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ABSTRACT

In the realm of large-scale language models, a significant challenge arises when
extrapolating sequences beyond the maximum allowable length. This is because
the model’s position embedding mechanisms are limited to positions encountered
during training, thus preventing effective representation of positions in longer se-
quences. We analyzed conventional position encoding methods for long contexts
and found the following characteristics. (1) When the representation dimension is
regarded as the time axis, Rotary Position Embedding (RoPE) can be interpreted
as a restricted wavelet transform using simple Haar wavelets. However, because it
only uses a single window size, it does not fully exploit the advantages of wavelet
transforms, which capture the fine movements of non-stationary signals using
multiple scales (window sizes). This limitation could explain why RoPE performs
poorly in extrapolation. (2) Previous research as well as our own analysis indi-
cates that Attention with Linear Biases (ALiBi) functions similarly to windowed
attention, using windows of varying sizes. However, it has limitations in capturing
deep dependencies because it restricts the receptive field of the model. From these
insights, we propose a new position representation method that captures multiple
scales (i.e., window sizes) by leveraging wavelet transforms without limiting the
model’s attention field. Experimental results show that this new method improves
the performance of the model in both short and long contexts. In particular, our
method allows extrapolation of position information without limiting the model’s
attention field.

1 INTRODUCTION

Several pre-trained large language models based on Transformer architecture (Vaswani et al., 2017)
have demonstrated robust capabilities in various generative tasks (Devlin et al., 2019; Raffel et al.,
2020; Brown et al., 2020; Touvron et al., 2023a; Jiang et al., 2023). However, limitations on the
input sequence length arise due to the computational resource constraints encountered during the
pre-training phase. Such constraints necessitate a determination of the maximum allowable length
of sequences, hereinafter Ltrain, prior to the pre-training process, thus hindering the model’s per-
formance in processing sequences longer than those encountered during training. This weakness is
primarily attributed to the positional encoding’s ineffectiveness in handling sequences that exceed
the length of those encountered during the model’s training phase (Devlin et al., 2019; Press et al.,
2022).

Rotary Position Embedding (RoPE) (Su et al., 2021) has become a common approach in many
language models that handle long contexts, and it employs a rotation matrix to encode positional
information and facilitate the processing of long sequences. To manage sequences longer than those
encountered during training, various scaling strategies (Chen et al., 2023; bloc97, 2023; Peng et al.,
2024; Liu et al., 2024) have been applied to RoPE, although these often require additional fine-
tuning and incur additional learning costs in addition to pre-training. In contrast, Attention with
Linear Biases (ALiBi) (Press et al., 2022) is able to sequence length estimation beyond the limits of
pre-training without requiring further fine-tuning. However, ALiBi limits the attention’s receptive
field (Chi et al., 2023) in the manner of windowed attention (Beltagy et al., 2020). For this reason, a
model using ALiBi may not be able to obtain information that is in a distant dependency relationship.
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Figure 1: Overview of Wavelet-based Relative Positional Representation. As in RPE (Shaw et al.,
2018), our method computes a relative positional representation (pm,n)

T to the query qm and the
key kn. Instead of learnable embedding in RPE, the position is computed based on the wavelet
function. Different wavelet functions ψa,b are used for each dimension of the head d. The scale
parameter a and the shift parameter b change depending on the dimension of the head d.

In this paper, we analyze conventional positional encoding methods for long contexts, and we pro-
pose a novel positional representation that permits extrapolation without constraining the attention
mechanism’s receptive field. First, we mathematically show that RoPE performs a process similar
to a wavelet transformation—considered the gold standard of time-frequency analysis methodology.
We interpreted the position of each token in the sequence as a time in time-frequency analysis. How-
ever, RoPE does not perform a transformation in accordance with the order of positions but rather in
accordance with the number of dimensions, and it does not capture the dynamic change in a signal
over time. Furthermore, the values corresponding to the wavelet scale (i.e., window size) are con-
stant, so RoPE does not make good use of the key characteristic of wavelet transforms, which is the
ability to analyze signals on multiple scales. In other words, RoPE may fail to capture the dynamic
change in a signal over time, such as what occurs in natural language. In this study, we also show
that ALiBi provides different window sizes for each head.

Based on these insights, we propose a wavelet transform-based method, using multiple window
sizes, to offer a robust and flexible approach to positional encoding. By performing a wavelet trans-
form along the order of positions and introducing various scale parameters, our method can capture
the dynamic changes in a sequence over positions in the manner of the original feature of wavelet
transformation—time-frequency analysis. Following the methodology of Relative Position Repre-
sentation (RPE) (Shaw et al., 2018), we implement our method with relative ease.

From our experiments on extrapolation capabilities using the wikitext-103 dataset (Merity et al.,
2017), the results demonstrate that our method surpasses traditional positional encoding methods in
perplexity. We also report that our method has lower perplexity than RoPE in experiments with long
contexts using the Llama-2 model (Touvron et al., 2023b) and the CodeParrot dataset.

2 BACKGROUND

2.1 POSITIONAL REPRESENTATION

Within the Transformer architecture, positional encoding is employed to accurately represent the
sequential position of each token. Positional encoding can be divided into two main types: absolute
position, which expresses the position of a token from the beginning of the sequence, and relative
position, which expresses the position of each token within the sequence. RoPE (Su et al., 2021), a
type of absolute position, uses a rotation matrix to compute the position and then multiplies it by the
query and key to represent the position. RPE (Shaw et al., 2018), a type of relative position, uses a
learnable embedding that represents the position of distances of up to 16 or 32 tokens by clipping.
Two other examples include T5 Bias (Raffel et al., 2020), which has an enlarged RPE window size,
and Transformer-XL (Dai et al., 2019), which uses a sine wave for position representation instead
of learnable embedding.

Position encoding plays a critical role in enabling models to effectively handle long context se-
quences, and it allows for extrapolation. Relative position is not a position expression that depends
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on the length of the sequence, so it is effective in extrapolation. ALiBi (Press et al., 2022) is an
effective position representation method for extrapolation: It uses the relative position bias of all
tokens by adding a linear bias to each head’s attention score, rather than using position embed-
ding. However, ALiBi is unable to obtain information in a distant dependency relationship due to
its constraints on the self-attention mechanism’s receptive field(Chi et al., 2023). On the other hand,
absolute position is unsuitable for extrapolation because it expresses the position of all words in the
sequence. For this reason, many methods have been proposed for fine-tuning RoPE using absolute
position by interpolating positions (Chen et al., 2023; bloc97, 2023; Peng et al., 2024).

2.2 FREQUENCY ANALYSIS AND TIME-FREQUENCY ANALYSIS

Frequency analysis in signal processing involves analyzing the frequency components of a signal to
understand its behavior. The Fourier transform (FT) (Bracewell & Bracewell, 1986) is a key method
for frequency analysis, converting a signal from the time domain to the frequency domain, thus pro-
viding a global view of its frequency content. However, the FT does not provide any information
about when specific frequencies occur. To address this limitation, time-frequency analysis tech-
niques are applied. The wavelet transform (WT) (Grossmann & Morlet, 1984; Mallat, 1989) offers
a more flexible approach by analyzing the signal at multiple scales or resolutions. The WT adap-
tively provides high time resolution for high-frequency components and high frequency resolution
for low-frequency components, making it well-suited for analyzing signals with non-stationary or
transient features. This adaptability allows the wavelet transform to capture both time and frequency
information with varying degrees of precision.

3 ROPE AND WAVELET TRANSFORM

3.1 PRELIMINARY

Wavelet Transform Wavelet (wave-let) is a wave that decays quickly and locally as it approaches
zero. A function ψ defined on a real R is called a wavelet function if it belongs to the space L2(R)
of square integrable functions and satisfies the following conditions:∫ ∞

−∞
| ψ(x) |2 dx <∞. (1)

The wavelet function is defined as follows.

ψa,b(t) =
1√
a
ψ
( t− b

a

)
. (2)

In this case, b is the shift and a > 0 is the scale parameter. The scale parameter a simultaneously
changes the range over which the wavelet is localized and the amplitude of the wavelet. Typical
wavelets include the Haar wavelet (Haar, 1910), Ricker wavelet (Ricker, 1944), and Morlet wavelet
(Bernardino & Santos-Victor, 2005). Suppose that we sample T values at regular intervals from a
continuous signal. A wavelet transforms (Grossmann & Morlet, 1984) to the frequency domain and
time domain by calculating the inner product of the wavelet function ψa,b(t) and the signal x(t):

W (a, b) =

T−1∑
t=0

ψa,b(t)x(t). (3)

In some cases, the term ”Discrete Wavelet Transform” or ”Wavelet Transform” is used to refer to
multi-resolution analysis (Mallat, 1989), but in this paper we follow the original definition. We can
see that the FT only converts to the frequency domain, whereas the WT converts to two domains:
scale a and shift b. For example, consider the case of converting to two scales and four shifts. When
a ∈ [2, 4] and b ∈ [0, 1, 2, 3], the wavelet transform can be expressed in terms of determinants as
follows: 

W (2, 0)
W (4, 0)
W (2, 1)
W (4, 1)

...
W (4, 3)

 =



ψ2,0(0) ψ2,0(1) ψ2,0(2) ... ψ2,0(T − 1)
ψ4,0(0) ψ4,0(1) ψ4,0(2) ... ψ4,0(T − 1)
ψ2,1(0) ψ2,1(1) ψ2,1(2) ... ψ2,1(T − 1)
ψ4,1(0) ψ4,1(1) ψ4,1(2) ... ψ4,1(T − 1)

...
...

...
. . .

...
ψ4,3(0) ψ4,3(1) ψ4,3(2) ... ψ4,3(T − 1)




x(0)
x(1)
x(2)

...
x(T − 1)

 . (4)
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Furthermore, since ψa,b(t) = ψa,0(t− b) from Eq.2, the wavelet transform is expressed as follows.
W (2, 0)
W (4, 0)
W (2, 1)
W (4, 1)

...
W (4, 3)

 =


ψ2,0(0) ψ2,0(1) ψ2,0(2) ... ψ2,0(T − 1)
ψ4,0(0) ψ4,0(1) ψ4,0(2) ... ψ4,0(T − 1)
ψ2,0(−1) ψ2,0(0) ψ2,0(1) ... ψ2,0(T − 2)
ψ4,0(−1) ψ4,0(0) ψ4,0(1) ... ψ4,0(T − 2)

...
...

...
. . .

...
ψ4,0(−3) ψ4,0(−2) ψ4,0(−1) ... ψ4,0(T − 3)




x(0)
x(1)
x(2)

...
x(T − 1)

 . (5)

Due to the characteristics of the scale parameter a, the values of the wavelet matrix become 0 or
approach 0 outside a certain range. This range depends on the specific wavelet function.

RoPE RoPE incorporates positional information directly into the self-attention mechanism by ro-
tating the query and key vectors in the complex space. When divided into even and odd dimensions,
the following calculations are performed for the m-th query in each sequence. In even dimensions,
RoPE is expressed as follows.

qm0
qm2

...
qmd−2

 =


cosmθ1 − sinmθ1 0 0 ... 0 0

0 0 cosmθ2 − sinmθ2 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... cosmθd/2 − sinmθd/2



qm0
qm1

...
qmd−2

qmd−1

 .
(6)

where qm ∈ R1×d is the m-th query when the number of dimensions is d and θi =
10000−2(i−1)/d, i ∈ [1, 2, ..., d/2]. For RoPE in odd dimensions, see Appendix A.1. The same
process is also performed for the n-th key kn ∈ R1×d.

3.2 THEORETICAL ANALYSIS

First, we show the wavelet transform using the following two Haar-like wavelets (Haar, 1910).

ψ(t) =


cos f(t) 0 ≤ t<1,

− sin f(t) 1 ≤ t<2,

0 otherwise.

ψ
′
(t) =


sin f(t) 0 ≤ t<1,

cos f(t) 1 ≤ t<2,

0 otherwise.

(7)

where f : R → R. These two Haar-like wavelets clearly satisfy the conditions of Eq.(1). Assuming
that when x(t)(0 ≤ t ≤ d − 1) is a signal with d elements, the wavelet ψ is used and wavelet
transform is performed at each scale a = 1. We define the shift parameter as bj = j − δ(j)(j =
0, 2, .., d−2). Here, δ(j) is a monotonically increasing (or monotonically decreasing) function such
that 0 ≤ j ≤ d− 1 and 0 ≤ δ(j) < 1. Also, i can be expressed in terms of j as i =

⌈
j+1
2

⌉
.

W (1, b0)
W (1, b2)

...
W (1, bd−2)

 =


cos f1 − sin f1 0 0 ... 0 0
0 0 cos f2 − sin f2 ... 0 0
...

...
...

. . .
...

...
0 0 0 0 ... cos f d

2
− sin f d

2




x(0)
x(1)

...
x(d− 2)
x(d− 1)

 . (8)

Here, we difine fi = f(δ(j)). If we let x be the query qm and define f such that f(δ(j)) = mθi,
where θi = 10000−2(i−1)/d and i ∈ [1, 2, ..., d/2], then Eq. (8) becomes exactly the same as Eq.
(6) of RoPE. In other words, RoPE can be seen as a wavelet transform using Haar-like wavelets
that change amplitude on a fixed scale. Furthermore, the same result as RoPE in odds dimensions
can be obtained when using ψ

′
for wavelet transformation. 1 This wavelet transform in RoPE is

performed across the number of query head dimensions d. Therefore, RoPE can be considered a
wavelet transformation along the head dimension using a wavelet with a fixed scale of 2.2

1Additionally, when sinmθi = cosmθi, the Haar wavelet matrix and RoPE are the same when the scale is
2, and the shift is [2, 4, . . . , d/2]. Refer to Appendix A.2 for the detailed proof.

2From previous research(Tancik et al., 2020), we also hypothesized that this could be equivalent to a Fourier
transform. However, this hypothesis does not hold. Refer to Appendix A.3 for details.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Heatmap of scaled attention scores via softmax normalization in ALiBi without non-
overlapping inference. The vertical axis represents the query, while the horizontal axis corresponds
to the key in the attention map. For clarity, values of 0.001 or more are mapped to black, while values
below that are mapped to yellow. The maximum allowable length of sequences is Ltrain = 512 and
the inference length is 1012.

4 WINDOW SIZE VARIABILITY IN ALIBI

ALiBi has a restricted receptive field and behaves in the manner of windowed attention (Chi et al.,
2023; Beltagy et al., 2020). A receptive field refers to the specific region of the input space that
significantly influences the model’s output, typically representing the area where the most relevant
features are captured. ALiBi is expressed as follows:

softmax(qmK
T + slope · [−(m− 1), . . . ,−2,−1, 0]), (9)

where the slope is a head-specific slope fixed before training and KT ∈ Rm×d is the first m keys.
In this section, we analyzed the window size in ALiBi using the attention map.

4.1 INSIGHTS FROM ATTENTION MAP ANALYSIS

A heatmap of scaled attention scores obtained through softmax normalization is shown in Figure 2.
The number of heads N is 8, and the slope of ALiBi is [ 12 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256 ]. In extrapo-

lation, sequences are often divided, but in this section the sequences are not divided. Experimental
setting was set to the same as Section 6.1. The perplexity results are shown in Table 2.

The attention map shows that ALiBi uses multiple window sizes corresponding to relative positions
and that the window size increases as the slope decreases. Moreover, previous research (Chi et al.,
2023) shows that constraining the window size (the slope) to a single value leads to increased per-
plexity. Thus, one of the reasons ALiBi is effective, compared to a previous relative position using
fixed window sizes in T5 Bias (Raffel et al., 2020), is its ability to accommodate multiple window
sizes. ALiBi does not perform calculations like those in Eq. (3), so it does not exactly match the
wavelet transform. However, having windows of various sizes is similar to the role of the scale
parameter used in wavelet transforms.

5 WAVELET-BASED POSITIONAL REPRESENTATION

Wavelet transform (WT) is a method of analyzing signals using variable-scale wavelets, and it is
possible to adjust the scale of the window. This scalability allows both broad and fine signal features
to be efficiently extracted by shifting the wavelet while changing the window size. In particular,
this is suitable for investigating non-stationary signals. For this reason, we believe that the wavelet
transform approach is effective for capturing the dynamic fluctuations of signals that change over
time, and it is also effective for the fluid nature of natural language, which is not constrained by
periodicity. Furthermore, when extrapolating, it is important to be able to respond flexibly to changes
in context and information. For this reason, we believe that the wavelet transform is also an effective
method for extrapolation.

When applying wavelet transforms to positional encoding, a key question arises: which features
should be leveraged for handling long-context dependencies? Table 1 provides an unified view of
conventional positional encoding methods. Notably, RoPE shares conceptual similarities with the
wavelet transform (Section 3); however, RoPE depends on absolute positional information, which

5
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Table 1: Unified view of positional encoding method

PE pos Wavelet Transform Window Size Receptive Field Extrapolation
RoPE abs Yes, a = 2 Ltrain, constant unlimited No
ALiBi rel No multiple limited Yes
RPE rel No 32 or 128 constant - No
Wavelet (Ours) rel Yes, a = [20, 21, ...2s] multiple unlimited Yes

limits its effective context window to the training length (Ltrain) and restricts its extrapolation ca-
pabilities. In contrast, ALiBi offers extrapolation capabilities by utilizing relative position and sup-
ports varying window sizes (Section 4). However, ALiBi’s linear bias constrains its receptive field,
making it insufficient for capturing long-range dependencies. According to Press et al. (2022), con-
ventional relative positional encoding (RPE) methods (Shaw et al., 2018; Raffel et al., 2020), which
rely on a fixed window size, are similarly ineffective for extrapolation. In conclusion, we adopt
relative position with flexible window sizes to handle long-context and extrapolation.

Therefore, we propose positional representation based on wavelet transform with the following char-
acteristics:

1. Position-based Transformation: RoPE predominantly relies on independent transforma-
tion based on the ’head’ dimensions. ALiBi employs multiple windows based on the rela-
tive position of the sentence, rather than the dimension of the head, which may contribute
to its performance. Therefore, we apply a wavelet transform based on the relative position
of the sentence.

2. Type of Wavelets: RoPE can be thought of as a wavelet transform using the Haar wavelet,
which is the simplest wavelet. However, Haar wavelets might fall short in capturing the
intricacies of natural languages. Transitioning toward the use of more sophisticated wavelet
functions could enhance our approach to distill and represent a broader spectrum of features
inherent in natural languages.

3. Diversification of Window Sizes (Scale Parameters): From the analysis of ALiBi, it was
found that having multiple windows is effective for long contexts. The original of RoPE
works with a single fixed scale. To address this limitation, we introduce a variety of scale
and shift parameters.

5.1 METHODOLOGY

Incorporating Wavelet Transform into PE Due to the wavelet shift feature, we adopt relative
position representation as ALiBi because it is more suitable than absolute position representation. In
a transformer model (Vaswani et al., 2017), the self-attention mechanism operates by projecting the
input sequence into three distinct representations—queries (Q), keys (K), and values (V )—using
learnable weight matrices. Self-attention sublayers employ N attention heads. In self-attention
sublayers, em,n is the attention score for each query, and then the key is calculated. RPE(Shaw
et al., 2018) expresses position by calculating the inner product of the query and the relative position
embedding. We incorporate the wavelet function into RPE as follows.

em,n =
qmk

T
n + qm(pm,n)

T

√
d

, (10)

where qm is the mth query (qm ∈ R1×d, 1 ≤ m ≤ L) of a sentence of length L and kn is the
nth key (kn ∈ R1×d, 1 ≤ n ≤ L) for qm. d is the number of dimensions of each head. Here,
pm,n is the relative position from the m-th query to the n-th key. RPE (Shaw et al., 2018) use
learnable embedding for pm,n ∈ Rd and fixed scale by clipping. However, instead of using learnable
embeddings to represent pm,n, we use d-pattern wavelet functions with multiple scales to calculate
the position. In our method, there is no clipping, and the distance of the position expression is fixed
regardless of the length of the sentence.

6
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Wavelet Function In conventional wavelets, such as in Eq. (2), the amplitude also varies depend-
ing on the scale parameter a. In the proposed method, all amplitudes are the same.

ψa,b(t) = ψ
( t− b

a

)
. (11)

The variable t is assigned the relative position, which is t = m − n. We used the Ricker Wavelet
(Ricker, 1944) as a base wavelet, and it is formulated as follows.

ψ(t) = (1− t2) exp
(−t2

2

)
. (12)

Shift and scale parameters We use s distinct patterns for the scale parameter a and d
s patterns

for the shift parameter b.

(a, b) ∈ {20, 21, 22, ...2s−1} × {0, 1, 2, 3, ..., d
s
− 1}. (13)

The scale parameter is a power of 2 derived from the principles of the discrete wavelet transform.
By combining the d

s -pattern shift parameters b with the s-pattern scale parameters a, we generate d
distinct wavelets. In this way, our method can set the s-pattern context window size using the scale
parameter a, and d-pattern context window using both the scale parameter a and the shift parameter
b. For instance, with a head dimension of d = 128, we use s = 8 scale variants (a ∈ {20, 21, ..., 27})
and 16 shift variants (b ∈ {0, 1, 2, ..., 15}), resulting in 8×16 = 128 unique wavelets. Finally, pm,n
is computed as follows.3

pm,n =
(
1−

(m− n− b

a

)2)
exp

(
−1

2

(m− n− b

a

)2)
. (14)

6 SHORT-CONTEXT EXPERIMENT

6.1 EXPERIMENTAL SETTINGS

First, we conducted a small-scale experiment to compare it with various position encodings. We
used the WikiText-103 dataset (Merity et al., 2017), which consists of over 103 million tokens
of English Wikipedia articles. We performed a comparative evaluation using a Transformer-based
language model (Baevski & Auli, 2019). The dimensionality of the word embedding dmodel is 1024,
the number of heads N is 8, the dimensionality of the heads d is 128, and the number of layers
is 16. The implementation was based on the fairseq (Ott et al., 2019)-based code4 provided in a
previous work(Press et al., 2022), and all hyperparameters were set to the same values as those in the
literature(Press et al., 2022).5 The maximum allowable length of sequences was set to Ltrain = 512
and Ltrain = 1024.

Compared Methods Although θ = 10, 000 is usually used for RoPE, it has been found that ex-
tending θ to 500,000 is effective for long contexts (Xiong et al., 2024). Therefore, we compare both
θ = 10, 000 and θ = 500, 000. In addition to ALiBi and RoPE, the following position representa-
tions are also compared: NoPE (Kazemnejad et al., 2023), which position information is given, and
TransXL (Dai et al., 2019), which is relative positional representation uses sine waves.

Evaluation Metric We use perplexity as an evaluation metric. Following previous research (Press
et al., 2022), we evaluate the validation set. To evaluate sequences longer than Ltrain tokens, it
is common to divide the sequence into Ltrain-length sub-sequences, evaluate each independently,
and report the average score. However, methods that use relative positions to express a wide range,
such as ALiBi, Trans-Xl, and the proposed method, have the potential to consider a wider range
of contexts than Ltrain. For this reason, in this paper, we report not only the perplexity of non-
overlapping inference but also the normal perplexity when the sequence is not divided into partial

3Implementation tips for reducing the memory and computational efficiency of the proposed method are
included in Appendix A.4.

4https://github.com/ofirpress/attention_with_linear_biases
5See Appendix A.5 for more details of hyperparameters
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Table 2: Perplexity of validation set in extrapolation experiments using Wikitext-103. Maximum
allowable length of sequences in pre-training is Ltrain = 512 and Ltrain = 1024.

Sequence Length

Ltrain = 512 Ltrain = 1024

pos 128 256 512 1012 1512 2512 1024 1524 3024 5024

Perplexity in Non-overlapping Inference with Ltrain

NoPE none 26.38 23.23 21.53 21.52 21.53 21.53 20.81 21.52 21.49 21.45
RoPE θ = 10k abs 23.82 20.98 19.39 19.35 19.39 19.38 18.42 19.51 19.52 19.48
RoPE θ = 0.5m abs 23.81 20.95 19.35 19.32 19.35 19.33 18.50 19.53 19.54 19.50
Trans-XL rel 24.16 21.53 19.96 19.92 19.93 19.96 18.67 19.75 19.74 19.70
Alibi rel 24.18 21.32 19.69 19.64 19.69 19.64 18.66 19.64 19.65 19.62
Wavelet(Ricker) a = 27 rel 23.64 20.82 19.19 19.15 19.17 19.20 18.26 19.30 19.34 19.26

Perplexity without Non-overlapping Inference

NoPE none 26.38 23.23 21.53 21.03 21.58 48.48 20.81 20.45 22.11 59.37
RoPE θ = 10k abs 23.82 20.98 19.39 23.25 44.38 93.94 18.42 18.29 33.20 122.52
RoPE θ = 0.5m abs 23.81 20.95 19.35 23.70 40.39 77.90 18.50 18.30 29.25 83.43
Trans-XL rel 24.16 21.53 19.96 19.09 18.92 19.05 18.67 18.25 18.17 18.76
ALiBi rel 24.18 21.32 19.69 18.71 18.42 18.41 18.66 18.14 17.86 17.88
Wavelet(Ricker) a = 27 rel 23.64 20.82 19.19 18.23 18.00 17.99 18.26 17.13 17.14 17.44
Haar a = 20 rel 24.98 22.07 20.49 51.61 116.87 299.26 - - - -
Haar a = 27 rel 23.73 20.89 19.27 18.34 18.11 18.17 - - - -
Morlet a = 27 rel 24.15 21.28 19.65 19.02 20.46 26.56 - - - -
Gaussian a = 27 rel 23.77 20.90 19.30 18.31 18.02 17.88 - - - -

sequences. Note that when the sequence length is less than Ltrain, the scores for the perplexity
of non-overlapping inference and the normal perplexity without division into partial sequences are
the same. Of course, when perplexity is considered without division into partial sequences, the
performance of RoPE is expected to decrease greatly because unknown values are used for RoPE
when processing a sequence longer than the length encountered during training.

6.2 MAIN RESULTS

The experimental results are shown in Table 2. The results of perplexity in inference without overlap
show that the proposed method using wavelets achieved the lowest perplexity and was also effective
for extrapolation. In RoPE, the values used during training are also used in inference without over-
lap, so the perplexity remains low even when the sequence length exceeds Ltrain. At the same time,
however, perplexity is higher for ALiBi and Trans-XL than for RoPE, which is attributed to the lim-
ited context range of the position representation’s applicability due to the division of the sequence
into sub-sequences. In contrast, the proposed method maintains low perplexity even in the case of
division into sub-sequences, suggesting that the wavelet position representation is highly effective.

On the other hand, perplexity without non-overlapping inference showed the opposite results. First,
since RoPE uses absolute positions, it is necessary to use new values for unknown positions, and thus
perplexity increased significantly. However, in the case of θ = 500, 000, the increase in perplexity
was relatively small. On the contrary, Trans-XL and ALiBi, which use relative positions, were
able to handle longer contexts, and perplexity decreased as the range of position representations
expanded. In the proposed method, perplexity also decreased and the best score was achieved.
Trans-XL uses a position representation based on a periodic sine wave function, but the proposed
method, which uses wavelets, could further decrease perplexity. This result supports our claim (see
section 5) that an approach like wavelet transformation is more effective than periodic functions in
capturing the fluid nature of natural language, which is not constrained by periodicity.

6.3 ANALYSIS

6.3.1 HOW EFFECTIVE ARE THE OTHER WAVELET TYPES?

We also conducted experiments to see whether the same effect could be obtained with other
wavelets. The wavelets tested were the Gaussian-based wavelet ψ(t) = exp(−t2), the Morlet-
based waveletψ(t) = exp(−t2)cos(at), and the Haar-based wavelet. Note that when ψ(t/a) exists
in our Morlet wavelet, the frequency of this cosine wavelet is not affected by the scale parameter a.
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Figure 3: Heatmap of scaled attention scores via softmax normalization in 4th head after softmax
operation without non-overlapping inference. The vertical axis represents the query, while the hor-
izontal axis corresponds to the key. For clarity, values of 0.001 or more are mapped to black, while
values below that are mapped to yellow. The maximum allowable length of sequences in pre-training
is Ltrain = 512 and the inference length is 1012. See Appendix A.9 for other heads.

We used the following formula for the Haar wavelet.

ψ(t) =


1 −0.5 ≤ t<0,

− 1 −1 ≤ t<− 0.5,

0 otherwise.

(15)

We kept the shift and scale parameters constant, only changing the wavelet function. We also tested
the Haar wavelet when set to a ∈ {20, 20, 20, ...20}. Consequently, this restricted Haar wavelet had
the same scale parameter setting as the RoPE demonstrated in Section 3.2. 6 The graphs of these
wavelet functions are shown in Appendix A.8 (Fig. 6). Extrapolation experiments were conducted
under the same conditions as the experimental setup in Section 6, with Ltrain = 512 during training.

The results are shown in Table 2. The Ricker-, Haar- and Gaussian-based wavelets had lower per-
plexity than the Morlet wavelet. It is possible that complex wavelets with multiplied cosine waves,
such as Morlet wavelets, are not suitable for relative positional representation. On the other hand,
wavelets with all positive values, such as Gaussian-based wavelets, are expected to represent posi-
tions within a narrower distance than the window specified by the scale parameter due to softmax
normalization. This suggests that wavelets with a specific range of negative values are suitable, like
a Ricker wavelet, for positional representation. Although the Haar wavelet is simple, it is such a
wavelet with negative values within a specific range. Therefore, it is considered effective, although
not as much as a Ricker wavelet. However, when the scale parameter is restricted ( a ∈ {20, ..., 20}),
as in RoPE, the perplexity increases. This demonstrates the importance of having multiple scales,
or in this case, window sizes.

6.3.2 CAN IT HANDLE TOKENS WITH LONG-RANGE DEPENDENCIES?

Figure 3 shows the attention map of scaled attention scores obtained through softmax normalization
for the proposed method. The inference length is L = 1012 without non-overlapping inference.
The primary notable feature of the proposed method is that it is always able to attend to specific
tokens. The words that always receive attention are those that are important in the sentence, such
as the special token, the first token, and the subject of the sequence. On the other hand, ALiBi has
a restricted receptive field for attention, making it unable to capture long-distance dependencies.
Similar to the proposed method, RoPE emphasizes important and special words but it struggles to
capture those that are farther apart. Moreover, as the sentence lengthens, it loses the ability to attend
to the initial word. This tendency was also seen in sentences shorter than Ltrain. Accordingly, the
proposed method has demonstrated its superiority at capturing long dependencies without restricting
the receptive field of attention.

6Normally, the wave is localized when t > 0 in the Haar wavelet, but in the decoder model, only the range
t < 0 is used. Therefore, we transformed the Haar wavelet into a form that reflects the original function f(x)
across the y-axis.
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Table 3: Perplexity in Non-overlapping Inference with Ltrain = 4096.

Sequence Length
2 k 4 k 8 k 16 k 32 k

RoPE θ =0.5 m 8.37 7.85 9.33 9.12 8.90
Wavelet a = 29 8.21 7.35 9.01 8.83 8.60

7 LONG CONTEXT

7.1 EXPERIMENTAL SETTINGS

Next, we conducted a large-scale experiment using a Llama-based model (Touvron et al., 2023b).
We pre-trained the Llama-2-7B7 model from scratch. For pre-training, we used the RedPajama
dataset (Computer, 2023), which selects a 1B-token sample of all samples. 8 The maximum al-
lowable length of sequences in pre-training was set to Ltrain = 4096. For the same reason as
given in Section 6.1, we set θ = 500, 000 for RoPE. Furthermore, when the scale parameter is
a ∈ {20, 21, ..., 27}, the range within which the wavelet is localized becomes narrow. Therefore, in
our method, we changed the scale parameter to a ∈ {22, 23, ..., 29}. The other parameters are the
same as those for the Llama-2-7B model(Touvron et al., 2023b). We used CodeParrot 9 for evalu-
ation, which is good for long-distance testing because it requires an understanding of patterns and
contextualization of information over long distances. In accordance with previous research (Rubin
& Berant, 2024; Wu et al., 2022; Zhang et al., 2024), we then used 100 sampled sequences in the
training set for evaluation. In this experiment, due to the large model size and long sequence length,
we report perplexity only for non-overlapping inference using Ltrain, since the memory capacity is
exceeded.

7.2 MAIN RESULTS

The experimental results are shown in Table 3. Regardless of interpolation or extrapolation, the
perplexity of our method was lower than RoPE. Therefore, even with large-scale models and long
contexts, our method was found to be effective. Furthermore, the results in Section 6.2 show that not
dividing the sequence further reduces perplexity. Therefore, there is a possibility that our method
will further reduce perplexity.

8 CONCLUSION

In this paper, we demonstrated that RoPE can be interpreted as a wavelet transform, and we intro-
duced a novel positional representation method that leverages the wavelet transform’s advantages,
effectively capturing positional information across various window sizes. Our experimental results
demonstrate the proposed method’s superior performance in extrapolation tasks when compared to
traditional positional representation techniques. Importantly, our approach offers the advantage of
not constraining the receptive field, which allows more flexible and comprehensive analysis of posi-
tions. It is known that calculating relative positions requires more resources than calculating absolute
positions, so we show methods for reducing memory consumption in Appendix A.4. Nevertheless,
the overhead imposed by calculating relative positions can still be a bottleneck, so reducing the
amount of required calculation remains a future work.
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David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 2978–2988, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1285. URL https://aclanthology.
org/P19-1285.

Ingrid Daubechies. Ten lectures on wavelets. Society for industrial and applied mathematics, 1992.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

W. M. Gentleman and G. Sande. Fast fourier transforms: for fun and profit. In Proceedings of
the November 7-10, 1966, Fall Joint Computer Conference, AFIPS ’66 (Fall), pp. 563–578, New
York, NY, USA, 1966. Association for Computing Machinery. ISBN 9781450378932. doi: 10.
1145/1464291.1464352. URL https://doi.org/10.1145/1464291.1464352.

11

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://aclanthology.org/2023.acl-long.756
https://github.com/togethercomputer/RedPajama-Data
https://aclanthology.org/P19-1285
https://aclanthology.org/P19-1285
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1145/1464291.1464352


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A. Grossmann and J. Morlet. Decomposition of hardy functions into square integrable wavelets of
constant shape. SIAM Journal on Mathematical Analysis, 15(4):723–736, 1984. doi: 10.1137/
0515056. URL https://doi.org/10.1137/0515056.

A. Haar. Zur theorie der orthogonalen funktionensysteme. (erste mitteilung). Mathematische An-
nalen, 69:331–371, 1910. URL http://eudml.org/doc/158469.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 24892–24928. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/4e85362c02172c0c6567ce593122d31c-Paper-Conference.pdf.

Gregory R. Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt, and Aaron O8217;Leary. Py-
wavelets: A python package for wavelet analysis. Journal of Open Source Software, 4(36):1237,
2019. doi: 10.21105/joss.01237. URL https://doi.org/10.21105/joss.01237.

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable fourier features for multi-
dimensional spatial positional encoding. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=R0h3NUMao_U.

Xiaoran Liu, Hang Yan, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of roPE-based
extrapolation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=JO7k0SJ5V6.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

S.G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693, 1989. doi: 10.1109/
34.192463.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Nhat Khang Ngo, Truong Son Hy, and Risi Kondor. Multiresolution graph transformers and wavelet
positional encoding for learning long-range and hierarchical structures. The Journal of Chemical
Physics, 159(3):034109, 07 2023a. ISSN 0021-9606. doi: 10.1063/5.0152833. URL https:
//doi.org/10.1063/5.0152833.

Nhat Khang Ngo, Truong Son Hy, and Risi Kondor. Multiresolution graph transformers and wavelet
positional encoding for learning hierarchical structures. arXiv preprint arXiv:2302.08647, 2023b.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZu1u.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

12

https://doi.org/10.1137/0515056
http://eudml.org/doc/158469
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://proceedings.neurips.cc/paper_files/paper/2023/file/4e85362c02172c0c6567ce593122d31c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4e85362c02172c0c6567ce593122d31c-Paper-Conference.pdf
https://doi.org/10.21105/joss.01237
https://openreview.net/forum?id=R0h3NUMao_U
https://openreview.net/forum?id=R0h3NUMao_U
https://openreview.net/forum?id=JO7k0SJ5V6
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.1063/5.0152833
https://doi.org/10.1063/5.0152833
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=R8sQPpGCv0


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Norman Ricker. Wavelet functions and their polynomials. Geophysics, 9(3):314–323, 07 1944. ISSN
0016-8033. doi: 10.1190/1.1445082. URL https://doi.org/10.1190/1.1445082.

Ohad Rubin and Jonathan Berant. Retrieval-pretrained transformer: Long-range language modeling
with self-retrieval, 2024. URL https://arxiv.org/abs/2306.13421.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position represen-
tations. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Papers), pp. 464–468, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2074. URL
https://aclanthology.org/N18-2074.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding, 2021.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaud-
hary, Xia Song, and Furu Wei. A length-extrapolatable transformer. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 14590–14604, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.816. URL
https://aclanthology.org/2023.acl-long.816.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

R. Tian, Z. Wu, Q. Dai, H. Hu, Y. Qiao, and Y. Jiang. Resformer: Scaling vits with multi-
resolution training. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 22721–22731, Los Alamitos, CA, USA, jun 2023. IEEE Computer Society. doi:
10.1109/CVPR52729.2023.02176. URL https://doi.ieeecomputersociety.org/
10.1109/CVPR52729.2023.02176.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation lan-
guage models. ArXiv, abs/2302.13971, 2023a. URL https://api.semanticscholar.
org/CorpusID:257219404.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von

13

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1190/1.1445082
https://arxiv.org/abs/2306.13421
https://aclanthology.org/N18-2074
https://aclanthology.org/2023.acl-long.816
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02176
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02176
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://arxiv.org/abs/2307.09288


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi Li, Peng Zhang, and Jakob Grue Simon-
sen. Encoding word order in complex embeddings. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Hke-WTVtwr.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing
transformers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=TrjbxzRcnf-.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Mar-
tin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang,
Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation mod-
els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4643–4663, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.260. URL
https://aclanthology.org/2024.naacl-long.260.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from
4k to 400k: Extending llm’s context with activation beacon, 2024. URL https://arxiv.
org/abs/2401.03462.

A APPENDIX

A.1 ROTARY POSITION EMBEDDING

RoPE incorporates positional information directly into the self-attention mechanism by rotating the
query and key vectors in the complex space. When divided into even and odd dimensions, the
following calculations are performed for the m-th query in each sequence. In even dimensions,
RoPE is expressed as follows.


qm0
qm2

...
qmd−2

 =


cosmθ1 − sinmθ1 0 0 ... 0 0

0 0 cosmθ2 − sinmθ2 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... cosmθd/2 − sinmθd/2




qm0
qm1
qm2
qm3

...
qmd−2

qmd−1


.

(16)

In odds dimensions, RoPE is expressed as follows.


qm1
qm3

...
qmd−1

 =


sinθ1 cosθ1 0 0 ... 0 0
0 0 sinmθ2 cosmθ2 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... sinmθd/2 cosmθd/2




qm0
qm1
qm2
qm3

...
qmd−2

qmd−1


. (17)

where qm ∈ R1×d is the m-th query when the number of dimensions is d and θi =
10000−2(i−1)/d, i ∈ [1, 2, ..., d/2]. The same process is also performed for the n-th key kn ∈ R1×d.
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A.2 HAAR WAVELET

Here, we explain wavelet transform using the Haar wavelet, which is the simplest wavelet. The
definition of the Haar wavelet is as follows.

ψ(t) =


1 0 ≤ t<1/2,

− 1 1/2 ≤ t<1.

0 otherwise.

ϕ(t) =

{
1 0 ≤ t<1,

0 otherwise.
(18)

Haar wavelets are defined not only by a wavelet function ψ but also by a scaling function ϕ.

The method of analyzing signals by performing a discrete wavelet transform using these two func-
tions is called multi-resolution analysis. When the scale is fixed at 2 and the shift b ∈ [0, 2, ..., d/2],
the wavelet transform using the wavelet function and scaling function is expressed as follows.

ψ2,0(0) ψ2,0(1) ψ2,0(2) ψ2,0(3) ... ψ2,0(T − 2) ψ2,0(T − 1)
ϕ2,0(0) ϕ2,0(1) ϕ2,0(2) ϕ2,0(3) ... ϕ2,0(T − 2) ϕ2,0(T − 1)
ψ2,0(−2) ψ2,0(−1) ψ2,0(0) ψ2,0(1) ... ψ2,0(T − 4) ψ2,0(T − 3)
ϕ2,0(−2) ϕ2,0(−1) ϕ2,0(0) ϕ2,0(1) ... ϕ2,0(T − 4) ϕ2,0(T − 3)

...
...

...
... ...

...
...

ψ2,0(− d
2 ) ψ2,0(− d

2 + 1) ψ2,0(− d
2 + 2) ψ2,0(− d

2 + 3) ... ψ2,0(0) ψ2,0(1)
ϕ2,0(− d

2 ) ϕ2,0(− d
2 + 1) ϕ2,0(− d

2 + 2) ϕ2,0(− d
2 + 3) ... ϕ2,0(0) ϕ2,0(1)




x(0)
x(1)
x(2)

...
x(T − 2)
x(T − 1)

 .
(19)

From Eq.(18) , ψ2,0 and ϕ2,0 are as follows.

ψ2,0(t) =


1/
√
2 0 ≤ t<1,

− 1/
√
2 1 ≤ t<2,

0 otherwise.

ϕ2,0(t) =

{
1/
√
2 0 ≤ t<2,

0 otherwise.
(20)

Therefore, the Haar wavelet transform is a 2× 2 block matrix.
ψ(2, 0)
ϕ(2, 0)
ψ(2, 2)
ϕ(2, 2)

...
ψ(2, T − 2)
ϕ(2, T − 2)

 =


1/

√
2 −1/

√
2 0 0 ... 0 0

1/
√
2 1/

√
2 0 0 ... 0 0

0 0 1/
√
2 −1/

√
2 ... 0 0

0 0 1/
√
2 1/

√
2 ... 0 0

...
...

...
... ...

...
...

0 0 0 0 ... 1/
√
2 −1/

√
2

0 0 0 0 ... 1/
√
2 1/

√
2




x(0)
x(1)
x(2)
x(3)

...
x(T − 2)
x(T − 1)

 . (21)

This matrix is the Haar forward transform using matrix multiplication for a T element signal. This
matches the RoPE matrix with mθ = π/4.
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A.3 ISN’T ROPE A FOURIER TRANSFORM?

We also hypothesized that this could be equivalent to a Fourier transform. However, this hypothesis
does not hold. When a signal x(t) that changes over time is Fourier transformed, its spectrum F (k)
is obtained. The process of converting an actual discrete signal x(t) into a spectrum F (k) is as
follows.

F (f) =

T∑
t=0

x(t)wf ·t (22)

The Fourier transform can be expressed as a matrix formula as follows.
F (0)
F (1)
F (2)

...
F (f)

 =


w0·0 w0·1 w0·2 ... w0·(T−1)

w1·0 w1·1 w1·2 ... w1·(T−1)

w2·0 w2·1 w2·2 ... w2·(T−1)

...
...

...
. . .

...
wf·0 wf·1 wf·2 ... wf·(T−1)

.




x(0)
x(1)
x(2)

...
x(T − 1)

 . (23)

Here, f ∈ R is the wave number, T ∈ R is the number of samples, and i is the imaginary unit.
w = exp(− 2πi

T ) is called the Twiddle Factor (Gentleman & Sande, 1966), which is a complex
number expressed in polar form using Euler’s formula e−iθ = cosθ − isinθ. In the complex plane,
wf ·t represents a point on the unit circle with an argument of the complex number − ft2π

T . From this
formula, we can see that the Fourier transform calculates the inner product of all signals and sine
waves. However, in RoPE, the inner product with sine waves is calculated only within each block.

Next, when calculating the attention score with RoPE, does the Fourier transform hold? Attention
scores of the m-th query qm and the n-th key kn with RoPE are calculated as follows.

[
R1
m(Q1

m)T , ..., R
d/2
m (Q

d/2
m )T

] R1
nK

1
n

...
R
d/2
n K

d/2
n

 =

d/2∑
i=1

(Qim)TRin−mK
i
n, (24)

where Qd/2m is the query divided into every two dimensions, and Rd/2m is the rotation matrix.

Qd/2m =

[
qd−1
m

qdm

]
,Kd/2

n =

[
kd−1
n

kdn

]
, Rd/2m =

[
cosmθd/2 −sinmθd/2
sinmθd/2 cosmθd/2

]
.

To align with the Fourier transform, as illustrated in Equation 23, a process involving the inner prod-
uct between a frequency tensor of dimensions f×T and a signal tensor of dimensions T×1 (such as the
query vector) is required. However, RoPE operates on independent 2×2 blocks, where each block is
processed separately. Consequently, RoPE’s block-wise operations do not conform to the structure
required by the Fourier transform. Moreover, if we focus solely on the RoPE and key operations
in Equation 24, they may appear to align with the structure of a Fourier transform. However, since
the final step involves taking the inner product with the query, the overall operation deviates from
a perfect match with the Fourier transform. Furthermore, the rotation factor represents a rotation
in the complex plane, and even if it is expressed as in Eq.(23) using a rotation matrix, it does not
completely match a rotation matrix that represents a rotation in the Euclidean plane.

Therefore, RoPE cannot be equated with the Fourier transform. Furthermore, even if it were the
same as the Fourier transform, it would be unsuitable for processing non-stationary signals and thus
unsuitable for processing natural language, which is a non-stationary flow.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 IMPLEMENTATION TIPS FOR WAVELET POSITION REPRESENTATION

Tip 1 Similar to RPE(Shaw et al., 2018), we use Eq. (10) as follows:

αij = softmax
(qiKT + qi(pij)

T

√
dk

)
.

By transforming it in this way, it is possible to reduce the computational complexity to O(batch ×
n× length2 × d+ length2 × d), where batch is the batch size, n is the number of heads, length is
the number of tokens, and d is the number of dimensions of each head. The experiments in Section
6 are implemented based on the methodology introduced in this section.

Tip 2 When dealing with long contexts of over 4 k with a large model, the memory efficiency of
(d, length, length) of the wavelet position becomes a bottleneck. Therefore, we further reduce the
memory usage to (d, length) by using torch.scatter to scatter the wavelet position represen-
tation to the attention mask. In the relative position representation in the decoder, only the position
information of the token before the current token is required, for example, 0,−1,−2, etc. There-
fore, we pre-compute the information up to 0,−1,−2, ...length and reduce the memory usage by
using torch.scatter to distribute it. Specifically, we prepare a (d, length) wavelet tensor and
calculate the 2D inner product with the query, which has been transposed to (length × batch, d).
The tensor after the calculation becomes (length × batch, length), which is then scattered us-
ing torch.scatter so that it becomes a relative position in the attention mask. This reduces
the amount of memory used from (d, length, length) to (d, length), and the calculation can be
performed using calculations between 2D tensors. The experiments in Section 7 are implemented
based on the methodology introduced in this section.

A.5 EXPERIMENTAL SETTINGS IN SHORT-CONTEXT EXPERIMENT

The parameter settings used in the extrapolation experiments were the same as those in the original
ALiBi paper. The dimensionality of the word embedding dmodel is 1024, the number of heads N is
8, the dimensionality of the heads d is 128, and the number of layers is 16. The implementation was
based on the fairseq (Ott et al., 2019)-based code10 provided in a previous work(Press et al., 2022),
and all hyperparameters were set to the same values as those in the literature(Press et al., 2022). The
number of training epochs is 205, and the batch size is 9216. The learning rate was set to 1.0, and
the learning process was updated by 1e-7 every 16,000 steps.

A.6 EXPERIMENTAL SETTINGS IN LONG-CONTEXT EXPERIMENT

Pre-training The dimensionality of the word embedding dmodel is 4096, the number of heads
N is 32, the dimensionality of the heads d is 128, and the number of layers is 32. The number
of training steps is 30000, and the batch size is 1. The learning rate was set to 0.0003. We used
AdamW(Loshchilov & Hutter, 2019) as the optimizer, with (β1, β2) = (0.9, 0.95).

Fine-tuning for Position Interpolation We used the RedPajama dataset (Computer, 2023) for
fine-tuning. The number of training steps is 1000, and the batch size is 1. The learning rate was
set to 1e-7. The max context length is 8000. We used AdamW(Loshchilov & Hutter, 2019) as the
optimizer, with (β1, β2) = (0.9, 0.9).

10https://github.com/ofirpress/attention_with_linear_biases
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A.7 RICKER WAVELET

Figure 4 shows the ricker wavelets with multiple scale a.

Figure 4: Graph of compared ricker wavelet functions with a = [20, 21, 22, 23, 24]

Figure 5: Graph of compared ricker wavelet functions with a = [25, 26, 27, 28, 29]

A.8 WAVELET TYPE

Figure 6 shows graphs of the wavelets compared in Section 6.3.1. It can be seen that the simplest is
the Haar wavelet, while the most complex is the Morlet wavelet.

Figure 6: Graph of compared wavelet functions. The case with scale parameter a = 24 and shift
parameter b = 0 is shown.
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A.9 CAN IT HANDLE TOKENS WITH LONG-RANGE DEPENDENCIES?

Figure 7: Heatmap of scaled attention scores via softmax normalization in 1-3 and 5-8th head after
softmax operation for ALiBi, RoPE, and our method. For clarity, values of 0.001 or more are
mapped to black, while values below that are mapped to yellow.
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Table 4: Perplexity of validation set in extrapolation experiments using Wikitext-103. Maximum
allowable length of sequences in pre-training is Ltrain = 512.

Sequence Length

scale a shift b 128 256 512 1012 1512 2512

Perplexity without Non-overlapping Inference

Ricker {20, 21, ..., 27} {0, 1, 2, ..., 15} 23.64 20.82 19.19 18.23 18.00 17.99
Ricker {21, 22..., 28} {0, 1, 2, ..., 15} 23.77 20.89 19.25 18.23 17.97 18.02
Ricker {22, 23..., 29} {0, 1, 2, ..., 15} 23.92 21.03 19.40 18.41 18.14 18.07
Ricker {20, 21, 22, 23} {0, 1, 2, ..., 31} 23.96 21.13 19.55 18.87 19.40 21.73
Ricker {20, 21} {0, 1, 2, ..., 63} 24.49 21.60 19.95 20.90 32.01 70.80
Ricker {20, 21..., 215} {0, 1, 2, ..., 7} 23.74 20.88 19.24 18.22 17.96 17.84
Ricker {20, 21..., 231} {0, 1, 2, 3} 23.75 20.86 19.26 18.24 17.96 17.84
Ricker {20, 21..., 263} {0, 1} 23.75 20.88 19.30 18.31 18.04 18.02
Ricker {20, 21..., 2127} {0} 23.97 21.10 19.46 18.50 18.27 18.29
Ricker {27} {0, 1, 2, ..., 127} 24.35 21.45 19.80 20.68 20.87 21.31
Gaussian {20, 21, ..., 27} {0, 1, 2, ..., 15} 23.77 20.90 19.30 18.31 18.02 17.88
Gaussian {21, 22..., 28} {0, 1, 2, ..., 15} 23.92 21.02 19.41 18.41 18.15 18.01
Gaussian {22, 23..., 29} {0, 1, 2, ..., 15} 23.98 21.09 19.46 18.43 18.13 17.93
Gaussian {20, 21, 22, 23} {0, 1, 2, ..., 31} 23.83 29.96 19.33 18.43 18.40 18.94
Gaussian {20, 21} {0, 1, 2, ..., 63} 24.28 21.35 19.70 18.96 19.63 23.14
Gaussian {20, 21..., 215} {0, 1, 2, ..., 7} 23.72 20.86 19.24 18.24 17.95 17.77
Gaussian {20, 21..., 231} {0, 1, 2, 3} 23.78 20.92 19.29 18.30 18.01 17.85
Gaussian {20, 21..., 263} {0, 1} 23.86 20.98 19.37 18.46 18.20 18.10
Gaussian {20, 21..., 2127} {0} 24.21 21.31 19.68 18.71 18.45 18.45
Gaussian {27} {0, 1, 2, ..., 127} 24.48 21.62 20.05 19.53 22.63 35.23
Haar - - 24.98 22.07 20.49 51.61 116.87 299.26
Haar {20, 21, ..., 27} {0, 1, 2, ..., 15} 23.73 20.89 19.27 18.34 18.11 18.17
Morlet {20, 21, ..., 27} {0, 1, 2, ..., 15} 24.15 21.28 19.65 19.02 20.46 26.56

A.10 ABRATION STUDY OF SCALE AND SHIFT PARAMETER

In this section, we present the findings from our ablation study focusing on the shift and scale param-
eters of the Ricker and Gaussian wavelets. As indicated in Table 2, both wavelet types demonstrate
substantial effectiveness in our method. To further evaluate their performance, we explored the con-
tributions of the two parameters: the scale parameter a and the shift parameter b, while keeping all
other settings consistent with those outlined in Section 6.

Results The results of our experiments are summarized in Table 4. Both the Ricker and Gaussian
wavelets exhibit similar trends regarding the influence of the scale and shift parameters on extrap-
olation performance. Initially, we observed that increasing the scale parameter value a while hold-
ing the shift parameter b ({20, 21, ..., 27} × {0, 1, 2, ..., 15}, {21, 22, ..., 28} × {0, 1, 2, ..., 15} and
{22, 23, ..., 29}×{0, 1, 2, ..., 15}) constant maintained the performance of extrapolation, albeit with
some fluctuations. Conversely, when we increased the number of shift parameters while decreasing
the number of scale parameters ({20, 21, 22, 24} × {0, 1, 2, ..., 31} and {20, 21} × {0, 1, 2, ..., 63}),
there was a noticeable decline in performance. This finding underscores the significance of the
scale parameters in extrapolation. Moreover, we found that increasing the number of scale pa-
rameters while decreasing the number of shift parameters led to performance improvements in
some instances ({20, 21, ..., 215} × {0, 1, 2, ..., 7} and {20, 21, ..., 231} × {0, 1, 2, 3}). However,
when the shift parameters were reduced to two or entirely eliminated ({20, 21, ..., 263} × {0, 1} and
{20, 21, ..., 2127} ), relying solely on the scale parameters resulted in a deterioration of extrapola-
tion performance. And even when the scale parameter was fixed and only the shift parameter was
used({27} × {0, 1, 2, .., 127}), the extrapolation performance decreased. This suggests a potential
importance of the shift parameters as well.

In conclusion, our analysis highlights the critical roles of both shift and scale parameters in the
effectiveness of our wavelet-based method.
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A.11 ABRATION STUDY OF WAVELET TYPES

In this section, we also explored a variety of wavelet types beyond those previously discussed. In
Section 6.3.1, our focus was primarily on wavelets that can be computed directly from mathematical
formulas. However, in this section, we expanded our inquiry to include wavelets with varying
numbers of vanishing moments as well as discrete wavelet transformations. Additionally, drawing
from previous research (Wang et al., 2020), we considered the necessity for a distinct approach
when incorporating complex numbers into positional encoding. Consequently, our study did not
encompass wavelets that incorporate complex numbers.

Wavelet types The specific wavelets under consideration in our investigation are outlined as fol-
lows:

• Daubechies (db) (Daubechies, 1992) - Compactly supported orthonormal wavelets
• Symlets (sym) - Wavelet with minimum asymmetry
• Coiflets (coif) - The scaling and wavelet functions have the same number of vanishing

moments
• Meyer (dmey) - Wavelet defined in the frequency domain
• Biorthogonal Spline (bior) - Two wavelets are used. One is used for decomposition, and

the other for reconstruction.
• Reverse biorthogonal Spline (rbio)

In addition, the graphs of these wavelets are shown in Figures 8 and 9. Furthermore, as the number of
vanishing moments increases, the wave oscillation becomes larger. Therefore, we also conducted a
survey by vanishing point moment. The name of a wavelet is derived from the number of vanishing
moments. For example, db6 is a Daubechies wavelet with 6 vanishing moments, and sym3 is a
Symlet wavelet with 3 vanishing moments. In the case of Coiflet wavelets, coif3 is a Coiflet
wavelet with 6 vanishing moments. The names of bior and rbio wavelets are derived from
the number of vanishing moments possessed by the decomposition and reconstruction wavelets,
respectively. For example, bior3.5 is Biorthogonal wavelet that has 3 vanishing moments for
the decomposition wavelet and 5 vanishing moments for the reconstruction wavelet. Biorthogonal
wavelets and Reverse-Biorthogonal wavelets calculate the approximate values of decomposition
wavelets and reconstruction wavelets, but in this case, we only used the values of decomposition
wavelets.

Experimental Settings We used Pywavelet (Lee et al., 2019) 11 to calculate the approximate val-
ues of these wavelets. In addition, in this experiment, we calculated the approximate values by
specifying 8 levels of {1, 2, ..., 8} instead of the 8-pattern scale parameters {20, 21, ..., 27}. We used
the shift parameter {0, 1, 2, ..., 15}. The other experimental settings are the same as in Section 6.

Results The experimental results are summarized in Table 5. Overall, the performance observed
was suboptimal. However, it is important to note that the parameters were fixed at levels {1, 2, ..., 8},
we believe that performance may be enhanced with adjustments to these levels. Notably, the rbio1.1
wavelet demonstrated promising extrapolation capabilities, suggesting significant potential for fu-
ture improvements. In contrast, the coif and dmey wavelets exhibited limited performance, even with
shorter sequences, indicating their potential unsuitability for position encoding tasks. Conversely,
while the extrapolation performance (> 512) of other wavelets was generally low, their interpolation
performance (≤ 512) remained consistently stable, highlighting another avenue for enhancement.
Furthermore, the performance of the db, bior, and rbio wavelets showed a positive correlation with
an increasing number of vanishing points. This finding underscores the importance of vanishing
points as a critical factor influencing performance. In conclusion, our analysis indicates that both
the shape of the wavelet and the number of vanishing points play significant roles in determining ex-
trapolation performance. Future work should explore these relationships further to identify optimal
configurations for improved performance outcomes.

11https://pywavelets.readthedocs.io/en/latest/index.html
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Table 5: Perplexity without Non-overlapping Inference. We evaluated the validation set in extrapo-
lation experiments using Wikitext-103. Maximum allowable length of sequences in pre-training is
Ltrain = 512.

Sequence Length

Wavelet type 128 256 512 1012 1512 2512

Continuous Wavelet Families

Ricker 23.64 20.82 19.19 18.23 18.00 17.99
Gaussian 23.77 20.90 19.30 18.31 18.02 17.88
Morlet 24.15 21.28 19.65 19.02 20.46 26.56

Discrete Wavelet Families

Haar 23.73 20.89 19.27 18.34 18.11 18.17
db2 25.22 22.26 20.64 30.30 60.27 130.93
db4 25.22 22.47 21.37 41.78 51.75 56.18
db8 25.19 22.48 21.58 26.90 31.55 39.75
db16 25.23 22.43 21.24 21.15 22.16 46.65
db32 25.12 22.35 21.14 21.20 22.40 38.00
sym2 25.11 22.21 20.68 31.25 61.00 126.32
sym4 25.27 22.56 21.98 24.70 26.81 42.81
sym8 29.27 26.13 24.63 23.97 31.47 92.36
coif1 31.24 28.00 26.24 64.62 71.06 97.60
coif2 25.24 22.47 21.39 27.74 27.39 44.26
coif4 49.91 45.15 42.42 41.07 56.08 110.27
coif8 25.15 22.39 21.26 21.31 22.26 35.73
coif16 126.38 117.88 113.42 132.14 166.77 230.95
dmey 30.38 27.12 25.45 25.88 46.35 131.48
bior1.3 26.27 23.36 23.69 23.38 30.71 88.66
bior2.2 25.28 22.51 21.59 29.71 29.43 50.25
bior2.6 25.29 22.70 21.60 22.15 22.71 40.61
bior3.1 26.92 24.02 22.38 59.30 113.81 205.54
bior3.5 25.17 22.49 21.65 27.41 27.19 53.99
bior3.9 25.24 22.48 21.51 21.89 23.86 50.14
bior4.4 25.52 22.72 21.64 21.67 24.42 51.46
bior5.5 25.21 22.55 21.72 23.43 24.68 36.30
bior6.8 25.14 22.39 21.21 21.10 22.31 46.97
rbio1.1 24.26 21.34 19.69 18.79 18.63 18.98
rbio1.3 25.28 22.50 21.39 52.06 47.78 59.94
rbio2.2 25.92 23.08 21.98 68.57 86.12 93.90
rbio2.6 25.29 22.68 21.60 24.54 24.47 44.57

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 8: Graph of compared wavelet with level=10. Pywavelet (Lee et al., 2019) was used to
calculate wavelets.
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Figure 9: Graph of compared wavelet with level=10. Pywavelet (Lee et al., 2019) was used to
calculate wavelets.
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A.12 EXAMPLE OF HEAT MAP AND TEXT CORRESPONDENCE

Figure 10 shows the attention map after softmax operation for the proposed method. First, the
notable feature of the proposed method is that it is always able to pay attention to specific tokens.
The words that always receive attention are words that are important in the sentence, such as the
’</s>’ token, the first token, and words that are the subject of the sequence, such as ’he.’ Moreover,
as with ALiBi, the proposed method has a different scope of attention for each head.

Figure 10: Heatmap of attntion score eij after softmax operation for the proposed method. The
maximum sequence length is Lmax = 512 and the sequence length at inference is L = 1012. From
left to right, n = 1, 2, 4th heads are shown. Scores above 0.01 are mapped in black and the rest in
yellow. Words that were always paid attention in all heads are shown in red, and words that were
frequently paid attention only in the n = 2th head are shown in blue. Sentences are omitted in the
middle because they are long with 1012 tokens.
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