantitative comparison of perceptual inpainting
quality on the FFHQ-256 dataset. We compare QAVI against
two state-of-the-art adaptations of HVAEs to inpainting,
using the same base “very-deep” HVAE architecture.

Method FID ↓ P-IDS* ↑ U-IDS* ↑
QAVI 21.21 6.20 24.98
Posterior Match 23.68 3.36 21.55
VAEAC 26.41 2.31 18.19

that with the absence of any prior knowledge of the true
masking distribution at train time, the performance of Pos-
terior Matching can be as poor as simple heuristics like
Fill Zeros. Even in the unrealistic case where the exact dis-
tribution of missingness is known at train time, posterior
matching does not outperform QAVI. This sensitivity to the
choice of missingness for training is significant: adaptation
to new patterns of missingness require full retraining. In
sensitive domains such as medicine, access to the original
training set may be restricted or even impossible. QAVI is
indifferent to the structure of queries, requires no retraining,
and still outperforms the “best case” amortized imputation.

QAVI smoothly trades off time and performance. Fig. 8 il-
lustrates the tradeoff between performance and optimization
time for three variants of non-amortized QAVI, for 100 im-
ages from the MNIST dataset. We see that the performance
of Posterior-Matching is far lower than QAVI, and requires
substantial overhead to train the partial encoder (over 3.5
hours). Gaussian and Flow QAVI converge in about one
minute. Mixture QAVI converges a bit more slowly, but ulti-
mately reaches the best solutions of any method. Posterior-
Match amortization would have computational advantages
for very-large query sets (thousands of images), but would
still have inferior inference accuracy.

5 CONCLUSION

We have presented a simple and a general framework that
has been unexplored in prior work employing VAEs for
the imputation of missing data. Previous state-of-the-art
approaches make use of a restrictive inference network as
an imputation strategy. We instead take an existing VAE
generative model (decoder), allocate variational parameters
for the latent code of each missing data point, and train the
parameters stochastically to optimize the induced variational
bound. The simple structure of our bounds enables efficient
and accurate approximation of the posterior distribution of
missing features, given any pattern of observed features.

We evaluated QAVI on a variety of VAEs, including cur-
rent state-of-the-art hierarchical VAEs, and several datasets.
We found that non-amortized QAVI with Gaussian, and
especially Flow or Mixture, posterior approximations out-
performs previous heuristic and amortized inference meth-
ods data imputation with VAEs. Importantly, we find that a
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Figure 7: Classification accuracies using 100 samples from
the inferred posterior for randomized missing queries on
MNIST (top) and SVHN (bottom). We use a trained discrim-
inative model, with WRN-28-2 architecture (Zagoruyko and
Komodakis, 2016), to predict class labels.

Gaussian Mixture posterior is able to effectively capture the
multi-modality that often arises given missing data.
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Figure 8: Importance-weighted log-likelihood (IWAE) es-
tiamates for missing pixels versus wall-clock training time
(in hours). Likelihoods are estimated at each step of opti-
mization for 100 MNIST images with pixels missing via
Random-Patches. We plot the mean and standard deviation
across 10 runs of QAVI methods. We compare to Posterior-
Match, whose amortized inference network requires over
3.5 hours to train. The dip in mixture log-likelihoods occurs
at random re-initialization of mixture parameters to avoid
local optima; see supplement Sec. 2.4 for details.

In this work, we do not consider missing-not-at-random
(MNAR) data (Ipsen et al., 2021), but we conjecture that
QAVI will provide a foundation for future advances in
MNAR inference. QAVI provides a simple, effective, and
general approach for inference of missing data with arbitrary
patterns, that is attractive when queries are unknown during
training and uncertainty in missing data is high.
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