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Abstract

Category-agnostic pose estimation (CAPE) has tradition-
ally relied on support images with annotated keypoints.
This process is often cumbersome and may fail to fully cap-
ture the necessary correspondences across diverse object
categories. Recent efforts have explored the use of text
queries, leveraging their enhanced stability and general-
ization capabilities. However, existing approaches still fall
short in their versatility and expressivity, with dependence
on additional support queries, suboptimal use of language
priors, and simplistic parametric distributions. To address
these limitations, we introduce CapeLLM, the first multi-
modal large language model (MLLM) designed for CAPE.
Our method is completely support-free, necessitating only
the detailed text description of the keypoint, along with the
query image. For seamless adoption of MLLM to CAPE, we
propose effective training strategies and carefully designed
instructions, along with inference mechanisms to enhance
the visual reasoning process for unseen keypoints. Fur-
thermore, naturally due to the design, CapeLLM is capable
of modeling the underlying spatial distribution and uncer-
tainty, allowing for adaptive refinement based on contextual
cues. Above all the advantages, we set the new state-of-the-
art on the MP-100 benchmark, surpassing 5-shot settings of
previous art even in the 1-shot setting.

1. Introduction
Research in pose estimation has evolved independently
within distinct domains, with approaches tailored to specific
categories such as humans [24, 31, 34], vehicles [17, 18],
and animals [10, 35]. Category-Agnostic Pose Estimation
(CAPE) extends this task to multiple categories, predicting
keypoint positions of novel objects by employing the ex-
isting input image (called “query image”) with additional
information, such as support images and their correspond-
ing keypoint annotations that belong to the same category
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Figure 1. (Top) Previous methods that are support-dependent re-
quire support images and keypoint annotations. (Bottom) Our
support-free approach does not need any additional images and
annotations, but just a text description of the keypoints. The con-
nectivity between keypoints is pre-defined, which remains consis-
tent across all following figures.

as the query but has a different pose from it.
Most existing CAPE methods leverage the support data

and adopt a two-stage architecture [22], maximizing the
similarity between the query and the support features, with
additional refinement steps to improve performance. How-
ever, the process of preparing additional queries along with
their annotations is impractical and cumbersome, and the
performance varies depending on the support set chosen.
While CapeX [20] incorporated a text-based approach to
mitigate this issue, it still heavily relies on the skeletal rep-
resentations that are provided as auxiliary information.

To overcome these drawbacks, in this work, we propose



CapeLLM, the first Multimodal Large Language Model
(MLLM) for CAPE that is completely support-free. See
Figure 1 for the conceptual illustration of CapeLLM against
previous support-dependent approaches. Our contributions
can be summarized as follows:
• We propose CapeLLM, the first support-free framework

in CAPE with advanced query-text comprehension capa-
bilities leveraging an MLLM.

• We elucidate the design choices of using MLLMs for
CAPE, from the design of the user query to specific train-
ing strategies. Interestingly, we reveal that tailored in-
structions are the key to unleashing the capabilities of
MLLMs in CAPE.

• We propose dynamic round training, enabling spatial rea-
soning across multiple target poses.

• We propose a flexible decoding strategy that can implic-
itly model a general probability distribution over key-
points, rather than a fixed parametric model such as a
Gaussian

• We achieve state-of-the-art results on the MP-100 bench-
mark for CAPE, even outperforming the 5-shot accuracy
of the previous art [7].

2. CapeLLM
This section is structured as follows. In Sec. 2.1, we de-
scribe the model architecture for estimating novel keypoints
from given textual descriptions. Then, we present how to
design the keypoint names and their corresponding descrip-
tions in Sec. 2.2. Finally, in Sec. 2.3, we introduce two
distinct training strategies to endow the spatial reasoning
capabilities to CapeLLM.

2.1. CapeLLM Model Architecture
Similar to prior works [13, 25], we utilize a pre-trained vi-
sual encoder (e.g., DINO-v2 [15]) in conjunction with a
language model (e.g., LLaMA3.1 [6]). The overall archi-
tecture is schematically illustrated in Fig. 2. The input im-
age x ∈ RH×W×3 is first divided into small patches, where
H and W are the height and the width of the image, re-
spectively. The patches are processed through the visual
encoder fϕ to obtain the patch-processed image features
Ṽ ∈ RNv×C , where Nv is the number of patches and C
is the dimension of each patch. These patches are linearly
transformed into image tokens V ∈ RNv×D , via a simple
learnable matrix

Ṽ = fϕ(x) (1)

V = ṼWproj, Wproj ∈ RC×D, (2)

where D represents the dimension of each image token.
These image tokens are prepended to the the query text

token embeddings T ∈ RNt×D, where Nt denotes the num-
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Figure 2. CapeLLM Architecture. CapeLLM consists of two pre-
trained modules, visual encoder fϕ and LLM gθ . The visual tokens
V from visual encoder fϕ are fed into the LLM gθ with the text
tokens T . The decoding strategy predicts the keypoint coordinate
directly as text generation.

ber of text tokens, and then fed into the language model as
the final input tokens X ∈ RN×D:

X = [V;T], (3)

where ; denotes concatenation of the two matrices along
the token dimension, and N = Nv +Nt.

The decoder-only LLM gθ processes the input X to pro-
duce the output token matrix Z which has the same shape
as X:

Z = gθ(X). (4)

Finally, following previous practices [13, 25], a linear
transformation with learnable parameters Wlogit ∈ RD×M

outputs the final logits Y ∈ RN×M for each token, where
M is the size of the vocabulary:

Y = ZWlogit. (5)

While there are different strategies to decode the final
predicted output of the keypoint, we choose a strategy
that endows maximal flexibility in the output distribution.
Specifically, we use a decodable floating-point representa-
tion by estimating with the following template: [0.abc,
0.def], as shown in Fig. 2. Here, each decimal point is
represented by a separate token.



Concretely, let y ∈ R be either of the two scalar values
that should be predicted. Then, CapeLLM approximates
this value by factorizing it over K = 3 digit tokens, i.e.

p(y|x) ≈ pϕ,θ(Y1,Y2, . . . ,YK |x)

=

K∏
k=1

pϕ,θ(Yk|x,Y1, . . . ,Yk−1). (6)

Interestingly, one can show that (See Theorem 1 of [23])
CapeLLM models a truncated conditional density up to a
resolution of 10−K . This leads to vastly enhanced flexibil-
ity, as opposed to the widely used Gaussian parametrization
(See Fig. 4). Architectural experiments can be seen in the
Supplementary Sec. B.2.

2.2. Design of Instructions
Following the previous clues that instructions exert a signif-
icant influence on MLLM’s performance [4, 13, 29, 37], we
observe that it is insufficient to use only keypoint names to
infer their positions within images. Since some categories
have densely defined keypoints, especially human faces, we
manually design these descriptions to clearly delineate the
differences between them. In crafting the descriptions, we
intentionally avoid vague or ambiguous phrasing, instead
providing precise details about the spatial positions and re-
lationships among keypoints. For instance, when describ-
ing the “front wheel” of a swivel chair, rather than saying
“starting from this wheel, the remaining wheels are located
clockwise,” we express it as “next to the fifth wheel and in
front of the second wheel”. Table 15 illustrates an example
of animal body. For extensive ablation studies regarding the
design of the instructions, see Supplementary Sec B.1.

2.3. Training Strategy
Although the CAPE benchmark dataset, MP-100, covers
a wide array of categories, each category contains only
around 200 samples on average, which is considerably
smaller compared to other benchmarks(MSCOCO [12],
MPII [2], AP-10K [35]). The approach of matching an in-
dividual image with just a subset of keypoints, as used in
LocLLM [25], proves insufficient (See Tab. 2).

Fixed round training Instead, we form (image, key-
points) pairs where every image is paired with all of its key-
points during training (“Fixed-Round” strategy). Initially,
we partition the keypoints (Kcategory) into groups of k. Each
set of keypoints is then combined with an image. It is im-
portant to note that we permit the repetition of images until
every keypoint has been included in a pair. This approach
guarantees that no keypoints are left unpaired during the
training phase.

Dynamic round training In addition to the Fixed-Round
conversation method above, we also explore a “Dynamic-

Round” strategy. Although both methods involve pairing an
image with all the keypoints, the Dynamic-Round approach
differs in that the number of keypoints linked to an image
varies for each pair, unlike the fixed count of k in the Fixed-
Round method. This variability is intended to reinforce the
reasoning process by utilizing information from other key-
points during prediction.

3. Experiment
3.1. Experimental Setup
We utilize the MP-100 benchmark dataset [33], aligning
with prior methods [3, 7, 14, 19, 20, 22, 33]. MP-100 com-
prises 100 categories and approximately 20,000 images,
split into train, validation, and test sets in a 70/10/20 ratio.
We use PCK@0.2 as a measurement of accuracy and com-
pare both quantitative and qualitative results against two
representative baselines: GraphCAPE [7] and CapeX [20].

3.2. Main Results

Evaluation dataset Model split2 split4 Avg

Support-Query Pairs

GraphCAPE(1-shot) [7] 89.79 87.81 90.52
GraphCAPE(5-shot) [7] 90.78 90.42 92.04
CapeX [20] 91.08 89.83 91.62

CapeLLM (Ours) 92.40 90.90 92.60

Only Query Images CapeX [20] 91.08 89.67 91.59

CapeLLM (Ours) 92.34 90.87 91.60

Table 1. PCK@0.2 on the MP-100 dataset.

Method Training Inference Metric
Single Cumulative PCK0.15 PCK0.20 PCK0.25

LocLLM-style [25] - ✓ × 91.00 94.85 96.98
× ✓ 90.56 93.39 95.03

Ours
Fixed ✓ × 95.26 96.98 97.90

× ✓ 93.02 94.59 95.42

Dynamic ✓ × 94.31 96.05 97.26
× ✓ 95.62 97.28 98.27

Table 2. Result of cumulative reasoning. Default config .

Quantitative results Table 1 shows that CapeLLM out-
performs both baselines [7, 20] in all conditions, and sets
the new state-of-the-art. This result demonstrates that even
without any support, it is possible to attain superior results
in CAPE. Moreover, our dynamic-round training makes the
model more accurate with our proposed inference mecha-
nism, called “cumulative reasoning”, that the prompt em-
ployed for predicting each keypoint is prepended to the
prompt for the subsequent keypoints, thereby establishing
a cumulative context (see the 2nd and 4th row). For the
details on cumulative reasoning, refer to Sec. D.

Qualitative results Fig. 3 illustrates that CapeLLM is su-
perior to conventional methods [7, 20] across various cat-
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Figure 4. Distribution modeling for keypoints. “Gaussian” dis-
plays a fixed-variance Gaussian around the ground-truth target
point. “Ours” displays the distribution modeled by CapeLLM,
achieved by sampling multiple points, and using kernel density
estimation. In (a) animal face, (top) top left side of the left eye;
(mid) right side of the lip; (bottom) left side of the lip. In (b) an-
imal body, (top) root of tail; (mid) right back paw; (bottom) left
knee.

egories. Moreover, in Fig. 4, the output coordinate distri-
bution of CapeLLM is kept within the foreground while
the distribution of prevalent Gaussian modeling stretches

across the background. This observation implies that our
decoding-based modeling can be another option to build a
density function of keypoint and resolve the inherent con-
straints in the conventional method (e.g., fixed-variance
Gaussian).

4. Conclusion

We introduce CapeLLM, the first fully support-free
MLLM-based method for CAPE. By leveraging the
reasoning capabilities of a large language model (LLM),
CapeLLM achieves state-of-the-art performance with-
out requiring any support images or annotations. We
design structured keypoint instructions to fully harness
MLLMs for CAPE, and introduce two novel training
strategies—fixed/dynamic-round training—which not only
improve category-agnostic keypoint prediction but also
enhance cumulative reasoning, allowing the model to refine
its predictions iteratively based on contextual information.
We believe CapeLLM serves as a foundational step toward
the broader application of MLLMs in spatial reasoning and
structured perception tasks. Future work can explore more
advanced decoding strategies, multi-modal extensions, and
scalability to real-world scenarios, paving the way for next-
generation keypoint estimation models driven by MLLMs.
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Supplementary Material

A. Keypoint Descriptions
We create the names and descriptions of keypoints for all
100 categories. The names can be divided into two types:
one that has its own unique name, e.g., left shoulder,
right eye, and the other that does not have its own
name. the latter is difficult to define due to the densely
distributed position. We concentrate on designating the lat-
ter and determine the names using their relative positions
in each category; for example, “upper”, “central”, “lower”.
The descriptions are represented with the keypoint position
in the category and its relation with other keypoints; e.g., in
the animal body, the description of left front paw is
defined as “The left front paw is the lower end of the left
forelimb, used for movement and manipulation of objects.
It is positioned below the left elbow and connected with the
left elbow”. A detailed example can be found in Table 15.

B. Exploring other Design Choices
B.1. Instruction

w/ description w/ keypoint list PCK@0.05 PCK@0.2 mPCK

× × 72.60 96.22 89.86
✓ × 78.43 96.98 91.98
✓ ✓ 77.36 95.80 90.97

Table 3. Effect of additional info for keypoints in training.
Default config .

Diverse questions Add conversation outline PCK@0.05 PCK@0.2 mPCK

× × 78.43 96.98 91.98
✓ × 74.24 96.56 90.56
× ✓ 75.08 96.27 90.63
✓ ✓ 68.24 95.93 88.52

Table 4. Effect of adding a conversation outline and diversifying
question expressions. Default config .

Instruction variations As mentioned in Sec 2.2, we in-
clude not only the names but also descriptions of the key-
points in the instructions to help the model better to reason
the location of keypoints. We examine how the descrip-
tion affects model performance by training the model with-
out descriptions. The result in Table 3 shows that without
descriptions, the accuracy decreases over 2%p in mPCK,
suggesting that the keypoint description plays a significant
role in enhancing to find the exact position. We experiment
another scenario to include all keypoint names for each cat-
egory in the instruction as “Keypoint List”. As shown in
Table 3, unlike keypoint descriptions, the list of keypoint

names is not helpful for improving the model, rather reduc-
ing its performance. Next, we explore whether two optional
conditions affect the performance or not: one is encompass-
ing a conversation outline [13] and the other is to diversify
the question expression in instruction. The outline slightly
modified from the prior work [13] seems not to influence to
solve the problem that predicts coordinates, and the random
question does not have any positive effect on the perfor-
mance, actually leading to a decrease in the model’s perfor-
mance(Table 4).

Description Type PCK@0.05 PCK@0.2 mPCK

Vague 69.82 91.97 85.98

Spatial & Relational 78.43 96.98 91.98

Table 5. Comparison with vague descriptions. Our method .

Vague description To investigate the impact of instruc-
tions on the performance, we define two types of variations
in the instruction: (1) change in the keypoint names and
descriptions, (2) the omission of keypoint description. Ini-
tially, we consider a scenario in which vague keypoint de-
scriptions are provided, as mentioned in Sec. 2.2, and con-
vert descriptions with the ambiguous ones in training. We
find that incorporating detailed spatial and relational infor-
mation among keypoints yields an improvement of up to
6%p in mPCK compared to the baseline (Table 5). This
finding highlights the critical role of learning spatial posi-
tioning and contextual relationships for accurately predict-
ing keypoint coordinates.

Name Description PCK0.05 PCK0.20 PCK0.25

× × 78.43 96.98 97.90
✓ × 78.24 96.94 97.83
× ✓ 70.11 96.67 97.69
✓ ✓ 66.16 96.09 97.26

Table 6. Robustness to variation in input. Default config .

Different style of description We also assess the model’s
stability when confronted with input styles that differ from
those seen during training. By utilizing GPT-4o, we prompt
it to convert the keypoint names and descriptions in the
test set into a simplified format that preserves their original
meaning. According to Table 6, CapeLLM exhibits notably
consistent performance across these variations.

Without description We scrutinize two cases where the
descriptions are excluded: (1) employing a simple QA



In Training In Inference Metric
Random Replaced Detail Desc Replaced Removed PCK0.20 mPCK

× ✓ × × 96.98 91.98
× × ✓ × 95.28 86.66
× × × ✓ 95.15 85.69

✓ ✓ × × 96.65 89.87
✓ × ✓ × 96.39 89.65
✓ × × ✓ 96.07 88.84

Table 7. Performance with varying descriptions. Default config .

method to query keypoint coordinates without any descrip-
tion, (2) where the description is replaced with the statement
“There is no description to refer to.”. In all cases, CapeLLM
maintains relatively stable performance, and its robustness
can be further enhanced when taking advantage of the ran-
dom substitution of descriptions during training (Table 7).

Multi-round PCK0.05 PCK0.10 PCK0.15 PCK0.20 PCK0.25 mPCK

k = 1 78.29 91.55 95.19 96.89 97.88 91.96

k = 2 72.82 88.06 92.79 95.30 96.56 89.11

k = 4 78.43 91.34 95.26 96.98 97.90 91.98

k = 6 74.33 89.82 94.17 96.36 97.46 90.43

k = 8 75.28 89.89 93.99 96.16 97.41 90.55

Table 8. Ablation in multi-round k. Default config .

Choice of round k We investigate the optimal number of
rounds k in the conversation. Table 8 shows that under the
same training conditions, the highest performance was ob-
served when k is set to 4. No explicit tendency was found
as k changed.

LLM Step-by-step instruction PCK@0.05 PCK@0.2 mPCK

Llama3.1-8B [6] × 78.43 96.98 91.98
✓ 76.06 96.48 91.11

Llama3.2-1B [1] × 76.46 96.41 91.20
✓ 76.65 96.75 91.49

Table 9. Performance comparison with step-by-step instruction
across different LLMs. Default config .

USER: What do you think is the central object in this image? 

ASSISTANT: {coordinates}

ASSISTANT: The object that this image is trying to express seems to be a {category name}.

USER: Can you identify location of {nose} on the object? The {nose} is the central, protruding 
feature on the face, located just above the upper lip.  It is positioned between and slightly below 
the eyes. With this description, please provide its coordinates.

Figure 5. Step-by-step instruction. The nose is in the example
above, which can be replaced with whatever you want to find out.
The underlined is the description of nose, which can also be re-
placed according to the keypoint.

Different style of instruction We take another structure
of instruction question-answering in a step-by-step manner,
so-called step-by-step instruction(Figure 5). Specifically,
Rather than providing instruction as Figure 2, we question

what the object is and then inquire the coordinates of key-
points. We expect this approach would help the model bet-
ter understand the input. Interestingly, the effect of this
mechanism varies depending on the LLM, as in Table 9.
It appears that different LLMs require different approaches
to better understand the instruction.

B.2. Architecture

Visual Encoder PCK0.05 PCK0.10 PCK0.15 PCK0.20 PCK0.25 mPCK

DINO-v2-reg [5] 62.52 86.00 92.83 95.83 97.34 86.90

Hiera [21] 56.13 83.31 91.99 95.67 97.35 84.89

DINO-v2 [15] 78.43 91.34 95.26 96.98 97.90 91.98

Table 10. Ablation in visual encoders. Default config .

Fine-tuning method PCK0.05 PCK0.10 PCK0.15 PCK0.20 PCK0.25 mPCK

None (Frozen) 69.69 88.16 92.62 95.07 96.41 88.39

LoRA [8] 78.43 91.34 95.26 96.98 97.90 91.98

Full parameters 6.93 23.72 42.41 55.31 64.56 38.59

Table 11. Ablation in fine-tuning methods. Default config .

Choice of visual encoder We conduct an ablation study
for the visual encoder in CapeLLM. We choose three pop-
ular visual encoders: DINO-v2 [15], Hiera [21], DINO-v2-
reg [5], which are pre-trained on same dataset. Table 10
shows that using DINO-v2 [15] yields the highest perfor-
mance. The known issue in DINO-v2, artifacts in the fea-
ture maps [5]), seems to have little impact on performance
in the CAPE task. A noteworthy point is the number of
image tokens. Although Hiera [21] has 20% less image
tokens than the other two encoders, the performance gap
is just about 1%p, implying that retaining a larger num-
ber of image tokens does not necessarily have something
to do with performance. Then, we examine three types
of fine-tuning methods: full fine-tuning, fine-tuning with
LoRA [8], and freezing. In constrat with the traditional
MLLMs [13, 26, 37], visual encoder with LoRA was more
advantageous than the other two options as [25](Table 11).
Notably, the full fine-tuning approach, where all parame-
ters are learnable, drastically deteriorate the performance.
This fact seems to imply that when using relatively small
datasets, leaving all parameters trainable may lead to over-
fitting, thus resulting in severe degradation in performance.

LLM PCK0.05 PCK0.10 PCK0.15 PCK0.20 PCK0.25 mPCK

Llama3.2-1B [1] 76.46 91.05 94.69 96.41 97.40 91.20

Vicuna-7B-v1.5 [36] 62.15 84.40 91.51 94.79 96.33 85.84

Mistral-7B-v0.3 [9] 77.63 91.32 94.90 96.46 97.54 91.57

Llama3.1-8B [6] 78.43 91.34 95.26 96.98 97.90 91.98

Table 12. Ablation in LLM. Default config .

Choice of LLM To analyze the performance variations
coming from different LLMs, we select four most recent



and popular language models: Vicuna-7B [36], Mistral-
7B [9], Llama3.1-8B [6], and Llama3.2-1B [1]. We find
that the overall accuracy gets improved as the size of the
LLM increases( Table 12). Exceptionally, Llama3.2-1B [1]
exhibits an overwhelming result surpassing that of a 7B-
sized LLM, Vicuna-7B-v1.5, which appears to be the effect
of effectively transferring the knowledge of a larger model
through distillation training methods [1]. A larger vocabu-
lary size seems to play a essential role to positively influ-
ence the integration of visual information and language.

Instruction Output format PCK@0.05 PCK@0.2 mPCK

Base instruction text 78.43 96.98 91.98
special token 76.06 96.48 91.11

Step-by-step instruction text 76.46 96.41 91.20
special token 76.65 96.75 91.49

Table 13. Comparison with token output format. Default config .

Token output format We explore a method that utilizes
token embeddings <KEYPOINT> instead of text-based out-
puts. To introduce this method to our pipeline, some modi-
fications in instruction should be made: the coordinates are
replaced with special token <KEYPOINT> as answers, ac-
cordingly the vocabulary size increases, and input embed-
dings are turned into the trainables. The tokens are turned
into the output embeddings from the LLM and are fed into
a task-specific decoder. Typically, while a grounding-based
pre-trained decoder is used in some tasks [11, 27, 30], no
suitable decoders exist for CAPE. So, we create a simple
decoder that transforms the embeddings into the coordi-
nates and train it from scratch. We validate this method
on both default instruction(as Figure 2) and step-by-step
one(Figure 5). Despite the lack of pre-training, the method
using <KEYPOINT> outputs comparable result to models
with default architecture(Table 13).

Pre-training method PCK@0.05 PCK@0.2 mPCK

w/o pre-training 78.43 96.98 91.98
Direct QA 78.98 96.60 91.96
Step-by-step QA 78.05 96.23 91.40

Table 14. Comparison in pre-training methods. Default config .

C. Pre-Training Strategy

USER: What is the name of a keypoint at [0.123,0.456] in the image? Tell me the name and why. 

ASSISTANT: The keypoint name is nose, because the nose is the central, protruding feature on 
the face, located just above the upper lip. It is positioned between and slightly below the eyes.

Figure 6. Instruction of direct QA for pre-training.

We attempt two types of pre-training process: direct QA
and step-by-step QA. The direct QA has an instruction that
it is in the form of asking and answering the name of the

USER: What do you think is the central object in this image? 

ASSISTANT: The {human body} in the image seems to have several joints in the list, named 

{nose, left eye, right eye}. Those joints are visible in the image.

ASSISTANT: The object that this image is trying to express seems to be a {human body}.

USER: Can you identify which joint is located at the coordinate {location}? This coordinate 
represent relative position within the image, where the top-left corner is defined as [0, 0] and the 
bottom-right corner as [1, 1]. For example, [0.5, 0.5] indicates the center of the image

Joint list: nose, left eye, right eye, ...

USER: What joints can you identify on the {human body} in the image? Answer according to the 
order in the joint list.

ASSISTANT: the joint located at coordinates is {left eye}.

Figure 7. Instruction of step-by-step QA for pre-training.

keypoint corresponding to the coordinates, as in Figure 6.
On the other hand, step-by-step QA in Figure 7 has an in-
struction that is in the form of asking about the category, in-
quiring the existence of the keypoint in the image, and then
inducing the selection of the keypoint corresponding to the
coordinates. Referring to the related works [16, 26, 30], all
layers except for projection layer are frozen in this stage.
As a consequence, there is no positive effect on the per-
formance gain, as shown in Table 14. In light of the
use of large-scale pre-training data in the previous meth-
ods [16, 25, 26, 30], we conjecture that the limited number
of images in each category might result in this outcome.

D. Cumulative Reasoning for Pose Estimation
Inspired by the previous works related to Chain-of-Thought
(CoT) [13, 28, 32], we investigate whether the informa-
tion from certain keypoints influences the estimation of oth-
ers. Specifically, we devise an inference mechanism, called
“Cumulative Reasoning”, for helping to predict keypoint
coordinates more precisely using the implicit capability of
MLLMs, and analyze its effectiveness comparing with de-
fault process, single-round inference(“Single” in Table 2).
For this reasoning task, the prompt employed for predict-
ing each keypoint is prepended to the prompt for the subse-
quent keypoints, thereby establishing a cumulative context.
As detailed in Table 2, while the LocLLM [25]-style and
the fixed-training scheme result in decreased performance
(see the 2nd and 4th rows), dynamic-round training strat-
egy not only encourages the model to achieve better results
than single-round inference by 1.2%p (see the last row), but
also outperforms the fixed-round strategy in row 3rd and 5th
of Table 2. This experiment suggests that CapeLLM can
extract richer spatial and relational cues based on the ac-
cumulated information from other keypoints, which in turn
enables it to reason about the target keypoint’s position.



Keypoint Description

Left eye The left eye is one of the two visual organs located on the face. It is positioned slightly
to the left of the nose and just below the brow ridge, visible from the front.

Right eye The right eye is the visual organ located on the right side of the face. It is situated to the
right of the nose and directly opposite the left eye.

Nose The nose is the central, protruding feature on the face, located just above the upper lip.
It is positioned between and slightly below the eyes

Neck The neck is the part of the body connecting the head to the torso that refers to the area
from the shoulders to the hip joints. It is located below the head, near the junction where
the shoulders meet the body.

Root of tail The root of the tail is at the base of the spine, where the tail begins. It is located near
the lower back, above the hips.

Left shoulder The left shoulder is the joint connecting the left arm to the torso. It is situated to the left
of the neck and above the left elbow.

Left elbow The left elbow is the joint in the middle of the left arm, connecting the upper arm to the
forearm. It is located between the left shoulder and the left front paw and connectd with
them.

Left front paw The left front paw is the lower end of the left forelimb, used for movement and manipu-
lation of objects. It is positioned below the left elbow and connected with the left elbow.

Right shoulder The right shoulder is the joint connecting the right arm to the torso. It is located to the
right of the neck and above the right elbow.

Right elbow The right elbow is the joint in the middle of the right arm, connecting the upper arm
to the forearm. It is situated between the right shoulder and the right front paw and
connectd with them.

Right front paw The right front paw is the lower end of the right forelimb, used for movement and
manipulation of objects. It is located below the right elbow and connectd with the right
elbow.

Left hip The left hip is the joint connecting the left leg to the torso. It is positioned below the
root of the tail and above the left knee.

Left knee The left knee is the joint in the middle of the left leg, connecting the upper leg to the
lower leg. It is located between the left hip and the left back paw and connectd with
them..

Left back paw The left back paw is the lower end of the left hind limb, used for movement and support.
It is situated below the left knee.

Right hip The right hip is the joint connecting the right leg to the torso. It is positioned below the
root of the tail and above the right knee.

Right knee The right knee is the joint in the middle of the right leg, connecting the upper leg to the
lower leg. It is located between the right hip and the right back paw and connectd with
them.

Right back paw The right back paw is the lower end of the right hind limb, used for movement and
support. It is situated below the right knee.

Table 15. An example of descriptions: animal body
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