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Abstract

Computerized phantoms play an important role in medical imaging research. They can
serve as a gold standard for evaluating and optimizing medical imaging analysis, pro-
cessing, and reconstruction methods. Existing computerized phantoms model anatomical
variations through organ and phantom scaling, which does not fully capture the range of
anatomical variations seen in humans. Here, we present a registration-based method for
creating highly realistic and detailed anthropomorphic phantoms. The proposed registra-
tion method is built on the use of an unsupervised convolutional neural network (ConvNet)
that warps the four-dimensional Xtended Cardiac-Torso (XCAT) phantom to a patient CT
scan. The registration ConvNet iteratively optimizes an SSIM-based loss function for a
given image pair without prior training. We experimentally show substantially improved
image similarity of the generated phantom using the proposed method to a patient image.
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1. Introduction

Computerized phantoms are widely used in many medical imaging applications. The four-
dimensional Xtended Cardiac-Torso (XCAT) phantom (Segars et al., 2010) was developed
to provide highly realistic and detailed anatomical models with known structural and physi-
ological properties. The XCAT phantom provides a parameterized model to create anatom-
ical variations through scaling tissue volumes. However, this simple scaling of organ shapes
does not fully capture the anatomical variations seen in humans. Existing methods (Segars
et al., 2013) have been proposed to create anatomically realistic phantoms via deformable
image registration (DIR). They register phantom labels to the label maps of clinical CT
images using DIR; the resulting deformation fields were then applied to the phantom, cre-
ating new phantoms that capture the patients’ anatomical shapes. However, a downside
of such methods is that they heavily rely on the segmentation of multiple organs in the
clinical CT images, which can be time-consuming to generate. In this work, we present a
novel approach to create extremely detailed computerized phantoms using an unsupervised
ConvNet-based DIR. Specifically, we treat the ConvNet as an optimization tool that itera-
tively minimizes a loss function for an image pair comprised of the XCAT phantom and a
patient CT. A new ConvNet is initialized for each image pair, thus the proposed method
does not require training and it is fully and truly unsupervised. Full details of the proposed
method are described in our published paper (Chen et al., 2020).
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Figure 1: Overview of the proposed method.

2. Method

The phantom used in this work was created from the 3D attenuation distribution of XCAT
phantom (Segars et al., 2010). This single 3D phantom served as the moving image, and
it was deformed to multiple patient CT images. Let If and Im be fixed and moving image
volumes, that is, a patient CT image and the XCAT phantom. Fig. 1 shows an overview
of the proposed method. The ConvNet takes one If and one Im as its inputs. The network
learns from a single image pair and produces a deformation field, φ. Then moving image Im
is warped with φ using a spatial transformer. The loss determined by the image similarity
measure between Im and If and the smoothness constraint of φ is then backpropagated to
update the network’s parameters. Once the loss converges, the resulting φ then represents
the optimal registration field for the given image pair. Since no aspect of the ConvNet is
learned from a prior training stage, the method follows a fully unsupervised paradigm.
ConvNet Architecture The ConvNet follows a U-Net-like “hourglass” architecture (Ron-
neberger et al., 2015). The input to the network is formed by concatenating Im and If into
a single volume. The network consists of 19 convolutional layers. The upsampling in the de-
coder was done by “up-convolution”. Each of the upsampled feature maps was concatenated
with the corresponding feature map from the encoding path (i.e., skip connections).
Loss Function The loss function takes the form of:

L(Im, If , φ; θ) = Lsim(Im ◦ φ, If ; θ) + λR(φ; θ), (1)

where θ denotes the set of parameters in the network fθ, φ = fθ(Im, If ), Lsim is the image
similarity measure between Im and If , and R denotes the smoothness constraint placed on
the deformation field φ. We studied several choices of Lsim, including mean squared error
(MSE), cross correlation (CC), and mutual information (MI), as well as different choices
of R, such as diffusion regularization, total variation regularization, non-negative Jacobian
(Kuang and Schmah, 2019), and Gaussian smoothing. This work also presents a novel Lsim
that is based on the Structural similarity index (SSIM) (Wang et al., 2004) and Pearson’s
correlation coefficient (PCC):

Lsim(Im ◦ φ, If ; θ) = 0.5 · (1− SSIM(Im ◦ φ, If )) + 0.5 · (1− PCC(Im ◦ φ, If )), (2)

we found that use of SSIM alone made the registration network sensitive to noise or artifacts
(i.e., the network tended to model noise in the deformed image), whereas the network trained
using PCC alone was robust to noise but did not model image details. Thus we balanced
SSIM and PCC with an equal weight of 0.5.

3. Results and Conclusions

This work aims at creating anthropomorphic phantoms by registering the XCAT phan-
tom with patient CT scans. The resulting deformation field was then used to deform the
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Affine only SyN (CC) VoxelMorph (CC) UnsupConvNet1

SSIM 0.83±0.008 0.89±0.011 0.92±0.006 0.96 ± 0.007
MSE 69.2±2.7 52.8±4.1 43.5±4.8 37.3 ± 5.1

Table 1: Quantitative comparisons. Qualitative results are shown in (Chen et al., 2020).

XCAT phantom label map. The method was evaluated using 1153 2D-transaxial slices
from (Kurdziel et al., 2012). However, the implementation of the method is dimension-
ally independent. We compare the proposed registration method terms of SSIM and MSE
to Symmetric Normalization (SyN) (Avants et al., 2008), and VoxelMorph (Balakrishnan
et al., 2018). Table 1 shows the qualitative and quantitative results. Overall, the method
provided better XCAT-to-CT mapping. Despite the fact that the proposed method with-
out any regularization produced a deformed phantom image that was almost identical in
appearance to the target CT image, the warped label maps might not be realistic. This
was caused by the nonsmooth deformation field and by the different interpolation methods
used for warping the phantom images and the label maps (i.e., bi-cubic for phantom images
and nearest neighbor for label maps). Therefore, adding a regularizer to the loss function
enforced the smoothness in the deformation field and produced more realistic warped la-
bel maps. Both quantitative and qualitative analyses indicated that the proposed method
provided the best registration results.
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