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Abstract
Graph anomaly detection plays a crucial role in identifying nodes
that deviate significantly from normal patterns within a graph, with
applications spanning various domains such as fraud detection,
authorship fraud, and rumor propagation. Traditional methods pri-
marily focus on aggregating information from neighboring nodes
and reconstructing the central node based on these aggregated
features. The anomaly degree is then calculated by comparing the
reconstructed features with the original ones. Despite their effec-
tiveness, these methods face limitations due to the constraints of
device performance and the need to protect user privacy. In reality,
graph data is often partitioned and distributed across different local
clients, which leads to isolated client subgraphs. This partition-
ing results in incomplete feature aggregation, as the connections
between subgraphs are missing, ultimately reducing the perfor-
mance of anomaly detection models. To overcome these challenges,
a federated graph anomaly detection approach based on disentan-
gled representation learning is proposed. This method separates
node features into two distinct components: intrinsic features and
subgraph style features. By identifying outliers within the sub-
graph style features, a set of pseudo-nodes is generated and shared
across the entire graph. These pseudo-nodes simulate connections
between otherwise isolated subgraphs, which enables more compre-
hensive aggregation of intrinsic features from neighboring nodes.
In addition, conditional variational autoencoders (CVAE) are em-
ployed alongside contrastive learning strategies to alleviate class
imbalance and achieve effective feature disentanglement. These
techniques help ensure that anomalous nodes are detected more
accurately despite the inherent challenges of federated graph sys-
tems. Extensive experiments conducted on six diverse datasets
provide compelling evidence of the proposed method’s superior
performance in federated graph anomaly detection, highlighting
its ability to effectively handle incomplete graph structures while
maintaining data privacy.
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1 Introduction
Graph anomaly detection aims to identify nodes in a graph that
significantly deviate from features of most normal nodes, thereby
uncovering potential risks and minimizing losses. There have been
wide-ranging applications of this task, such as detecting false au-
thorship in citation networks, fraudulent reviews in product review
networks, and fraudulent accounts in transaction networks.

There have been methods designed for whole-graph anomaly
detection, such as DAGAD [13] with data augmentation and class-
wise losses. GAD-NR [22] with neighbor information reconstruc-
tion to handle attribute anomalies but also topological anomalies.
The anomaly level of a node is assessed by discrepancies between
its reconstructed features and original features. Relying on com-
plete graph structure information, such methods enable effective
data augmentation and neighborhood reconstruction, resulting in
qualified detection performance.

Figure 1: A figure to illustrate the challenge of inter-client
edges missing in graph anomaly detection.

However, a single device may not be able to handle the entire
graph, and privacy should not be leaked between different clients.
Therefore, real-world graphs are partitioned and stored across dif-
ferent clients in some cases. Unlike tabular data, graph-structured
data involves interconnections between samples. Storing the en-
tire graph across separate clients means that connections between
clients are absent, as shown in Figure 1. We evaluate the impact of
the lack of edges between client subgraphs on the performance of
graph anomaly detection, as shown in Figure 2(detailed experimen-
tal settings are illustrated in Section 5). Across six datasets, our local
detection model shows significantly lower detection performance
when client subgraphs are disconnected compared to when the
global detection model is trained with complete graph information.
Federated learning, which involves training models with data dis-
tributed across multiple local systems [16], effectively addresses
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Figure 2: Comparison of detection performance between the
whole graph(ours-global) and the client subgraph(ours-local).

the challenge of collaborative training across multiple clients and
achieve client privacy protection. Compared to traditional single-
model detection methods training on the whole-graph directly,
federated graph anomaly detection lack aggregation of inter-client
information. This reduces the richness of neighborhood aggrega-
tion along with the performance of the detection model. There have
beenmethods tailored for federated graph learning, such as FedSage
[31] generating missing cross-client neighbors with neighborhood
distribution predictors and FedGTA [12] performing aggregation
with local smoothing confidence as aggregation weights. However,
such methods may perform suboptimally for anomaly detection
due to the absence of specific designs for anomalies.

Inspired by disentangled representation learning [9], we propose
a federated graph anomaly detection method to achieve cross-client
neighborhood aggregation in graph anomaly detection. We disen-
tangle node features into intrinsic features and subgraph style fea-
tures. Intrinsic features are used for classification tasks of anomaly
detection, while subgraph style features are used to construct glob-
ally shared nodes, simulating edges between clients. Specifically,
this method comprises three main parts: (a) Local Autoencoders:
With conditional variational autoencoders (CVAE) [23], this module
derives the intrinsic features and subgraph style features for each
node on each client according to feature and structure, respectively.
(b) Local Feature Disentanglement: Leveraging contrastive learning
strategies, this module generates negative node pairs with CVAE to
achieve feature disentanglement and alleviate the classification im-
balance problem in anomaly detection. (c) Global Shared Node Pool
Construction: Within each client subgraph, this module identifies
a few nodes likely to have connections outside the subgraph with
subgraph style features. It then generates pseudo-features for these
nodes with VAE out of privacy protection and shares them globally.
After that, each node aggregates both local neighbors and simulated
global neighbors, improving the model’s detection performance.

The main contributions are summerized as follows:
• We propose a framework that disentangles node features
into intrinsic features and subgraph style features to address
graph anomaly and missing inter-client edges.

• We propose to adopt CVAE along with contrastive learning
strategies to construct negative samples, ensuring intrinsic
features and subgraph style features convey different mean-
ings.

• We propose to separate out subgraph style features based on
disentangled learning, constructing a globally shared node
pool with a few selected nodes, to cope with the issue of
missing edges between client subgraphs in federated graph
anomaly detection.

• Experiments on real-world datasets demonstrate the superi-
ority of our method in comparison with the state-of-the-art
graph anomaly detection methods and graph federated learn-
ing methods.

2 Preliminaries
2.1 Hypothesis of Disentangled Learning

Figure 3: Causal relationship diagram in federated graph
anomaly scenarios.

Taking a latent-variable model perspective on node features
in federated graph anomaly detection, 𝑍 → 𝑌 is regarded as the
mapping from features to labels, where 𝑍 ⊆ 𝑅𝑛 as the latent feature
space, and 𝑌 = {0, 1}𝑁 as node labels. Following previous works
[1, 5, 26], we partition the latent variable 𝑍 into an invariant part
𝐶 and a varying part 𝑆 , such that 𝑍 = 𝐶 + 𝑆 , depending on whether
they are affected by 𝐸. In the context of anomaly detection, 𝐶 is
understood as inherent features and used as features, indicating
whether a node is anomalous, while 𝑆 represents subgraph style
in respective clients, indicating connections within the subgraph.
𝐸 is regarded as the environment of each client. 𝐺 represents the
overall graph. Thus, the relationship of variables 𝑍 → 𝑌 can be
described in Figure 3.

2.2 Problem Definition
𝐺 = {𝑉 , 𝐸, 𝑋 } is defined as the imperceptible whole graph, where
𝑉 and 𝐸 are sets of nodes and edges, and 𝑋 is the node attribute
matrix. In federated system, there would be a central server and
𝑀 clients owning respective subgraphs, namely client 𝑖 owns the
subgraph𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 , 𝑋𝑖 }. Following vanilla algorithm of FedAvg,
we concentrate on the scenario that there are no overlapping nodes
across different clients and that edges across clients are absent in
this federated system. As for graph anomaly detection, each node
should be predicted as either ‘normal’ or ‘abnormal’, i.e., 𝑉 → 𝑌 =

{0, 1}𝑛 . The goal is to obtain a overall detection model on the server
with parameters 𝜃 updated by training local client models according
to the following formula:

𝜃 =

𝑀∑︁
𝑖=1

|𝑉𝑖 |∑𝑀
𝑗=1 |𝑉𝑗 |

𝜃𝑖 (1)

3 Proposed Method
In this section, we introduce the framework of our method. As
shown in Figure 4, our method is based on an autoencoder struc-
ture. In a client, a local encoder-decoder model is designed to learn
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Figure 4: The framework of our method.

latent space features of nodes, generating two parts: 𝐶 and 𝑆 from
the views of feature and structure. They are then disentangled with
mutual information, which are approximated through contrastive
learning, to represent intrinsic features and subgraph style features,
respectively. Then local nodes to be shared are selected with sub-
graph style features. They are uploaded to the server along with the
weights of the local model. On the server side, a global shared node
pool is established to enrich neighborhood aggregation by simu-
lating cross-client neighbors. Obtained by averaging local model
weights, the global model weights are sent back to the clients for
subsequent training along with the global shared node pool. In
the following subsections, we will introduce in the order of local
autoencoders, local feature disentanglement, global shared node
pool construction, and prediction with global information.

3.1 Local Autoencoders
More details about our local detection model are shown in Figure 5.
We first obtain the latent space representations of the nodes using
the local model within the client subgraphs. Following [6], we utilize
an autoencoder structure as base of our model to detect anomalous
nodes by identifying feature deviations. Unlike previous methods
that primarily use features learned from graph reconstruction to
directly detect anomalies, instead, our approach leverages intrinsic
features and subgraph style features obtained from the autoencoder
to cope with anomaly detection in the following steps.

Specifically, 𝑍 is first obtained with a fully-connected layer to
map the original attribute matrix 𝑋 of the graph nodes into the
dimension of the feature latent space. Following previous works
[1, 5, 26], we obtain 𝐶 and 𝑆 as follows:

𝐶 = relu(𝑊𝑍 + 𝑏) (2)

𝑆 = 𝑍 −𝐶 (3)

where𝑊,𝑏 are learnable for a fully connected layer. Relu is the
activation funtion.

The encoder maps nodes of the input graph into a probabilistic
latent space. Typically, it is achieved with multi-layer perceptrons
(MLPs). The encoder outputs two matrices: the mean (𝜇) and the
variance (𝜎2), which define a Gaussian distribution for each node
in the latent space. Such process can be expressed as following:

𝜇 = MLP𝜇 (𝐶) (4)

𝜇𝑌 = MLP𝜇𝑌 (𝑌 ) (5)

log𝜎 = MLP𝜎 (𝐶) (6)
where 𝜇𝑌 is the encoded mean of 𝑌 .

Then we employ the reparameterization trick [10] to rewrite
𝑝𝑍 (𝐶 |𝑍 ) = 𝑝 (𝜖), where 𝐶 = 𝜇 + 𝜖𝜎, 𝜖 ∼ 𝑁 (0, 𝐼 ). From the point of
intrinsic features, the variational approximate posterior of 𝐶 can
be expressed as:

𝑞(𝐶 |𝑍,𝐴) =
𝑁∏
𝑖=1

𝑞(𝑐𝑚 |𝑍,𝐴) (7)

𝑞(𝑐𝑚 |𝑍,𝐴) = 𝑁 (𝑧𝑚 |𝜇𝑚, diag(𝜎2𝑚)) (8)
To indicate the client subgraph style, we generate the recon-

structed �̃�𝑖 for client 𝑖 . The structure decoder is given with an inner
product between latent variables:

𝑝 (𝐴|𝑆) =
𝑁∏

𝑚=1

𝑁∏
𝑛=1

𝑝 (𝐴𝑖𝑚𝑛 |𝑠𝑚, 𝑠𝑛) (9)

�̃�𝑖𝑚𝑛 = 𝑝 (𝐴𝑖𝑚𝑛 = 1|𝑠𝑚, 𝑠𝑛) = sigmoid(𝑠𝑚𝑇 𝑠𝑛) (10)
where �̃�𝑖𝑚𝑛 are elements of reconstructed 𝐴𝑖 .

At this point, the optimization objective of the conditional varia-
tional autoencoder (CVAE) that indicate𝐶 and 𝑆 could be calculated
as follows:

LCVAE = E𝑞 (𝑆 |𝑍,𝐴) [log𝑝 (𝐴|𝑍 )] − KL[𝑞(𝐶 |𝑍,𝐴) | |𝑝 (𝑍 )]

= − 1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐴𝑖 𝑗 · log(�̃�𝑖 𝑗 ) + (1 −𝐴𝑖 𝑗 ) · log(1 − �̃�𝑖 𝑗 )

+ 1
2

𝑛∑︁
𝑖=1

[(𝜇𝑖 − 𝜇𝑌𝑖 )
2 + 𝜎2𝑖 − log𝜎2𝑖 − 1]

(11)

where LCVAE represents the CVAE loss.

3.2 Local Feature Disentanglement
As shown in Figure 5, 𝐶 and 𝑆 from the views of feature and struc-
ture have been generated with a local CVAE in the last subsection.
Since 𝐶 will serve as the intrinsic feature for neighbor aggrega-
tion to detect anomalies, while 𝑆 will be used to express the local
subgraph style and build the global shared node pool. In this sub-
section, we propose to minimize the mutual information between
𝐶 and 𝑆 to reduce the correlation between the two feature spaces,
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Figure 5: The details about our local detection model.

which means the necessity to derive an upper bound for I(𝐶; 𝑆)
and minimize it. However, an exact estimate of I(𝐶; 𝑆) could be
highly expensive [2, 18]. There has been considerable research on
estimating lower bounds of mutual information [21]. Among them,
contrastive learning sampling provides a practical approach for
approximation [5]. Following the idea of contrastive learning sam-
pling, we propose that an adjusted InfoNCE [18] could be capable
of estimating an upper bound of mutual information.

To facilitate explanation, we first outline the form of InfoNCE
used in the anomaly detection task described in this paper, which
could be regarded as an estimate of the lower bound of I(𝐶; 𝑆).

I(𝐶; 𝑆) ≥ LinfoNCE

= E{𝑐,𝑠 }∼𝑃𝑝𝑜𝑠 ,{𝑐𝑖 ,𝑠 }∼𝑃𝑛𝑒𝑔 log
𝑒𝜙 (𝑐,𝑠 )

𝑒𝜙 (𝑐,𝑠 ) +∑
𝑖 𝑒

𝜙 (𝑐𝑖 ,𝑠 )
(12)

where 𝑃𝑝𝑜𝑠 means the distribution of positive sample pairs between
𝐶 and 𝑆 , while 𝑃𝑛𝑒𝑔 means the distribution of negative sample pairs.
The function 𝜙 (𝑐, 𝑠) measures the similarity between 𝑐 and 𝑠 .

Since 𝑝 (𝑐 |𝑠) could be expressed by similarity functions [18]:

𝑒𝜙 (𝑐,𝑠 ) ∝ 𝑝 (𝑐 |𝑠)
𝑝 (𝑐) (13)

Similarly, we can derive the upper bound of I(𝐶; 𝑆).

I(𝐶; 𝑆) − log(𝑁 ) = −E𝐶 log[
𝑝 (𝑐)
𝑝 (𝑐 |𝑠)𝑁 ]

≤ −E𝐶 log[
𝑝 (𝑐)
𝑝 (𝑐 |𝑠) (𝑁 − 1)]

= −E𝐶 log[
𝑝 (𝑐)
𝑝 (𝑐 |𝑠) (𝑁 − 1)E𝑐𝑖

𝑝 (𝑐𝑖 |𝑠)
𝑝 (𝑐𝑖 )

]

≈ −E𝐶 log[
𝑝 (𝑐)
𝑝 (𝑐 |𝑠) (𝑁 − 1)

∑︁
𝑐𝑖 ∈𝐶𝑛𝑒𝑔

𝑝 (𝑐𝑖 |𝑠)
𝑝 (𝑐𝑖 )

]

= E𝐶 log[
𝑝 (𝑐 |𝑠 )
𝑝 (𝑐 )∑

𝑐𝑖 ∈𝐶𝑛𝑒𝑔
𝑝 (𝑐𝑖 |𝑠 )
𝑝 (𝑐𝑖 )

]

= E{𝑐,𝑠 }∼𝑃𝑝𝑜𝑠 ,{𝑐,𝑠 }∼𝑃𝑛𝑒𝑔 log
𝑒𝜙 (𝑐,𝑠 )∑
𝑒𝜙 (𝑐,𝑠 )

(14)

In practice, we define positive sample pairs (𝑐, 𝑠) as two feature
parts from the same node and design negative sample pairs (𝑐, 𝑠)
in Eq.(14) as following:

�̃� = (1 − 𝜇𝑌 ) + 𝜖𝜎 (15)

�̃� = 𝑧 − �̃� (16)
(𝑐, 𝑠) ∈ {(�̃�, 𝑠), (𝑐, �̃�)} (17)

Leveraging advantages of CVAE, we generate negative samples
for contrastive sampling, which not only achieves the disentangle-
ment of 𝐶 and 𝑆 , but also make up the rarity of anomaly informa-
tion to alleviate the class imbalance problem in anomaly detection.
Therefore, the disentanglement loss could be expressed as:

L𝐷 = E𝑝 (𝑐,𝑠 ) log
𝑒𝜙 (𝑐,𝑠 )

𝑒𝜙 (�̃�,𝑠 ) + 𝑒𝜙 (𝑐,̃𝑠 ) (18)

where L𝐷 is the disentanglement loss.

3.3 Global Shared Node Pool Construction
Through the aforementioned two steps, we obtain the local feature
space 𝑆 that independently represents the structure styles of client
subgraphs. In this section, we will construct a shared node pool
with 𝑆 uploaded from all clients to simulate the connections across
client subgraphs.

To ensure balanced distribution across the entire graph, we sam-
ple the same proportion (e.g., 10%) of pseudo-nodes from each client
and place them into the shared node pool. For privacy protection,
we use pseudo-node features rather than original node features as
globally shared features. The selection process for pseudo-nodes is
as follows:

𝑆𝑖 = Mean(𝑆𝑖 ) (19)

𝑉
𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑖
= Sort(𝑆𝑖 , 𝑆𝑖 ) (20)

where Mean(𝑆𝑖 ) calculates the mean of 𝑆𝑖 , and 𝑉
𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑖
samples

a proportion of nodes sorted with the cosine similarity between
𝑠𝑖 and 𝑆𝑖 . According to the consistency assumption of GNN [33]
that neighboring nodes have similar features, it’s naturally infer
that the node which is most dissimilar to Mean(𝑆𝑖 ) is more likely
to have connections with nodes in other clients.

Then pseudo intrinsic features of shared nodes of each client
could be expressed as:

𝐶𝑠ℎ𝑎𝑟𝑒𝑑𝑖 = 𝜇 + 𝜖
′
𝜎, 𝜖

′
∼ 𝑁 (0, 𝐼 ) (21)

𝐶𝑠ℎ𝑎𝑟𝑒𝑑 = Concat({𝐶𝑠ℎ𝑎𝑟𝑒𝑑𝑖 }) (22)
Starting from the second round of federated learning, each client’s

subgraph space during training incorporates simulated cross-client
information. This is reflected in the enlarged node feature matrix
and the expanded adjacency matrix. Taking the training process on
client 𝑖 as an example, we first obtain the subgraph style features
of the shared pools as follows:

𝑍𝑠ℎ𝑎𝑟𝑒𝑑 = MLPdecoder (𝐶𝑠ℎ𝑎𝑟𝑒𝑑 ) (23)

𝑆𝑠ℎ𝑎𝑟𝑒𝑑 = 𝑍𝑠ℎ𝑎𝑟𝑒𝑑 −𝐶𝑠ℎ𝑎𝑟𝑒𝑑 (24)
Thus, based on the new enlarged subgraph style feature matrix

𝑆𝑖 , we calculate the enlarged adjacency matrix 𝐴𝑖 .

𝑆𝑖 = Concat(𝑆𝑖 , 𝑆𝑠ℎ𝑎𝑟𝑒𝑑 ) (25)

𝐴𝑖𝑚𝑛 =


1, if 𝐴𝑖𝑚𝑛 = 1 and 𝑣𝑚, 𝑣𝑛 ∈ 𝑉𝑖
sigmoid(𝑠𝑇𝑚𝑠𝑛), if 𝑣𝑚 ∈ 𝑉𝑖 xor 𝑣𝑛 ∈ 𝑉𝑖
0, otherwise

(26)

where 𝐴𝑖 includes edges to simulated nodes outside the client 𝑖 .
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Methods Client Memory Server Memory Client Time Server Time
FedAvg 𝑂 ((𝑏 + 𝑘) 𝑓 + 𝑓 2) 𝑂 (𝑁 + 𝑁 𝑓 2) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2) 𝑂 (𝑁 )
FedProx 𝑂 ((𝑏 + 𝑘) 𝑓 + 2𝑓 2) 𝑂 (𝑁 + 𝑁 𝑓 2) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 + 𝑓 2) 𝑂 (𝑁 )
FedSage+ 𝑂 (𝐿(𝑛 + 𝑠𝑔) 𝑓 + 3𝐿𝑓 2) 𝑂 (𝑁 + 3𝑁 𝑓 2) 𝑂 (𝐿(𝑚 + 𝑠𝑔) 𝑓 + 𝐿(𝑛 + 𝑠𝑔) 𝑓 2) 𝑂 (𝑁 )
FedEgo 𝑂 (𝑁 (𝑏 + 𝑘) 𝑓 + 𝑓 2) 𝑂 (𝑁 2 + 𝑁 𝑓 2) 𝑂 (𝑁𝑘𝑚𝑓 + 𝑛𝑓 2) 𝑂 (𝑁 )
FedGTA 𝑂 ((𝑏 + 𝑘) 𝑓 + 𝑓 2 + 𝑘𝐾𝑐) 𝑂 (𝑁 + 𝑁 𝑓 2 + 𝑁𝑘𝐾𝑐) 𝑂 (𝑘𝑚(𝑓 + 𝑘𝑛𝑐) + 𝑛(𝑓 2 + 𝑐)) 𝑂 (𝑁 + 𝑁𝑘𝐾𝑐)
Ours 𝑂 (2(𝑏 (1 + 𝜃𝑁 ) + 𝑘) 𝑓 + 3𝑓 2) 𝑂 (2𝑁 + 3𝑁 𝑓 2) 𝑂 (2𝑘𝑚𝑓 + 3𝑛𝑓 2) 𝑂 (𝑁 )

Table 1: Complexity analysis of baseline federated methods. Let 𝑛,𝑚, 𝑐, and 𝑓 denote the number of nodes, edges, classes, and
feature dimensions, respectively. 𝑠 refers to the count of selected augmented nodes, while 𝑔 represents the number of generated
neighbors. The batch size is indicated by 𝑏, and 𝑇 refers to the number of dynamic training rounds. 𝑘 signifies the number of
feature aggregation steps, and 𝐾 represents the moment order. Furthermore, 𝑁 corresponds to the number of clients.

3.4 Prediction with Global Information
Following the previous steps, we obtain the globalmodel parameters
aggregated according to Eq. (1) from the server and construct the
global shared node pool with nodes to be shared from each client.
In this subsection, we first obtain the node feature 𝐻𝑖 of client
𝑖 involving information of shared global nodes for inputting the
classifier and the cross entropy loss (L𝑐𝑒 ) function.

𝐶𝑖 = Concat(𝐶𝑖 ,𝐶𝑠ℎ𝑎𝑟𝑒𝑑 ) (27)

𝐻𝑖 = Concat(𝐶𝑖 ,Agg(𝐶𝑖 , 𝐴𝑖 )) (28)

L𝑐𝑒 = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝑝𝑖 (𝑦𝑖 )) + (1 − 𝑦𝑖 )log(1 − 𝑝𝑖 (𝑦𝑖 ))] (29)

where Eq.(28) indcates the typical GNN message passing operation
that combines the node’s self-feature and the aggregation of its
neighborhood. 𝑝𝑖 (𝑦𝑖 ) is the predicted probability of the node 𝑣𝑖 on
the class label 𝑦𝑖 .

Therefore, the overall loss of our model comprises three compo-
nents: the supervised classification loss Lce, the CVAE loss LCVAE,
and the feature disentanglement loss L𝐷 . Thus, the total loss for-
mula is as follows:

L = Lce + 𝛼 · LCVAE + 𝛽 · L𝐷 (30)
where 𝛼 and 𝛽 serve as hyperparameters.

3.5 Complexity Analysis
Following FedGTA [12], we conducted a complexity analysis, as
shown in Table 1. To further clarify, we present the algorithmic
complexity of each method in Table 1. For a 𝑘-layer GNN model
with batch size 𝑏, the precomputed results are limited by a space
complexity of 𝑂 ((𝑏 + 𝑘) 𝑓 ). The overhead for linear regression is
𝑂 (𝑓 2). For our proposed method, since the features are divided into
two parts and a proportion 𝜃 of globally shared nodes is used, the
memory overhead for storing node features is𝑂 (2(𝑏 (1+𝜃𝑁 ) +𝑘) 𝑓 ).
The use of CVAE increases the number of model parameters to three
times that of a single detection model. Thus, the space complexity
on the client side is 𝑂 (2(𝑏 (1 + 𝜃𝑁 ) + 𝑘) 𝑓 + 3𝑓 2). The complexity
analysis for other components follows a similar approach. Given
that our detection method processes the graph in batches rather
than using the entire graph as input, and the number of globally
shared nodes is relatively small, our approach maintains low time
overhead while also demonstrating spatial scalability.

3.6 Analysis of Privacy Protection
In this method, to simulate the edges between client subgraphs,
we construct a globally shared node pool, which is derived from
information uploaded by each client. However, this does not involve
privacy leakage, as the small number of node features uploaded by
each client are not the original attributes but rather latent space
features. These features are sampled from a Gaussian distribution
and generated using a VAE, making them essentially different from
the actual features of any given node.

4 Experiments
4.1 Experiment Setup
In this section, we conducted comparative experiments on six real-
world datasets with five currently representative federated learning
methods and three global graph anomaly detection methods to
test the performance of our proposed approach. Additionally, we
conducted ablation experiments to test the effectiveness of the
designed modules. These contents were aimed at addressing the
following questions:

Q1: Does our method outperform the state-of-the-art approaches
in federated scenarios and achieve qualified detection performance
in global (whole-graph) scenarios?

Q2: Can the incorporation of the feature disentanglement and
the shared node pool lead to an improvement in federated detection
performance?

Q3: Is our method sensitive to the key hyperparameters?
Q4: Can the feature disentanglement achieve the desired effect

as anticipated?

Dataset Cora Citeseer DBLP Citation Flickr BlogCatalog
Nodes 2,708 3,327 5,484 8,935 7,575 5,196
Edges 5,429 4,732 8,117 15,098 241,277 172,759

Features 1,433 3,703 6,775 6,775 12,047 8,189
Anomalies(%) 5.53 4.51 4.98 4.86 5.94 5.77

Table 2: The characteristics of the datasets.

4.1.1 Datasets. We employ six datasets to evaluate the effective-
ness of our method, with their statistical characteristics presented
in Table 2. These datasets are real-world attributed graphs with
injected anomalies following [14]. Each dataset in our experiments
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Methods

Dataset Cora Citeseer DBLP

Acc.(%) Precision(%) Recall(%) F1(%) Acc.(%) Precision(%) Recall(%) F1(%) Acc.(%) Precision(%) Recall(%) F1(%)

ours-local (lower bound) 94.58±0.28 58.78±2.40 58.79±0.78 58.57±1.36 95.77±0.60 68.23±2.96 57.37±0.84 60.87±0.65 95.63±0.33 85.74±3.41 57.70±4.16 61.79±5.91
FedAvg(GCN) 94.48±0.00 47.24±0.00 50.00±0.00 48.58±0.00 94.82±0.48 68.67±5.27 60.18±4.17 62.91±4.85 95.30±0.14 77.30±1.66 63.72±3.04 67.75±2.76
FedProx(GCN) 94.48±0.00 47.24±0.00 50.00±0.00 48.58±0.00 94.92±0.00 47.60±0.00 49.84±0.00 48.70±0.00 95.30±0.34 78.96±5.53 58.82±5.51 62.43±7.76

FedSage+ 95.07±0.29 63.84±14.49 56.83±5.94 58.66±8.65 95.71±0.97 76.00±1.11 64.34±7.05 68.18±8.38 95.28±0.41 74.81±2.90 63.55±0.98 67.20±0.70
FedEgo 93.92±0.30 66.11±9.69 52.18±1.26 52.73±2.21 94.78±0.34 60.25±6.17 51.73±2.52 52.07±4.32 95.34±0.25 74.21±6.49 55.37±0.54 58.06±1.05
FedGTA 91.78±1.29 60.87±4.47 64.37±2.79 61.30±3.04 94.39±0.31 66.68±1.85 64.25±1.95 63.17±3.86 96.17±0.78 79.56±4.01 81.10±2.07 78.37±2.06
ours 95.15±0.28 77.42±1.71 71.28±2.47 73.84±1.91 95.72±0.22 76.67±1.51 74.99±4.55 75.62±2.46 96.81±0.24 82.97±1.64 85.65±0.72 84.21±0.61

DAGAD(GCN) 93.36±1.15 70.30±3.07 76.40±2.85 72.75±2.90 94.56±0.98 70.07±4.48 74.28±3.78 71.81±3.87 94.21±0.41 71.02±1.45 75.15±3.07 72.77±1.70
DAGAD(GAT) 94.54±0.82 74.01±3.51 76.71±4.25 75.26±3.81 95.46±1.03 74.02±5.80 76.34±5.06 75.07±5.35 94.68±1.34 73.58±5.23 78.10±3.95 75.47±4.54

GAD-NR 95.50±0.86 79.25±0.61 74.61±1.38 76.69±1.67 96.61±0.15 82.13±1.53 74.51±1.13 77.73±0.51 96.42±0.25 83.69±2.45 74.34±1.30 78.14±0.91
ours-global (upper bound) 96.25±0.64 84.38±4.81 77.61±4.20 80.25±3.02 96.89±0.57 82.55±4.35 81.43±2.45 81.82±2.35 97.42±0.18 91.14±0.79 77.23±1.33 83.52±1.20

Methods

Dataset Citation Flickr BlogCatalog

Acc.(%) Precision(%) Recall(%) F1(%) Acc.(%) Precision(%) Recall(%) F1(%) Acc.(%) Precision(%) Recall(%) F1(%)

ours-local (lower bound) 95.56±0.71 85.11±1.26 61.41±0.85 64.81±0.80 91.66±3.88 75.22±0.83 59.74±0.58 59.78±1.32 92.53±0.52 62.24±6.26 56.59±3.36 57.92±3.73
FedAvg(GCN) 95.73±0.71 81.65±1.33 64.78±1.32 69.73±1.11 93.94±0.00 46.97±0.00 50.00±0.00 48.44±0.00 94.15±0.00 47.08±0.00 50.00±0.00 48.49±0.00
FedProx(GCN) 95.16±0.89 77.99±2.69 53.96±1.73 55.90±2.77 93.94±0.00 46.97±0.00 50.00±0.00 48.44±0.00 94.15±0.00 47.08±0.00 50.00±0.00 48.49±0.00

FedSage+ 95.37±0.50 72.31±3.75 67.98±4.57 69.85±4.28 94.08±0.95 73.38±2.99 70.37±1.86 71.71±0.97 93.85±0.82 71.09±0.36 65.43±2.95 67.61±2.04
FedEgo 95.26±0.65 79.61±0.62 55.48±2.03 58.26±2.94 94.06±0.63 72.77±5.91 60.51±3.37 63.83±4.33 93.67±0.23 75.46±2.30 59.45±1.76 63.08±2.28
FedGTA 95.81±0.27 76.32±1.95 78.92±1.59 77.12±1.79 93.82±0.50 84.98±1.56 68.14±3.83 73.20±3.63 93.87±0.11 71.14±3.22 63.49±2.31 66.19±2.76
ours 96.87±0.25 85.79±1.81 79.06±3.59 81.87±2.40 95.30±0.37 82.41±4.97 71.74±2.15 75.57±0.45 94.59±0.47 76.17±3.15 67.92±0.25 71.09±1.18

DAGAD(GCN) 94.62±0.41 72.22±1.51 78.42±2.43 74.82±1.54 95.27±1.92 82.39±2.81 79.48±5.27 79.49±3.04 95.57±1.79 83.11±7.37 78.56±5.02 79.54±3.50
DAGAD(GAT) 95.17±0.67 74.58±2.84 79.03±1.24 76.53±2.12 93.63±0.67 72.08±2.86 76.84±5.28 74.12±3.12 91.59±3.68 67.41±6.36 71.13±4.77 68.41±5.87

GAD-NR 95.59±0.38 76.51±2.44 73.60±0.15 74.92±1.15 88.89±0.00 51.80±0.00 51.96±0.00 51.87±0.00 87.45±0.00 51.26±0.00 51.74±0.00 51.35±0.00
ours-global (upper bound) 96.92±0.17 85.26±1.22 79.70±2.77 82.14±1.58 97.00±0.14 88.32±1.04 83.13±0.93 85.50±0.64 95.38±0.16 78.82±0.79 81.15±0.41 79.93±0.49

Table 3: Performance comparison of our method on six datasets.

Figure 6: Performance comparison of our method on Cora
under different number of clients.

is split into three parts: 60% for training, 20% for validation, and
20% for testing.

4.1.2 Compared Methods. Due to the current scarcity of research
on federated graph anomaly detection, we test our method by com-
paring it with five representative and up-to-date federated graph
learning models. Among them, FedAvg and FedProx are represen-
tative federated learning models. FedSage+, FedEgo, and FedGTA

are proposed recently. To validate our model in the global (whole-
graph) scenario, we also select three recently proposed graph anom-
aly detection models, including DAGAD-GCN, DAGAD-GAT, and
GAD-NR. Given the limited availability of supervised methods for
the corresponding datasets, we extract the embeddings trained by
GAD-NR and apply a linear classifier for supervised training.

4.1.3 Experiment Settings and Implementation. The learning rate is
set as 0.002, and the weight decay rate is 1e-5. We set the embedding
size to 64, the round number to 50, and training epochs in a round
to 5. Following FedSage [31], we partition the whole-graph into
several parts to simulate federated scenarios with Louvain.

Our model is implemented in PyTorch 1.13.1 [19] and PyG [8]
with Python 3.9, while baselines are implemented with codes pub-
lished by their authors on a single NVIDIA RTX 4090 GPU.

4.1.4 Evaluationmetrics. Weevaluate the effectiveness of ourmethod
with the following four metrics, accuracy, macro-precision, macro-
recall, and macro-f1. Accuracy is a commonly used metric for clas-
sification tasks, while the others reflect the performance of models
on imbalanced data without overly underestimating the minority
(anomaly) class.
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Figure 7: Ablation experiments on six datasets.

Figure 8: Experiments of sensitivity to hyper-parameters.

4.2 Overall Results (RQ1)
In our comparative experiments, we first conducted experiments un-
der the setting of three clients, covering local, federated, and global
scenarios. We recorded the experimental results as shown in Table
3. In the local scenario, our method involves independent training
on each client without interaction with the server, representing the
lower bound of federated graph anomaly detection methods. The
global scenario entails detection on the entire graph, representing
the upper bound of federated graph anomaly detection methods.
We compare our method in the global scenario with three recent
graph anomaly detection methods, DAGAD-GCN, DAGAD-GAT
and GAD-NR. Our method, after disentangling features into intrin-
sic and style features and learning features from both attribute and
structural perspectives, achieves superior detection performance.

In the context of federated graph learning, we first implemented
classic FedAvg and FedProx combined with GCN as two baseline
models. These models simply upload client model weights, perform
weighted updates on the server, and include regularization terms.
However, they only showed promising results on the DBLP and
Citation datasets. Subsequently, we compared our method with
other recent federated graph learning models. It’s notable that due
to the rarity of anomaly classes in anomaly detection, the difference
in accuracy is minimal. Therefore, we focused on observing the
Macro-F1 score, which comprehensively evaluates the classifica-
tion performance of anomaly detection. FedSage+ relies solely on
nodes themselves to generate the number and distribution of neigh-
bors, while the quality of generated neighbors may be suboptimal.
FedEgo shares the aggregated feature of the entire neighborhood,
however, this approach may submerge the distinctive features of
anomalous nodes. Among all baseline models, FedGTA performs
the best. Nevertheless, due to the lack of specific design for graph
anomaly detection, it fails to outperform our proposed method.

Under the setting of different number of clients, we conducted
related experiments as shown in Figure 6. Observably, as the number

of clients increases, the missing connections between clients also
increase, inevitably leading to a decline in model performance,
which aligns with the trend observed in detection performance of
the local scenario.

4.3 Ablation Study (RQ2)
To evaluate the effectiveness of two key modules of our method,
we conducted series of ablation experiments under the setting of
three clients by excluding each module, as shown in Figure 7, where
ours-shared pool excludes the shared node pool for federated graph
learning, and ours-disentanglement excludes the local feature dis-
entanglement for decoupling intrinsic features and client subgraph
style features. The shared pool plays a useful role in improving the
performance of detection on all six datasets, while the introduc-
tion of the feature disentanglement module also benefits detection
performance in most cases.

4.4 Sensitivity to Hyper-Parameters (RQ3)
The ratio of the shared node pool. According to the process of
constructing the shared node pool, the ratio of nodes sampled in
each client as shared nodes is a critical hyper-parameter. Hence, we
evaluate our model’s sensitivity to it on the Cora dataset, as shown
in Figure 8. The model achieves the best performance when 𝜃 is
around 10%.

Weight factor analysis of the loss function. As shown in
Eq.(30), the two factors 𝛼 and 𝛽 are critical in balancing the super-
vised classification loss, the disentanglement loss, and the CVAE
loss. Hence, we evaluate our model’s sensitivity to these terms
under different settings.

Specifically, we run our method on the Cora dataset for 𝛼, 𝛽 ∈
{0.2, 0.4, 0.6, 0.8, 1.0} based on grid search and report the results of
all three evaluation metrics in Figure 8. It can be observed that our
method is not sensitive to the two loss weight parameters 𝛼 and
𝛽 in terms of macro F1. In particular, our method achieves better
macro-F1 when 𝛼 and 𝛽 are around 0.4 and 0.8, respectively.

4.5 Visualization Analysis (RQ4)
T-distributed stochastic neighbor embedding (TSNE) [25] is a fea-
ture visualization tool that can transform high-dimensional features
into two-dimensional features to facilitate observation of the pat-
tern of feature distribution. To evaluate whether the local feature
disentanglement module achieves the expected effect, we utilize
TSNE on all six datasets. Figure 9 shows the feature distribution af-
ter being handled with TSNE. It can be observed that the subgraph
style feature 𝑆 of normal and abnormal nodes are more coupled,
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Figure 9: The visualization of disentangled representation with TSNE on all six datasets.

while the intrinsic feature 𝐶 present a more distinguishable bor-
der between normal and abnormal nodes. This demonstrates that
the disentangled representation learning successfully distinguishes
between features with different semantic meanings.

5 Related Work
5.1 GNN-based Graph Anomaly Detection
Graph Neural Networks (GNNs) are capable of generating high-
quality node embeddings by aggregating information from neigh-
boring nodes. Numerous studies have successfully applied GNN-
based methods to detect anomalous nodes in diverse domains, such
as citation networks [3], product review networks [15], social net-
works [17], and transaction networks [24], demonstrating the ver-
satility and effectiveness of GNNs in tackling these problems.

GraphConsis [15] defined inconsistency of feature and context
in graph anomaly, and conducted experiments on fraud comments
datasets, followed with [7, 29]. CoLA [14] exploited local informa-
tion by sampling contrastive instance pairs, which can capture the
relationship between each node and its neighborhood. To better
handle the high-frequency features of fraudsters, BWGNN [24]
implemented filters of multiple frequency bands based on the Beta
kernel designations. CONAD [27] first modeled prior human knowl-
edge through a novel data augmentation strategy, then integrated
the modeled knowledge in a Siamese graph neural network encoder
through a contrastive loss. DAGAD [13] derived additional samples
to enrich the training set and adopts class-wise losses to reveal
the differences between anomalous and normal nodes with the
class imbalance issue alleviated. GAD-NR [22] aimed to reconstruct
the entire neighborhood of a node, encompassing the local struc-
ture, self-attributes, and neighbor attributes and identify anomalous
nodes with neighborhood reconstruction loss.

5.2 Federated Graph learning
FedAvg [16] introduced the concept of federated learning (FL),
where a central server distributes a global model to multiple clients,
who then train the model locally using their own data. Afterward,
the clients upload their locally trained weights to the server, which
aggregates these weights to update the global model. FedProx [11]
extended FedAvg by introducing a regularization term that penal-
izes the deviation between client and global model parameters,
stabilizing the learning process.

In federated graph learning, a unique challenge arises due to
the absence of connections between nodes across different client
subgraphs. FASTGNN [28] introduced an edge generator at the
server, which reconstructed edges between clients using Gaussian-
randomly generated edges to simulate inter-client connections. Fed-
Sage [31], proposed a neighbor generator to predict the number of
missing neighboring nodes and reconstruct their hold-out features.
Building upon this, FedNI [20] improved the neighbor generation
process by incorporating a discriminator that distinguishes between
real missing neighbor features and those generated by the model.
FedEgo [32] assumed that the edges between client subgraphs are
known and employed Mixup [30] to create mashed ego graphs,
offering a level of privacy protection during the aggregation pro-
cess. Further advancing the field, FedGL [4] proposed using global
pseudo-labels and a global pseudo-graph, which are distributed
to clients. These pseudo-structures enrich the local training labels
and enhance the graph structure, mitigating the effects of missing
edges. Lastly, FedGTA [12] introduced a personalized model aggre-
gation approach that leverages the mixed moments of neighboring
node features and uses local smoothing confidence to weight the
aggregation, enabling a more tailored model for each client while
maintaining the integrity of the global model.

6 Conclusion
In this paper, we introduce the task of federated graph anomaly
detection and analyzed its challenge of identifying graph anomalies
without inter-client edges. To address this challenge, we proposed a
federated graph anomaly detection method based on disentangled
representation learning. Node features are disentangled into intrin-
sic features and subgraph style features from views of feature and
structure to tackle above challenges. Contrastive learning strategies
are then adopted to generate negative node pairs with CVAE, effec-
tively addressing the class imbalance issue in anomaly detection
and achieve feature disentanglement. Next, pseudo-features are
generated for a few nodes within each client subgraph that are
likely to have connections outside the subgraph. These nodes are
finally shared globally to simulate inter-client connections. Com-
prehensive experiments conducted on six datasets validate the ef-
fectiveness of our method in federated graph anomaly detection.
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