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ABSTRACT

Physics-informed neural networks (PINNs) have shown promise in solving the
Navier-Stokes equations for fluid flow problems, but most existing approaches re-
quire retraining for each new flow case, limiting their applicability to a wide range
of scenarios. This study addresses the challenge of multi-dimensional parameter-
ization of flow domain geometries, which has not been extensively explored in
previous research. We propose an approach for parameterizing the flow domain
for solving the stationary Navier-Stokes equations for Newtonian fluid flow using
PINNs. The proposed approach allows scaling PINN for new cases not considered
in training and significantly reduces computational costs in comparison with the
numerical solution.

1 INTRODUCTION

Most existing approaches to solving the Navier-Stokes equations using physics-informed neural net-
works (PINN) involve retraining for each new flow case. However, the configuration of the neural
network allows for additional inputs to describe physical parameters, boundary conditions, and the
geometry of the flow domain. Naderibeni et al. (2024) considered parameterization of the Reynolds
number for flow past a cylinder. Liu et al. (2024) considered the three-dimensional flow around
an arbitrarily rotating sphere subjected to a cross-flow. The authors proposed an approach for pa-
rameterizing the Reynolds number and spanwise angular velocity components. However, in these
researches, the geometry of the flow domain does not change. Gao et al. (2021) applied an ellip-
tic coordinate mapping to use convolutional neural networks (CNN) in solving partial differential
equations (PDEs) on irregular parametrized flow domains. The authors note the high accuracy of the
approach, but CNN allows obtaining a solution at a fixed set of points and requires the use of numer-
ical methods for calculating derivatives. Fully connected artificial neural networks (FCNN) allow
obtaining values of unknown functions at any point in the computational domain and natively sup-
port the calculation of derivatives. Heger et al. (2024) considered flow domains parameterized by a
single parameter, such as a T-junction flow with a change in the height of the left junction. Thus, the
problem of multidimensional parameterization of flow domains remains understudied but promising
for scaling PINN. Describing arbitrary flow domains requires a multidimensional parameter space.
It can be constructed using modern methods based on deep learning to encode three-dimensional
shapes (Zhang et al., 2023). Data limitations can be mitigated by generating realistic flow domains
using diffusion models (Gao et al., 2022; Wu et al., 2024). The aim of this work is to develop
an approach for multidimensional parameterization of arbitrary flow domains and validate it on a
two-dimensional flow in a vessel with stenosis and aneurysm.
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2 METHODOLOGY

Raissi et al. (2019) proposed a concept of PINN, where the PDE describing the physical system is
integrated into the loss function of the artificial neural network. Thus, minimizing this loss func-
tion allows the artificial neural networks (ANN’s) output to approximate the PDE solution. The
peculiarity of the approach is that only the PDE, initial, and boundary conditions are used to obtain
the solution without the need for other data. To parameterize the geometry of the flow domain, the
ANN’s input can be extended with a set of parameters to describe it. Then, in general form, the
parameterized PINN considers the solution of the following system of equations:

N [u] = fu (x, t, a, b, c) , x ∈ Ω, (1)
B [u] = fbc (x, t, a, b, c) , x ∈ S, (2)

I [u] = fic (x, t, a, b, c) , t = 0, x ∈ Ω, (3)

where N [·] is a nonlinear differential operator applied to the PDE solution u, B [·] defines the
boundary conditions, I [·] defines the initial conditions, x are the coordinates of the points in the
computational domain, t is the time, a are the geometric parameters of the computational domain, b
are the initial and boundary condition parameters, c are the physical parameters (e.g., viscosity).

The application of PINN involves approximating the solution u using the ANN
uann (x, t, a, b, c,Θ), where Θ represents the trainable parameters of the ANN. The overall
loss function, based on the mean squared error (MSE), takes the following form:

L = ωuLu + ωbcLbc + ωicLic, (4)

Lu =
1

Nu

Nu∑
i=1

(N [ui]− fu)
2
, (5)

Lbc =
1

Nbc

Nbc∑
i=1

(B [ui]− fbc)
2
, (6)

Lic =
1

Nic

Nic∑
i=1

(I [ui]− fic)
2
, (7)

where Lu represents the loss function based on the PDE residuals evaluated at Nu randomly dis-
tributed points within the geometry, Lbc is the loss function for the boundary conditions evaluated
at Nbc randomly distributed points on the geometry’s boundary, Lic is the loss function for the ini-
tial conditions evaluated at Nic randomly distributed points at t = 0 and ωu, ωbc and ωic are the
weighting coefficients for the loss functions.

For modeling stationary fluid flow, the Navier-Stokes equations are solved without considering time.
The fluid flow in the domain Ω with surface S is considered. The boundary conditions consist of
three parts: no-slip conditions on the walls, a parabolic velocity profile at the inlet, and zero pressure
at the outlet. The Navier-Stokes equations are used in the following form [6]:

ρ (v ⊗∇) · v − µ∇2v +∇p = 0, (8)
∇ · v = 0, (9)

where v = [vi] and p are the velocity and pressure distributions, µ is the dynamic viscosity coeffi-
cient, ρ is the fluid density, ρ (v ⊗∇) · v is the convective term, which allows taking into account
the nonlinear properties, ⊗ is the tensor product operation. The Navier-Stokes equations can be
generalized as follows:

N [v, p] = 0, x ∈ Ω. (10)

Separate loss functions for the Navier-Stokes equations, including the incompressibility condition,
no-slip condition (v = 0 at the walls) and boundary condition (p = 0 at the outlet, v = vin at the
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inlet) are also included in the overall loss function. vin
i is the specified parabolic velocity field at the

inlet. The overall loss function will take the following form:

L = ωuLu + ωvLv + ωpLp + ωnsLns, (11)

where Lv is the loss function for the velocity field evaluated at Nv randomly distributed points on
the inlet, Lp is the loss function for the pressure evaluated at Np randomly distributed points on the
outlet, Lns is the loss function for the no-slip condition evaluated at Nns randomly distributed points
on the walls. To ensure the scalability of the approach to arbitrary three-dimensional flow domains,
the use of deep learning models to encode and generate 3D shapes appears promising. Appendix
A presents a pipeline of the parameterized PINN method adapted for arbitrary three-dimensional
flows.

To implement the parameterization of the flow domain, a two-dimensional flow in idealized vessels
with stenosis and aneurysm is considered. Figure 1 shows the drawing of the flow domain parame-
terized by parameters h and l. The dimensions are given in millimeters. The parameter h indicates
the size of the stenosis and aneurysm in the vessel, while the parameter l indicates the position of
the region with stenosis and aneurysm in the longitudinal direction. For flows with stenosis, the
parameter h takes negative values. The radius of the rounding is determined as R = 1/ |h|.

Figure 1: Scheme of the flow regions under consideration, described by the parameters h and l.

To train the parameterized PINN in this work, an FCNN will be used. The SiLU activation func-
tion demonstrates high performance for PINN (Safwan et al., 2021). For the considered exam-
ple, the input data includes the coordinates and the geometric parameters of the flow domain:
x = [x1, x2, h, b] ∈ R4. The ANN predicts the distributions of the unknown functions v and
p. The application of PINN involves the necessity of computing partial derivatives of the unknown
functions. For this purpose, automatic differentiation based on the backpropagation method (Baydin
et al., 2015) is used. This method allows for the computation of all necessary components of (Eq.
8, 9). To ensure stability and speed of ANN training, a procedure for normalizing input and output
data is applied.

3 RESULTS AND DISCUSSION

For training, 18 combinations of flow domains with the following parameters were used with h =
{−0.45,−0.3,−0.15, 0.25, 0.5, 1} and l = {3, 5, 7}. To test the model’s generalization, 3 interpo-
lation tests (h = {−0.35, 0, 0.35}, {l = [4, 5, 6}) and 2 extrapolation tests (h = {−0.4999, 1.5},
l = {2, 8}) were conducted. The value h = 0 corresponds to a flow domain without distortions.
The total number of random points for each flow domain was approximately 1e6.

The flow of Newtonian fluid is considered. A parabolic velocity profile with vmax = 0.3 m/s is set at
the inlet. The viscosity is taken as µ = 0.00385 Pa·s, and the density as ρ = 1050 kg/m³. Separate
ANNs were used to predict the unknown functions vanni , pann. The trained ANNs included 10
layers with 32 neurons each. The Adam optimizer (Kingma & Ba, 2017) was used for training. The
learning rate was set to 0.001. An exponential decay of the learning rate with γ = 0.99 every 150
epochs was used during training. The number of epochs was 100000. The weighting coefficients
were as follows: wres = 0.2, wdiv(v) = 0.2, wns = 10000, wv = 1000, wp = 1. The batch size was
3 examples, each including: 500 points inside the computational domain, 250 points on the walls,
100 points at the inlet and outlet. Batches were formed by sampling random points.
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Training and testing were performed on a workstation with a GPU 4060 ti, 32 GB RAM, and an
CPU Intel i5-12400F. To assess accuracy, numerical solutions using the FEniCS library were used
as reference values. The mean absolute error (mae) and relative percent error for the fields vabs, p
was evaluated. Table 1 presents the error values for all interpolation and extrapolation tests, as well
as for several examples from the training set. Figure 2 shows the visualization of predictions for the
interpolation test at h = 0.35, l = 6 compared to CFD.

Table 1: Parameterized PINN error compared to CFD.
l, h, maevabs

, mean (vabs) max (vabs), maep mean (p) max (p),
mm mm cm/s error, % cm/s Pa error, % Pa

Training
3 -0.3 0.643 2.589 41.1 1.346 3.470 97.3
5 -0.15 0.291 1.068 34.0 0.727 1.941 82.4
7 0.5 0.191 0.179 29.9 1.350 4.128 66.8

Interpolation
4 -0.35 0.601 2.031 44.3 1.391 2.831 106.4
5 0 0.146 0.601 29.9 0.475 1.181 74.0
6 0.35 0.167 0.055 29.9 1.031 2.985 68.0

Extrapolation
2 -0.4999 1.305 4.716 60.0 4.097 8.655 163.6
8 1.5 0.470 2.306 29.9 0.984 0.139 65.1

Figure 2: Comparison of parameterized PINN with CFD for h = 0.35 and l = 6.

The inference time of the trained ANN for 70k points of the computational domain takes 0.1 s on
cpu and 0.01 s on gpu, while the numerical solution takes 10 s. The results show a slight difference
in metrics for interpolation compared to the training set. The extrapolation tests show a somewhat
larger error, but high extrapolation error is a common occurrence for FCNN. However, the extrapo-
lation tests show a result sufficiently close to CFD, which may allow for quick fine tune of PINN on
a wider range of parameters.
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This work presents an approach for parameterizing the flow domain for solving the stationary
Navier-Stokes equations for Newtonian fluid flow using PINN. The proposed approach allows scal-
ing PINN for new cases not considered in training and significantly reduces computational costs in
comparison with the numerical solution.

The obtained results demonstrate the promising potential for further development of the proposed
approach. Subsequent research will involve implementing parameterization of boundary conditions
and fluid viscosity, as well as scaling the method to three-dimensional flow domains of arbitrary
shape, including realistic blood vessel models.
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A PARAMETERIZED PINN PIPELINE

Figure 3 shows a pipeline of the parameterized PINN method adapted for arbitrary three-dimensional
flows.

Figure 3: PINN pipeline with parameterization of sequential domain results for the Navier-Stokes
solution method. The dataset is a set of flow domains in the form of three-dimensional shapes.
The domains of change can be supplemented with generative models. For given shapes, points
of the computational domain are generated and its features are encoded. The input PINN is the
concatenation of the coordinates (x), features of the shape (a), initial and boundary conditions (b),
and physical parameters (c). Under boundary conditions, the maximum inlet velocity and outlet
pressure can be achieved. Viscosity and bleaching of liquids can be used as these parameters.

B IMPLEMENTATION DETAILS

Figure 4 shows an example of random points for h = 1, l = 5.

Figure 4: Visualization of randomly distributed points in the computational domain for h = 1,
l = 5. Interior – points inside the flow region; Walls – dots on wall surfaces; Inlet – points on the
input surface; Outlet – points on the output surface.
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Figure 5 shows the training process of parametrized PINN.

Figure 5: Training process of the parameterized PINN.
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