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Abstract001

Despite recent progress achieved by code large002
language models (LLMs), their remarkable003
abilities are largely dependent on fine-tuning004
on the high-quality data, posing challenges005
for data collection and annotation. To ad-006
dress this, current methods often design var-007
ious data flywheels to collect complex code008
instructions, enabling models to handle more009
intricate tasks. However, these approaches typ-010
ically rely on off-the-shelf datasets and data011
augmentation from a limited set of propri-012
etary LLMs (e.g., Claude, GPT4, and so on),013
which restricts the diversity of the constructed014
data and makes it prone to systemic biases.015
In this paper, we propose WarriorCoder, a016
novel paradigm learns from expert battles to017
address these limitations. Specifically, we cre-018
ate an arena where leading expert code LLMs019
challenge each other, with evaluations con-020
ducted by impartial judges. This competitive021
framework generates novel training data from022
scratch, leveraging the strengths of all partici-023
pants. Experimental results show that Warrior-024
Coder achieves state-of-the-art performance025
compared to previous models of the same size,026
even without relying on proprietary LLMs.027

1 Introduction028

Recent large language models (LLMs) have demon-029

strated impressive performance on code-related030

tasks (Li et al., 2023; Rozière et al., 2023; Guo031

et al., 2024; DeepSeek-AI et al., 2024; Li et al.,032

2022; Nijkamp et al., 2023; Zheng et al., 2023b;033

Fried et al., 2023; Wang et al., 2021). These suc-034

cesses highlight that pre-training on vast amounts035

of code data significantly enhances their core cod-036

ing abilities. In addition to pre-training, several037

approaches that fine-tune LLMs with instruction-038

following data (Ding et al., 2023) have also made039

substantial progress in improving models’ under-040

standing of user instructions and the quality of041

their responses. However, the effectiveness of post-042
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Figure 1: The comparisons between our method and
traditional data flywheels. Unlike previous work, we
guides the target model to learn from pairwise competi-
tions. No demand for seed datasets, human-generated
prompts, or annotations from proprietary models, the
target model integrates the strengths of its competitors.

training is heavily dependent on the availability of 043

high-quality data (Xu et al., 2024a), and challenges 044

of data collection and annotation remain difficult 045

to overcome. 046

To address these challenges, some approaches 047

propose various data flywheels to generate in- 048

struction data. Building on Self-Instruct, Chaud- 049

hary (2023) constructs Code Alpaca by prompting 050

teacher LLMs to generate instructions in a few- 051

shot setting. To further enhance the diversity and 052

complexity of Code Alpaca, WizardCoder (Luo 053

et al., 2024b) employs Evol-Instruct to evolve the 054

original instructions. These methods apply gen- 055

eral data augmentation to instruction construction, 056

lacking specific design considerations for the code 057

domain. Given that, recent methods specifically 058

design frameworks for instruction generation tai- 059

lored to code. For example, WaveCoder (Yu et al., 060

2024) collects raw code snippets and defines dif- 061

ferent tasks based on them. Similarly, InverseC- 062
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oder (Wu et al., 2024b) prompts code LLMs to gen-063

erate high-quality instructions based on the original064

code through techniques like code summarization065

and self-evaluation. These methods construct data066

for code in various ways, effectively enhancing067

the model’s code generation capabilities. How-068

ever, they still rely on existing datasets (Muen-069

nighoff et al., 2024) and calls for proprietary LLMs070

(e.g., GPT-3.5, GPT-4, etc.), making data collec-071

tion costly. Additionally, the limited data sources072

and annotators constrain the diversity (Yu et al.,073

2023; Wang et al., 2023) of the data and inherit074

the system biases inherent in the limited pool of075

annotators (Wei et al., 2024).076

The challenges mentioned above motivated us077

to propose WarriorCoder, which learns from ex-078

pert battles to overcome current limitations. As079

illustrated in Figure 1, the attacker challenges the080

opponent within its area of expertise, and the tar-081

get model learns from the winner of these pairwise082

competitions. Specifically, we design a completion-083

based method to mine the capabilities which the084

attacker has already mastered, then integrate Elo085

Rating and voting results to balance the local and086

global evaluation. This approach enables us to087

generate novel training data from scratch, incorpo-088

rating the strengths of all the expert code LLMs,089

rather than relying on limited proprietary LLMs to090

expand existing datasets. Moreover, our method091

eliminates the need for human involvement and092

proprietary LLMs in the data collection, making093

it possible to collect high-quality, diverse data at a094

low cost. The main contributions of this paper are095

summarized as follows:096

• We identify the limitations of current data fly-097

wheel and propose a new scalable paradigm098

where the target model learns from expert bat-099

tles to solve them.100

• We design a completion-based method for col-101

lecting instructions and introduce the Elo Rat-102

ing system for evaluating responses, enabling103

the creation of high-quality and diverse train-104

ing data at a low cost. Fine-tuned on this data,105

WarriorCoder incorporates the strengths of106

all the experts, achieving state-of-the-art per-107

formance compared to previous models of108

the same size, without relying on proprietary109

LLMs.110

• Extensive experiments demonstrate the excel-111

lent performance of WarriorCoder on multi-112

ple code-related tasks, with ablation and anal- 113

ysis studies explaining how and why it works. 114

2 Related Work 115

2.1 Code LLMs 116

Code plays a crucial role in application areas for 117

LLMs (Jain et al., 2024), attracting significant inter- 118

est from both academia and industry. Codex (Chen 119

et al., 2021), an LLM with 12 billion parameters, 120

can solve 72.31% of complex Python programming 121

problems. Following the success of Codex (Lyu 122

et al., 2024), the rise of new code LLMs has demon- 123

strated even greater capabilities, such as code gen- 124

eration and debugging, as model sizes continue to 125

grow (Hou et al., 2023; Zan et al., 2023). Despite 126

this impressive progress, the performance of cur- 127

rent open-source models still lags behind that of 128

proprietary ones (e.g., GPT-3.5, GPT-4, etc.), pri- 129

marily because stronger models often keep their 130

training data proprietary (Hui et al., 2024). As a 131

result, the lack of publicly available code datasets 132

remains a significant barrier to further development 133

in this field. 134

2.2 Learning from Battles 135

Studying how people interact with LLMs in real- 136

world scenarios is a pressing need for ensuring the 137

alignment of LLMs (Chiang et al., 2024). The 138

LMSYS Chatbot Arena (Zheng et al., 2024) has 139

emerged as a groundbreaking initiative for explor- 140

ing real-world LLM-user interactions, collecting 141

and analyzing data from an open platform with 142

over 240K votes. Experimental results demonstrate 143

that the quality of data from the LMSYS Chatbot 144

Arena is competitive with that of ShareGPT (Chi- 145

ang et al., 2023), underscoring its value for training. 146

Now more and more attentions are paid on learning 147

from the battles between LLMs (Li et al., 2024; 148

Myrzakhan et al., 2024; Bogomolov et al., 2024). 149

However, collecting data through human online 150

evaluations is both expensive and time-consuming. 151

To address this, recent work has leveraged LLMs to 152

provide their preferences when faced with different 153

responses (Luo et al., 2024a; Zhao et al., 2024). 154

Although these methods eliminate the need for hu- 155

man annotation during data collection, they still 156

require pre-designed, high-quality instructions. 157

2.3 LLM as a Judge 158

Offering an automatic alternative to the scalabil- 159

ity challenges inherent in human evaluation, the 160
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concept of LLM-as-a-judge has garnered signifi-161

cant public attention in recent years (Chiang and162

Lee, 2023). As large language models (LLMs)163

such as GPT-4 have demonstrated impressive ca-164

pabilities, they are increasingly being considered165

for use in evaluating other machine-generated out-166

puts (Weyssow et al., 2024). Experimental results167

by Thakur et al. (2024) show that these strong168

LLMs are capable of achieving a Cohen’s Kappa169

coefficient over 80%, a metric typically used to as-170

sess the level of agreement between human raters.171

This performance level is comparable to the con-172

sensus found among human experts, highlighting173

the potential of LLMs to serve as reliable evalua-174

tors in various contexts. However, judge models175

often struggle with complex problems, and eval-176

uating responses to such problems can be just as177

challenging as answering them (Wu et al., 2024a).178

Moreover, LLM-as-a-judge can introduce system179

biases, such as position bias, verbosity bias, and180

self-enhancement bias, which can undermine the181

fairness of the evaluation process (Chen et al.,182

2024a; Zheng et al., 2023a).183

3 WarriorCoder: Learning from Expert184

Battles185

In this section, we describe how WarriorCoder186

learns from expert battles. Unlike previous ap-187

proaches that expand existing datasets by prompt-188

ing a limited pool of proprietary LLMs, we con-189

struct an arena where state-of-the-art code LLMs190

compete against each other. Each model leverages191

its learned knowledge to challenge others, while192

judges evaluate the outcomes. The target model193

then learns from the winner of these pairwise com-194

petitions, progressively integrating the strengths of195

all competitors.196

3.1 Competitors Setting197

The capabilities of competitors determine the fi-198

nal performance of WarriorCoder. Theoretically,199

the more diverse and high-quality training data are200

derived from a larger and stronger pool of com-201

petitors. For this study, we select five leading202

open-source code experts from the BigCodeBench203

Leaderboard (Zhuo et al., 2024) - Athene-V2-204

Chat (Su et al., 2025), DeepSeek-Coder-V2-Lite-205

Instruct (DeepSeek-AI et al., 2024), Llama-3.3-206

70B-Instruct (Dubey et al., 2024), Qwen2.5-207

72B-Instruct (Hui et al., 2024), and QwQ-32B-208

Preview (Team, 2024). Notably, while Warrior-209

Coder achieves state-of-the-art performance based 210

solely on open-source code LLMs, it can also learn 211

from powerful proprietary LLMs. In each round of 212

the arena, only one pair of code experts is selected 213

as competitors, while the remaining ones serve as 214

judges. 215

3.2 Instruction Mining from Scratch 216

Considering a battle between LLM A and LLM B 217

where A is the attacker and B is the defender. The 218

first step of the arena is to use the strengths of A to 219

challenge B, which makes it necessary to know 220

what A has learned during its training process. 221

However, almost all open-source LLMs keep their 222

core data proprietary. Inspired by Magpie (Xu et al., 223

2024b), we design a completion-based method to 224

mine the capabilities which the code LLMs have 225

already mastered (① Completion-based Instruc- 226

tion Mining). Here we take Qwen2.5 (Hui et al., 227

2024) as an example. A conversation about writing 228

Python code in the chat template of Qwen2.5 is: 229

<|im_start|>system
You are an AI assistant designed to provide helpful
on Python coding problems.<|im_end|>
<|im_start|>user
Write a Quicksort algorithm.<|im_end|>
<|im_start|>assistant
Here is the solution:
def quicksort(arr):

...
<|im_end|>

230

Such chat templates are pre-defined conversa- 231

tional structures to guide the interaction between 232

the model and the user. Based on the LLMs’ strong 233

completion abilities, we feed only the prefix of the 234

chat template into them, prompting the LLM to 235

generate the user instructions: 236

<|im_start|>system
You are an AI assistant designed to provide re-
sponses on Python coding problems.<|im_end|>
<|im_start|>user

237

In this way, we can collect various instructions 238

I the model has already learned under various gen- 239

eration settings (different values of temperature 240

and top-p). Unlike traditional data synthesis, I is 241

not synthesized by the models but directly sam- 242

pled from their distributions, which avoids pattern 243

overfitting and significant shifts in the output distri- 244

bution (Chen et al., 2024b). However, these instruc- 245

tions may be repetitive, ambiguous, unclear, or too 246

easy. To address these concerns, we deduplicate 247

the data and adopt judges to assess their difficulty 248
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Figure 2: The diagram of learning from expert battles. In each round of the arena, the attacker challenges the
defender in its area of expertise under the evaluation of judges, and then the winner’s response is added to the
training data. In this manner, the target model gradually incorporates the strengths of all the code experts by
fine-tuning on the data.

(② Deduplication and Difficulty Filtering). We249

divide the difficulty of instructions into four levels:250

• Excellent (9-10): For instructions that are251

very clear, specific, and well-articulated.252

These instructions are particularly challeng-253

ing and excellently designed to assess the AI’s254

proficiency.255

• Good (6-8): For instructions that are clear256

and specific instructions. These are not overly257

difficult to answer and moderately assess the258

AI’s capabilities.259

• Average (3-5): For instructions that are fairly260

clear and specific instructions. These instruc-261

tions are easy to answer.262

• Poor (1-2): For instructions that are ambigu-263

ous or unclear.264

Only good and excellent instructions are consid-265

ered during the following steps:266

Ī = {i|i ∈ I ∧ d(i) ≥ 6} (1)267

where d(i) is the difficulty of instruction i.268

Then we compress the high-quality instructions269

Ī for the efficiency of post-training (③ Embedding-270

based Compression). To ensure the diversity271

and representativeness of instructions, we employ272

KCenterGreedy algorithm (Sener and Savarese,273

2018) to select the final instructions ¯̄I based on274

the embedding model - all-roberta-large-v1 (Liu275

et al., 2019).276

3.3 Win-Loss Decision 277

The defender is required to respond to the attacker’s 278

question, while the attacker A must also provide 279

an answer to its own instruction (④ Code Generat- 280

ing). Once both answers are collected, the judges 281

(the rest LLMs in arena) will evaluate the correct- 282

ness and helpfulness of the pairwise responses and 283

vote for their preferred one (more details can be 284

found in Appendix C). Then we can calculate the 285

local score for each response: 286

xiA>B =
tA

tA + tB
xiB>A =

tB
tA + tB

(2) 287

where xiA>B and xiB>A are the local scores for 288

A’s and B’s responses to the instruction i. xiA>B 289

represents the percentage of votes that candidate 290

A receives, while xiB>A similarly represents the 291

percentage of votes that candidate B receives. tA 292

and tB are the number of votes which A and B win. 293

However, relying solely on the local score to 294

select the winner can be problematic. In some 295

cases, a weaker model may receive more votes 296

than a stronger one, even though its responses are 297

not significantly better. This can occur because 298

the local score may not fully capture the quality of 299

the model’s performance, especially in situations 300

where the voting is influenced by factors, such as 301

randomness or bias from LLM judges. 302

To address this limitation, we propose consid- 303

ering both local contingency and global consis- 304

tency in the decision-making process. Instead of 305

directly basing our analysis on the immediate vot- 306

ing outcomes, we introduce the concept of the 307
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global score — specifically, the Elo rating (Bai308

et al., 2022), which provides a more comprehen-309

sive reflection of a model’s relative performance310

over time and across various evaluations. The Elo311

rating system, originally developed to calculate the312

relative skill levels of players in two-player games313

(such as chess), has been successfully adapted to314

assess the performance of competitors in a range of315

competitive scenarios, including esports and other316

skill-based games.317

By incorporating the Elo rating, we account for318

both local performance in individual contests and319

global performance across multiple rounds, pro-320

viding a more robust and accurate measure of a321

model’s overall ability. This helps to mitigate the322

risk of weak models winning based on isolated,323

potentially unrepresentative votes:324

XElo
A>B =

1

1 + 10(RB−RA)/400

XElo
B>A =

1

1 + 10(RA−RB)/400

(3)325

where XElo
A>B and XElo

B>A indicate the expected326

probabilities of A defeating B and B defeating A,327

respectively. RA and RB are the Elo rating of A328

and B, which are updated dynamically and itera-329

tively. Given the battle result of A and B on an330

instruction i, we update them by:331

RA ← RA +K × (siA>B −XElo
A>B)

RB ← RB +K × (siB>A −XElo
B>A)

(4)332

where siA>B and siB>A are the actual score of the333

battle result of player A and B (1 for a win, 0.5 for334

a draw, and 0 for a loss). The factor K controls the335

sensitivity of rating changes.336

Based on Equation 2 and Equation 3, we can337

obtain the final score of A’s response for instruction338

i:339

eiA =
∑

B∈Com\A

αXElo
A>B + (1− α)xiA>B (5)340

where Com is the set of all the competitors and341

‘\’ is the subtraction operation. α is the coefficient342

to balance the local contingency and global consis-343

tency.344

3.4 Final Training345

Each item in the constructed dataset consists of an346

instruction, responses from various strong LLMs,347

and their corresponding scores, which supports348

multiple post-training methods. We select the re- 349

sponse with the highest score as the gold output to 350

obtain Instructions with Best Responses in Fig- 351

ure 2 and use SFT to train the target model. In this 352

manner, WarriorCoder integrates the strengths of 353

all the code experts, as their expertise is embedded 354

in the instructions and responses within the training 355

data. 356

4 Experiments 357

4.1 Experimental Details 358

Backbones We use DeepSeekCoder-Base- 359

6.7B (Guo et al., 2024) to initialize WarriorCoder. 360

As for the competitors of expert battles, we 361

choose strong open-source LLMs including 362

Athene-V2-Chat (Su et al., 2025), DeepSeek- 363

Coder-V2-Lite-Instruct (DeepSeek-AI et al., 2024), 364

Llama-3.3-70B-Instruct (Dubey et al., 2024), 365

Qwen2.5-72B-Instruct (Hui et al., 2024), and 366

QwQ-32B-Preview (Team, 2024). 367

Datasets To evaluate the code generation capa- 368

bility of WarriorCoder, we conduct evaluations 369

on HumanEval (Chen et al., 2021), MBPP (Austin 370

et al., 2021), HumanEval+ (Liu et al., 2023), and 371

MBPP+ (Liu et al., 2024). Besides, we also eval- 372

uate its code reasoning and libraries usage capa- 373

bilities on CRUXEval (Gu et al., 2024) and DS- 374

1000 (Lai et al., 2022). For a fair comparison, we 375

use the same decoding strategies and generation 376

configs as the previous work (Wei et al., 2024; Luo 377

et al., 2024b; Yu et al., 2024). 378

Experimental Settings During the intruction 379

minging, we adopt 9 different generation configs 380

where temperature t ∈ {1.0, 1.1, 1.2} and top-p 381

p ∈ {0.99, 0.995, 1.0}. The final number of battle 382

rounds is set to 70,000 and K is set to 40. α is set 383

to 0.7 because we need the Elo Rating only when 384

judges’ opinions are divided on the evaluation. The 385

detailed prompts can be found in Appendix B. As 386

for the training stage, we conduct parallel training 387

on 8 NVIDIA A800 80G GPUs. The global batch 388

size is set to 512, and the number of total train- 389

ing steps is set to 448. We use a learning rate of 390

1 × 10−5 and a weight decay of 3 × 10−7. Addi- 391

tionally, a WarmupLR scheduler with a warmup 392

ratio of 0.2 is used. 393

Baselines The baselines consist of proprietary 394

models, base models, and fine-tuned models. 395

Proprietary Models. These models, unlike open- 396

source models, are developed, owned, and man- 397
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Models HumanEval HumanEval+ MBPP MBPP+
Rely on proprietary

LLMs?

Proprietary Models

Code-Davinci-002 47.0 - 58.1 - -
Code-Cushman-001 33.5 - 45.9 - -

GPT-3.5-Turbo 76.8 70.7 82.5 69.7 -
GPT-4-Turbo 90.2 86.6 85.7 73.3 -

Base Models
DeepSeekCoder-Base (6.7B) 47.6 39.6 70.2 56.6 -

CodeLlama (6.7B) 37.8 35.4 59.5 46.8 -
StarCoder (15B) 34.1 29.3 55.1 46.1 -

Fine-tuned Models

CodeT5+ (16B) 31.7 26.2 54.6 44.4 !

WizardCoder-CL (6.7B) 48.2 40.9 56.6 47.1 !

WizardCoder-SC (15B) 51.9 45.1 61.9 50.6 !

Magicoder-DS (6.7B) 66.5 60.4 75.4 61.9 !

MagicoderS-DS (6.7B) 76.8 70.7 75.7 64.4 !

Magicoder-CL (6.7B) 60.4 55.5 64.2 52.6 !

MagicoderS-CL (6.7B) 70.7 66.5 68.4 56.6 !

WaveCoder-DS (6.7B) 72.0 - 63.6 - !

WaveCoder-CL (6.7B) 48.1 - 47.2 - !

WaveCoder-SC (15B) 50.5 - 51.0 - !

Ours WarriorCoder (6.7B) 80.5 (+32.9) 75.6 (+36.0) 76.2 (+6.0) 64.8 (+8.2) %

Table 1: The pass@1(%) results on the code generation benchmarks (Humaneval, Humaneval+, MBPP and MBPP+).

aged by a private entity or organization. They are398

trained on specialized or private datasets that are399

not publicly available to serve specific business400

needs or objectives. Access to these models is401

usually based on API calls. Proprietary Models402

include Code-Davinci-002, Code-Cushman-001,403

GPT-3.5-Turbo (Ouyang et al., 2022) and GPT-4-404

Turbo (OpenAI et al., 2024).405

Base Models. They are the foundational, pre-406

trained models that serve as the core for further407

fine-tuning or adaptation to code tasks. Base408

Models include DeepSeekCoder-Base (Guo et al.,409

2024), CodeLlama (Rozière et al., 2023), and Star-410

Coder (Li et al., 2023).411

Fine-tuned Models. These models are initially412

pre-trained on a large, general-purpose dataset and413

then fine-tuned on a smaller, code-specific dataset.414

This two-step process enhances the model’s perfor-415

mance on coding tasks by enabling it to leverage416

both broad general knowledge and more focused,417

domain-specific expertise. Fine-tuned models in-418

clude CodeT5+, DeepSeek-Coder-Instruct (Guo419

et al., 2024), WizardCoder (Luo et al., 2024b),420

Magicoder (Wei et al., 2024), and WaveCoder (Yu421

et al., 2024). The suffixes -DS, -CL, and -SC422

denote the base models DeepSeekCoder-Base,423

CodeLlama-Python, and StarCoder, respectively.424

4.2 Main Results425

The results on the code generation benchmarks are426

summarized in Table 1. WarriorCoder achieves427

SOTA performance, with a pass@1 accuracy of428

80.5% (75.6%) in HumanEval (HumanEval +)429

and 76.2% (64.8%) in MBPP (MBPP +), sur-430

passing all other fine-tuned models. Particularly,431

it shows a significant boost over on HumanEval432

and HumanEval+ (with gains of 32.9 and 36.0, 433

respectively). WarriorCoder also outperforms 434

MagicoderS-DS, Magicoder-DS and WaveCoder- 435

DS, which share the same backbone architecture 436

and similar amounts of training data. This substan- 437

tial performance gap highlights the effectiveness of 438

our approach in generating higher-quality training 439

data, providing a clear advantage over models that 440

rely on similar foundational setups. 441

Moreover, WarriorCoder also achieves excel- 442

lent performances on the code reasoning bench- 443

mark and libraries usage benchmark. As shown 444

in Table 2, WarriorCoder outperforms a range 445

of open-source models, including those with sizes 446

up to 34B, in pass@1 accuracy and achieves bet- 447

ter pass@5 accuracy compared to GPT-3.5-Turbo 448

(66.5% vs 63.2% on CRUXEval-I and 66.3% vs 449

59.3% on CRUXEval-O). Table 3 shows that War- 450

riorCoder outperforms all baselines on most of 451

the libraries, especially on SciPy, Sklearn and Ten- 452

sorflow (33.0% , 39.1% , and 42.2%, respectively). 453

These results highlight WarriorCoder as a pow- 454

erful paradigm - a data flywheel that absorbs ex- 455

pertise from multiple code domains. Our approach 456

significantly enhances the target model’s ability to 457

generalize across various tasks, demonstrating its 458

superiority in leveraging diverse data sources to 459

drive performance improvements. 460

Addiontionally, previous data flywheels typi- 461

cally rely on augmentations and annotations gen- 462

erated using proprietary LLMs and specially de- 463

signed prompts. In contrast, our approach does not 464

require pre-existing datasets, diverse handwritten 465

prompts or proprietary LLMs. Despite this, we 466

get competitive results that rival those of advanced 467
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Models
CRUXEval-I CRUXEval-O

Pass@1 Pass@5 Pass@1 Pass@5

Proprietary Models
GPT-4-Turbo 69.8 76.8 68.7 73.0

GPT-3.5-Turbo 49.0 63.2 49.4 59.3
Claude-3-Opus 64.2 - 65.8 -

Open-source Models

StarCoder (6.7B) 29.7 47.3 32.2 44.9
StarCoder (15B) 31.3 49.2 34.2 47.1

DeepSeekCoder-Instruct (6.7B) 37.4 53.3 41.2 52.8
CodeLlama-Python (6.7B) 37.3 57.0 35.9 48.8
CodeLlama-Python (13B) 39.7 56.9 39.8 52.5
CodeLlama-Python (34B) 43.9 59.5 41.4 52.9

Mistral (6.7B) 35.0 52.3 34.3 48.6
WizardCoder (13B) 36.5 51.6 41.3 52.4
WizardCoder (34B) 42.7 57.5 43.4 53.8

Magicoder(6.7B) 41.7 62.4 44.4 57.5
Ours WarriorCoder (6.7B) 42.9 66.5 45.4 66.3

Table 2: The pass@1(%) and pass@5(%) results on the code reasoning benchmark (CRUXEval).

Models
Matplotlib NumPy Pandas PyTorch SciPy Sklearn TensorFlow Overall

(155) (220) (291) (68) (106) (115) (45) (1000)
INCODER (6.7B) 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4

CodeGen-Mono (16B) 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Code-Cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

StarCoder (15B) 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
WizardCoder-SC (15B) 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2

CodeLlama-Python (6.7B) 55.3 34.5 16.4 19.9 22.3 17.6 28.5 28.0
WizardCoder-CL (6.7B) 53.5 34.4 15.2 25.7 21.0 24.5 28.9 28.4

Magicoder-CL (6.7B) 54.6 34.8 19.0 24.7 25.0 22.6 28.9 29.9
MagicoderS-CL (6.7B) 55.9 40.6 28.4 40.4 28.8 35.8 37.6 37.5
WarriorCoder (6.7B) 55.5 41.8 26.1 41.2 33.0 39.1 42.2 38.1

Table 3: The pass@1(%) results on the benchmark for using Python libraries in data science (DS-1000).

Task Percentage(%) Definition
Code Generation 51.4 Generating source code based on certain specifications or requirements.
Code Debugging 12.2 Identifying, diagnosing, and fixing errors or bugs in a code snippet.

Code Optimization 3.8 Improving a program’s performance, efficiency, or resource usage without changing its functionality.
Code Reasoning 2.9 Predicting the output based on the given input or predicting the input from the known output.
Code Analysis 6.6 Analyzing, understanding, and explaining how a piece of code works.

Theoretical Explanation 22.2 Answering the questions about principles, theories, and properties of programming language.
Code Transpile 0.9 Converting source code from one programming language into another programming language.

Table 4: The proportion of different tasks in the training data.

#Num HumanEval HumanEval+ MBPP MBPP+
1 75.4 72.6 73.3 62.4
2 77.2 73.3 74.5 62.9
5 80.5 75.6 76.2 64.8

Table 5: The results observed when learning from vary-
ing numbers of experts.

proprietary code experts. This highlights the effec-468

tiveness of our data flywheel, demonstrating the469

feasibility of collecting high-quality data at a low470

cost.471

4.3 Ablation Study472

Table 5 presents the results observed when the tar-473

get model learns from varying numbers of experts.474

The target model shows a significant improvement475

when learning from just one code LLM, indicating476

that even a single code expert enables it to acquire a477

specific set of knowledge. However, as the number 478

of experts increases, WarriorCoder benefits from 479

learning across all expert code LLMs. As a result, 480

the model trained with 5 code LLMs outperforms 481

others across all four benchmarks, demonstrating 482

the advantages of integrating knowledge from mul- 483

tiple specialized experts. 484

4.4 Data Analysis 485

4.4.1 Dependence Analysis 486

Figure 3 illustrates the overlap between the instruc- 487

tions mined from expert LLMs and those from 488

widely used code training datasets, measured us- 489

ing the ROUGE score. The majority of the mined 490

instructions have a ROUGE score of less than 0.3, 491

suggesting they are largely distinct from those in 492

existing datasets. Notably, no mined instructions 493

exceed a ROUGE score of 0.6, further emphasiz- 494
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Figure 3: The overlapping rate between the mined in-
structions and existing training datasets.
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Figure 4: The heatmap of win rates of the selected code
experts.

ing that the mined instructions are drawn from the495

internal distribution of expert LLMs, rather than496

being simple replications or extensions of the train-497

ing data. Consequently, these instructions exhibit498

a higher degree of independence, making them499

particularly valuable for training, as they provide500

novel examples that can enhance the target model’s501

capabilities.502

4.4.2 Diversity Analysis503

Table 4 reveals the distribution of different tasks504

in the training data. The range of instructions cov-505

ers a variety of tasks, ensuring that WarriorCoder506

can generalize effectively across multiple bench-507

marks. Notably, while Code Reasoning represents508

only 2.9% of the entire dataset, WarriorCoder still509

achieves outstanding performance on CRUXEval,510

highlighting the potential of the framework that511

learns from expert battles. Furthermore, Figure 4 il-512

lustrates the battle results between the five selected513

code experts. Even though an expert may have the514

highest Elo Rating, it is not necessarily the best515

performer on all tasks. However, WarriorCoder516
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Figure 5: The proportion of difficulties of mined in-
structions. As mentioned in Section 3.2, the difficulties
of instructions are divided into four levels: excellent
(9-10), good(6-8), average(3-5) and poor(1-2).

learns from the winner of each instruction, thereby 517

diversifying the target responses. 518

4.4.3 Difficulty Analysis 519

Figure 5 shows the difficulty distribution of the 520

mined instructions, offering insights into the in- 521

ternal knowledge of the code experts. Most in- 522

structions fall within the ’good’ level, with scores 523

between 6 and 8. Instructions rated as ’excellent’ 524

(scores 9-10) constitute only a small portion of the 525

dataset, indicating that highly complex or advanced 526

tasks are relatively rare. Instructions with scores 527

below 6 are excluded from the training set, as they 528

tend to be either too easy or overly ambiguous. 529

Such instructions are considered detrimental to the 530

training stage, as they may not provide meaningful 531

learning signals and could undermine the model’s 532

performance and generalization ability. More ex- 533

amples are listed in Appendix A. 534

5 Conclusion 535

This paper highlights the limitations of existing 536

data flywheels for code LLMs that primarily rely 537

on pre-existing datasets and annotations from a lim- 538

ited pool of proprietary LLMs, leading to a lack 539

of data diversity and reinforces the systemic bi- 540

ases. Even more concerning is the fact that many 541

current open-source expert code LLMs keep their 542

training data proprietary, further restricting access 543

to diverse and high-quality data sources. To ad- 544

dress these challenges, we propose WarriorCoder, 545

which learns from expert battles, enabling the ab- 546

sorption of each expert’s strengths. Unlike existing 547

methods that expand and refine datasets, we con- 548

struct training data from scratch and achieve SOTA 549

performances on multiple benchmarks without the 550

need for pre-existing datasets and costly annota- 551

tions. Furthermore, our approach can potentially 552

be applied to other complex tasks besides coding 553

in the future. 554
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Limitations555

In this paper, we propose a novel training paradigm556

in which the target model learns from expert bat-557

tles, aiming to overcome the limitations of current558

data flywheels. While we can generate high-quality559

and diverse data from scratch at a low cost, the560

battle process can become time-consuming when561

the number of experts is large. Exploring more effi-562

cient and effective competition modes is a promis-563

ing direction for future work.564
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You are an AI assistant designed to provide helpful,
step-by-step guidance on coding problems. The
user will ask you a wide range of Python coding
questions. Your purpose is to assist users in under-
standing coding concepts, working through code,
and arriving at the correct solutions.

Table 6: The prompt for instruction mining.

A Case Study 1079

Here we show two examples of mined instructions. 1080

The first has a score of 6: 1081

1082
I’m trying to combine two dictionaries into one and
eliminate duplicate values for a given key the two
dictionaries may have different structures, eg.
dictA = {’cat1’:{’cat2’:’A’}, ’cat2’:{’cat3’:’B’}...}
dictB = {’cat1’:{’cat2’:’C’}}
Combining with a recursive function seems the best
option but I can’t seem to get it right.
**Please Help.**

1083

And the second has a score of 9: 1084

1085
**Function to Get the Index of an Element in a 2D
List (List of Lists)**
====================================
Create a function named ’get_index_2d’ that
accepts three parameters:
- a 2D list ’matrix’
- an element to search for ’target’
- a default value to return ’default’
If the ’target’ exists in the ’matrix’, the function
should return its index (a tuple containing row,
column).
If the ’target’ is not found in the ’matrix’, the
function should return the ’default’ value.
"""python
def get_index_2d(matrix, target, default=None):

# implement function
"""
### Example Use Cases:
| Matrix | Target | Default | Expected |
| [[1,2],[3,4]] | 4 | None | (1,1) |
| [[1,2],[3,4]] | 5 | None | None |
| [[1,2],[3,4]] | 1 | (0,-1) | (0,0) |
| [[’a’,’b’], [’c’,’d’]] | ’d’ | (-1,-1) | (1,1) |

1086

Both instructions are clear and specific, provid- 1087

ing a solid foundation for tackling the problem. 1088

However, the first instruction is more straightfor- 1089

ward, with fewer requirements and a greater em- 1090

phasis on practical tips and strategies to handle the 1091
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This is a chatbot arena. You will be given assis-
tant A’s answer, and assistant B’s answer. Please
act as an impartial judge and evaluate the capa-
bility of two AI assistants. You should choose
the assistant that follows instructions and answers
questions better. Your evaluation should consider
factors such as helpfulness, relevance, and accuracy.
Begin your evaluation by comparing the responses
of the two assistants and provide a short explana-
tion. Avoid any position biases and ensure that
the order in which the responses were presented
does not influence your decision. DO NOT allow
the LENGTH of the responses to influence your
evaluation, choose the one that is straight-to-the-
point instead of unnecessarily verbose. When the
two candidates perform equally well, choose the
SHORTER answer. Do not favor certain names
of the assistants. Be as objective as possible. Af-
ter providing your explanation concisely within
200 words, output your final verdict by strictly fol-
lowing this format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better, and "[[Tie]]" for a
tie. Finish your judgement within 300 words.
[[User Question]]
{instruction}
[[The Start of Assistant A’s Answer]]
{#A’s Answer}
[[The End of Assistant A’s Answer]]
[[The Start of Assistant B’s Answer]]
{#B’s Answer}
[[The End of Assistant B’s Answer]]

Table 7: The prompt for the evaluation of pairwise com-
petitions.

task. In contrast, the second instruction introduces1092

more complex conditions and does not include any1093

guidance, making the problem more challenging to1094

solve.1095

B Prompts for Instruction Mining and1096

Evaluation1097

Table 6 and Table 7 show the prompts for instruc-1098

tion mining and evaluation. To maintain impar-1099

tiality in the evaluation process, we withhold the1100

names of the opponents from the judges, thus avoid-1101

ing potential system biases. Additional rules will1102

be discussed in the next section.1103

C Rules for the Fairness of Evaluation1104

To ensure impartiality in the evaluation process,1105

we establish a set of rules, including order shuf-1106

fling, suspicion averting, and offensive-defense1107

balance. 1108

Order shuffling refers to the practice of ran- 1109

domizing the order in which responses from the 1110

attacker (A) and defender (B) appear in the eval- 1111

uation prompt. This helps mitigate any positional 1112

bias that may arise if a particular position is favored 1113

by certain language models. 1114

Suspicion averting ensures that competitors do 1115

not evaluate their own responses, preventing any 1116

potential bias in favor of their own generated an- 1117

swers. 1118

Offensive-defense balance guarantees that all 1119

competitors have an equal number of offensive and 1120

defensive turns, maintaining fairness in the evalua- 1121

tion process. 1122
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