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Abstract: End-to-end learning of robot control policies, structured as neural net-1

works, has emerged as a promising approach to robotic manipulation. To complete2

many common tasks, relevant objects are required to pass in and out of a robot’s3

field of view. In these settings, spatial memory - the ability to remember the spa-4

tial composition of the scene - is an important competency. However, building5

such mechanisms into robot learning systems remains an open research problem.6

We introduce mindmap (Spatial Memory in Deep Feature Maps for 3D Action7

Policies), a 3D diffusion policy that generates robot trajectories based on a se-8

mantic 3D reconstruction of the environment. We show in simulation experiments9

that our approach is effective at solving tasks where state-of-the-art approaches10

without memory mechanisms struggle. We will release our reconstruction sys-11

tem, training code, and evaluation tasks to spur research in this direction.12

Keywords: Manipulation policy, Imitation learning, 3D reconstruction, Diffusion13

policies14

Figure 1: Spatial Memory Task: A humanoid in a simulated industrial space (left) and within a
metric-semantic reconstruction built by mindmap (right) (colored by Principal Component Analy-
sis). The robot’s first-person view is shown inset. The task requires the robot to transfer the hand
drill from the shelf to the open box. The drill and box positions must be discovered by the policy,
and both objects cannot be captured in a single view. Therefore, successful task completion requires
the policy to remember the spatial layout of the scene. By leveraging the reconstruction, mindmap
generates trajectories that depend on parts of the scene that are outside the robot’s current Field of
View.
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Figure 2: Overview of mindmap. mindmap is a Denoising Diffusion Probabilistic Model that sam-
ples robot trajectories conditioned on sensor observations and a reconstruction of the environment.
Images are first passed through a Vision Foundation Model and then back-projected, using the depth
image, to a pointcloud (as in 3D Diffuser Actor [1]). In parallel, a reconstruction of the scene is built
that accumulates metric-semantic information from past observations. The two 3D data sources, the
instantaneous visual observation and the reconstruction, are passed to a transformer that iteratively
denoises robot trajectories.

1 Introduction15

Designing generalist robot manipulation policies remains a holy grail of robotics. Such policies16

would perform manipulation tasks with a high level of competence and be instructed to do so in17

natural language. Recent advances in deep learning, vision, and natural language processing have,18

for the first time, brought this goal within reach; however, significant challenges remain.19

Existing approaches to developing learned manipulation policies generally aim to learn a map-20

ping from sensor observations to robot control signals [2, 3, 4, 5]. These models typically employ21

transformer-based architectures to process image and proprioceptive inputs to generate control sig-22

nals. Such methods have shown an impressive ability to complete language-guided manipulation23

tasks. One limitation of several leading approaches, however, is that the generation of output signals24

is conditioned on current visual observations only. Such approaches lack spatial memory - the abil-25

ity to remember the spatial and semantic composition of the scene (see [6] for a taxonomy of robot26

memory). This leads to surprising limitations to their capabilities. Although some methods incorpo-27

rate temporal information by maintaining a temporal window of past images, these approaches have28

drawbacks of their own (see Section 2).29

In this work, we introduce mindmap, an approach that combines a diffusion policy with a metric-30

semantic 3D reconstruction of the scene. mindmap generates trajectories of 3D end-effector poses31

in the reconstructed space. This approach allows the policy to generate actions that depend on parts32

of the scene that are outside of the camera’s current Field of View (FOV). Our experiments show33

that, on tasks requiring spatial memory, mindmap is effective in completing tasks on which several34

current approaches struggle.35

Contributions: In this paper, we contribute tools for extending 3D manipulation policies with spa-36

tial memory. In particular, we release metric-semantic mapping1 in nvblox [7], our GPU-accelerated37

reconstruction library, in addition to our training code, and simulation environments for testing spa-38

tial memory. We demonstrate the efficacy of these tools by extending a state-of-the-art 3D diffusion39

policy [1]. We show that by making changes to the architecture and training, the policy’s perfor-40

mance, on challenging tasks that require spatial memory, is significantly improved.41

1https://nvidia-isaac.github.io/nvblox/pages/torch_examples_deep_features
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2 Related Work42

Learning robot control policies that map observations directly to robot actions has received con-43

siderable recent attention. Following the success of deep learning in other fields, structuring these44

policies as neural networks has emerged as a promising approach for building generally intelligent45

machines.46

Vision-Language-Action Models: Recent robotics research has attempted to replicate the success47

of large-scale task-agnostic pre-training in other fields, such as language understanding. RT-1 [8]48

trained a transformer-based model to produce discrete action tokens on a dataset of 130k demon-49

strations. To improve generalization and reasoning abilities, several approaches have sought to50

incorporate Vision-Language Models (VLMs) into robotic models, the combination termed Vision-51

Language-Action (VLA) models. RT-2 [5] and OpenVLA [4] fine-tune VLMs with robot data, re-52

sulting in state-of-the-art zero-shot performance. These models faced limits in their dexterity due to53

action-space discretization and execution frequency. The π0 [3] model addressed these limitations,54

using a diffusion-based action head [9] to represent continuous distributions over action-space, and55

to produce high-frequency output. GR00T N1 [2] suggests a flow-matching-based VLA trained on56

varied data sources. Many recent works have sought to improve VLA models through improved57

action tokenization [10], action-chunking [11, 12], and multi-step instruction following [13], among58

others.59

3D Manipulation Models: In parallel, efforts have been made to train models that utilize 3D sen-60

sor data. Perceiver-Actor [14] voxelizes an RGB-D pointcloud and uses a transformer to produce61

language-conditioned goals. RVT [15] represents the 3D scene through several virtual views, lead-62

ing to dramatically improved training times. 3D Diffuser Actor [1] represents the scene as a set63

of featurized 3D points, and processes them using 3D relative attention to produce continuous ac-64

tions. At the time of writing, policies consuming 3D data have not typically undergone large-scale65

pre-training. FP3 [16] represents an early attempt to scale up a 3D policy, using the DRIOD [17]66

dataset.67

Reconstruction for Manipulation: Several works have investigated the use of reconstructions68

in manipulation policies. LERF-TOGO [18] and SplatMover [19] build metric-semantic maps69

upon which grasp points are predicted, using NERFs and Gaussian splats respectively. In contrast,70

mindmap follows an end-to-end approach, diffusing robot trajectories directly from a reconstruction,71

without intermediate prediction of grasps. GNFactor [20] uses several external cameras to build a72

3D voxel grid of Vision Foundation Model (VFM) features, which are then processed by a trans-73

former to produce voxelized actions. The reconstruction, however, is built from views of the scene74

at a single timestep. In contrast, our results are generated using a single ego-centric camera that75

accumulates prior views of the scene to provide past information to the network.76

Memory: One limitation of many VLAs and 3D models is that they produce actions based on the77

current observation. As we shall show, this is a significant limitation, even on seemingly trivial tasks.78

A recent work SAM2ACT [21], addresses the issue of spatial memory in manipulation policies. The79

authors propose adding a memory bank to RVT2 [22], feeding back prior observations into the80

policy. The authors demonstrate state-of-the-art performance on tasks requiring spatial memory.81

However, as the authors note, the approach has several shortcomings. SAM2ACT has a fixed-length82

memory that requires per-task tuning. The model’s recurrent nature requires a specialized training83

procedure. In contrast, the approach proposed in mindmap has no explicit temporal limits. Past84

information is aggregated spatially, rather than stored in a temporal buffer, and so the computational85

requirements remain bounded given a bounded volume of space. Furthermore, the approach is not86

recurrent, and so can be plugged directly into a standard diffusion policy training pipeline.87

3 Problem Statement88

Given a sequence of observationsO = {oi}ti=0 we aim to find a policy π that outputs a robot action89

at such that at = π(o0,o1, ...,ot). Our observations oi take the form of oi = {Iji ,D
j
i ,Si}Nj=0,90
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for N cameras, where Iji are RGB images, Dj
i are corresponding posed depth images, and Si is91

the robot state Si = {pk
i ,q

k
i , c

k
i , γi}Mk=0, for M end-effectors. We consider several robot em-92

bodiments, but in general, the robot state Si is a composition of the 3D positions pk
i ∈ R3,93

rotations qk
i ∈ SO(3), the closedness cki ∈ {0, 1} of one or more robot end-effectors, and for94

humanoid embodiments, the head yaw γi ∈ (−π, π]. Our action ai lives in the same space as95

our state Si, i.e. we command end-effector poses, closedness, and head yaw. Our policy π is a96

deep neural network which we learn from human demonstrations consisting of observation-action97

pairs T = {(a0,o0), (a1,o1), ..., (aT ,oT )}. We build a reconstruction Rt by accumulating past98

visual observations Rt(I0, ..., It,D0, ...,Dt). Our policy depends on the current observations di-99

rectly, a finite sequence of K past states, and on past visual observations through the reconstruction100

at = π(Ijt ,D
j
t ,St−K , ...,St,Rt)101

4 Method102

In this section we describe our approach, firstly describing our extensions to 3D Diffuser Actor [1]103

(Section 4.1), and then explaining how we build reconstructions (Section 4.2). See Fig. 2 for an104

overview.105

4.1 Network Architecture106

Our approach follows recent work [1, 9, 3] and structures our policy as a denoising transformer that107

generates robot actions based on observations of the scene. In particular, we extend 3D Diffuser Ac-108

tor [1], which iteratively denoises an end-effector trajectory, conditioned on posed RGB-D images.109

In the following, we highlight the key differences between mindmap and 3D Diffuser Actor.110

Reconstruction tokens: Mindmap’s diffusion transformer takes as input RGB-D images and a fea-111

turized reconstruction, in the form of 3D vertices extracted from a reconstructed mesh (see Sec-112

tion 4.2). This allows the network to attend to both the current RGB-D observation and the recon-113

struction, which aggregates past observations. We found that this approach led to better results than114

providing the reconstruction alone (see Section 6). The reconstruction is continuously updated as115

new images arrive.116

The featurized RGB-D image and the reconstruction are passed through separate encoders to project117

them from VFM feature dimension to the token embedding dimension (see Fig. 2). Reconstruction118

and RGB-D tokens are then concatenated and passed through cross and self-attention layers, as119

in 3D Diffuser Actor. We found that the use of separate encoders led to higher performance than120

passing both sets of points through a joint encoder. This makes intuitive sense: it allows attention121

mechanisms to differentiate tokens originating from instantaneous observations and those coming122

from the reconstruction.123

VFM Features: Diffuser Actor uses a pre-trained CLIP ResNet50 image encoder [23] combined124

with a trainable Feature Pyramid Network (FPN) [24] for feature extraction. The reconstruction125

process in mindmap is non-differentiable and as a result gradients are unable to flow back to the126

image encoder. We therefore replace CLIP+FPN with a frozen pre-trained VFM, AM-RADIO [25].127

Bimanual embodiments: We extend 3D Diffuser Actor, which was designed to control a single128

robotic arm, for bimanual manipulation tasks using a humanoid robot. We therefore modify the129

model from predicting single end-effector poses and closedness to (optionally) predict bimanual130

end-effector poses and closedness. We concatenate the past states of multiple end-effectors to form131

the proprioceptive history, and we modify the prediction heads in the network to predict the next132

states for multiple end-effectors (as suggested in [26]).133

Controlling head orientation: We additionally allow the policy to control the head orientation of134

humanoid robots. This allows mindmap to complete tasks in which not all task-relevant objects135

can be held in a single view of the scene. In such situations, the robot must gather information136

from several views in order to complete the task. To achieve this, we add an additional decoder137
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for the head orientation. In training, the head orientation is supervised by the tele-operator’s head138

orientation, captured by a virtual reality device (see Section 5).139

4.2 Reconstruction140

We compute a reconstruction of the scene from all past robot observations using the publicly avail-141

able nvblox library [7], which we extend for metric-semantic mapping in PyTorch. This library142

fuses posed RGB-D sensor data into a Truncated Signed Distance Field (TSDF) in real-time. For143

each incoming RGB-D frame, nvblox projects the 3D grid into the depth image and updates the144

distance values and weights of affected voxels (described in [27]). Figure 5 (Appendix 8.1) shows145

reconstructions for tasks introduced in Section 6.146

Geometry: From the distance field, we extract a representation of the 3D surface. In particular,147

nvblox applies the marching cubes algorithm [28] to compute a mesh that represents the zero-level148

isosurface of the distance field. In this work, we only keep the mesh vertices, i.e. triangle and149

normal data are discarded. The result is a dense point cloud, build from the fusion of previous visual150

observations.151

Features: To generate a metric-semantic representation of the environment, we also fuse VFM152

image features into the reconstructed voxel map. In particular, we extract 2D feature maps Fi from153

the incoming RGB images Ii, using a pre-trained VFM ϕ:154

Fi = ϕ(Ii), Fi ∈ Rh×w×f (1)

where f is the channel depth of the feature produced by the VFM. The feature associated with each155

voxel is updated by projecting the voxel center p ∈ R3 into the feature map and reading the feature156

vector at the projected image point:157

fi = Fi[Π(p)], fi ∈ Rf (2)

Here, Π : R3 → R2 is the camera projection function, and [.] denotes nearest-neighbour pixel158

lookup. We found that simply overwriting the existing voxel feature during updates yields similar159

results as to fusing the incoming feature with the existing one (see Section 6.2). Similar to the160

TSDF reconstruction, we handle occlusions by only updating voxels in a narrow truncation band161

around non-occluded surfaces (set to ±4 voxels in our experiments). Finally, the mesh vertices162

are featurized by looking up their closest feature vector in the voxel map. Appendix 8.3 gives163

implementation details about achieving this with nvblox.164

5 Implementation165

In this section, we provide details about the implementation of our method.166

Figure 3: Environments introduced to evaluate policies’ spatial memory. From left to right: Cube
Stacking: stack three cubes (initial cube positions are randomized), Mug in Drawer move mug into
drawer containing mugs (positions of objects on kitchen counter are randomized and the destination
drawer position is permuted), Drill in Box: put hand drill into open box (drill position is randomized
and open/closed boxes are permuted), Stick in Bin: put candlestick into bin (stick and bin positions
are randomized). In all tasks, policies are provided a single ego-centric camera view from which the
entire task space cannot fit into the FOV.
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Figure 4: Attention Visualization: Top-down visualization of 3D attention weights (right) and
reconstruction (left) for the Mug in Drawer task. The inset shows the current camera view. Extrema
appear in regions of interest to the task, such as the mug (yellow arrow) and the drawers in the
bottom left/right (white arrows). The high concentration of points in the center is generated by the
current view of the camera, while points outside this region are from the reconstruction.

Demonstration Data Collection: We simulate several tasks in IsaacLab [29] to evaluate mindmap167

(see Section 6). We collect demonstration trajectories through teleoperation using IsaacLab Mimic2168

(based on MimicGen [30]), an Apple Vision Pro for the humanoid robot, and a space-mouse for the169

robot arm. The human demonstration trajectories are multiplied to generate a larger dataset. For170

each task, we train on 100 trajectories and evaluate on 100 distinct randomizations.171

Reconstruction Data Generation: During training, we select a random timestamp in the demon-172

stration trajectory and attempt to predict the next keypose based on the RGBD observation, the173

state history, and the reconstruction. We therefore need random access to reconstructions associ-174

ated with each timestamp in the demonstration trajectories. To achieve this, we perform mapping175

for each demonstration trajectory and save a per-timestamp reconstruction before training. Produc-176

ing a dataset of 100 trajectories (from 10 human demonstrations), including running the IsaacLab,177

RTX raytracing, and nvblox reconstruction, takes 4 hours on a single L40 GPU node, producing178

approximately 3000 reconstructions. TSDF reconstruction is performed at 1 cm voxel resolution.179

Training: Training runs are performed on a 2-GPU H100 node for 150k iterations, taking approx-180

imately 2 days.181

6 Results182

In this section, we aim to validate the hypothesis of this paper, that mindmap improves performance183

on tasks that require spatial memory.184

Evaluation Environments: Existing benchmarks like RLBench [31] focus on table-top manipula-185

tion tasks in which all task-relevant objects remain in view at all times. These tasks do not require186

spatial memory for completion because the entire state of the task can be determined from a single187

view.188

We therefore introduce four challenging tasks on which to evaluate policies for spatial memory use189

(see Fig. 3). We restrict policies to ego-centric observations of the scene: the wrist camera for robot190

arm tasks, and to a head camera for humanoid tasks. An ego-centric camera is practical, as the191

robot is freed from a reliance on external infrastructure, which will become increasingly important192

as robots are expected to mix manipulation with movement through the environment. In our tasks,193

the robot is unable to see all task-relevant objects within its field of view at all times (see Fig. 6).194

As a consequence, the policy needs to remember the spatial layout of the scene to complete the task195

with a high success rate (see Appendix 8.2 for descriptions of the tasks). While this type of task is196

somewhat novel for manipulation policy evaluation, it is very common in everyday life; humans are197

frequently required to reason about out-of-view objects.198

2https://isaac-sim.github.io/IsaacLab/main/source/overview/teleop_imitation
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Task

Method Average Cube Stacking Mug in Drawer Drill in Box Stick in Bin

Mindmap 72% (72%) 47% 97% 79% 64%
3D Diffuser Actor [1] 20% (18%) 0% 46% 21% 14%

GR00T N1 [2] - (49%) - - 46% 52%

Privileged (external cam) 3D Diffuser Actor [1] 85% (84%) 76% 97% 77% 91%

Table 1: Key Findings - Evaluation in Simulation. Mindmap is compared against 3D Diffuser
Actor [1] and GR00T N1 [2] in simulated tasks that require spatial memory to complete with a high
success rate. We also evaluate a method that uses an external camera as privileged information. The
bracketed average is over humanoid tasks only.

Baselines: We compare mindmap with 3D Diffuser Actor [1]. For humanoid tasks, we also com-199

pare against GR00T N1 [2]. To match mindmap, we modify 3D Diffuser Actor to utilize AM-200

RADIO [25] features rather than CLIP [23], which we found to increase performance. We also201

compare to a version of 3D Diffuser Actor that is provided with an external camera to remove the202

requirement for memory on our tasks. mindmap and 3D Diffuser Actor are trained from scratch,203

while GR00T N1 is fine-tuned on each task. We attempted to fine-tune GR00T N1 on the robot arm204

tasks, but were unable to achieve non-zero success rates, likely because ego-centric-only robot arm205

tasks are not in its pretraining data. We omit these results.206

6.1 Key Findings207

Table 1 shows quantitative results comparing mindmap to the baseline methods. mindmap achieves208

an average success rate of 72%, an improvement of 52% (absolute) over 3D Diffuser Actor and 23%209

over GR00T N1 (on humanoid tasks). Further, mindmap performs only slightly (13% absolute)210

worse than the method that is provided with privileged information. These results, taken together,211

indicate the efficacy of mindmap at solving tasks that require spatial memory.212

Three of the four tasks (Mug in Drawer, Drill in Box, and Stick in Bin) involve a binary decision213

about out-of-view objects. A policy without spatial memory is reduced to guessing between the214

two options seen in the training data. The results, therefore, align with expectations: allowing for215

the random decision, GR00T N1 achieves close to the best possible performance. Qualitatively,216

observation of policy roll-outs confirms this: the policy is very effective at picking up objects;217

however, it often (∼50% of cases) makes the wrong binary decision. By contrast, mindmap rarely218

makes the wrong decision, and failures typically originate from object pick-up.219

Figure 4 shows the attention weights for the Mug in Drawer task from the first cross-attention layer220

in mindmap. The figure indicates that network assigns a high weight to the mug to be transported,221

and both of the drawers, one of which is the target location. This aligns with intuition: the network222

attends to task-relevant parts of the scene. Note that only the mug is within the current camera223

view. The assignment of high weight to points outside of the current camera view also indicates the224

importance of the reconstruction in completing the task.225

Lastly, GR00T N1 is outperformed by mindmap by 23% (absolute). It is pre-trained on a large226

dataset and is a much larger model than mindmap (∼1B trainable parameters, plus ∼1B in the227

frozen VLM vs. mindmap’s ∼3M trainable, plus ∼100M frozen in the image encoder). We believe228

that these results indicate the potential for improving VLAs through spatial memory mechanisms.229

6.2 Ablations and variations230

Table 2 shows the results of varying various design decisions in our method, evaluated on our robot231

arm tasks.232

Reconstruction only: We restrict our method to access the reconstruction only by removing the233

RBGD pointcloud input to our model. This leads to a 10% lower success rate. Qualitatively, we234

observe an increased frequency of failure during pick-up. This aligns with intuition: the wrist235
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Task

Ablation Average Cube Stacking Mug in Drawer

mindmap (baseline) 72% 47% 97%
Reconstruction only 62% 31% 92%

No VFM 45% 31% 59%
Feature blending 74% 50% 98%

Table 2: Ablations and Variations. Variations of design parameters of mindmap and their corre-
sponding success rates on the robot arm tasks introduced in Section 6. Reconstruction only: removal
of RGBD observations. No VFM: features replaced with RGB triplets. Feature blending: blends
VFM features over time, rather than taking the latest observed feature.

camera provides high-resolution information during object pick-up, which is likely important for236

accurate grasping.237

No VFM: RADIO-AM features are replaced with RGB triplets extracted from the images. This238

leads to a 27% lower success rate. The relative reduction in success is less pronounced for Cube239

Stacking than for Mug in Drawer, likely due to the distinct RGB colors of the cubes providing240

sufficient information for the model in most cases. In general, compared to semantically rich features241

like RADIO-AM, raw RGB does not take any contextual or semantic information into account, and242

its values strongly depend on lighting conditions and viewing direction.243

Feature blending: During reconstruction, our baseline method overwrites existing feature vectors244

with the most recently extracted ones. As an alternative, we explored fusing new measurements with245

old ones. Here, we update the feature associated with each voxel by applying an exponential filter:246

fvoxel(p)← α · F [Π(p)] + (1− α) · fvoxel(p) (3)

We use α = 0.1, i.e., a new measurement contributes 10% to the updated value. We found that this247

modification leads to no significant change in performance.248

6.3 Limitations249

Our method has several limitations. Firstly, our model is small (3 million trainable parameters), is250

trained on a small dataset, and in a task-specific regime. Policies of this kind [1, 9, 20, 15, 14, 21, 22]251

are convenient to perform research on, however, do not in general, generalize out of their training252

environment. It is an interesting research direction to scale up mindmap to a larger dataset such as253

DROID [17]. Secondly, our model produces end-effector keyposes as output. Keypose extraction254

from VR teleop data is non-trivial and task-specific. Altering the model to predict trajectories using255

action-chunking [11], as is common in VLAs, has the potential to remove the limiting step. Lastly,256

our reconstruction process is non-differentiable. The result is that we store a full VFM feature per-257

voxel, which requires substantial amounts of storage during training and memory during inference.258

There is an opportunity, with a differentiable reconstruction process, to do learned dimensionality259

reduction before reconstruction to reduce memory consumption.260

7 Conclusions261

In this paper, we present mindmap, a manipulation policy that diffuses robot trajectories from a re-262

construction of the observed scene. We showed that tasks involving spatial memory are challenging263

for methods that compute trajectories based on the current observation only. Mindmap is able to uti-264

lize past information, in the form of the metric-semantic reconstruction, in order to complete tasks265

that involve reasoning about out-of-view objects. The result is that mindmap significantly improves266

performance on spatial memory evaluations. We contribute our tools for metric-semantic mapping267

and for training reconstruction-based diffusion policies to spur further research in this direction. We268

foresee a growing importance of spatial memory as learned manipulation policies move beyond the269

tabletop tasks, in particular to tasks that combine locomotion and manipulation.270
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8 Appendix362

8.1 Example Reconstructions363

Reconstructions of our environments can be seen in Fig. 5.364

8.2 Evaluation task descriptions365

We introduce several tasks specifically designed to test for systems for their ability to leverage spatial366

memory. See Fig. 6 for visualizations of the tasks. In particular, we introduce:367

• Cube Stacking (robot arm): Requires the policy to stack three cubes in order. Cube368

positions are randomized. The policy only has an egocentric view, and as a result, the policy369

must remember the position of the ongoing stack during cube transport, during which time370

the camera is blocked.371

• Mug in Drawer (robot arm): The goal of the task is to return a mug to a drawer that372

contains mugs. The target drawer is permuted between two options. The policy only has373

an egocentric view, and as a result, the policy must remember which of the two drawers is374

correct during transport of the mug.375

• Drill in Box (humanoid): This task requires the humanoid robot to pick up an electric376

drill off the shelf and place it in an open box. Which box is open is randomly permuted377

among four options. To identify which is the correct box, the humanoid must actively scan378

its surroundings by rotating its head to detect the open box, memorize its location, and379

subsequently transport the drill to that position.380

• Stick in Bin (humanoid): Similar to above. The humanoid robot must place a candlestick381

in a bin. The bin is randomly placed in a position around the robot. Successful task com-382

pletion requires first scanning the scene, memorizing the layout, before transporting the383

stick.384

8.3 Reconstructing with nvblox-PyTorch385

nvblox [7] is an open source library for real-time 3D reconstruction, designed for robotic applica-386

tions. It provides functions for building, manipulating and querying 3D reconstructions directly387

on the GPU. The following snippet demonstrates how mindmap makes use of the recently added388

PyTorch bindings to generate a featurized 3D reconstruction.389

1 # Install nvblox_torch from pip
2 from nvblox_torch import Mapper, FeatureMesh
3

4 # Create a mapper.
5 mapper = Mapper(voxel_sizes_m=[0.01])
6

7 # Add depth and feature frames to the reconstruction.
8 for depth_frame, feature_frame, pose, intrinsics in dataset:
9 mapper.add_depth_frame(depth_frame, pose, intrinsics)

10 mapper.add_feature_frame(feature_frame, pose, intrinsics)
11

12 # Compute a surface mesh representation of the scene.
13 mapper.update_feature_mesh()
14 mesh = mapper.get_feature_mesh()
15

16 # Obtain features and vertices as PyTorch tensors.
17 vertices = mesh.vertices()
18 features = mesh.features()
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Figure 5: Reconstructions of the four environments presented in Section 6. For each environment,
we have an RGB-colored mesh (top) and the voxel grid containing VFM features colored by PCA
(bottom).
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Figure 6: Views from four evaluation environments. Each row corresponds to a distinct environment.
The first column presents an ego-centric perspective of the drop off locations, whose positions must
be memorized. The second column shows ego-centric observations during task execution, where
parts of these objects are no longer visible. The third column presents a third-person view of the
robot performing the task.
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