
WarriorCoder: Learning from Expert Battles to Augment Code Large
Language Models

Anonymous ACL submission

Abstract001

Despite recent progress achieved by code large002
language models (LLMs), their remarkable003
abilities are largely dependent on fine-tuning004
on the high-quality data, posing challenges005
for data collection and annotation. To ad-006
dress this, current methods often design var-007
ious data flywheels to collect complex code008
instructions, enabling models to handle more009
intricate tasks. However, these approaches typ-010
ically rely on off-the-shelf datasets and data011
augmentation from a limited set of propri-012
etary LLMs (e.g., Claude, GPT4, and so on),013
which restricts the diversity of the constructed014
data and makes it prone to systemic biases.015
In this paper, we propose WarriorCoder, a016
novel paradigm learns from expert battles to017
address these limitations. Specifically, we cre-018
ate an arena where leading expert code LLMs019
challenge each other, with evaluations con-020
ducted by impartial judges. This competitive021
framework generates novel training data from022
scratch, leveraging the strengths of all partici-023
pants. Experimental results show that Warrior-024
Coder achieves state-of-the-art performance025
compared to previous models of the same size,026
even without relying on proprietary LLMs.027

1 Introduction028

Recent large language models (LLMs) have demon-029

strated impressive performance on code-related030

tasks (Li et al., 2023; Rozière et al., 2023; Guo031

et al., 2024; DeepSeek-AI et al., 2024; Li et al.,032

2022; Nijkamp et al., 2023; Zheng et al., 2023b;033

Fried et al., 2023; Wang et al., 2021). These suc-034

cesses highlight that pre-training on vast amounts035

of code data significantly enhances their core cod-036

ing abilities. In addition to pre-training, several037

approaches that fine-tune LLMs with instruction-038

following data (Ding et al., 2023) have also made039

substantial progress in improving models’ under-040

standing of user instructions and the quality of041

their responses. However, the effectiveness of post-042

Seed
Data

augment Expanded
Data

Target
Model

annotate Annotated
Data

learn

Previous Work

Ours

Target
Model

Annotated
Data

learnmine

Human
prompt

Figure 1: The comparisons between our method and
traditional data flywheels. Unlike previous work, we
guides the target model to learn from pairwise competi-
tions. No demand for seed datasets, human-generated
prompts, or annotations from proprietary models, the
target model integrates the strengths of its competitors.

training is heavily dependent on the availability of 043

high-quality data (Xu et al., 2024a), and challenges 044

of data collection and annotation remain difficult 045

to overcome. 046

To address these challenges, some approaches 047

propose various data flywheels to generate in- 048

struction data. Building on Self-Instruct, Chaud- 049

hary (2023) constructs Code Alpaca by prompting 050

teacher LLMs to generate instructions in a few- 051

shot setting. To further enhance the diversity and 052

complexity of Code Alpaca, WizardCoder (Luo 053

et al., 2024b) employs Evol-Instruct to evolve the 054

original instructions. These methods apply gen- 055

eral data augmentation to instruction construction, 056

lacking specific design considerations for the code 057

domain. Given that, recent methods specifically 058

design frameworks for instruction generation tai- 059

lored to code. For example, WaveCoder (Yu et al., 060

2024) collects raw code snippets and defines dif- 061

ferent tasks based on them. Similarly, InverseC- 062

1



oder (Wu et al., 2024b) prompts code LLMs to gen-063

erate high-quality instructions based on the original064

code through techniques like code summarization065

and self-evaluation. These methods construct data066

for code in various ways, effectively enhancing067

the model’s code generation capabilities. How-068

ever, they still rely on existing datasets (Muen-069

nighoff et al., 2024) and calls for proprietary LLMs070

(e.g., GPT-3.5, GPT-4, etc.), making data collec-071

tion costly. Additionally, the limited data sources072

and annotators constrain the diversity (Yu et al.,073

2023; Wang et al., 2023) of the data and inherit074

the system biases inherent in the limited pool of075

annotators (Wei et al., 2024).076

The challenges mentioned above motivated us077

to propose WarriorCoder, which learns from ex-078

pert battles to overcome current limitations. As079

illustrated in Figure 1, the attacker challenges the080

opponent within its area of expertise, and the tar-081

get model learns from the winner of these pairwise082

competitions. Specifically, we design a completion-083

based method to mine the capabilities which the084

attacker has already mastered, then integrate Elo085

Rating and voting results to balance the local and086

global evaluation. This approach enables us to087

generate novel training data from scratch, incorpo-088

rating the strengths of all the expert code LLMs,089

rather than relying on limited proprietary LLMs to090

expand existing datasets. Moreover, our method091

eliminates the need for human involvement and092

proprietary LLMs in the data collection, making093

it possible to collect high-quality, diverse data at a094

low cost. The main contributions of this paper are095

summarized as follows:096

• We identify the limitations of current data fly-097

wheel and propose a new scalable paradigm098

where the target model learns from expert bat-099

tles to solve them.100

• We design a completion-based method for col-101

lecting instructions and introduce the Elo Rat-102

ing system for evaluating responses, enabling103

the creation of high-quality and diverse train-104

ing data at a low cost. Fine-tuned on this data,105

WarriorCoder incorporates the strengths of106

all the experts, achieving state-of-the-art per-107

formance compared to previous models of108

the same size, without relying on proprietary109

LLMs.110

• Extensive experiments demonstrate the excel-111

lent performance of WarriorCoder on multi-112

ple code-related tasks, with ablation and anal- 113

ysis studies explaining how and why it works. 114

2 Related Work 115

2.1 Code LLMs 116

Code plays a crucial role in application areas for 117

LLMs (Jain et al., 2024), attracting significant inter- 118

est from both academia and industry. Codex (Chen 119

et al., 2021), an LLM with 12 billion parameters, 120

can solve 72.31% of complex Python programming 121

problems. Following the success of Codex (Lyu 122

et al., 2024), the rise of new code LLMs has demon- 123

strated even greater capabilities, such as code gen- 124

eration and debugging, as model sizes continue to 125

grow (Hou et al., 2023; Zan et al., 2023). Despite 126

this impressive progress, the performance of cur- 127

rent open-source models still lags behind that of 128

proprietary ones (e.g., GPT-3.5, GPT-4, etc.), pri- 129

marily because stronger models often keep their 130

training data proprietary (Hui et al., 2024). As a 131

result, the lack of publicly available code datasets 132

remains a significant barrier to further development 133

in this field. 134

2.2 Learning from Battles 135

Studying how people interact with LLMs in real- 136

world scenarios is a pressing need for ensuring the 137

alignment of LLMs (Chiang et al., 2024). The 138

LMSYS Chatbot Arena (Zheng et al., 2024) has 139

emerged as a groundbreaking initiative for explor- 140

ing real-world LLM-user interactions, collecting 141

and analyzing data from an open platform with 142

over 240K votes. Experimental results demonstrate 143

that the quality of data from the LMSYS Chatbot 144

Arena is competitive with that of ShareGPT (Chi- 145

ang et al., 2023), underscoring its value for training. 146

Now more and more attentions are paid on learning 147

from the battles between LLMs (Li et al., 2024; 148

Myrzakhan et al., 2024; Bogomolov et al., 2024). 149

However, collecting data through human online 150

evaluations is both expensive and time-consuming. 151

To address this, recent work has leveraged LLMs to 152

provide their preferences when faced with different 153

responses (Luo et al., 2024a; Zhao et al., 2024). 154

Although these methods eliminate the need for hu- 155

man annotation during data collection, they still 156

require pre-designed, high-quality instructions. 157

2.3 LLM as a Judge 158

Offering an automatic alternative to the scalabil- 159

ity challenges inherent in human evaluation, the 160

2



concept of LLM-as-a-judge has garnered signifi-161

cant public attention in recent years (Chiang and162

Lee, 2023). As large language models (LLMs)163

such as GPT-4 have demonstrated impressive ca-164

pabilities, they are increasingly being considered165

for use in evaluating other machine-generated out-166

puts (Weyssow et al., 2024). Experimental results167

by Thakur et al. (2024) show that these strong168

LLMs are capable of achieving a Cohen’s Kappa169

coefficient over 80%, a metric typically used to as-170

sess the level of agreement between human raters.171

This performance level is comparable to the con-172

sensus found among human experts, highlighting173

the potential of LLMs to serve as reliable evalua-174

tors in various contexts. However, judge models175

often struggle with complex problems, and eval-176

uating responses to such problems can be just as177

challenging as answering them (Wu et al., 2024a).178

Moreover, LLM-as-a-judge can introduce system179

biases, such as position bias, verbosity bias, and180

self-enhancement bias, which can undermine the181

fairness of the evaluation process (Chen et al.,182

2024a; Zheng et al., 2023a).183

3 WarriorCoder: Learning from Expert184

Battles185

In this section, we describe how WarriorCoder186

learns from expert battles. Unlike previous ap-187

proaches that expand existing datasets by prompt-188

ing a limited pool of proprietary LLMs, we con-189

struct an arena where state-of-the-art code LLMs190

compete against each other. Each model leverages191

its learned knowledge to challenge others, while192

judges evaluate the outcomes. The target model193

then learns from the winner of these pairwise com-194

petitions, progressively integrating the strengths of195

all competitors.196

3.1 Competitors Setting197

The capabilities of competitors determine the fi-198

nal performance of WarriorCoder. Theoretically,199

the more diverse and high-quality training data are200

derived from a larger and stronger pool of com-201

petitors. For this study, we select five leading202

open-source code experts from the BigCodeBench203

Leaderboard (Zhuo et al., 2024) - Athene-V2-204

Chat (Su et al., 2025), DeepSeek-Coder-V2-Lite-205

Instruct (DeepSeek-AI et al., 2024), Llama-3.3-206

70B-Instruct (Dubey et al., 2024), Qwen2.5-207

72B-Instruct (Hui et al., 2024), and QwQ-32B-208

Preview (Team, 2024). Notably, while Warrior-209

Coder achieves state-of-the-art performance based 210

solely on open-source code LLMs, it can also learn 211

from powerful proprietary LLMs. In each round of 212

the arena, only one pair of code experts is selected 213

as competitors, while the remaining ones serve as 214

judges. 215

3.2 Instruction Mining from Scratch 216

Considering a battle between LLM A and LLM B 217

where A is the attacker and B is the defender. The 218

first step of the arena is to use the strengths of A to 219

challenge B, which makes it necessary to know 220

what A has learned during its training process. 221

However, almost all open-source LLMs keep their 222

core data proprietary. Inspired by Magpie (Xu et al., 223

2024b), we design a completion-based method to 224

mine the capabilities which the code LLMs have 225

already mastered (① Completion-based Instruc- 226

tion Mining). Here we take Qwen2.5 (Hui et al., 227

2024) as an example. A conversation about writing 228

Python code in the chat template of Qwen2.5 is: 229

<|im_start|>system
You are an AI assistant designed to provide helpful
on Python coding problems.<|im_end|>
<|im_start|>user
Write a Quicksort algorithm.<|im_end|>
<|im_start|>assistant
Here is the solution:
def quicksort(arr):

...
<|im_end|>

230

Such chat templates are pre-defined conversa- 231

tional structures to guide the interaction between 232

the model and the user. Based on the LLMs’ strong 233

completion abilities, we feed only the prefix of the 234

chat template into them, prompting the LLM to 235

generate the user instructions: 236

<|im_start|>system
You are an AI assistant designed to provide re-
sponses on Python coding problems.<|im_end|>
<|im_start|>user

237

In this way, we can collect various instructions 238

I the model has already learned under various gen- 239

eration settings (different values of temperature 240

and top-p). Unlike traditional data synthesis, I is 241

not synthesized by the models but directly sam- 242

pled from their distributions, which avoids pattern 243

overfitting and significant shifts in the output distri- 244

bution (Chen et al., 2024b). However, these instruc- 245

tions may be repetitive, ambiguous, unclear, or too 246

easy. To address these concerns, we deduplicate 247

the data and adopt judges to assess their difficulty 248

3



…
Code Experts Arena

Select a pair of opponents

Voting Results

C
alculate

Elo Rating

Instructions with
Best Responses

<prefix-of-chat-
template>

Completion-based
Instruction Mining 

instruction 𝑖1

The Others are judges

generation config:
[𝑔1, 𝑔2, 𝑔3, … ]

instruction 𝑖2

instruction 𝑖3

Deduplication and 
Difficulty Filtering 

…

attacker

attacker judges

instructions:
𝐼 = [𝑖1, 𝑖2, 𝑖3, … ]

instruction 𝑖7

Embedding-based 
Compression 

instruction 𝑖6
instruction 𝑖5

instruction 𝑖3
instruction 𝑖1

…
instruction 𝑖6

instruction 𝑖1
…

attacker defender

for each 𝑖 ∈ Ӗ𝐼

Code Generating

response 𝐴 response 𝐵

ҧ𝐼 Ӗ𝐼

Vote from Judges
attacker defender

Obtain

C
ol

le
ct

 o
rig

in
al

 
in

st
ru

ct
io

ns
 𝐼

O
btain pairw

ise 
responses

Incorporates the strengths of all

Train

Target Model

judges

Figure 2: The diagram of learning from expert battles. In each round of the arena, the attacker challenges the
defender in its area of expertise under the evaluation of judges, and then the winner’s response is added to the
training data. In this manner, the target model gradually incorporates the strengths of all the code experts by
fine-tuning on the data.

(② Deduplication and Difficulty Filtering). We249

divide the difficulty of instructions into four levels:250

• Excellent (9-10): For instructions that are251

very clear, specific, and well-articulated.252

These instructions are particularly challeng-253

ing and excellently designed to assess the AI’s254

proficiency.255

• Good (6-8): For instructions that are clear256

and specific instructions. These are not overly257

difficult to answer and moderately assess the258

AI’s capabilities.259

• Average (3-5): For instructions that are fairly260

clear and specific instructions. These instruc-261

tions are easy to answer.262

• Poor (1-2): For instructions that are ambigu-263

ous or unclear.264

Only good and excellent instructions are consid-265

ered during the following steps:266

Ī = {i|i ∈ I ∧ d(i) ≥ 6} (1)267

where d(i) is the difficulty of instruction i.268

Then we compress the high-quality instructions269

Ī for the efficiency of post-training (③ Embedding-270

based Compression). To ensure the diversity271

and representativeness of instructions, we employ272

KCenterGreedy algorithm (Sener and Savarese,273

2018) to select the final instructions ¯̄I based on274

the embedding model - all-roberta-large-v1 (Liu275

et al., 2019).276

3.3 Win-Loss Decision 277

The defender is required to respond to the attacker’s 278

question, while the attacker A must also provide 279

an answer to its own instruction (④ Code Generat- 280

ing). Once both answers are collected, the judges 281

(the rest LLMs in arena) will evaluate the correct- 282

ness and helpfulness of the pairwise responses and 283

vote for their preferred one (more details can be 284

found in Appendix C). Then we can calculate the 285

local score for each response: 286

xiA>B =
tA

tA + tB
xiB>A =

tB
tA + tB

(2) 287

where xiA>B and xiB>A are the local scores for 288

A’s and B’s responses to the instruction i. xiA>B 289

represents the percentage of votes that candidate 290

A receives, while xiB>A similarly represents the 291

percentage of votes that candidate B receives. tA 292

and tB are the number of votes which A and B win. 293

However, relying solely on the local score to 294

select the winner can be problematic. In some 295

cases, a weaker model may receive more votes 296

than a stronger one, even though its responses are 297

not significantly better. This can occur because 298

the local score may not fully capture the quality of 299

the model’s performance, especially in situations 300

where the voting is influenced by factors, such as 301

randomness or bias from LLM judges. 302

To address this limitation, we propose consid- 303

ering both local contingency and global consis- 304

tency in the decision-making process. Instead of 305

directly basing our analysis on the immediate vot- 306

ing outcomes, we introduce the concept of the 307

4



global score — specifically, the Elo rating (Bai308

et al., 2022), which provides a more comprehen-309

sive reflection of a model’s relative performance310

over time and across various evaluations. The Elo311

rating system, originally developed to calculate the312

relative skill levels of players in two-player games313

(such as chess), has been successfully adapted to314

assess the performance of competitors in a range of315

competitive scenarios, including esports and other316

skill-based games.317

By incorporating the Elo rating, we account for318

both local performance in individual contests and319

global performance across multiple rounds, pro-320

viding a more robust and accurate measure of a321

model’s overall ability. This helps to mitigate the322

risk of weak models winning based on isolated,323

potentially unrepresentative votes:324

XElo
A>B =

1

1 + 10(RB−RA)/400

XElo
B>A =

1

1 + 10(RA−RB)/400

(3)325

where XElo
A>B and XElo

B>A indicate the expected326

probabilities of A defeating B and B defeating A,327

respectively. RA and RB are the Elo rating of A328

and B, which are updated dynamically and itera-329

tively. Given the battle result of A and B on an330

instruction i, we update them by:331

RA ← RA +K × (siA>B −XElo
A>B)

RB ← RB +K × (siB>A −XElo
B>A)

(4)332

where siA>B and siB>A are the actual score of the333

battle result of player A and B (1 for a win, 0.5 for334

a draw, and 0 for a loss). The factor K controls the335

sensitivity of rating changes.336

Based on Equation 2 and Equation 3, we can337

obtain the final score of A’s response for instruction338

i:339

eiA =
∑

B∈Com\A

αXElo
A>B + (1− α)xiA>B (5)340

where Com is the set of all the competitors and341

‘\’ is the subtraction operation. α is the coefficient342

to balance the local contingency and global consis-343

tency.344

3.4 Final Training345

Each item in the constructed dataset consists of an346

instruction, responses from various strong LLMs,347

and their corresponding scores, which supports348

multiple post-training methods. We select the re- 349

sponse with the highest score as the gold output to 350

obtain Instructions with Best Responses in Fig- 351

ure 2 and use SFT to train the target model. In this 352

manner, WarriorCoder integrates the strengths of 353

all the code experts, as their expertise is embedded 354

in the instructions and responses within the training 355

data. 356

4 Experiments 357

4.1 Experimental Details 358

Backbones We use DeepSeekCoder-Base- 359

6.7B (Guo et al., 2024) to initialize WarriorCoder. 360

As for the competitors of expert battles, we 361

choose strong open-source LLMs including 362

Athene-V2-Chat (Su et al., 2025), DeepSeek- 363

Coder-V2-Lite-Instruct (DeepSeek-AI et al., 2024), 364

Llama-3.3-70B-Instruct (Dubey et al., 2024), 365

Qwen2.5-72B-Instruct (Hui et al., 2024), and 366

QwQ-32B-Preview (Team, 2024). 367

Datasets To evaluate the code generation capa- 368

bility of WarriorCoder, we conduct evaluations 369

on HumanEval (Chen et al., 2021), MBPP (Austin 370

et al., 2021), HumanEval+ (Liu et al., 2023), and 371

MBPP+ (Liu et al., 2024). Besides, we also eval- 372

uate its code reasoning and libraries usage capa- 373

bilities on CRUXEval (Gu et al., 2024) and DS- 374

1000 (Lai et al., 2022). For a fair comparison, we 375

use the same decoding strategies and generation 376

configs as the previous work (Wei et al., 2024; Luo 377

et al., 2024b; Yu et al., 2024). 378

Experimental Settings During the intruction 379

minging, we adopt 9 different generation configs 380

where temperature t ∈ {1.0, 1.1, 1.2} and top-p 381

p ∈ {0.99, 0.995, 1.0}. The final number of battle 382

rounds is set to 70,000 and K is set to 40. α is set 383

to 0.7 because we need the Elo Rating only when 384

judges’ opinions are divided on the evaluation. The 385

detailed prompts can be found in Appendix B. As 386

for the training stage, we conduct parallel training 387

on 8 NVIDIA A800 80G GPUs. The global batch 388

size is set to 512, and the number of total train- 389

ing steps is set to 448. We use a learning rate of 390

1 × 10−5 and a weight decay of 3 × 10−7. Addi- 391

tionally, a WarmupLR scheduler with a warmup 392

ratio of 0.2 is used. 393

Baselines The baselines consist of proprietary 394

models, base models, and fine-tuned models. 395

Proprietary Models. These models, unlike open- 396

source models, are developed, owned, and man- 397

5



Models HumanEval HumanEval+ MBPP MBPP+
Rely on proprietary

LLMs?

Proprietary Models

Code-Davinci-002 47.0 - 58.1 - -
Code-Cushman-001 33.5 - 45.9 - -

GPT-3.5-Turbo 76.8 70.7 82.5 69.7 -
GPT-4-Turbo 90.2 86.6 85.7 73.3 -

Base Models
DeepSeekCoder-Base (6.7B) 47.6 39.6 70.2 56.6 -

CodeLlama (6.7B) 37.8 35.4 59.5 46.8 -
StarCoder (15B) 34.1 29.3 55.1 46.1 -

Fine-tuned Models

CodeT5+ (16B) 31.7 26.2 54.6 44.4 !

WizardCoder-CL (6.7B) 48.2 40.9 56.6 47.1 !

WizardCoder-SC (15B) 51.9 45.1 61.9 50.6 !

Magicoder-DS (6.7B) 66.5 60.4 75.4 61.9 !

MagicoderS-DS (6.7B) 76.8 70.7 75.7 64.4 !

Magicoder-CL (6.7B) 60.4 55.5 64.2 52.6 !

MagicoderS-CL (6.7B) 70.7 66.5 68.4 56.6 !

WaveCoder-DS (6.7B) 72.0 - 63.6 - !

WaveCoder-CL (6.7B) 48.1 - 47.2 - !

WaveCoder-SC (15B) 50.5 - 51.0 - !

Ours WarriorCoder (6.7B) 80.5 (+32.9) 75.6 (+36.0) 76.2 (+6.0) 64.8 (+8.2) %

Table 1: The pass@1(%) results on the code generation benchmarks (Humaneval, Humaneval+, MBPP and MBPP+).

aged by a private entity or organization. They are398

trained on specialized or private datasets that are399

not publicly available to serve specific business400

needs or objectives. Access to these models is401

usually based on API calls. Proprietary Models402

include Code-Davinci-002, Code-Cushman-001,403

GPT-3.5-Turbo (Ouyang et al., 2022) and GPT-4-404

Turbo (OpenAI et al., 2024).405

Base Models. They are the foundational, pre-406

trained models that serve as the core for further407

fine-tuning or adaptation to code tasks. Base408

Models include DeepSeekCoder-Base (Guo et al.,409

2024), CodeLlama (Rozière et al., 2023), and Star-410

Coder (Li et al., 2023).411

Fine-tuned Models. These models are initially412

pre-trained on a large, general-purpose dataset and413

then fine-tuned on a smaller, code-specific dataset.414

This two-step process enhances the model’s perfor-415

mance on coding tasks by enabling it to leverage416

both broad general knowledge and more focused,417

domain-specific expertise. Fine-tuned models in-418

clude CodeT5+, DeepSeek-Coder-Instruct (Guo419

et al., 2024), WizardCoder (Luo et al., 2024b),420

Magicoder (Wei et al., 2024), and WaveCoder (Yu421

et al., 2024). The suffixes -DS, -CL, and -SC422

denote the base models DeepSeekCoder-Base,423

CodeLlama-Python, and StarCoder, respectively.424

4.2 Main Results425

The results on the code generation benchmarks are426

summarized in Table 1. WarriorCoder achieves427

SOTA performance, with a pass@1 accuracy of428

80.5% (75.6%) in HumanEval (HumanEval +)429

and 76.2% (64.8%) in MBPP (MBPP +), sur-430

passing all other fine-tuned models. Particularly,431

it shows a significant boost over on HumanEval432

and HumanEval+ (with gains of 32.9 and 36.0, 433

respectively). WarriorCoder also outperforms 434

MagicoderS-DS, Magicoder-DS and WaveCoder- 435

DS, which share the same backbone architecture 436

and similar amounts of training data. This substan- 437

tial performance gap highlights the effectiveness of 438

our approach in generating higher-quality training 439

data, providing a clear advantage over models that 440

rely on similar foundational setups. 441

Moreover, WarriorCoder also achieves excel- 442

lent performances on the code reasoning bench- 443

mark and libraries usage benchmark. As shown 444

in Table 2, WarriorCoder outperforms a range 445

of open-source models, including those with sizes 446

up to 34B, in pass@1 accuracy and achieves bet- 447

ter pass@5 accuracy compared to GPT-3.5-Turbo 448

(66.5% vs 63.2% on CRUXEval-I and 66.3% vs 449

59.3% on CRUXEval-O). Table 3 shows that War- 450

riorCoder outperforms all baselines on most of 451

the libraries, especially on SciPy, Sklearn and Ten- 452

sorflow (33.0% , 39.1% , and 42.2%, respectively). 453

These results highlight WarriorCoder as a pow- 454

erful paradigm - a data flywheel that absorbs ex- 455

pertise from multiple code domains. Our approach 456

significantly enhances the target model’s ability to 457

generalize across various tasks, demonstrating its 458

superiority in leveraging diverse data sources to 459

drive performance improvements. 460

Addiontionally, previous data flywheels typi- 461

cally rely on augmentations and annotations gen- 462

erated using proprietary LLMs and specially de- 463

signed prompts. In contrast, our approach does not 464

require pre-existing datasets, diverse handwritten 465

prompts or proprietary LLMs. Despite this, we 466

get competitive results that rival those of advanced 467

6



Models
CRUXEval-I CRUXEval-O

Pass@1 Pass@5 Pass@1 Pass@5

Proprietary Models
GPT-4-Turbo 69.8 76.8 68.7 73.0

GPT-3.5-Turbo 49.0 63.2 49.4 59.3
Claude-3-Opus 64.2 - 65.8 -

Open-source Models

StarCoder (6.7B) 29.7 47.3 32.2 44.9
StarCoder (15B) 31.3 49.2 34.2 47.1

DeepSeekCoder-Instruct (6.7B) 37.4 53.3 41.2 52.8
CodeLlama-Python (6.7B) 37.3 57.0 35.9 48.8
CodeLlama-Python (13B) 39.7 56.9 39.8 52.5
CodeLlama-Python (34B) 43.9 59.5 41.4 52.9

Mistral (6.7B) 35.0 52.3 34.3 48.6
WizardCoder (13B) 36.5 51.6 41.3 52.4
WizardCoder (34B) 42.7 57.5 43.4 53.8

Magicoder(6.7B) 41.7 62.4 44.4 57.5
Ours WarriorCoder (6.7B) 42.9 66.5 45.4 66.3

Table 2: The pass@1(%) and pass@5(%) results on the code reasoning benchmark (CRUXEval).

Models
Matplotlib NumPy Pandas PyTorch SciPy Sklearn TensorFlow Overall

(155) (220) (291) (68) (106) (115) (45) (1000)
INCODER (6.7B) 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4

CodeGen-Mono (16B) 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Code-Cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

StarCoder (15B) 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
WizardCoder-SC (15B) 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2

CodeLlama-Python (6.7B) 55.3 34.5 16.4 19.9 22.3 17.6 28.5 28.0
WizardCoder-CL (6.7B) 53.5 34.4 15.2 25.7 21.0 24.5 28.9 28.4

Magicoder-CL (6.7B) 54.6 34.8 19.0 24.7 25.0 22.6 28.9 29.9
MagicoderS-CL (6.7B) 55.9 40.6 28.4 40.4 28.8 35.8 37.6 37.5
WarriorCoder (6.7B) 55.5 41.8 26.1 41.2 33.0 39.1 42.2 38.1

Table 3: The pass@1(%) results on the benchmark for using Python libraries in data science (DS-1000).

Task Percentage(%) Definition
Code Generation 51.4 Generating source code based on certain specifications or requirements.
Code Debugging 12.2 Identifying, diagnosing, and fixing errors or bugs in a code snippet.

Code Optimization 3.8 Improving a program’s performance, efficiency, or resource usage without changing its functionality.
Code Reasoning 2.9 Predicting the output based on the given input or predicting the input from the known output.
Code Analysis 6.6 Analyzing, understanding, and explaining how a piece of code works.

Theoretical Explanation 22.2 Answering the questions about principles, theories, and properties of programming language.
Code Transpile 0.9 Converting source code from one programming language into another programming language.

Table 4: The proportion of different tasks in the training data.

#Num HumanEval HumanEval+ MBPP MBPP+
1 75.4 72.6 73.3 62.4
2 77.2 73.3 74.5 62.9
5 80.5 75.6 76.2 64.8

Table 5: The results observed when learning from vary-
ing numbers of experts.

proprietary code experts. This highlights the effec-468

tiveness of our data flywheel, demonstrating the469

feasibility of collecting high-quality data at a low470

cost.471

4.3 Ablation Study472

Table 5 presents the results observed when the tar-473

get model learns from varying numbers of experts.474

The target model shows a significant improvement475

when learning from just one code LLM, indicating476

that even a single code expert enables it to acquire a477

specific set of knowledge. However, as the number 478

of experts increases, WarriorCoder benefits from 479

learning across all expert code LLMs. As a result, 480

the model trained with 5 code LLMs outperforms 481

others across all four benchmarks, demonstrating 482

the advantages of integrating knowledge from mul- 483

tiple specialized experts. 484

4.4 Data Analysis 485

4.4.1 Dependence Analysis 486

Figure 3 illustrates the overlap between the instruc- 487

tions mined from expert LLMs and those from 488

widely used code training datasets, measured us- 489

ing the ROUGE score. The majority of the mined 490

instructions have a ROUGE score of less than 0.3, 491

suggesting they are largely distinct from those in 492

existing datasets. Notably, no mined instructions 493

exceed a ROUGE score of 0.6, further emphasiz- 494

7



[0,0.1) [0.1,0.2)[0.2,0.3)[0.3.0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)[0.7,0.8)[0.8,0.9)[0.9,1.0]
Rouge Score

0

20

40

60

80

100
Pe

rc
en

ta
ge

 (%
)

Codealpaca
Rouge-1 Rouge-2 Rouge-L

[0,0.1) [0.1,0.2)[0.2,0.3)[0.3.0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)[0.7,0.8)[0.8,0.9)[0.9,1.0]
Rouge Score

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Codeultrafeedback
Rouge-1 Rouge-2 Rouge-L

Figure 3: The overlapping rate between the mined in-
structions and existing training datasets.

Athene Llama DeepSeekCoder Qwen QwQ

At
he

ne
Lla

m
a

De
ep

Se
ek

Co
de

r
Qw

en
Qw

Q 0.3

0.4

0.5

0.6

0.7

Figure 4: The heatmap of win rates of the selected code
experts.

ing that the mined instructions are drawn from the495

internal distribution of expert LLMs, rather than496

being simple replications or extensions of the train-497

ing data. Consequently, these instructions exhibit498

a higher degree of independence, making them499

particularly valuable for training, as they provide500

novel examples that can enhance the target model’s501

capabilities.502

4.4.2 Diversity Analysis503

Table 4 reveals the distribution of different tasks504

in the training data. The range of instructions cov-505

ers a variety of tasks, ensuring that WarriorCoder506

can generalize effectively across multiple bench-507

marks. Notably, while Code Reasoning represents508

only 2.9% of the entire dataset, WarriorCoder still509

achieves outstanding performance on CRUXEval,510

highlighting the potential of the framework that511

learns from expert battles. Furthermore, Figure 4 il-512

lustrates the battle results between the five selected513

code experts. Even though an expert may have the514

highest Elo Rating, it is not necessarily the best515

performer on all tasks. However, WarriorCoder516

1 2 3 4 5 6 7 8 9 10
Difficulty Score

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 (%

)

Difficulty of Instructions
Athene Llama DeepSeekCoder Qwen QwQ

Figure 5: The proportion of difficulties of mined in-
structions. As mentioned in Section 3.2, the difficulties
of instructions are divided into four levels: excellent
(9-10), good(6-8), average(3-5) and poor(1-2).

learns from the winner of each instruction, thereby 517

diversifying the target responses. 518

4.4.3 Difficulty Analysis 519

Figure 5 shows the difficulty distribution of the 520

mined instructions, offering insights into the in- 521

ternal knowledge of the code experts. Most in- 522

structions fall within the ’good’ level, with scores 523

between 6 and 8. Instructions rated as ’excellent’ 524

(scores 9-10) constitute only a small portion of the 525

dataset, indicating that highly complex or advanced 526

tasks are relatively rare. Instructions with scores 527

below 6 are excluded from the training set, as they 528

tend to be either too easy or overly ambiguous. 529

Such instructions are considered detrimental to the 530

training stage, as they may not provide meaningful 531

learning signals and could undermine the model’s 532

performance and generalization ability. More ex- 533

amples are listed in Appendix A. 534

5 Conclusion 535

This paper highlights the limitations of existing 536

data flywheels for code LLMs that primarily rely 537

on pre-existing datasets and annotations from a lim- 538

ited pool of proprietary LLMs, leading to a lack 539

of data diversity and reinforces the systemic bi- 540

ases. Even more concerning is the fact that many 541

current open-source expert code LLMs keep their 542

training data proprietary, further restricting access 543

to diverse and high-quality data sources. To ad- 544

dress these challenges, we propose WarriorCoder, 545

which learns from expert battles, enabling the ab- 546

sorption of each expert’s strengths. Unlike existing 547

methods that expand and refine datasets, we con- 548

struct training data from scratch and achieve SOTA 549

performances on multiple benchmarks without the 550

need for pre-existing datasets and costly annota- 551

tions. Furthermore, our approach can potentially 552

be applied to other complex tasks besides coding 553

in the future. 554

8



Limitations555

In this paper, we propose a novel training paradigm556

in which the target model learns from expert bat-557

tles, aiming to overcome the limitations of current558

data flywheels. While we can generate high-quality559

and diverse data from scratch at a low cost, the560

battle process can become time-consuming when561

the number of experts is large. Exploring more effi-562

cient and effective competition modes is a promis-563

ing direction for future work.564

References565

Jacob Austin, Augustus Odena, Maxwell I. Nye,566
Maarten Bosma, Henryk Michalewski, David Dohan,567
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,568
and Charles Sutton. 2021. Program synthesis with569
large language models. CoRR, abs/2108.07732.570

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda571
Askell, Anna Chen, Nova DasSarma, Dawn Drain,572
Stanislav Fort, Deep Ganguli, Tom Henighan,573
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,574
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac575
Hatfield-Dodds, Danny Hernandez, Tristan Hume,576
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel577
Nanda, Catherine Olsson, Dario Amodei, Tom B.578
Brown, Jack Clark, Sam McCandlish, Chris Olah,579
Benjamin Mann, and Jared Kaplan. 2022. Train-580
ing a helpful and harmless assistant with rein-581
forcement learning from human feedback. CoRR,582
abs/2204.05862.583

Egor Bogomolov, Aleksandra Eliseeva, Timur Gal-584
imzyanov, Evgeniy Glukhov, Anton Shapkin, Maria585
Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie586
van Deursen, Maliheh Izadi, and Timofey Bryksin.587
2024. Long code arena: a set of benchmarks for588
long-context code models. CoRR, abs/2406.11612.589

Sahil Chaudhary. 2023. Code alpaca: An instruction-590
following llama model for code generation. https:591
//github.com/sahil280114/codealpaca.592

Guiming Chen, Shunian Chen, Ziche Liu, Feng Jiang,593
and Benyou Wang. 2024a. Humans or llms as the594
judge? A study on judgement bias. In Proceedings595
of the 2024 Conference on Empirical Methods in596
Natural Language Processing, EMNLP 2024, Miami,597
FL, USA, November 12-16, 2024, pages 8301–8327.598
Association for Computational Linguistics.599

Jie Chen, Yupeng Zhang, Bingning Wang, Xin Zhao,600
Ji-Rong Wen, and Weipeng Chen. 2024b. Unveiling601
the flaws: Exploring imperfections in synthetic data602
and mitigation strategies for large language models.603
In Findings of the Association for Computational604
Linguistics: EMNLP 2024, Miami, Florida, USA,605
November 12-16, 2024, pages 14855–14865. Associ-606
ation for Computational Linguistics.607

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 608
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka- 609
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 610
Greg Brockman, Alex Ray, Raul Puri, Gretchen 611
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 612
try, Pamela Mishkin, Brooke Chan, Scott Gray, 613
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 614
Kaiser, Mohammad Bavarian, Clemens Winter, 615
Philippe Tillet, Felipe Petroski Such, Dave Cum- 616
mings, Matthias Plappert, Fotios Chantzis, Eliza- 617
beth Barnes, Ariel Herbert-Voss, William Hebgen 618
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 619
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 620
William Saunders, Christopher Hesse, Andrew N. 621
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 622
Morikawa, Alec Radford, Matthew Knight, Miles 623
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 624
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 625
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 626
ing large language models trained on code. CoRR, 627
abs/2107.03374. 628

David Cheng-Han Chiang and Hung-yi Lee. 2023. Can 629
large language models be an alternative to human 630
evaluations? In Proceedings of the 61st Annual 631
Meeting of the Association for Computational Lin- 632
guistics (Volume 1: Long Papers), ACL 2023, Toronto, 633
Canada, July 9-14, 2023, pages 15607–15631. Asso- 634
ciation for Computational Linguistics. 635

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 636
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 637
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 638
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 639
source chatbot impressing gpt-4 with 90%* chatgpt 640
quality. 641

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anas- 642
tasios Nikolas Angelopoulos, Tianle Li, Dacheng 643
Li, Banghua Zhu, Hao Zhang, Michael I. Jordan, 644
Joseph E. Gonzalez, and Ion Stoica. 2024. Chat- 645
bot arena: An open platform for evaluating llms by 646
human preference. In Forty-first International Con- 647
ference on Machine Learning, ICML 2024, Vienna, 648
Austria, July 21-27, 2024. OpenReview.net. 649

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, 650
Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun 651
Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao 652
Bi, Zihui Gu, Hanwei Xu, Damai Dai, Kai Dong, 653
Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, 654
Zhewen Hao, Bingxuan Wang, Junxiao Song, Deli 655
Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin 656
Liu, Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen, 657
Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang 658
Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang. 659
2024. Deepseek-coder-v2: Breaking the barrier of 660
closed-source models in code intelligence. CoRR, 661
abs/2406.11931. 662

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, 663
Shengding Hu, Zhiyuan Liu, Maosong Sun, and 664
Bowen Zhou. 2023. Enhancing chat language models 665
by scaling high-quality instructional conversations. 666
In Proceedings of the 2023 Conference on Empirical 667

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2406.11612
https://doi.org/10.48550/ARXIV.2406.11612
https://doi.org/10.48550/ARXIV.2406.11612
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://aclanthology.org/2024.emnlp-main.474
https://aclanthology.org/2024.emnlp-main.474
https://aclanthology.org/2024.emnlp-main.474
https://aclanthology.org/2024.findings-emnlp.873
https://aclanthology.org/2024.findings-emnlp.873
https://aclanthology.org/2024.findings-emnlp.873
https://aclanthology.org/2024.findings-emnlp.873
https://aclanthology.org/2024.findings-emnlp.873
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/V1/2023.ACL-LONG.870
https://doi.org/10.18653/V1/2023.ACL-LONG.870
https://doi.org/10.18653/V1/2023.ACL-LONG.870
https://doi.org/10.18653/V1/2023.ACL-LONG.870
https://doi.org/10.18653/V1/2023.ACL-LONG.870
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://doi.org/10.48550/ARXIV.2406.11931
https://doi.org/10.48550/ARXIV.2406.11931
https://doi.org/10.48550/ARXIV.2406.11931
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.183


Methods in Natural Language Processing, EMNLP668
2023, Singapore, December 6-10, 2023, pages 3029–669
3051. Association for Computational Linguistics.670

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,671
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,672
Akhil Mathur, Alan Schelten, Amy Yang, Angela673
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,674
Archi Mitra, Archie Sravankumar, Artem Korenev,675
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien676
Rodriguez, Austen Gregerson, Ava Spataru, Bap-677
tiste Rozière, Bethany Biron, Binh Tang, Bobbie678
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe679
Bi, Chris Marra, Chris McConnell, Christian Keller,680
Christophe Touret, Chunyang Wu, Corinne Wong,681
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-682
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,683
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,684
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,685
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,686
Emily Dinan, Eric Michael Smith, Filip Radenovic,687
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-688
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,689
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-690
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,691
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan692
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan693
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,694
Jeet Shah, Jelmer van der Linde, Jennifer Billock,695
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,696
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,697
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph698
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,699
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate700
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and701
et al. 2024. The llama 3 herd of models. CoRR,702
abs/2407.21783.703

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,704
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,705
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:706
A generative model for code infilling and synthesis.707
In The Eleventh International Conference on Learn-708
ing Representations, ICLR 2023, Kigali, Rwanda,709
May 1-5, 2023. OpenReview.net.710

Alex Gu, Baptiste Rozière, Hugh Leather, Armando711
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.712
2024. Cruxeval: A benchmark for code reason-713
ing, understanding and execution. arXiv preprint714
arXiv:2401.03065.715

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai716
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,717
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-718
feng Liang. 2024. Deepseek-coder: When the large719
language model meets programming - the rise of code720
intelligence. CoRR, abs/2401.14196.721

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong722
Wang, Li Li, Xiapu Luo, David Lo, John C. Grundy,723
and Haoyu Wang. 2023. Large language models for724
software engineering: A systematic literature review.725
CoRR, abs/2308.10620.726

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 727
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 728
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, 729
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and 730
Junyang Lin. 2024. Qwen2.5-coder technical report. 731
CoRR, abs/2409.12186. 732

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 733
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 734
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 735
codebench: Holistic and contamination free eval- 736
uation of large language models for code. CoRR, 737
abs/2403.07974. 738

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 739
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih, 740
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000: 741
A natural and reliable benchmark for data science 742
code generation. ArXiv, abs/2211.11501. 743

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 744
Muennighoff, Denis Kocetkov, Chenghao Mou, 745
Marc Marone, Christopher Akiki, Jia Li, Jenny 746
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue 747
Zhuo, Thomas Wang, Olivier Dehaene, Mishig 748
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh 749
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel 750
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, 751
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, 752
Zhiruo Wang, Rudra Murthy V, Jason T. Stiller- 753
man, Siva Sankalp Patel, Dmitry Abulkhanov, Marco 754
Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Ur- 755
vashi Bhattacharyya, Wenhao Yu, Swayam Singh, 756
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, 757
Fedor Zhdanov, Manuel Romero, Tony Lee, Na- 758
dav Timor, Jennifer Ding, Claire Schlesinger, Hai- 759
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 760
Alex Gu, Jennifer Robinson, Carolyn Jane Ander- 761
son, Brendan Dolan-Gavitt, Danish Contractor, Siva 762
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer- 763
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas 764
Wolf, Arjun Guha, Leandro von Werra, and Harm 765
de Vries. 2023. Starcoder: may the source be with 766
you! Trans. Mach. Learn. Res., 2023. 767

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, 768
Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez, and 769
Ion Stoica. 2024. From crowdsourced data to high- 770
quality benchmarks: Arena-hard and benchbuilder 771
pipeline. CoRR, abs/2406.11939. 772

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush- 773
man, Julian Schrittwieser, Rémi Leblond, Tom Ec- 774
cles, James Keeling, Felix Gimeno, Agustin Dal 775
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas- 776
son d’Autume, Igor Babuschkin, Xinyun Chen, Po- 777
Sen Huang, Johannes Welbl, Sven Gowal, Alexey 778
Cherepanov, James Molloy, Daniel J. Mankowitz, 779
Esme Sutherland Robson, Pushmeet Kohli, Nando 780
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 781
2022. Competition-level code generation with alpha- 782
code. CoRR, abs/2203.07814. 783

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 784
ming Zhang. 2023. Is your code generated by chat- 785

10

https://doi.org/10.48550/ARXIV.2407.21783
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2308.10620
https://doi.org/10.48550/ARXIV.2308.10620
https://doi.org/10.48550/ARXIV.2308.10620
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.48550/ARXIV.2406.11939
https://doi.org/10.48550/ARXIV.2406.11939
https://doi.org/10.48550/ARXIV.2406.11939
https://doi.org/10.48550/ARXIV.2406.11939
https://doi.org/10.48550/ARXIV.2406.11939
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7


GPT really correct? rigorous evaluation of large lan-786
guage models for code generation. In Thirty-seventh787
Conference on Neural Information Processing Sys-788
tems.789

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei,790
Yifeng Ding, and Lingming Zhang. 2024. Evaluating791
language models for efficient code generation. In792
First Conference on Language Modeling.793

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-794
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,795
Luke Zettlemoyer, and Veselin Stoyanov. 2019.796
Roberta: A robustly optimized BERT pretraining797
approach. CoRR, abs/1907.11692.798

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Qingwei799
Lin, Jianguang Lou, Shifeng Chen, Yansong Tang,800
and Weizhu Chen. 2024a. Arena learning: Build data801
flywheel for llms post-training via simulated chatbot802
arena. CoRR, abs/2407.10627.803

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo804
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-805
wei Lin, and Daxin Jiang. 2024b. Wizardcoder:806
Empowering code large language models with evol-807
instruct. In The Twelfth International Conference808
on Learning Representations, ICLR 2024, Vienna,809
Austria, May 7-11, 2024. OpenReview.net.810

Michael R. Lyu, Baishakhi Ray, Abhik Roychoudhury,811
Shin Hwei Tan, and Patanamon Thongtanunam. 2024.812
Automatic programming: Large language models and813
beyond. CoRR, abs/2405.02213.814

Niklas Muennighoff, Qian Liu, Armel Randy Ze-815
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,816
Swayam Singh, Xiangru Tang, Leandro von Werra,817
and Shayne Longpre. 2024. Octopack: Instruction818
tuning code large language models. In The Twelfth819
International Conference on Learning Representa-820
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.821
OpenReview.net.822

Aidar Myrzakhan, Sondos Mahmoud Bsharat, and823
Zhiqiang Shen. 2024. Open-llm-leaderboard: From824
multi-choice to open-style questions for llms evalua-825
tion, benchmark, and arena. CoRR, abs/2406.07545.826

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan827
Wang, Yingbo Zhou, Silvio Savarese, and Caiming828
Xiong. 2023. Codegen: An open large language829
model for code with multi-turn program synthesis. In830
The Eleventh International Conference on Learning831
Representations, ICLR 2023, Kigali, Rwanda, May832
1-5, 2023. OpenReview.net.833

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,834
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-835
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-836
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,837
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-838
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-839
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,840
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,841

Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 842
man, Tim Brooks, Miles Brundage, Kevin Button, 843
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 844
Carey, Chelsea Carlson, Rory Carmichael, Brooke 845
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 846
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 847
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 848
Dave Cummings, Jeremiah Currier, Yunxing Dai, 849
Cory Decareaux, Thomas Degry, Noah Deutsch, 850
Damien Deville, Arka Dhar, David Dohan, Steve 851
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 852
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 853
Simón Posada Fishman, Juston Forte, Isabella Ful- 854
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 855
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 856
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 857
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 858
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 859
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 860
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 861
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 862
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 863
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 864
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 865
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 866
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 867
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 868
Christina Kim, Yongjik Kim, Jan Hendrik Kirch- 869
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 870
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 871
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 872
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 873
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 874
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz 875
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 876
Anna Makanju, Kim Malfacini, Sam Manning, Todor 877
Markov, Yaniv Markovski, Bianca Martin, Katie 878
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 879
McKinney, Christine McLeavey, Paul McMillan, 880
Jake McNeil, David Medina, Aalok Mehta, Jacob 881
Menick, Luke Metz, Andrey Mishchenko, Pamela 882
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 883
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 884
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, 885
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, 886
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex 887
Paino, Joe Palermo, Ashley Pantuliano, Giambat- 888
tista Parascandolo, Joel Parish, Emy Parparita, Alex 889
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel- 890
man, Filipe de Avila Belbute Peres, Michael Petrov, 891
Henrique Ponde de Oliveira Pinto, Michael, Poko- 892
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow- 893
ell, Alethea Power, Boris Power, Elizabeth Proehl, 894
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, 895
Cameron Raymond, Francis Real, Kendra Rimbach, 896
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry- 897
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, 898
Girish Sastry, Heather Schmidt, David Schnurr, John 899
Schulman, Daniel Selsam, Kyla Sheppard, Toki 900
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav 901
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, 902
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin 903
Sokolowsky, Yang Song, Natalie Staudacher, Fe- 904
lipe Petroski Such, Natalie Summers, Ilya Sutskever, 905

11

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=IBCBMeAhmC
https://openreview.net/forum?id=IBCBMeAhmC
https://openreview.net/forum?id=IBCBMeAhmC
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.48550/ARXIV.2407.10627
https://doi.org/10.48550/ARXIV.2407.10627
https://doi.org/10.48550/ARXIV.2407.10627
https://doi.org/10.48550/ARXIV.2407.10627
https://doi.org/10.48550/ARXIV.2407.10627
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://doi.org/10.48550/ARXIV.2405.02213
https://doi.org/10.48550/ARXIV.2405.02213
https://doi.org/10.48550/ARXIV.2405.02213
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://doi.org/10.48550/ARXIV.2406.07545
https://doi.org/10.48550/ARXIV.2406.07545
https://doi.org/10.48550/ARXIV.2406.07545
https://doi.org/10.48550/ARXIV.2406.07545
https://doi.org/10.48550/ARXIV.2406.07545
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_


Jie Tang, Nikolas Tezak, Madeleine B. Thompson,906
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,907
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-908
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,909
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,910
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,911
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-912
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,913
Clemens Winter, Samuel Wolrich, Hannah Wong,914
Lauren Workman, Sherwin Wu, Jeff Wu, Michael915
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-916
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong917
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao918
Zheng, Juntang Zhuang, William Zhuk, and Bar-919
ret Zoph. 2024. Gpt-4 technical report. Preprint,920
arXiv:2303.08774.921

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,922
Carroll L. Wainwright, Pamela Mishkin, Chong923
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,924
John Schulman, Jacob Hilton, Fraser Kelton, Luke925
Miller, Maddie Simens, Amanda Askell, Peter Welin-926
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.927
2022. Training language models to follow instruc-928
tions with human feedback. In Advances in Neural929
Information Processing Systems 35: Annual Confer-930
ence on Neural Information Processing Systems 2022,931
NeurIPS 2022, New Orleans, LA, USA, November 28932
- December 9, 2022.933

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten934
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,935
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom936
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-937
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,938
Wenhan Xiong, Alexandre Défossez, Jade Copet,939
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-940
las Usunier, Thomas Scialom, and Gabriel Synnaeve.941
2023. Code llama: Open foundation models for code.942
CoRR, abs/2308.12950.943

Ozan Sener and Silvio Savarese. 2018. Active learning944
for convolutional neural networks: A core-set ap-945
proach. In 6th International Conference on Learning946
Representations, ICLR 2018, Vancouver, BC, Canada,947
April 30 - May 3, 2018, Conference Track Proceed-948
ings. OpenReview.net.949

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao,950
Yuandong Tian, and Qinqing Zheng. 2025. To-951
ken assorted: Mixing latent and text tokens for952
improved language model reasoning. Preprint,953
arXiv:2502.03275.954

Qwen Team. 2024. Qwq: Reflect deeply on the bound-955
aries of the unknown.956

Aman Singh Thakur, Kartik Choudhary, Venkat Srinik957
Ramayapally, Sankaran Vaidyanathan, and Dieuwke958
Hupkes. 2024. Judging the judges: Evaluating align-959
ment and vulnerabilities in llms-as-judges. CoRR,960
abs/2406.12624.961

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa962
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh963

Hajishirzi. 2023. Self-instruct: Aligning language 964
models with self-generated instructions. In Proceed- 965
ings of the 61st Annual Meeting of the Association 966
for Computational Linguistics (Volume 1: Long Pa- 967
pers), ACL 2023, Toronto, Canada, July 9-14, 2023, 968
pages 13484–13508. Association for Computational 969
Linguistics. 970

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven 971
C. H. Hoi. 2021. Codet5: Identifier-aware unified 972
pre-trained encoder-decoder models for code under- 973
standing and generation. In Proceedings of the 2021 974
Conference on Empirical Methods in Natural Lan- 975
guage Processing, EMNLP 2021, Virtual Event / 976
Punta Cana, Dominican Republic, 7-11 November, 977
2021, pages 8696–8708. Association for Computa- 978
tional Linguistics. 979

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 980
Lingming Zhang. 2024. Magicoder: Empowering 981
code generation with oss-instruct. In Forty-first In- 982
ternational Conference on Machine Learning, ICML 983
2024, Vienna, Austria, July 21-27, 2024. OpenRe- 984
view.net. 985

Martin Weyssow, Aton Kamanda, and Houari A. 986
Sahraoui. 2024. Codeultrafeedback: An llm-as-a- 987
judge dataset for aligning large language models to 988
coding preferences. CoRR, abs/2403.09032. 989

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, 990
Yuandong Tian, Jiantao Jiao, Jason Weston, and Sain- 991
bayar Sukhbaatar. 2024a. Meta-rewarding language 992
models: Self-improving alignment with llm-as-a- 993
meta-judge. CoRR, abs/2407.19594. 994

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, 995
Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao 996
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo, 997
Yewen Pu, Dawei Yin, Xing Hu, and Yunji Chen. 998
2024b. Inversecoder: Unleashing the power of 999
instruction-tuned code llms with inverse-instruct. 1000
CoRR, abs/2407.05700. 1001

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 1002
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei 1003
Lin, and Daxin Jiang. 2024a. Wizardlm: Empow- 1004
ering large pre-trained language models to follow 1005
complex instructions. In The Twelfth International 1006
Conference on Learning Representations, ICLR 2024, 1007
Vienna, Austria, May 7-11, 2024. OpenReview.net. 1008

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun- 1009
tian Deng, Radha Poovendran, Yejin Choi, and 1010
Bill Yuchen Lin. 2024b. Magpie: Alignment data 1011
synthesis from scratch by prompting aligned llms 1012
with nothing. CoRR, abs/2406.08464. 1013

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, 1014
Alexander J. Ratner, Ranjay Krishna, Jiaming Shen, 1015
and Chao Zhang. 2023. Large language model as 1016
attributed training data generator: A tale of diversity 1017
and bias. In Advances in Neural Information Pro- 1018
cessing Systems 36: Annual Conference on Neural 1019
Information Processing Systems 2023, NeurIPS 2023, 1020
New Orleans, LA, USA, December 10 - 16, 2023. 1021

12

https://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2308.12950
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://arxiv.org/abs/2502.03275
https://arxiv.org/abs/2502.03275
https://arxiv.org/abs/2502.03275
https://arxiv.org/abs/2502.03275
https://arxiv.org/abs/2502.03275
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://doi.org/10.48550/ARXIV.2406.12624
https://doi.org/10.48550/ARXIV.2406.12624
https://doi.org/10.48550/ARXIV.2406.12624
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://doi.org/10.48550/ARXIV.2403.09032
https://doi.org/10.48550/ARXIV.2403.09032
https://doi.org/10.48550/ARXIV.2403.09032
https://doi.org/10.48550/ARXIV.2403.09032
https://doi.org/10.48550/ARXIV.2403.09032
https://doi.org/10.48550/ARXIV.2407.19594
https://doi.org/10.48550/ARXIV.2407.19594
https://doi.org/10.48550/ARXIV.2407.19594
https://doi.org/10.48550/ARXIV.2407.19594
https://doi.org/10.48550/ARXIV.2407.19594
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2406.08464
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html


Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,1022
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng1023
Yin. 2024. Wavecoder: Widespread and versatile en-1024
hancement for code large language models by instruc-1025
tion tuning. In Proceedings of the 62nd Annual Meet-1026
ing of the Association for Computational Linguistics1027
(Volume 1: Long Papers), ACL 2024, Bangkok, Thai-1028
land, August 11-16, 2024, pages 5140–5153. Associ-1029
ation for Computational Linguistics.1030

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,1031
Bingchao Wu, Bei Guan, Yongji Wang, and Jian-1032
Guang Lou. 2023. Large language models meet1033
nl2code: A survey. In Proceedings of the 61st Annual1034
Meeting of the Association for Computational Lin-1035
guistics (Volume 1: Long Papers), ACL 2023, Toronto,1036
Canada, July 9-14, 2023, pages 7443–7464. Associa-1037
tion for Computational Linguistics.1038

Ruochen Zhao, Wenxuan Zhang, Yew Ken Chia, Deli1039
Zhao, and Lidong Bing. 2024. Auto arena of llms:1040
Automating LLM evaluations with agent peer-battles1041
and committee discussions. CoRR, abs/2405.20267.1042

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle1043
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,1044
Zhuohan Li, Zi Lin, Eric P. Xing, Joseph E. Gonzalez,1045
Ion Stoica, and Hao Zhang. 2024. Lmsys-chat-1m:1046
A large-scale real-world LLM conversation dataset.1047
In The Twelfth International Conference on Learning1048
Representations, ICLR 2024, Vienna, Austria, May1049
7-11, 2024. OpenReview.net.1050

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan1051
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,1052
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,1053
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging1054
llm-as-a-judge with mt-bench and chatbot arena. In1055
Advances in Neural Information Processing Systems1056
36: Annual Conference on Neural Information Pro-1057
cessing Systems 2023, NeurIPS 2023, New Orleans,1058
LA, USA, December 10 - 16, 2023.1059

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan1060
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,1061
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.1062
Codegeex: A pre-trained model for code generation1063
with multilingual evaluations on humaneval-x. CoRR,1064
abs/2303.17568.1065

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,1066
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani1067
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon1068
Brunner, Chen Gong, Thong Hoang, Armel Randy1069
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad-1070
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na-1071
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu,1072
Qian Liu, Zijian Wang, David Lo, Binyuan Hui,1073
Niklas Muennighoff, Daniel Fried, Xiaoning Du,1074
Harm de Vries, and Leandro von Werra. 2024. Big-1075
codebench: Benchmarking code generation with di-1076
verse function calls and complex instructions. CoRR,1077
abs/2406.15877.1078

You are an AI assistant designed to provide helpful,
step-by-step guidance on coding problems. The
user will ask you a wide range of Python coding
questions. Your purpose is to assist users in under-
standing coding concepts, working through code,
and arriving at the correct solutions.

Table 6: The prompt for instruction mining.

A Case Study 1079

Here we show two examples of mined instructions. 1080

The first has a score of 6: 1081

1082
I’m trying to combine two dictionaries into one and
eliminate duplicate values for a given key the two
dictionaries may have different structures, eg.
dictA = {’cat1’:{’cat2’:’A’}, ’cat2’:{’cat3’:’B’}...}
dictB = {’cat1’:{’cat2’:’C’}}
Combining with a recursive function seems the best
option but I can’t seem to get it right.
**Please Help.**

1083

And the second has a score of 9: 1084

1085
**Function to Get the Index of an Element in a 2D
List (List of Lists)**
====================================
Create a function named ’get_index_2d’ that
accepts three parameters:
- a 2D list ’matrix’
- an element to search for ’target’
- a default value to return ’default’
If the ’target’ exists in the ’matrix’, the function
should return its index (a tuple containing row,
column).
If the ’target’ is not found in the ’matrix’, the
function should return the ’default’ value.
"""python
def get_index_2d(matrix, target, default=None):

# implement function
"""
### Example Use Cases:
| Matrix | Target | Default | Expected |
| [[1,2],[3,4]] | 4 | None | (1,1) |
| [[1,2],[3,4]] | 5 | None | None |
| [[1,2],[3,4]] | 1 | (0,-1) | (0,0) |
| [[’a’,’b’], [’c’,’d’]] | ’d’ | (-1,-1) | (1,1) |

1086

Both instructions are clear and specific, provid- 1087

ing a solid foundation for tackling the problem. 1088

However, the first instruction is more straightfor- 1089

ward, with fewer requirements and a greater em- 1090

phasis on practical tips and strategies to handle the 1091

13

https://doi.org/10.18653/V1/2024.ACL-LONG.280
https://doi.org/10.18653/V1/2024.ACL-LONG.280
https://doi.org/10.18653/V1/2024.ACL-LONG.280
https://doi.org/10.18653/V1/2024.ACL-LONG.280
https://doi.org/10.18653/V1/2024.ACL-LONG.280
https://doi.org/10.18653/V1/2023.ACL-LONG.411
https://doi.org/10.18653/V1/2023.ACL-LONG.411
https://doi.org/10.18653/V1/2023.ACL-LONG.411
https://doi.org/10.48550/ARXIV.2405.20267
https://doi.org/10.48550/ARXIV.2405.20267
https://doi.org/10.48550/ARXIV.2405.20267
https://doi.org/10.48550/ARXIV.2405.20267
https://doi.org/10.48550/ARXIV.2405.20267
https://openreview.net/forum?id=BOfDKxfwt0
https://openreview.net/forum?id=BOfDKxfwt0
https://openreview.net/forum?id=BOfDKxfwt0
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877


This is a chatbot arena. You will be given assis-
tant A’s answer, and assistant B’s answer. Please
act as an impartial judge and evaluate the capa-
bility of two AI assistants. You should choose
the assistant that follows instructions and answers
questions better. Your evaluation should consider
factors such as helpfulness, relevance, and accuracy.
Begin your evaluation by comparing the responses
of the two assistants and provide a short explana-
tion. Avoid any position biases and ensure that
the order in which the responses were presented
does not influence your decision. DO NOT allow
the LENGTH of the responses to influence your
evaluation, choose the one that is straight-to-the-
point instead of unnecessarily verbose. When the
two candidates perform equally well, choose the
SHORTER answer. Do not favor certain names
of the assistants. Be as objective as possible. Af-
ter providing your explanation concisely within
200 words, output your final verdict by strictly fol-
lowing this format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better, and "[[Tie]]" for a
tie. Finish your judgement within 300 words.
[[User Question]]
{instruction}
[[The Start of Assistant A’s Answer]]
{#A’s Answer}
[[The End of Assistant A’s Answer]]
[[The Start of Assistant B’s Answer]]
{#B’s Answer}
[[The End of Assistant B’s Answer]]

Table 7: The prompt for the evaluation of pairwise com-
petitions.

task. In contrast, the second instruction introduces1092

more complex conditions and does not include any1093

guidance, making the problem more challenging to1094

solve.1095

B Prompts for Instruction Mining and1096

Evaluation1097

Table 6 and Table 7 show the prompts for instruc-1098

tion mining and evaluation. To maintain impar-1099

tiality in the evaluation process, we withhold the1100

names of the opponents from the judges, thus avoid-1101

ing potential system biases. Additional rules will1102

be discussed in the next section.1103

C Rules for the Fairness of Evaluation1104

To ensure impartiality in the evaluation process,1105

we establish a set of rules, including order shuf-1106

fling, suspicion averting, and offensive-defense1107

balance. 1108

Order shuffling refers to the practice of ran- 1109

domizing the order in which responses from the 1110

attacker (A) and defender (B) appear in the eval- 1111

uation prompt. This helps mitigate any positional 1112

bias that may arise if a particular position is favored 1113

by certain language models. 1114

Suspicion averting ensures that competitors do 1115

not evaluate their own responses, preventing any 1116

potential bias in favor of their own generated an- 1117

swers. 1118

Offensive-defense balance guarantees that all 1119

competitors have an equal number of offensive and 1120

defensive turns, maintaining fairness in the evalua- 1121

tion process. 1122

14


	Introduction
	Related Work
	Code LLMs
	Learning from Battles
	LLM as a Judge

	WarriorCoder: Learning from Expert Battles
	Competitors Setting
	Instruction Mining from Scratch
	Win-Loss Decision
	Final Training

	Experiments
	Experimental Details
	Main Results
	Ablation Study
	Data Analysis
	Dependence Analysis
	Diversity Analysis
	Difficulty Analysis


	Conclusion
	Case Study
	Prompts for Instruction Mining and Evaluation
	Rules for the Fairness of Evaluation

