DDS-E-Sim: A Transformer-based Probabilistic
Generative Framework for Simulating Error-Prone
DNA Sequences for DNA Data Storage

Mst. Fahmida Sultana Naznin', Swarup Sidhartho Mondol!, Adnan Ibney Faruq’,
Debashmita Saha!, Ahmed Mahir Sultan Rumi !, A. B. M. Alim Al Islam!

'Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
Correspondence: nazninfahmidasultana@ gmail.com

Abstract

DNA has emerged as a promising medium for long-lasting data stoage due to
its high information density and long-term stability. However, DNA storage is
a complex process where each stage introduces noise and errors. Since running
DNA data storage experiments in vitro is still expensive and time-consuming, a
simulation model is quite necessary that can mimic the error patterns in the real
data and simulate the experiments. Existing tools often rely on fixed error rates or
are specific to certain technologies. We propose DDS-E-Sim, a transformer-based
probabilistic generative framework that simulates errors in a DNA data storage
channel, regardless of the process or technology. DDS-E-Sim successfully captures
the error distribution of DNA storage pipelines and learns to stochastically generate
erroneous DNA reads. Given oligos (DNA sequences to write), it outputs erroneous
reads resembling real pipelines capturing both random and biased errors, such as k-
mer and transition errors. Evaluations on two distinct technology-specific datasets
show high fidelity and universality: DDS-E-SIM exhibit a total error rate deviation
of only 0.1% and 0.7% respectively on the datasets processed with Illumina MiSeq
and Oxford Nanopore. Additionally, our simulator generates 100,743 unique oligos
from 35,329 sequences, with coverage 5 (each sequence read five times) in the
test datasets, demonstrating its ability to simulate biased errors and stochastic
properties simultaneously.

1 Introduction

In the era of data expansion, the world produces 10'8 bytes daily [26], demanding durable storage
(>50 years) [41]]. DNA offers high information density and stability with minimal maintenance
power [[11]. DNA Data Storage (DDS) comprises multiple stages - synthesis, storage, sampling, and
sequencing, each introducing potential insertion, deletion, and substitution errors[6} 39]. DDS errors
are both synchronous and asynchronous with complex statistics [20]]. Despite reduced synthesis
and sequencing costs [28 10} 5], large-scale DDS remains costly. Simulation provides a low-cost,
probabilistic approach for channel verification, synthesis analysis, and ECC evaluation [[14} 22} 23] 4]
by modelling synthesis imperfections, molecular decay, PCR biases, and sequencing noise [2} 9]

Numerous prior DDS studies characterize single-stage error simulation separately [38) 1211 [29] 27],
but fail to capture end-to-end error evolution. Existing simulators such as ART [16], Flux [12], and
pIRS [15] focus on specific sequencing stages. Nanopore-focused tools (DeepSimulator [24} 25]],
NanosigSim [7], NanoSim [30]) remain technology-specific. DeSP [39] is a flexible model which

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: accepted at third
SPIGM workshop @ NeurIPS 2025.

mailto:nazninfahmidasultana@gmail.com

can adapt to diverse experiment conditions but it uses fixed user-defined parameters. WGAN [20] is
a recently developed universal simulator that is not process dependent but it struggles with longer
Nanopore sequences because of its GAN architecture. Moreover, extensive hyperparameter tuning is
required for stable GAN training.

Conventional DNA data storage error modelling involves numerous challenges. Firstly, Errors in DNA
data storage display both systematic biases and stochastic behaviour [37}20]. Most of the existing
simulators rely on predefined, hard-coded probabilities [31l], which overlook stochastic variability.
Conversely, some of the models may achieve that but fail to account for systematic biases [32, 3]
We address the problem with a Transformer-based generative model within a Beta-VAE framework
that additionally incorporates Gaussian noise for stochasticity and retains dominant biased patterns.
Secondly, error behaviours differ by technology/[[15} 24]. For instance, Illumina uses fluorescence for
short, precise reads, while Nanopore detects electrical signals for long, relatively more error-prone
reads. Most DDS simulators remain technology-specific. Researchers need to switch simulators at
different stages or datasets to simulate end-to-end errors, as error profiles vary with technology and
even with system configurations, which creates a major bottleneck. This highlights the need for a
universal simulator that integrates multiple stages and technologies. A unified framework would
streamline diverse DDS methods and facilitate system design. Our framework is data-centric rather
than process-centric, and its validation on diverse technological datasets ensures robust cross-process
generalization. In summary, our main contributions are as follows:

* We introduce a novel transformer-based probabilistic generative model within a Beta-VAE
framework for error simulation in DDS. We additionally incorporate a Gaussian noise-based
perturbation to further enhance stochasticity, which successfully introduces randomness and
aligns the generated samples with the statistical distribution of the datasets. Our simulator is
universal and simulates erroneous DNA reads regardless of technology.

* We successfully demonstrate the robustness of our data-centric universal modelling by
simulating error profiles from two distinct datasets across different technologies. We
conduct extensive experiments to quantify insertion, deletion, and transition error rates, as
well as k-mer error patterns. Our simulator generates DNA reads that closely match real
error profiles observed in the test datasets and outperforms existing tools.

DNA Strings Lr W StiErress
ATGTCGATCGACT Deletion
L
Data ATG%TCGATCGACT Insertion
Encoding
R
ATCATCGATCGTCT Substitution Data Loss

Data
(Nx_.

s
:

¢

g Y Masked Add
¢ > .

o & -He:

Sz, Y _:7’:} Multi-Head L.

T

s
v
E

&
—> Self- Nom Nom
Attention

&
v
2 g
=l

Nx

s R

s =

T

§ @0 g l

z > o I iler] Masked -

14 N ﬁ —3 Mulii-Head .
. MM Nom

.

o> Self-
Attention

,,,,,,

E Local
Encoders

Figure 1: An overview of DDS-E-Sim architecture and DNA data storage pipeline.
2 Methods

We use a Transformer within a Beta-VAE framework to learn disentangled error representation in
DNA sequences. An overview of the architecture is shown in Figure[T}

2.1 Problem Formulation

The goal of the model is to replicate the sequential processes of the DDS, from the input oligo
sequence to the output read sequence. Let X = {A, C, G, T} represent the set of nucleotide bases,

and X, = {A,C,G,T, S, E, P} represent the set of extended symbols, where S’ is the start marker,
’E’ is the end marker, and ’P’ is padding. The input to the simulator is a nucleotide sequence, denoted
r=1x122...2N, Withz; € X, for 1 <¢ < N. The output of the simulator is an error-prone DNA
sequence Z, referred to as the read, where & = 2125 ... 2y, with 2; € X, for 1 < < M. Initially,
sequence length variation was addressed using padding but we later adopted a sliding-window strategy,
which proved to be a slightly more effective choice.

2.2 Proposed Stochastic Generative Learning

Inducing Stochasticity with Gaussian Noise in DNA Sequences In DDS, error-prone sequences
must reflect stochasticity across coverage levels. We represent characters through one-hot encoding
and manage long sequences by first applying padding, then switching to a sliding-window strategy
sliding over the sequence with window and step size. We add Gaussian noise to model synthesis and
sequencing variability as unbiased synthesis and sequencing processes naturally exhibit Gaussian-like
behaviour [8, [37]]. Noisy sequences are generated as y = x + N (u1, 02), where z is the original
sequence, y the perturbed sequence, /4 is the mean (typically 0), and o is the variance, which controls
the intensity of the noise. Through a random search experiment, we determine an optimal noise
factor.

Transformer Architecture for Capturing Error Patterns Our model integrates a Transformer
[34] in a Beta-VAE framework [13] to learn error patterns from DNA sequences. We incorporate
masked and causal attention to preserve sequential dependencies [[19]]. Let 1 7 be a DNA sequence
of length T', where z; denotes the i-th nucleotide. After noise addition, each nucleotide passes
through a local encoder Eiocai: Y§ = Flocal () yielding nucleotide-level representations y§ ;.. The
Transformer encoder computes the latent parameters:

917 = Ervanstormer(Y1..1)
(i, log(o7)] = Wigs + by, 2z ~ N (i, 07)

The latent codes are decoded sequentially using the Transformer decoder Dryansformer and local
decoder Djycar:
d d . d
g9, = DTransformer(Zl:ia yO:i—l): Zi = Diocal (gi)
Here 2, is the generated error-prone sequence, and yfl = Flocal(Z;). A special embedding y§
denotes the start of sequence, analogous to the SOS token in Natural Language Processing.

Causal Masking for Sequential Cohesion Control (CM) In DDS, nucleotide sequences must
follow a strict order to ensure correct encoding and retrieval. Similar to biological transcription and
sequencing, the model must not access future positions, as order disruption leads to retrieval errors
[36L135]. To emulate this, we apply causal masking across encoder and decoder layers, enforcing
directionality so that the i-th base attends only to positions 5 < ¢. The masked attention is defined as

Y sim(Qi, K E,
S g sim(Qu,)

where E is the updated representation of base ¢, (); and K ; are query and key vectors, E; is the base
representation, and sim(Q;, K;) denotes their similarity score.

?

)

Balancing Error Bias Modelling and Stochasticity with Beta-VAE DNA sequences are inherently
complex because they contain hierarchical and structured dependencies [17]. For example, certain
genes are organized into clusters on the DNA strand, such as the Hox gene cluster, which is essential
for the coordinated expression of genes during development [[17]]. Additionally, regulatory elements
like enhancers, silencers, and promoters interact in a hierarchical manner to control gene expression
[40]. Thus, errors in DNA sequences inherently carry biases and exhibit dominance in certain regions
or motifs [[1]. Repetitive sequences or regions with high GC content causes sequencing errors. The
model needs to capture error patterns inherent in DNA sequences, such as k-mer biases, positional
skewness, and dominance of specific transitions. At the same time, it should introduce stochasticity
to ensure diverse and realistic error representations. We use Beta-VAE with transformer architecture
to achieve that. The objective function can be expressed as:

L(0, ¢;) = Eq (2| [log po(z]2)] — B - Drer(gs(2]2)[[p(2)),

Here, E,, (z|2)[log po(x|2)] is the expected log-likelihood of the data under the approximate pos-
terior distribution g4 (2|x), Dxr(ge(2|)|lp(2)) is the Kullback-Leibler divergence between the
approximate posterior g, (z|z) and the prior p(z). Here, the value of § is of utmost importance.
We observe that high value 8 over-regularizes the latent space , leading to under-representation of
motif-dependent DDS error patterns. A moderate setting of 5 = 0.5 preserved the essential error
dependencies while maintaining sufficient regularization to prevent overfitting.

3 Experiments and Results

We conduct extensive experiments on two datasets from different sequencing platforms and compare
our model against established baselines. We analyze insertion, substitution, and deletion error rates,
as well as k-mer error patterns and positional error distributions, to comprehensively assess how well
the models capture the inherent error characteristics of DNA data storage pipelines.

3.1 Dataset Description

We evaluate two technology-specific datasets to assess universality. The first dataset [[18] has 18,000
oligos (length 152, GC 45-55%, homopolymer <3) sequenced via Illumina (15,126,429 reads; train:
12,108,573, test: 2,999,656). The second dataset [33]] has 10,000 oligos (length 110) sequenced via
ONT MinlION (269,709 reads; train: 242,738, test: 26,971). We represent datasets D-I (Illumina) and
D-N (Nanopore) respectively.

3.2 Performance Evaluation

We conduct an ablation study with three variants: (1) Transformer+Beta-VAE: our proposed model,
(2) Transformer: excluding VAE from the our architecture, and (3) VAE: a Multi-Attention-LSTM
with three LSTMs and a VAE (using LSTM instead of transformer in our architecture). In addition,
we compare against WGAN [20], the only universal deep learning simulator we are aware of. By
contrast, simulators such as DeepSimulator [25]] and Illumina [[16] are technology-specific and cannot
be applied across datasets from different sequencing platforms.

Table 1: Error rates of original and model-generated DNA reads across datasets D-I and D-N

D-1 D-N
Model Substitution | Insertion | Deletion | Total Error | Substitution | Insertion | Deletion | Total Error

(%) (%) (%) (%) (%) (%) (%) (%)

Original read 49.4 253 25.3 1.5 28.2 359 359 8.1
Transformer+Beta-VAE 45.7 24.6 29.7 14 27.7 344 379 74
Transformer 51.2 24.4 24.4 2.2 27.7 324 39.9 14.0
VAE 57.1 21.5 21.5 2.5 38.8 30.6 30.6 15.2

WGAN [20] 424 20.1 374 32 36.7 30.2 33.1 53

Uneven Base-Level Error Statistics We evaluate single-base errors against original data and
baselines in Table For D-I, substitution is the dominant form of error. DDS-E-Sim shows
the smallest deviations from original reads and outperforms others by a good margin. Dominant
transitions are well captured in our proposed model as shown in Table[2a] DDS-E-Sim also achieves
minimal deviations For D-N and accurately models base transitions as shown in Table[2b} DDS-E-Sim
achieves an impressive total error deviation of only 0.1% and 0.7% in the two datasets.

Uneven k-mer Error Patterns We analyze 2-mer and 3-mer error rates to assess motif-specific
biases (Table[3). In dataset D-I, our model reproduces the expected trends: 3-mer errors exceed 2-mer
errors, with AAA being the most error-prone motif and TT the least. In dataset D-N, k-mer analysis
shows CCC as the most error-prone motif and AA as the least, with 3-mer errors again higher than
2-mers, thereby preserving higher-order error patterns. Overall, the model effectively captures both
motif- and length-dependent error characteristics.

Positional Skewness and Adaptive Stochasticity To evaluate the possibility of overfitting or data
leakage, we examine the positional error distributions as shown in Figures 2] and[3] These figures
present both the total error counts and the base-specific error counts across sequence positions for
insertions, deletions, and substitutions. The alignment of trends between the original datasets and the

Table 2: Transition error rates across datasets D-I and D-N. Each row shows relative error rates
of other bases for the base being substituted from. For each transition, the error rate of the best
performing model (least deviation from the original read) is shown in bold.

(a) Dataset D-1

Original read DDS-E-Sim WGAN
A C G T A C G T A C G T
A - 0.47 036 0.17 - 042 039 0.19 - 030 030 0.39
C | 035 - 031 0.34 | 0.68 - 015 0.17 | 0.23 - 0.06 0.71
G | 038 0.10 - 053 | 0.54 0.12 - 034 | 0.36 0.07 - 0.57
T | 033 0.18 049 - 036 0.18 045 - 022 059 0.20 -
(b) Dataset D-N
Original read DDS-E-Sim WGAN
A C G T A C G T A C G T
A - 022 058 0.19 - 022 057 0.21 - 030 029 041
C | 0.21 - 0.17 0.62 | 0.21 - 0.17 0.62 | 0.16 - 0.16 0.68
G| 061 0.18 - 022 | 0.59 0.17 - 024 | 0.23 0.22 - 0.55
T | 019 061 020 - 020 059 0.21 - 022 053 0.25 -

Table 3: K-mer error rates of different models across datasets D-I and D-N. For each k-mer, the error
rate of the best performing model (least deviation from the original read) is shown in bold.

Model AA CC TT GG | CCC AAA GGG TIT
Original read (D-I) | 0.05 0.05 0.01 0.05 | 007 049 0.17 0.14
DDS-E-Sim 0.07 0.05 0.01 0.03 | 007 041 019 0.16
WGAN 008 0.04 0.02 0.03| 006 039 021 0.15
Original read (D-N) | 0.05 0.06 0.08 0.15 | 032 0.09 0.14 0.08
DDS-E-Sim 004 0.06 0.11 007 | 031 015 0.17 0.09
WGAN 0.04 007 0.09 0.09 | 032 0.14 0.16 0.08

generated outputs demonstrates that our model avoids overfitting and data leakage. For dataset D-1,
the generated sequences exhibit stochastic variation while maintaining overall consistency with the
empirical error profiles (Figure[2). Specifically, insertion errors display terminal spikes, substitution
errors are generally high, and deletion errors remain generally low except at terminal regions. Overall,
the generated sequences successfully capture the error patterns observed in the original dataset.

Similarly, we analyze positional distribution in the context of the D-N dataset as shown in Figure 3]
Again, our model fairly matches the positional error distribution of the dataset except the distribution
of substituition errors. In the D-N dataset, the substitution error rate is comparatively low, which is a
probable reason for the noticeable mismatch in the overall error distribution.

Noise Injection for stochasticity We experiment with adding noise in two ways to increase
randomness in generated outputs at different coverages and prevent overfitting. In the first method,
we add noise at the preprocessing stage of DNA sequences before they enter the local encoder. We
observe an error rate of only 1.4%. In the second method, we introduce noise directly in the latent
space of a Beta-VAE. We sample the latent variable z from a Gaussian distribution and add 3-5%
noise to regularise the model. However, this method leads to an unexpectedly high error rate of
15.1%. The noise disrupts the latent space and prevents accurate sequence reconstruction. Thus, we
proceed with the first method.

Stochasticity in DNA sequence reads We demonstrated that DDS-E-Sim effectively captures
the error patterns across multiple sequencing technologies. However, to faithfully mimic the DNA
data storage pipeline, its output must also be stochastic; that is, it should generate diverse erroneous
sequences for the same input while still following the underlying error distribution. To achieve this,
we integrate a Beta-VAE into our architecture for stochastic read generation and further introduce
Gaussian noise to the input sequences, which proves to be highly effective. To validate randomness,
we generated reads from 35,329 fixed sequences at a coverage of 5 (simulating five reads per

Insertion (Original)

Substitution (Original)

Deletion (Original)

200001 --- Total Errors - i
A 12000 —— e \ /!
17500 c - \ 25000 /
G 10000 y !
15000 \ !
@ T) \ £ 20000 /
1 / s \ s /
5 12500 oo ===ey 5 8000 \ & /
s s \ 5 15000 :
= 10000 = \ = /
g & 6000 g /
= Z 4000 =
5000
5000
2500 2000
o
0 20 40 60 80 100 o 20 40 60 80 100 20 40 60 80 100
Index Index Index
Insertion (DDS-E-SIM) Substitution (DDS-E-SIM) Deletion (DDS-E-SIM)
35000 ! 20000 p— P
25000
17500 AN
30000 \
4 £ 15000 A £ 20000 =mmmompomsttTD
£ 25000 2 2
& / 5 12500 b=
S 20000 1 S | s S 15000
i - § 10000 g
£ 15000 £ B
3 3 7500 3 10000
10000 5000
5000
5000 2500
o
0 20 40 60 80 100 4 20 40 60 80 100 20 40 60 80 100
Index Index Index

Figure 2: Stochastic insertion, substitution, and deletion error count in original and generated reads
in dataset D-1. The x-axis denotes sequence position indices and the y-axis denotes error count. The
bar plots represent base-specific error counts and the dotted line indicates the aggregate error count

across all bases.

Insertion (Original)

Substitution (Original)

Deletion (Original)

250000
250000
-~ Total Errors \ 120000 i
A \ /
200000 ¢ 200000 \ 100000 !
G !
4 T [4 !
g 3 \ 2 80000 /
i 150000 150000 5 u /
s 5 \ 5 /
5 5 5 60000
8 8)
£ 100000 £ 100000 £
E] E] 5
3 2 2 40000 Sememtmestoe=ak ==
50000 50000
20000
0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 20 40 60 80 100 120 140
Index Index Index
Insertion (DDS-E-SIM) Substitution (DDS-E-SIM) Deletion (DDS-E-SIM)
300000 . 200000 ‘
] 500000 \
! 175000 ARt
250000 ! AR
" / 1 400000 / 1 150000 \
£ 200000 e 7 2 / \
£ 5 ; 5 125000 7 i
5 %5 300000 5 / |
3 150000 5 5 100000 % \
2 2 \] 1 \
§ 5 200000 \ § 75000 / '
Z 100000 E \ 2 / y
\ 50000 / |
50000 100000 / !
25000 /

Index

0 20 40 60 80 100 120

140

0

0 20 40 60 80 100 120 140
Index

20 40 60 80 100 120 140
Index

Figure 3: Stochastic insertion, substitution, and deletion error count in original and generated reads
in dataset D-N. The x-axis denotes sequence position indices and the y-axis denotes error count. The
bar plots represent base-specific error counts and the dotted line indicates the aggregate error count

across all bases.

sequence), resulting in 100,743 unique oligos. This demonstrates that our model preserves not only
the error distributions but also the essential stochasticity of the DNA data storage process.

4 Conclusion and Future Work

We present a universal transformer-based generative framework for simulating error-prone DNA
sequences regardless of process or technology. The model captures higher-order error patterns while
preserving stochasticity, achieving state-of-the-art performance. We are actively working to extend
the framework with designing and combining stage-specific modules to simulate errors at each DDS
stage and integrate error-correction algorithms for testing and optimization in the near future.

References

(1]

[2

—

(3]

(4]

[5
(6]

—

[7

—

(8

—_—

[9

[

(10]

(11]

[12]

(13]

(14]

(15]

[16]

[17]

(18]

(19]

[20]

[21]

Manuel Allhoff, Alexander Schonhuth, Marcel Martin, Ivan G Costa, Sven Rahmann, and Tobias Marschall.
Discovering motifs that induce sequencing errors. BMC Bioinformatics, 14(S1), 2013.

Jamie J. Alnasir, Thomas Heinis, and Louis Carteron. Dna storage error simulator: A tool for simulating
errors in synthesis, storage, pcr and sequencing, 2022.

Jamie J. Alnasir, Thomas Heinis, and Louis Carteron. Dna storage error simulator: A tool for simulating
errors in synthesis, storage, pcr and sequencing, 2022.

K.E. Baddour and N.C. Beaulieu. Autoregressive modeling for fading channel simulation. /EEE Transac-
tions on Wireless Communications, 4(4):1650-1662, 2005.

Twist Bioscience. Genes, n.d. Accessed: [Date Accessed].

Luis Ceze, Jeff Nivala, and Karin Strauss. Molecular digital data storage using dna. Nature Reviews
Genetics, 20:456 — 466, 2019.

Wenhui Chen, Pengfei Zhang, Lei Song, Jian Yang, and Chunyu Han. Simulation of nanopore sequencing
signals based on BiGRU. Sensors, 20(24):7244, Dec 2020.

Y-J Chen, CN Takahashi, L Organick, C Bee, SD Ang, P Weiss, B Peck, G Seelig, L Ceze, and K Strauss.
Quantifying molecular bias in dna data storage. Nature Communications, 11(1):1-9, 2020 journal=Nature
Publishing Group.

Sanket Doshi, Mihir Gohel, and Manish K. Gupta. A bird-eye view on dna storage simulators. arXiv
preprint, 2404.04877v1, April 2024. License: arXiv.org perpetual non-exclusive license.

eurofins Genomics. Price list, 2017.
Andy Extance. How dna could store all the world’s data? Nature, 537:22-24, 2016.

Thasso Griebel, Benedikt Zacher, Paolo Ribeca, Emanuele Raineri, Vincent Lacroix, Roderic Guigo,
and Michael Sammeth. Modelling and simulating generic RNA-seq experiments with the flux simulator.
Nucleic Acids Research, 40(20):10073-10083, Nov 2012.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained
variational framework. ICLR (Poster), 3,2017.

Syed Mahamud Hossein, Tabatabaei Yazdi, Yongbo Yuan, Jian Ma, Huimin Zhao, and Olgica Milenkovic.
A rewritable, random-access dna-based storage system. Scientific Reports, 5, 2015.

Xuan Hu, Jian Yuan, Yuanzhong Shi, Jing Lu, Baozhen Liu, Zhijian Li, Yingrui Chen, Dezhi Mu, Hongyan
Zhang, Na Li, et al. PIRS: Profile-based Illumina pair-end reads simulator. Bioinformatics, 28(11):1533—
1535, Jun 2012.

Wenhan Huang, Li Li, James R Myers, and Gabor T Marth. ART: A next-generation sequencing read
simulator. Bioinformatics, 28(4):593-594, 2012.

Balaji VS Iyer, Martin Kenward, and Gaurav Arya. Hierarchies in eukaryotic genome organization:
Insights from polymer theory and simulations. BMC Biophysics, 4, 2011.

J. Jeong, S.J. Park, J. W. Kim, J. S. No, H. H. Jeon, J. W. Lee, A. No, S. Kim, and H. Park. Cooperative
sequence clustering and decoding for dna storage system with fountain codes. Bioinformatics, 37(19):3136—
3143, Oct 11 2021.

Junyan Jiang, Gus G. Xia, Dave B. Carlton, Chris N. Anderson, and Ryan H. Miyakawa. Transformer
vae: A hierarchical model for structure-aware and interpretable music representation learning. In /CASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
516-520, 2020.

Sanghoon Kang, Yunfei Gao, Jacho Jeong, Seong-Joon Park, Jae-Won Kim, Jong-Seon No, Hahyeon Jeon,
Jeong Wook Lee, Sunghwan Kim, Hosung Park, and Albert No. Generative adversarial networks for dna
storage channel simulator. /IEEE Access, 11:123456—-123465, Jan 2023. Received 28 November 2022,
accepted 31 December 2022, date of publication 9 January 2023, date of current version 12 January 2023.

Sriram Kosuri and George M Church. Large-scale de novo dna synthesis: technologies and applications.
Nature Methods, 11(5):499-507, 2014.

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

(40]

(41]

Henry H. Lee, Reza Kalhor, Naveen Goela, Jean-Chrysostome Bolot, and George M. Church. Terminator-
free template-independent enzymatic dna synthesis for digital information storage. Nature Communications,
10, 2019.

Andreas Lenz, Paul H. Siegel, Antonia Wachter-Zeh, and Eitan Yaakobi. Coding over sets for DNA storage.
CoRR, abs/1812.02936, 2018.

Yu Li, Ruoyu Han, Chengdong Bi, Min Li, Shuaishuai Wang, and Xin Gao. DeepSimulator: A deep
simulator for Nanopore sequencing. Bioinformatics, 34(17):2899-2908, 2018.

Yu Li, Shuaishuai Wang, Chengdong Bi, Zhiwei Qiu, Min Li, and Xin Gao. DeepSimulator1.5: A more
powerful, quicker and lighter simulator for nanopore sequencing. Bioinformatics, 36(8):2578-2580, Apr
2020.

Bernard Marr. How much data do we create every day? the mind-blowing stats everyone should read,
2018.

Michael L Metzker. Sequencing technologies—the next generation. Nature Reviews Genetics, 11(1):31-46,
20009.

Catherine Offord. Making dna data storage a reality, 2017.

W Pan, M Byrne-Steele, C Wang, S Lu, S Clemmons, RJ Zahorchak, and J Han. Dna polymerase
preference determines pcr priming efficiency. BMC Biotechnology, 14(1):1-17, 2014.

Christoph Rohrandt, Nikolai Kraft, Philipp Gieselmann, Benedikt Brandl, Benedikt M Schuldt, Ulrich
Jetzek, and Franz-Josef Miiller. Nanopore SimulatlON—A raw data simulator for nanopore sequencing.
In Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM), pages 1-8, Dec 2018.

Marcus Schwarz, Marc Welzel, Tomiris Kabdullayeva, Annika Becker, Bernd Freisleben, and Dominik
Heider. MESA: Automated assessment of synthetic DNA fragments and simulation of DNA synthesis,
storage, sequencing and PCR errors. Bioinformatics, 36(11):3322-3326, Jun 2020.

SNIA. Dnassim full system simulator for dna storage, 2022. Accessed: 2025-01-30.

Sundara Rajan Srinivasavaradhan, Sivakanth Gopi, Henry D. Pfister, and Sergey Yekhanin. Trellis bma:
Coded trace reconstruction on ids channels for dna storage, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, volume 30, pages 5998-6008, 2017.

C. Wang, G. Ma, D. Wei, et al. Mainstream encoding—decoding methods of dna data storage. CCF
Transactions on High Performance Computing, 4:23-33, 2022.

Y. Wang, M. Noor-A-Rahim, J. Zhang, et al. High capacity dna data storage with variable-length
oligonucleotides using repeat accumulate code and hybrid mapping. Journal of Biological Engineering,
13(1):89, 2019.

Yixin Wang, Md. Noor-A-Rahim, Erry Gunawan, Yong L. Guan, and Chueh L. Poh. Modelling, characteri-
zation of data-dependent and process-dependent errors in dna data storage. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 20(3):2147-2158, 2023.

SMHT Yazdi et al. Dna-based storage: trends and methods. arXiv preprint arXiv:1507.01611, 2015.

Lekang Yuan, Zhen Xie, Ye Wang, and Xiaowo Wang. Desp: a systematic dna storage error simulation
pipeline. BMC Bioinformatics, 23(1):185, 2022.

Zecheng Zhang, Chunxiuzi Liu, Yingjun Zhu, Lu Peng, Weiyi Qiu, Qianyuan Tang, He Liu, Ke Zhang, and
Zengru Di. Evolutionary tinkering enriches the hierarchical and nested structures in amino acid sequences.
Phys. Rev. Research, 6:023215, 2024.

Victor Zhirnov, Reza M. Zadegan, Gurpreet S. Sandhu, George M. Church, and William L. Hughes.
Nucleic acid memory. Nature Materials, 15(4):366-370, 2016.

Loss | [Recontruction |
— * —
function ‘ KL error ‘ error
(1) (»] Reconstructiondata [
[% (3] G
Linear Linear Linear
- L3 L 4
DRt TS VI EI NS VI I AN RN
LY X X
Attention Attention Attention
Sampling l D [l o) ’ZT‘ —pto®
- latest variables 1 2) { t)Z=prooe
L Reescitaton w) (ay) (&1 2)(o2) (E2 1) (0¢) (E¢) e~ N(0,1) b 4
trick NS g ?

o

Linear Linear Linear
i b i
h ha hey hy
Encoder LSTM —» LSTM ——> .. —>» LSTM ——>
& i &
Attention Attention Attention
[i]‘“ﬂ [22’— Y2 Original input data @H” _

Figure 4: The architecture of the Attention-LSTM-VAE model

A Appendix

A.1 Additional Models Implementation

Multi-Attention-LSTM-Beta VAE (VAE) We design a Beta-VAE architecture with Attention-LSTM for
our ablation study to highlight the benefit of the transformer architectue in our propsed model. This architecture
designed to efficiently handle high-dimensional data as shown in Figure[d In the encoder, the DNA sequence is
processed using Attention-LSTM, which effectively captures the complex error statistics in the DNA sequence.
In the decoder, Attention-LSTM layers are used to model dependencies between positions in the DNA sequence.
It preserves the sequence dynamics in the reconstructed error-prone output.

The input data is represented as x = [z1, 22, . .., Zn], Where x,, denotes the nucleotide at the n-th position in
the DNA sequence. The corresponding output data is represented as y = [y1, Y2, - - - , Yn], and the reconstructed
error-prone output after the model processes the data is denoted as § = [¢1, J2, . - - , Un]. During the encoding
process, we obtain the mean p = [u1, g2, - . ., in] and the variance o = [o1, 09, ..., 0y] that characterize
the latent variables. The latent variables z = [z1, 22, . .., 2n] are then sampled, with € = [e1,€2,. .., €x]
representing the noise used in the reparameterization trick, where e ~ N (0, 1).

The key difference in Beta-VAE is the introduction of a beta parameter, (3, that controls the trade-off between
the reconstruction loss and the KL divergence. This parameter is introduced in the loss function to enforce a
more structured and disentangled representation of the latent space. Thus, the KL divergence in the Beta-VAE is
modified to:

Lossxr = B - KL[go(z|z)||po(2)] (D

where [is a hyperparameter that determines the relative importance of the KL term compared to the recon-
struction loss. When 8 = 1, the Beta-VAE becomes equivalent to the standard VAE. Increasing 3 enforces
more disentanglement at the cost of reconstruction accuracy, while decreasing 8 gives more importance to
reconstruction.

To obtain the posterior distribution of the latent variables p(z|z), we use variational inference. The true posterior
distribution is approximated by a variational distribution go (z|x), which is parameterized by 6. The goal is to
minimize the Kullback-Leibler (KL) divergence between the true posterior p(z|z) and the variational distribution
qo(z|x), which can be expressed as:

0(2) P(z|2)

p(z[z) = T Pa))
The KL divergence is computed as:
Z,x
KLigo(e1o)p(z10)] = — [ao(ela)tog 22D+ 1og Pla) G)
qo(2|z)
The Evidence Lower Bound (ELBO) is formulated as:
_ po(2)
ELBO(z) = — [qo(z|z)log dz + Eq, (z1)[log P(z|2)] 4)
q0(z|)

Minimizing the KL divergence is equivalent to maximizing the ELBO. We apply the reparameterization trick to
allow gradient-based optimization. For the variational distribution gg(z|x), we assume a Gaussian distribution
with diagonal covariance:

log go(z[2”) = log N (2; ¥, 0™))

where ,u(and o represent the mean and standard deviation for each input x @,

Next, we compute the KL divergence between gy (z|z) and the prior N (0, I):

D
= 5> [+ 1080l + (1) + (0] ©

Jj=1

K L[go(2|2)[|N (0, I)]

M\»A

The objective function to optimize combines the modified KL divergence and the reconstruction error:

ELBO(z) = —f - KL[go(z])[lpo(2)] + Egq (21a) [log P(z|2)])

where the latent variables are sampled as:

20 =p 460, e“)NN(o,J) ®)
Here, ® denotes element-wise multiplication between o™ and €@, and ¢ is sampled from a standard normal
distribution.

The loss function for the Beta-VAE with Attention-LSTM is the sum of the KL divergence term and the
reconstruction error, expressed as:

LossBeta-vaE = L0OSS k. + LOSSrecon)

where the reparameterization is given by:

2(i,5) = p(i) + o (i) © e(l), (1) ~ N(0,1) (10)
Beta-VAE with Attention-LSTM simplifies calculations despite its complexity. It boosts efficiency and robustness
for handling noisy DNA storage data and error-prone sequence patterns.

Autoregressive Transformer (Transformer) We utilize the Transformer architecture as shown in our
proposed architecture in Figure 1 excluding the Beta-VAE framework for our ablation study.

A.2 Additonal Implementation Details

DDS-E-Sim We implement our model using PyTorch on an NVIDIA A100 GPU. We apply a padding of 5 to
standardize input size. Using random search, we determine an optimal noise factor of 0.03 to induce stochasticity
effectively. The model features an encoder with a 7-dimensional input, 256 model dimensions, § attention heads,
3 layers, a 128-dimensional latent space, a 1024 feedforward dimension, and a 0.1 dropout rate. The decoder
mirrors this structure with a 7-dimensional output. We train our model with a batch size of 256 for 20 epochs
using the Adam optimizer (learning rate = 1 x 10™%, 3 = 0.5).

10

VAE We set the LSTM hidden size to 256 to capture complex dependencies. The output size is also 7, ensuring
the model reconstructs the input. The sequence length is 154, representing the length of the input sequence. We
handle the latent space with a latent dimension of 128. We divide the sequences into a few parts (usually 5) and
feed that to the LSTMs as LSTMs cannot handle long sequences. We implement three LSTM layers in both the
encoder and decoder. We train the model for 15 epochs.

11

	Introduction
	Methods
	Problem Formulation
	Proposed Stochastic Generative Learning

	Experiments and Results
	Dataset Description
	Performance Evaluation

	Conclusion and Future Work
	Appendix
	Additional Models Implementation
	Additonal Implementation Details

