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ABSTRACT

Conditional generative adversarial networks (cGANs) have shown superior re-
sults in class-conditional generation tasks. In order to simultaneously control
multiple conditions, cGANs requires multi-label training datasets, where multi-
ple labels can be assigned to each data instance. Nevertheless, the tremendous
annotation cost limits the accessibility of multi-label datasets in the real world.
Hence, we explore the practical setting called single positive setting, where each
data instance is annotated by only one positive label with no explicit negative
labels. To generate multi-label data in the single positive setting, we propose a
novel sampling approach called single-to-multi-label (S2M) sampling, based on
the Markov chain Monte Carlo method. As a widely applicable “add-on” method,
our proposed S2M sampling enables existing unconditional and conditional GANs
to draw high-quality multi-label data with a minimal annotation cost. Extensive
experiments on real image datasets (e.g., CIFAR-10 and CelebA) verify the effec-
tiveness and correctness of our method, even when compared to a model trained
with fully annotated datasets.

1 INTRODUCTION

Since proposed by (Goodfellow et al., 2014), generative adversarial networks (GANs) gained much
attention due to its realistic output in a wide range of applications, e.g., image synthesis (Brock et al.,
2019; Karras et al., 2018; Park et al., 2019), image translation (Liu et al., 2017; Zhu et al., 2017; Isola
et al., 2017a; Choi et al., 2018), and data augmentation (Shrivastava et al., 2016; Bowles et al., 2018).
As an advanced task, generating images from given conditions has been achieved by conditional
GANs (cGANs) and its variants (Mirza & Osindero, 2014; Odena et al., 2017). Recently, multi-label
datasets such as CelebA (Liu et al., 2015) have been introduced in the applications of cGANs (Choi
et al., 2018; Lin et al., 2019) to generate diverse images by controlling multiple conditions.

In multi-label data, multiple labels can be assigned to each data instance, where each label is repre-
sented as a binary value: 1 for presence and 0 for absence. Nevertheless, the tremendous annotation
cost and numerous detection errors still limit the accessibility of multi-label datasets. The trade-off
between the quality and the quantity of labels is a common issue for multi-label datasets (Cole et al.,
2021). While heuristics for annotations (Lin et al., 2014; Gupta et al., 2019) have been proposed to
reduce the cost, they still suffer from detection failures. Under these circumstances, it is natural to
consider partially labeled data for the training of GANs.

Consequently, we apply the single positive setting (Cole et al., 2021), originally proposed for classi-
fication tasks, to conditional generation. In the single positive setting, each data instance is annotated
by a single positive label; only one positive label is given without any other positive or negative la-
bels. For instance, each facial image in the single positive setting can be labeled as only one of
Black-hair, Male, and Smile whereas all attributes are fully specified (e.g., Smiling black-haired
man) in multi-label datasets. Introducing single positive setting does not only significantly reduce
the cost of annotations but also allows the modeling of intrinsic relationships among classes. Here,
our aim is to generate data for all possible label combinations that can be appeared in given single
positive labels, and this is equivalent to generating multi-label data with at least one positive label.

Recently, several attempts have been made to generate samples of overlapping and non-overlapping
classes, which are appeared in the single positive setting. Specially designed generative models (Hou
et al., 2018; Asokan & Seelamantula, 2020) have been proposed to exclude samples of a specific
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Figure 1: We compare cGANs, CP-GAN and our sampling approach in a class-overlapping case. 1D
Gaussian examples consists of two classes of one-dimensional Gaussian mixtures with one common
mode, and each method is attempted to generate the overlapping region. For cGANs and CP-GAN,
we provide an equal value of 0.5 as labels for two classes. (a) It is not obvious how cGANs obtain
samples of the class. (b) CP-GAN draws samples from the narrow region. (c) GANs with S2M
sampling can draw samples of the class without sacrificing diversity.

class. Nonetheless, these studies dealt only with two classes and did not consider the generation of
samples from overlapping classes. CP-GAN (Kaneko et al., 2019) utilized the probability outputs of
the classifier as the labels to capture the relationships between classes. To generate images belong-
ing to n overlapping classes, CP-GAN provides an equal value of 1/n as the labels and struggles
with generating samples from the true distribution. Figure 1 depicts how different models predict
overlapping regions, both conceptually and empirically, with a real 1D Gaussian example.

In this paper, we introduce a novel method called single-to-multi-label (S2M) Sampling for gen-
erating samples as multi-label data. S2M sampling generates data of all possible combinations of
classes only using single positive labels. Concretely, our S2M sampling models overlapping or non-
overlapping regions of single positive labels in the sample space of GANs. Using various datasets
such as MNIST, FMNIST, CIFAR-10, and CelebA, we show that our S2M sampling correctly sam-
ples images as multi-label data in two cases of the single positive setting: (i) datasets of two classes
where one class is contained in another class and (ii) datasets of three overlapped classes. Our S2M
sampling is designed as a post-processing method attached to pretrained GANs in order to maintain
the full generation quality. As a result, our method also can be applied to GANs trained with a
large amount of unlabeled data, even with relatively few single positive labels. To the best of our
knowledge, our proposed approach is the first sampling algorithm that generates multi-label data
while improving the sample quality. Our contributions can be summarized as follows:

• We newly introduce the single positive setting in class-conditional generation and prove that
distributions of multi-label data can be derived from that of single positive labels theoretically.

• We propose a novel sampling method called S2M sampling to draw samples as multi-label data
from GANs, only with single positive labels.

• In diverse settings, we show that the proposed S2M sampling can be applied to various GANs
as well as correctly draw samples as multi-label data even in a semi-supervised setting.

2 RELATED WORK

Conditional GANs. The aim of conditional GANs (cGANs) (Mirza & Osindero, 2014) is to model
complex distributions and to control data generation by reflecting the label input. Various studies
of cGANs have made significant advances in class-conditional image generation by introducing the
auxiliary classifier (Odena et al., 2017; Gong et al., 2019), modifying the architecture (Miyato &
Koyama, 2018; Brock et al., 2019), and applying metric learning (Kang & Park, 2020). Recently,
cGANs have been applied to diverse generation tasks such as image translation (Isola et al., 2017b;
Zhu et al., 2017; Choi et al., 2018) and text-to-image generation (Reed et al., 2016; Zhang et al.,
2017). In a weakly-supervised setting, GenPU (Hou et al., 2018) and RumiLSGAN (Asokan &
Seelamantula, 2020) specify only two classes and draw samples that belong to one class but not the
other. CP-GAN (Kaneko et al., 2019) learns to draw samples conditioned on the probability output
of the classifier. Given that this model tends to draw samples on a limited region of the data space,
it is challenging to ensure the variety of samples as shown in Figure 1. In contrast, we propose a
sampling method that draws samples as multi-label data without sacrificing diversity.
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Figure 2: (a) A dataset with single positive labels is given. (b) The regions for each class of A, B,
and C overlap in the data space. (c) S2M sampling can draw samples as multi-label data with two
index sets of intersection (I) and difference (J).

Sampling in GANs. Sampling methods are used to improve the sample quality in GANs. Discrim-
inator Rejection Sampling (DRS) (Azadi et al., 2019) uses of the scheme of rejection sampling and
takes samples close to real data by estimating the density ratio with the discriminator. In addition,
Metropolis-Hastings GAN (Turner et al., 2019) adopts Markov chain Monte Carlo (MCMC) method
and calibrates the discriminator to improve the sample quality in a high-dimensional data space.
Discriminator optimal transport (Tanaka, 2019) utilizes optimal transport theory to obtain realistic
samples. Discriminator Driven Latent Sampling (DDLS) (Che et al., 2020) uses the MCMC method
in the latent space of GANs to draw realistic samples efficiently. GOLD estimator (Mo et al., 2019)
and conditional DDLS (Mo et al., 2019) use sampling algorithms to improve the quality of images
for class-conditional generation. While previous studies focus on improving the sample quality, our
S2M sampling aims to draw samples as multi-label data while also improving the quality.

3 MINING MULTI-LABEL SAMPLES FROM SINGLE POSITIVE LABELS

3.1 PROBLEM SETTING

Let x ∈ X be a data point as a random variable and let y1:n ∈ {0, 1}n denote its corresponding
multi-labels as binary random variables. Here, for every k, yk = 1 indicates that x is contained
in the k-th class while yk = 0 indicates that x is not. We consider two index sets, an intersection
index set I and a difference index set J , so that the pair (I, J) can be used as an index to indicate
the probability density of data points contained in all classes indicated by I but excluded from all
classes indicated by J . Let I be a collection of all possible pairs of I and J , defined as

I = {(I, J) ∈ P(N)× P(N) : I 6= ∅, I ∩ J = ∅}, (1)

where N = {1, 2, ..., n} is a finite index set of all classes and P(N) is the power set of N . That is,
the intersection index set indicates at least one class and is distinct from the difference index set.

Let p(x, y1, y2, ..., yn) be the joint probability density function, and let pdata(x, c) be the joint den-
sity of an observable data point x ∈ X and a class label c ∈ N such that pdata(x|c) = p(x|yc = 1).
Given the class priors pdata(c), πc = p(yc = 1) and samples drawn from the class-conditional
density pdata(x|c) for each c = 1, 2, ..., n, our goal is to draw samples from the conditional density

p(I,J)(x) = p(x|∀i ∈ I, ∀j ∈ J, yi = 1, yj = 0), (2)

for (I, J) ∈ I, and π(I,J) = p(∀i ∈ I, ∀j ∈ J, yi = 1, yj = 0) > 0.

In this work, we propose to impose a mild constraint which will allow our sampling algorithm to
derive the target density, called distinct class separability.

∀i, j ∈ N s.t. i 6= j, p(yi = 1, yj = 0) > 0 ∧ p(yj = 1, yi = 0) > 0

⇒ supp p(x|yi = 1, yj = 0) ∩ supp p(x|yj = 1, yi = 0) = ∅. (3)

This condition states that no data points are likely to be assigned two mutually exclusive labels,
which can be naturally assumed in many practical situations. Figure 2 illustrates our problem setting.

3.2 MINING MULTI-LABEL DATA WITH S2M SAMPLING

A natural question may arise as to whether the supervision given to us is sufficient to obtain samples
as multi-label data. To gain insight into this, we initially introduce a useful theorem which provides
an alternative formulation for the target density (2).
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Theorem 1. Let {f(I,J) : X → [0,∞)}(I,J)∈I be an indexed family of non-negative measurable
functions on X , and let fk := f({k},∅). Then, the following conditions hold:

(a) ∀(I, J) ∈ I, f(I,J) =
∑
S:I⊆S,J⊆N\S f(S,N\S)

(b) ∀i, j ∈ N s.t. i 6= j, supp f({i},{j}) ∩ supp f({j},{i}) = ∅

if and only if, for every (I, J) ∈ I,

f(I,J) =

{
(mini∈I fi −maxj∈J fj)

+ if J 6= ∅
mini∈I fi otherwise

, (4)

where (·)+ represents the positive part.

Proof. Please see Appendix A.

Let f(I,J)(x) = p(x, ∀i ∈ I, ∀j ∈ J, yi = 1, yj = 0) for every (I, J) ∈ I and assume distinct class
separability (3). Then, (a) and (b) in Theorem 1 hold. According to the Theorem 1, if π(I,J) > 0,

p(I,J)(x) = π−1(I,J) (min{πip(x|yi = 1) : i ∈ I} −max{πjp(x|yj = 1) : j ∈ J} ∪ {0})+ . (5)

The alternative formula (5) shows that the target density can be derived from the class-conditional
densities of single positive labels. Despite their clear relationships, the conditional density cannot be
readily derived during the training procedure; thus, generating images from the target distribution
is difficult. In addition, the adjustments for I , J , and the class priors should be allowed in the
inference time. To address these issues, instead of training the generative models to model the target
distribution directly, we propose the use of our S2M sampling as an “add-on” module to existing
generative models. The rest of this section describe the main approach of our S2M sampling.

Density Ratio Estimation. Classification networks are used to compute the ratio between implicitly
defined densities of real and fake samples in the literature on GAN sampling (Azadi et al., 2019;
Turner et al., 2019; Che et al., 2020). In this work, we utilize this technique to not only compute
the density ratio between real and fake samples but also the density ratio between real samples and
samples of each single positive class. For simplicity, we denote G as a pretrained generator for both
unconditional and conditional GANs. G produces data x by taking a latent z and a class label c for
class-conditional generation and only z for unconditional generation. We consider three classifiers
Dv, Dr, and Df which are obtained by minimizing Lv,Lr, and Lf , respectively, i.e.,

Lv = −E(x,c)∼pdata(x,c)[logDv(x)]− Ex∼pG(x)[log(1−Dv(x))]

Lr = −E(x,c)∼pdata(x,c)[logDr(c|x)],Lf = −E(x,c)∼pG(x,c)[logDf (c|x)].
(6)

The optimal classifiers trained by these losses D∗v , D∗r , and D∗f satisfy the following equations:

D∗v(x) =
pdata(x)

pdata(x) + pG(x)
, D∗r(c|x) =

p(x|yc = 1)pdata(c)

pdata(x)
, D∗f (c|x) =

pG(x|c)pG(c)
pG(x)

. (7)

From D∗v(x), D
∗
r(x), and D∗f (x), we can access the density ratios pdata(x)/pG(x), p(x|yc =

1)/pdata(x), and pG(x|c)/pG(x) to compute the acceptance probability of the MCMC method.

S2M Sampling for Unconditional GANs. We apply Metropolis-Hastings (MH) independence
sampling (Tierney, 1994; Turner et al., 2019) to draw samples from the complex distribution
p(I,J). Assume that the support of pG contains that of p(I,J). At each step of MH algorithm,
we sample a new proposal x′ from a proposal distribution q(x′|x) and then accept it with proba-
bility α(x′, x) = min{1, p(I,J)(x′)q(x|x′)/p(I,J)(x)q(x′|x)}. The chain of samples converges to
p(I,J) as MH steps are repeated. We take multiple samples from G as independent proposals, i.e.
q(x′|x) = pG(x

′), and the acceptance probability α(x′, x) is calculated as

α(x′, x) = min

(
1,
p(I,J)(x

′)/pG(x
′)

p(I,J)(x)/pG(x)

)
= min

(
1,

(min{ri(x′) : i ∈ I} −max{rj(x′) : j ∈ J} ∪ {0})+ (D∗v(x)
−1 − 1)

(min{ri(x) : i ∈ I} −max{rj(x) : j ∈ J} ∪ {0})+ (D∗v(x
′)
−1 − 1)

)
,

(8)
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where rk(x) := πk

pdata(k)
D∗r(k|x) for k ∈ I ∪ J . To obtain uncorrelated samples, we take a sample

after a fixed number of iterations for each chain. We note that the sampling approach allows one to
control the parameters I , J , and γk = πk/pdata(k) without any additional training of the model.

S2M Sampling for Conditional GANs. Conditional GANs can provide a proposal distribution
close to the target distribution p(I,J), which greatly increases the sample efficiency of the MCMC
method. Let c be a class label such that the support of class-conditional density pG(·|c) contains that
of p(I,J). At each step of the MH algorithm, the proposal x′ ∼ q(x′|x) = pG(x

′|c) is accepted with
a probability αc(x′, x). The desired αc(x′, x) can be calculated as

αc(x
′, x) = min

(
1,
p(I,J)(x

′)/pG(x
′|c)

p(I,J)(x)/pG(x|c)

)
= min

(
1,

(min{ri(x′) : i ∈ I} −max{rj(x′) : j ∈ J} ∪ {0})+D∗f (c|x)(D∗v(x)
−1 − 1)

(min{ri(x) : i ∈ I} −max{rj(x) : j ∈ J} ∪ {0})+D∗f (c|x′)(D∗v(x′)
−1 − 1)

)
,

(9)
We also apply our sampling approach to another type of a conditional generative model, e.g., CP-
GAN. A detailed description of S2M sampling extensions is provided in Appendix B.

Practical Considerations. We employ three classifiers Dv , Dr, and Df , to compute the acceptance
probability used in MCMC method. For better training efficiency of the classifiers, we use shared
layers, except for the last linear layer. Since the classifiers are not optimal in practice, we need to
calibrate the sampling algorithm. One such approach is temperature scaling (Guo et al., 2017). We
adjust the confidence of classification networks by scaling the temperature T . Another approach is
to control γk. We can obtain confident samples clearly distinct from classes of a difference set by
decreasing γi for all i ∈ I . We provide the detailed settings in Appendix C, and an ablation study of
temperature scaling and the adjustment of γ in Appendix D.

4 EXPERIMENTS
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Figure 3: Experimental settings for each dataset. The corresponding classesorig are denoted in boxes.

In this section, we validate how our S2M sampling can correctly draw samples as multi-label data
from single positive labels. Henceforth, we denote the class defined by the given single positive
labels as classsingle (e.g., A,B) and each class of the multi-label data target to be derived as classmulti
(e.g., A \ B,A ∩ B). In order to avoid ambiguity, the original class is denoted as classorig (e.g., digits
in MNIST or attributes in CelebA). For instance, classsingle of even digits in MNIST contains five
classesorig: 0, 2, 4, 6, and 8. We conduct the experiments on the synthetic dataset called 2 × 16
Gaussians and also on image datasets: MNIST, FMNIST, CIFAR-10 and CelebA. 2× 16 Gaussians
with two overlapped 4× 4 grid of Gaussians is designed to verify the correctness of our method. In
the image datasets, S2M sampling is examined in two different cases: (i) one classsingle contained in
another classsingle, and (ii) three different classessingle that overlap (See Figure 3).

As the choice of base model, we use GANs with fully connected layers for the synthetic data,
MNIST, and FMNIST. For CIFAR-10 and CelebA, we choose SNGAN ResNet (Miyato et al., 2018)
architecture for stable training. For each dataset, we use the same architecture of GANs except
for GenPU, which requires two generators and three discriminators. As the classifiers used for
S2M sampling, we use a simple linear classifier for 2 × 16 Gaussians, LeNet5 (Lecun et al., 1998)
for MNIST and FMNIST, and MobileNetV2 (Sandler et al., 2018) for CIFAR-10 and CelebA. All
classifiers used for S2M sampling are only trained with the labels of classessingle.

For evaluation metrics, we mainly use accuracy, Fréchet Inception Distance (FID) (Heusel et al.,
2017), and Inception Score (IS) (Salimans et al., 2016). The accuracy measures how many im-
ages are assigned to the target classmulti by a classifier pre-trained with fully annotated labels (i.e.,
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classesorig). For accuracy, we use LeNet5 for MNIST and FMNIST, and MobileNetV2 for CIFAR-10
and CelebA. FID/IS are widely used to evaluate both the quality and diversity of generated images.
We use test datasets as reference images to compute FID. Since FID/IS are not applicable for non-
real images, e.g., MNIST or FMNIST, we evaluate FID with the activations of pretrained LeNet5 for
those datasets and denote these as FID†. We also provide Precision and Recall (Sajjadi et al., 2018)
in Appendix D for further analysis. We compute the metrics using 10k samples for each classmulti.
All results of the experiments are averaged over three independent trials, and the standard deviation
is denoted by subscripts. More details are provided in Appendix C.

4.1 TWO CLASSES GAUSSIAN EXAMPLE

5 × 5 grid of two-dimensional Gaussians called 25 Gaussians is commonly used to validate the
correctness of sampling approaches (Azadi et al., 2019; Turner et al., 2019; Che et al., 2020). In our
case, we modify 25 Gaussians to have two 4× 4 grids of two-dimensional Gaussians of overlapped
classes A,B, denoted as 2× 16 Gaussians (See Figure 4). The modes are horizontally and verti-
cally spaced by 1.0 and have a standard deviation of 0.05. We first train GANs with randomly drawn
points within two grids. Then, we adopt S2M sampling to GANs with a classifier trained with points
of A and B. We obtain samples at 400 MC iterations. As shown in Figure 4, our S2M sampling ac-
curately estimates various conditional densities (A,B,A \ B,B \ A,A ∩ B) while improving the
quality of the points. On the other hand, GANs tends to generate spurious lines between the points.

Real data (a) GANs

A B A \ B A     B B \ A

(b) GANs + Ours

A
B

Figure 4: Example of 2 × 16 Gaussians. Compared to the base model, our S2M Sam-
pling improves the quality of the points while sampling points within various conditions
(A,B,A \ B,B \A,A ∩ B) accurately even with single positive labels (A,B).

For the quantitative analysis, we report the accuracy, high-quality ratio, and mode standard deviation
in Table 1. We generate 10k samples and assign each point to the mode with the closest L2 distance
for measuring the accuracy. Following (Turner et al., 2019), samples whose L2 distances are within
four standard deviations are considered as “high-quality” samples. The results indicate that our S2M
sampling favorably obtains high-quality samples for various conditions. Apart from accuracy, the
ratio of high-quality samples is improved by 14.36% on average.

Table 1: Accuracy (%), high-quality ratio (%), and mode standard deviation on 2× 16 Gaussians.
Condition GANs GANs + Ours

Accuracy High quality Mode S.D. Accuracy High quality Mode S.D.

A,B 69.83±0.35 84.39±0.60 0.106±0.002 100.00±0.00 98.94±0.40 0.052±0.002

A \ B,B \A 30.17±0.35 88.87±0.50 0.090±0.002 99.52±0.36 98.67±0.51 0.051±0.002

A ∩ B 39.66±0.46 80.98±0.82 0.118±0.003 100.00±0.00 99.73±0.14 0.050±0.001

4.2 MNIST & FMNIST: CLASSES WITH INCLUSION RELATIONSHIP

In this section, we consider a special case of our problem setting, where one class is contained in
another class. This also can be considered as a positive-unlabeled (Denis, 1998; Denis et al., 2005)
setting if the smaller class and the remainder represent positive data and unlabeled data, respectively.
Under this constraint, GenPU (Hou et al., 2018) and RumiLSGAN (Asokan & Seelamantula, 2020)
can be applied to exclude samples in the smaller class. We compare our S2M sampling with GenPU,
RumiLSGAN, and CP-GAN (Kaneko et al., 2019) in three settings: (i) MNIST 3/5 ({3, 5} \ {3}),
(ii) MNIST Even ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {1, 3, 5, 7, 9}), and (iii) FMNIST Even ({0T-shirt/Top,
1Trouser, 2Pullover, 3Dress, 4Coat, 5Sandal, 6Shirt, 7Sneaker, 8Bag, 9Ankle boot} \ {1, 3, 5, 7, 9}). We apply our
S2M sampling to unconditional GANs and sample images at 100 MC iterations.
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Figure 5: Qualitative results of baselines and S2M sampling for MNIST Even and FMNIST Even.
We apply our S2M sampling to unconditional GANs specified in (c).

Table 2: Accuracy (%) and FID† for various models on MNIST Even and FMNIST Even.
Model MNIST 3/5 MNIST Even FMNIST Even

Acc. (↑) FID† (↓) Acc. (↑) FID† (↓) Acc. (↑) FID† (↓)

GenPU 99.18±0.64 1.82±1.12 - - - -
RumiLSGAN 77.92±1.74 12.13±1.13 85.79±4.82 3.45±1.47 90.99±0.84 3.12±0.25

CPGAN 68.23±1.17 18.62±0.82 87.88±0.80 2.17±0.17 81.22±0.53 6.14±0.60

GANs 47.91±0.15 35.28±0.13 46.89±0.65 21.90±0.74 48.16±0.79 28.43±0.28

GANs + Ours 99.64±0.25 0.78±0.27 96.35±0.24 0.86±0.21 97.95±0.61 2.44±0.29

As reported in Table 2, our S2M sampling always outperforms the baselines, even with unconditional
GANs. For GenPU, the performance is reported only for MNIST 3/5 due to its mode collapse
issue (Chen et al., 2020; Chiaroni et al., 2020). Most notably, our S2M sampling improves the
accuracy by 8.47% and 6.96% compared to the second-best models on MNIST Even and FMNIST
Even. Figure 5 shows that baselines struggle to eliminate the smaller classsingle completely (e.g., odd
digits for MNIST or Sneaker for FMNIST). In contrast, our S2M sampling added on unconditional
GANs samples images within the target classmulti accurately. As mentioned in Section 3, our S2M
sampling can be applied to conditional GANs such as CP-GAN, which we will examine later.

4.3 REAL DATA: CLASSES WITH OVERLAPPED REGIONS

In this section, we construct datasets consisting of three overlapped classessingle on CIFAR-10 and
CelebA. For CIFAR-10, we use the dataset called CIFAR-10 7to3 proposed by (Kaneko et al.,
2019), where each classsingle contains four classesorig (e.g., {Airplane, Automobile, Dog, Frog} ⊆
A) so that each classmulti can be seen as a single classorig. In the CelebA case, we assign Black hair,
Male, and Smile attributes as a classsingle and denote this case as CelebA BMS, as shown in Figure 3.

For scrutiny, we introduce two versions of cGANs and ACGAN as additional baselines: models
trained with fully specified labels (oracle models) and those with single positive labels (marked with
∗). The oracle models are the topmost baselines, as these models already have full knowledge of
classesmulti. cGANs∗ and ACGAN∗ are introduced to demonstrate how the existing models behave
in the single positive setting. To predict each classmulti, the exact label of the classmulti is simply
given for the oracle models, and labels of 1/m values are given to each classsingle to generate sam-
ples within the intersection of m classessingle for cGAN∗ and ACGAN∗ as introduced in (Kaneko
et al., 2019). For evaluation, we assess seven classesmulti derived by three overlapped classessingle as
illustrated in the first row of Figure 6. In all experiments, only single positive labels are used except
for the oracle models, and samples are obtained at 200 MC iterations for the sampling method. Our
S2M sampling is adopted on unconditional GANs, cGANs and CP-GAN.

Table 3 shows the average results of seven classesmulti for different models. Regardless of the dataset,
our S2M sampling always proves superior to the base models. Compared to the best baseline, our
S2M sampling improves the accuracy by 25.42% for CIFAR-10 7to3 and 15.84% for CelebA BMS,
while decreasing FID. More surprisingly, even with single positive labels, our S2M sampling shows
comparable performance to the oracle models. The visual results of our proposed S2M sampling are
depicted in Figure 6 (See Appendix D for more results). The results indicate that our S2M sampling
precisely estimates the true distributions for both overlapping and non-overlapping classes.
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Table 3: Accuracy (%), FID and IS for different models on CIFAR-10 7to3 and CelebA BMS.
Model CIFAR-10 7to3 CelebA BMS

Acc. (↑) FID (↓) IS (↑) Acc. (↑) FID (↓) IS (↑)

cGANs (Oracle) 86.47±0.10 15.07±0.41 8.40±0.09 68.31±1.32 9.71±0.19 2.47±0.03

ACGAN (Oracle) 90.08±0.95 15.63±0.44 8.28±0.10 72.98±0.40 7.82±0.05 2.46±0.02

cGANs∗ 25.37±0.29 22.37±0.26 7.61±0.07 27.59±0.49 9.69±0.63 2.50±0.01

ACGAN∗ 29.49±0.95 23.44±0.44 7.58±0.10 29.15±0.40 10.83±0.05 2.32±0.02

CPGAN 65.30±0.56 24.11±1.03 7.66±0.04 58.70±4.56 21.98±0.65 2.32±0.04

GANs + Ours 80.30±1.02 16.79±0.25 8.04±0.04 73.92±3.01 8.53±0.86 2.53±0.02

cGANs + Ours 84.44±0.66 16.36±0.25 8.28±0.06 74.54±2.79 9.76±0.74 2.53±0.01

CPGAN + Ours 90.72±1.33 22.54±0.94 7.79±0.04 72.99±0.66 21.30±0.62 2.25±0.02

A(1) (2)

CB
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Figure 6: Results of our S2M sampling with unconditional GANs on CIFAR-10 7to3 and CelebA
BMS. The first row depicts the target classmulti. Intersections and differences are denoted by plus
signs and minus signs, respectively.

5 DISCUSSION

5.1 IMPROVING SAMPLE EFFICIENCY WITH LATENT CANDIDATES

While our S2M sampling allows one to draw samples as multi-label data, multiple samples should
be rejected in the sampling procedure. Specifically, many samples can be wasted if the samples in
the target classmulti rarely appear in the original dataset. To tackle this issue, we propose a simple
heuristic algorithm for selecting “latent candidates”. We hypothesize that the latent samples of
GANs corresponding to the target distribution tend to be close to each other in the latent space.
We initially draw a certain number of pilot samples x1:m using S2M sampling, and then obtain the
corresponding latent samples z1:m; xk = G(zk). Since the latent samples are nearly restricted to
the latent prior of GANs, we can derive an approximated distribution p̂zt of the target latent samples
by fitting a simple probabilistic model such as Gaussian Mixture Model (GMM) using z1:m. By
taking latents from p̂zt , we can further improve the sample efficiency. For evaluation, we examine
GMM on two classesmulti with low acceptance probabilities: Frog in CIFAR-10 7to3 and B+M+S in
CelebA BMS. For each classmulti, we fit GMM of eight components with expectation–maximization
algorithm (Bishop, 2007) using 10k pilot samples obtained at 100 MC iterations.
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Figure 7: Results per MC iteration for our S2M sampling with and without GMM.

Figure 7 shows the accuracy, FID, and the acceptance probability per MC iteration. As when tem-
perature scaling is not performed (green line), a high acceptance probability is commonly caused by
an incorrectly predicted distribution. However, GMM greatly improves the acceptance probability
from the beginning without an accuracy drop. For future work, a more efficient sampling such as
adaptive MCMC (Gilks & Wild, 1992; Gilks et al., 1995) may further improve our S2M sampling.

5.2 MINING SAMPLES IN SEMI-SUPERVISED SETTING

Single positive labels require much lower cost than multi-label datasets. Nevertheless, large amounts
of unlabeled data are most commonly provided in the real world. In this section, we explore a semi-
supervised setting in which, only small amounts of a dataset have single positive labels. Ideally, if
the given labeled data is sufficient for training classifiers, we can accurately sample the images while
fully utilizing the unlabeled data for GANs. This assumption is presumable, as the discriminator is
known to reach the optimal easily compared to the generator (Turner et al., 2019). Concretely,
we conduct the experiments of CelebA BMS as in Section 4.3 but with less labeled data. With
unconditional GANs, we examine our S2M sampling with various ratios of single positive labels:
50%, 20%, and 10% of the dataset. As shown in Table 4, even when only 10% of the labels are given,
S2M sampling still outperforms the baselines in Table 3 with only an approximate 4% accuracy drop.
The results show that our S2M sampling can be used in a semi-supervised setting for sampling high
quality images within the desired classmulti without degrading the generation capability of GANs.

Table 4: Accuracy (%), FID, and IS in CelebA BMS for various levels of supervision.
Supervision ratio All (100%) 50% 20% 10%

Acc. (↑) 73.92±3.01 72.91±2.24 71.46±2.62 70.01±3.35

FID (↓) 8.53±0.86 8.61±1.03 8.71±1.02 8.79±0.77

IS (↑) 2.53±0.02 2.55±0.05 2.52±0.04 2.49±0.01

6 CONCLUSION

We investigate the single positive setting in the class-conditional generation task and propose a novel
method called S2M sampling for drawing samples as multi-label data only from single positive
labels. We demonstrate that our proposed S2M sampling can be adopted to a variety of GANs and
accurately draw samples as multi-label data with a minimal annotation cost. Moreover, we introduce
GMM as a simple yet effective method to improve the sampling efficiency and show that our S2M
sampling remains effective in a semi-supervised setting. We hope that existing models can be further
improved with the augmented multi-label dataset obtained by our S2M sampling. In future works,
S2M sampling can be employed to datasets that have much more complex relationships among
classes or that contain classes with imbalances.
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7 ETHICS STATEMENT

This work demonstrates that it is possible to generate multi-label data from limited labels. In ad-
dition, this work can be freely adopted to unconditional GANs trained with a large amount of un-
labeled data. Hence, our work can reduce the high annotation cost that research groups face in
common. Despite the fact that deep learning models tend to struggle from learning underrepre-
sented data (Mehrabi et al., 2019), properly calibrated sampling algorithm does not readily ignore
rarely appearing data, meaning that it is unlikely to introduce bias into generative models.

8 REPRODUCIBILITY STATEMENT

For reproducibility, we provide executable source codes of our proposed S2M sampling with in-
structions in the Supplementary Material.
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François Denis, Rémi Gilleron, and Fabien Letouzey. Learning from positive and unlabeled exam-
ples. Theor. Comput. Sci., 2005.

W. R. Gilks and P. Wild. Adaptive rejection sampling for gibbs sampling. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 41(2):337–348, 1992.

W. R. Gilks, N. G. Best, and K. K. C. Tan. Adaptive rejection metropolis sampling within gibbs
sampling. Journal of the Royal Statistical Society. Series C (Applied Statistics), 44(4):455–472,
1995.

Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, and Kayhan Batmanghelich. Twin auxiliary
classifiers GAN. CoRR, abs/1907.02690, 2019.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Proc. the Advances in
Neural Information Processing Systems (NeurIPS), 2014.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proc. the International Conference on Machine Learning (ICML), 2017.

Agrim Gupta, Piotr Dollár, and Ross B. Girshick. LVIS: A dataset for large vocabulary instance seg-
mentation. In Proc. of the IEEE conference on computer vision and pattern recognition (CVPR),
2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems, pp.
6626–6637, 2017.

Ming Hou, Brahim Chaib-draa, Chao Li, and Qibin Zhao. Generative adversarial positive-unlabelled
learning. In Proc. the International Joint Conference on Artificial Intelligence (IJCAI), 2018.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. In Proc. of the IEEE conference on computer vision and pattern
recognition (CVPR), 2017a.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. In Proc. of the IEEE conference on computer vision and pattern
recognition (CVPR), 2017b.

Takuhiro Kaneko, Yoshitaka Ushiku, and Tatsuya Harada. Class-distinct and class-mutual image
generation with gans. In Proc. of the British Machine Vision Conference (BMVC), 2019.

Minguk Kang and Jaesik Park. Contragan: Contrastive learning for conditional image generation.
In Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. In Proc. the International Conference on Learning Repre-
sentations (ICLR), 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. the
International Conference on Learning Representations (ICLR), 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jae Hyun Lim and Jong Chul Ye. Geometric GAN. CoRR, abs/1705.02894, 2017.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In Proc. of the
European Conference on Computer Vision (ECCV), 2014.

11



Under review as a conference paper at ICLR 2022

Yu-Jing Lin, Po-Wei Wu, Che-Han Chang, Edward Y. Chang, and Shih-Wei Liao. Relgan: Multi-
domain image-to-image translation via relative attributes. In Proc. of the IEEE international
conference on computer vision (ICCV), 2019.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation networks.
In Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2017.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proc. of the IEEE international conference on computer vision (ICCV), 2015.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. CoRR, abs/1908.09635, 2019.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784,
2014.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. In Proc. the Interna-
tional Conference on Learning Representations (ICLR), 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In Proc. the International Conference on Learning Repre-
sentations (ICLR), 2018.

Sangwoo Mo, Chiheon Kim, Sungwoong Kim, Minsu Cho, and Jinwoo Shin. Mining GOLD
samples for conditional gans. In Proc. the Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxil-
iary classifier gans. In Proc. the International Conference on Machine Learning (ICML), 2017.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In Proc. of the IEEE conference on computer vision and pattern
recognition (CVPR), 2019.

Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak
Lee. Generative adversarial text to image synthesis. In Proc. the International Conference on
Machine Learning (ICML), 2016.

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assess-
ing generative models via precision and recall. In Proc. the Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Proc. the Advances in Neural Information Processing
Systems (NeurIPS), 2016.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proc. of the IEEE conference on com-
puter vision and pattern recognition (CVPR), 2018.

Abhinav Shrivastava, Abhinav Gupta, and Ross B. Girshick. Training region-based object detectors
with online hard example mining. In Proc. of the IEEE conference on computer vision and pattern
recognition (CVPR), 2016.

Akinori Tanaka. Discriminator optimal transport. In Hanna M. Wallach, Hugo Larochelle, Alina
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A PROOF OF MAIN THEOREM

Lemma 1. Assume that (a) and (b) in Theorem 1 hold. ∀v ∈ N, ∀U ⊆ N s.t. v /∈ U 6= ∅,
supp f(U,{v}) ∩ supp f({v},U) = ∅.

Proof. Choose any u ∈ U . Then,

f({u},{v}) =

(∑
S:u∈S,v∈N\S,U*S

f(S,N\S)

)
+ f(U,{v}) ≥ f(U,{v})

f({v},{u}) =

(∑
S:u∈S,v∈N\S,U*N\S

f(S,N\S)

)
+ f({v},U) ≥ f({v},U).

(10)

Therefore, supp f(U,{v}) ∩ supp f({v},U) ⊆ supp f({u},{v}) ∩ supp f({v},{u}) which implies
supp f(U,{v}) ∩ supp f({v},U) = ∅.

Lemma 2. Assume that (a) and (b) in Theorem 1 hold. ∀I ⊆ N s.t. I 6= ∅, f(I,∅) = mini∈I fi.

Proof. We will use induction to prove the lemma. Let P (k) be the following statement.

P (k) : ∀I s.t. 1 ≤ |I| = k ≤ |N |, then f(I,∅) = min
i∈I

fi. (11)

For the base case k = 1, the statement holds by the definition. Assume that the induction hypothesis
for k ≤ l < |N | holds. Consider |I| = l + 1 and choose any i ∈ I . Then,

min
i∈I

fi = min{f(I\{i},∅), f({i},∅)} By the induction hypothesis

= f({i},∅) −max{f({i},∅) − f(I\{i},∅), 0}
= f({i},∅) −max{f({i},I\{i}) − f(I\{i},{i}), 0}
= f({i},∅) − f({i},I\{i}) By Lemma1

= f(I,∅)

(12)

Therefore, P (l + 1) holds. We conclude that f(I,∅) = mini∈I fi for ∅ 6= I ⊆ N .

Theorem 1. Let {f(I,J) : X → [0,∞)}(I,J)∈I be an indexed family of non-negative measurable
functions on X , and let fk := f({k},∅). Then, the following conditions hold:

(a) ∀(I, J) ∈ I, f(I,J) =
∑
S:I⊆S,J⊆N\S f(S,N\S)

(b) ∀i, j ∈ N s.t. i 6= j, supp f({i},{j}) ∩ supp f({j},{i}) = ∅

if and only if, for every (I, J) ∈ I,

f(I,J) =

{
(mini∈I fi −maxj∈J fj)

+ if J 6= ∅
mini∈I fi otherwise

, (4)

where (·)+ represents the positive part.

Proof. We first show the necessity of the condition. Assume that (a) and (b) hold. If J = ∅,
then f(I,J) = mini∈I fi by Lemma2. Hence, we may assume that J 6= ∅. Fix x ∈ X , and
let {a1, a2, ..., a|J|} be an arrangement of J so that fai(x) ≤ faj (x) for all i < j. For every
∅ 6= S ⊆ J , we let m(S) denote the minimum index s such that as ∈ S.

Note that

f(I,J)(x) =
∑
S⊆J

(−1)|S|f(I∪S,∅)(x) By Inclusion–exclusion principle

=
∑
S⊆J

(−1)|S| min
i∈I∪S

fi(x) By Lemma2
(13)

We now decompose the last summation into three cases.
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(i) S = ∅
(−1)|S| min

i∈I∪S
fi(x) = min

i∈I
fi(x). (14)

(ii) m(S) < |J |∑
S:m(S)<|J|

(−1)|S| min
i∈I∪S

fi(x) =
∑
j<|J|

∑
S:m(S)=j

(−1)|S| min
i∈I∪{aj}

fi(x)

=
∑
j<|J|

(
min

i∈I∪{aj}
fi(x)

){
(−1) · 2|J|−j−1 + 2|J|−j−1

}
= 0.

(15)

(iii) m(S) = |J |
(−1)|S| min

i∈I∪S
fi(x) = − min

i∈I∪{a|J|}
fi(x). (16)

Summing up all of the above terms gives the rest result.
f(I,J)(x) = min

i∈I
fi(x)− min

i∈I∪{a|J|}
fi(x)

= min
i∈I

fi(x)−min{min
i∈I

fi(x),max
j∈J

fj(x)}

=

(
min
i∈I

fi(x)−max
j∈J

fj(x)

)+

.

(17)

To show the sufficiency, assume

∀(I, J) ∈ I, f(I,J) =
{
(mini∈I fi −maxj∈J fj)

+ if J 6= ∅
mini∈I fi otherwise

. (18)

Let us assume that f(I,J) 6=
∑
S:I⊆S,J⊆N\S f(S,N\S) for some (I, J) ∈ I. Choose such I, J so

that |I| + |J | is maximum. Note that I ∪ J ( N because
∑
S:I⊆S,J⊆N\S f(S,N\S) is exactly the

same expression as f(I,J) for I ∪ J = N . Hence, we can choose some k ∈ N \ (I ∪ J). By the
maximality of |I|+ |J |, the following two equations hold.

f(I,J∪{k}) =
∑

S:I⊆S,J∪{k}⊆N\S
f(S,N\S)

f(I∪{k},J) =
∑

S:I∪{k}⊆S,J⊆N\S
f(S,N\S).

(19)

We use above two equations and consider all possible inequalities among mini∈I fi, maxj∈Jfj ,
and fk. The following equation always holds regardless of these inequalities.∑
S:I⊆S,J⊆N\S

f(S,N\S) = f(I,J∪{k}) + f(I∪{k},J)

=

{(
mini∈I fi −maxj∈J∪{k} fj

)+
+
(
mini∈I∪{k} fi −maxj∈J fj

)+
if J 6= ∅

(mini∈I fi − fk)+ +mini∈I∪{k} fi otherwise

=

{
(mini∈I fi −maxj∈J fj)

+ if J 6= ∅
mini∈I fi otherwise

= f(I,J),
(20)

which leads to a contradiction.

Also, for every i, j ∈ N such that i 6= j,
min(f({i},{j}), f({j},{i})) = min{(fi − fj)+, (fj − fi)+}

= (min{fi − fj , fj − fi})+

= 0.

(21)

Therefore, (a) and (b) hold.
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B DESCRIPTION FOR S2M SAMPLING

In Section 3.2, we describe how to build S2M sampling upon unconditional GANs, and class-
conditional GANs. We also adopt our S2M sampling to another type of conditional generative
model, e.g.CP-GAN (Kaneko et al., 2019). In this case, the generator G takes w(x) as a con-
dition where w is a deterministic function. Let c be a condition such that the support of con-
ditional density pG(·|c) contains that of p(I,J). At each step of MH algorithm, the proposal
x′ ∼ q(x′|x) = pG(x

′|c) is accepted with a probability αw(x′, x). If we assumew(x′) = w(x) = c,
then pG(x′|c)/pG(x|c) = pG(x

′)/pG(x). Hence, the desired αw(x′, x) can be calculated similarly
to α(x′, x):

αw(x
′, x) = min

(
1,
p(I,J)(x

′)/pG(x
′|c)

p(I,J)(x)/pG(x|c)

)
= min

(
1,

(min{ri(x′) : i ∈ I} −max{rj(x′) : j ∈ J} ∪ {0})+ (D∗v(x)
−1 − 1)

(min{ri(x) : i ∈ I} −max{rj(x) : j ∈ J} ∪ {0})+ (D∗v(x
′)
−1 − 1)

)
,

(22)
Although the support of conditional density of CP-GAN may not cover all that of p(I,J), S2M
sampling can still be used to draw confident samples suitable for a given condition. We empirically
show that our S2M sampling algorithm can improve the generation accuracy while maintaining
almost the diversity of samples (Section 4.3).

Algorithm 1 illustrates the use of S2M sampling for GANs. This algorithm can be easily extended
to the conditional versions, e.g., cGANs and CP-GAN, by replacing the acceptance probability (See
Equation 9 and Equation 22).

Algorithm 1 S2M Sampling for GANs
Input: generator G, classifiers D∗v , D

∗
r , intersection index set I , difference index set J , and class

prior ratios γ1:N
Output: filtered sample x

1: Draw x from G such that x ∈ supp p(I,J).
2: for k = 1 to K do
3: Draw x′ from G.
4: Draw u from Uniform(0,1).
5: ri ← γiD

∗
r(i|x) for every i ∈ I ∪ J

6: r′i ← γiD
∗
r(i|x′) for every i ∈ I ∪ J

7: α← min

(
1,

(min{r′i:i∈I}−max{r′j :j∈J}∪{0})
+
(D∗v(x)

−1−1)
(min{ri:i∈I}−max{rj :j∈J}∪{0})+(D∗v(x

′)−1−1)

)
. acceptance probability

8: if u ≤ α then
9: x← x′

10: end if
11: end for

C EXPERIMENTS DETAILS

C.1 2× 16 GAUSSIANS

The generative model for 2×16 Gaussians is discussed in Section 4.1. The generator, discriminator,
and classification networks used for S2M sampling consist of ReLU activations and fully connected
layers of input size: 2-512-512-512. We use WGAN-GP (Wei et al., 2018) as the GANs objective.
We train all models using Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0002 with
β1 = 0.5, β2 = 0.999, and a batch size of 1024. The generator is trained for 4k iterations, and
five updates of the discriminator are performed for every update of the generator. The classification
networks is trained for 50k iterations. We do not tune the temperature of classifiers or γk in this
experiment.
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C.2 MNIST AND FMNIST

Each MNIST and FMNIST dataset consists of a training set of 60k images and a test set of 10k
images. We use 10% of the training set as the validation set. To make the training set of classsingle, we
distribute the images belonging to the overlapping classes equally to each corresponding classsingle.

The generative models for MNIST and FMNIST are discussed in Section 4.2. As similar to the
original setting of GenPU, the generator consists of ReLU activations and fully connected layers of
input size: 100-256-256-784. The discriminator consists of ReLU activations and fully connected
layers of input size: 784-256-256. As for the GANs objective, we follow the settings introduced
by the authors for baselines, and use WGAN-GP (Wei et al., 2018) for our model. We train all
generative models using Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0001,
β1 = 0.5, β2 = 0.999, and a batch size of 64. The generator is trained for 200k iterations, and two
updates of the discriminator are performed for every update of the generator.

Classification networks used for S2M sampling are obtained from multiple branches of LeNet5 (Le-
cun et al., 1998) architecture. We train the classifier using Adam optimizer. For MNIST 3/5 dataset,
the classifier is trained for 10 epochs with a learning rate of 0.001, and the temperature of Dr is set
to 2. For MNIST and FMNIST Even dataset, the classifier is trained for 50 epochs with a learning
rate of of 0.0001, and the temperature of Dv is set to 4. γk corresponding to the intersection set are
set to 0.1 for both MNIST and FMNIST.

C.3 CIFAR-10 AND CELEBA

CIFAR-10 dataset consists of a training set of 50k images and a test set of 10k images. We use 10%
of the training set as the validation set. For CelebA dataset, we follow the original partition descrip-
tion and resize images to 64 × 64 for training efficiency. To make the training set of classsingle, we
distribute the images belonging to the overlapping classes equally to each corresponding classsingle.

The generative models for CIFAR-10 and CelebA datasets are discussed in Section 4.3. We use
SNGAN ResNet (Miyato et al., 2018) architecture for all models and follow the PyTorch implemen-
tation1. We use projection discriminator (Miyato & Koyama, 2018) for cGANs. Following (Kaneko
et al., 2019), we compute the scale and bias parameters of conditional batch norm (de Vries et al.,
2017) using the class specificity as weights for cGANs∗, ACGAN∗, and CP-GAN. For uncondi-
tional GANs, cGANs, and ACGAN (Odena et al., 2017) models, we use hinge loss (Lim & Ye,
2017) as the GAN objective and apply spectral normalization (Miyato et al., 2018) to the discrim-
inator. For CP-GAN, we use WGAN-GP (Wei et al., 2018) as the GAN objective without spectral
normalization since using SNGAN objectives degrades the performance of CPGAN as discussed in
the original paper (Kaneko et al., 2019). We train all models using Adam optimizer (Kingma & Ba,
2015) with a learning rate of 0.0002, β1 = 0.5, β2 = 0.999, and a batch size of of 64. For all mod-
els, the generator is trained for 100k iterations, and five updates of the discriminator are performed
for every update of the generator.

Classification networks used for S2M sampling are obtained from multiple branches of Mo-
bileNetV2 (Sandler et al., 2018) architecture. We first train the classifier with only Lr during 200
epochs for CIFAR-10 and 30 epochs for CelebA. We use SGD optimizer with a learning rate of 0.1
and cosine annealing for this training. Then, the classifier is trained with the sum of all classification
losses for 3k iterations. Adam optimizer with the same configuration for the generator is used for
the second training of classifier. We set the temperature of classifier Dr as 0.2, 0.8, and 1.6 when
the size of difference index set is 0, 1, and 2, respectively. γk corresponding to the intersection set
are set to 0.1 for CIFAR-10 and 0.5 for CelebA.

D EXPERIMENTAL RESULTS

D.1 ABLATION STUDY

To validate the effects of the temperature T and γ in S2M sampling, we perform the ablation studies
in CIFAR-10 7to3 and CelebA BMS. In Table 5, we report the averaged accuracy and FID of our

1https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
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S2M sampling with different base models: unconditional GANs (GANs), cGAN, and CP-GAN. As
expected, with the proper adjustment of hyperparameters, the accuracy is greatly improved without
a degradation of FID. This indicates that our S2M sampling with the proper hyperparameters can
sample images from an accurate data space without trading-off diversity.

Table 5: Ablation study for the hyperparameters of our S2M sampling. By adjusting the hyperpa-
rameters, we can sample more accurate images without compromising the diversity.

Method Metric CIFAR-10 7to3 CelebA BMS

GANs cGAN CP-GAN GANs cGAN CP-GAN

Sampling w/
actual logits

Acc. (↑) 58.86±1.23 64.00±0.39 82.42±0.23 60.56±2.44 62.18±1.99 68.14±2.19

FID (↓) 19.04±0.56 18.60±0.44 22.95±1.05 8.62±0.91 9.73±0.79 21.55±0.68

+ scale T Acc. (↑) 63.80±1.68 70.55±0.31 84.99±0.87 68.11±3.08 69.67±1.98 71.67±2.31

FID (↓) 19.00±0.08 18.34±0.25 23.36±1.04 8.64±0.85 9.69±0.82 21.17±0.64

+ adjust γ Acc. (↑) 80.30±1.02 84.44±0.66 90.72±1.33 73.92±3.01 74.54±2.79 72.99±0.66

FID (↓) 16.79±0.25 16.36±0.25 22.54±0.94 8.53±0.86 9.76±0.74 21.30±0.62

D.2 PRECISION AND RECALL ON REAL DATASET

To give more detailed information about quality and diversity of generated samples on real dataset,
we compute F-beta score (Sajjadi et al., 2018) at β = 8 as shown in Table 6. High F1/8 (weighted
precision) means high sample quality and high F8 (weighted recall) means high sample diversity.
cGAN∗ gets high F8 on CelebA BMS dataset, nonetheless, the outputs of cGAN∗ are not well
distinguishable as seen with the low accuracy reported in Table 3. Our S2M sampling with GANs
and cGANs consistently draws samples with high quality and diversity which is comparable to oracle
methods.

Table 6: Results of F1/8 and F8 on CIFAR-10 7to3 and CelebA BMS.

Model CIFAR-10 7to3 CelebA BMS

F1/8 (↑) F8 (↑) F1/8 (↑) F8 (↑)

cGAN (Oracle) 0.9824±0.002 0.9739±0.002 0.9808±0.003 0.9487±0.003

ACGAN (Oracle) 0.9824±0.001 0.9744±0.002 0.9853±0.003 0.9571±0.004

cGAN∗ 0.9728±0.003 0.9497±0.002 0.9781±0.006 0.9616±0.005

ACGAN∗ 0.9660±0.001 0.9406±0.002 0.9749±0.003 0.9493±0.004

CPGAN 0.9660±0.006 0.9314±0.004 0.9237±0.009 0.9151±0.016

GANs + Ours 0.9811±0.001 0.9690±0.006 0.9845±0.003 0.9606±0.001

cGAN + Ours 0.9814±0.002 0.9708±0.005 0.9808±0.006 0.9604±0.004

CPGAN + Ours 0.9687±0.004 0.9380±0.005 0.9348±0.008 0.9084±0.017

D.3 QUALITATIVE RESULTS

In this section, we provide the qualitative results for the experiments on CIFAR-10 7to3 and CelebA
BMS.
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Figure 8: Qualitative results for cGAN∗, ACGAN∗, and CP-GAN on CIFAR-10 7to3. For cGAN∗

and ACGAN∗, label values of 1/m are given for each classsingle in the intersection of m classsingle.
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Figure 9: Qualitative results of applying our S2M sampling to cGAN and CP-GAN on CIFAR-10
7to3.
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Figure 10: Qualitative results for cGAN∗, ACGAN∗, and CP-GAN on CelebA BMS. For cGAN∗

and ACGAN∗, label values of 1/m are given for each classsingle in the intersection of m classsingle.
Intersections and differences are denoted by plus signs and minus signs, respectively.
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Figure 11: Qualitative results of applying our S2M sampling to cGAN and CP-GAN on CelebA
BMS. Intersections and differences are denoted by plus signs and minus signs, respectively.
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Figure 12: Qualitative results for GMM latent model discussed in Section 5.1. GMM latent model
can draw samples close to target class even before sampling.
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