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ABSTRACT

Test-time adaptation (TTA) enables models to adapt to test domains using only
unlabeled test data, addressing the challenge of distribution shift during test time.
However, existing TTA methods mainly focus on input distribution shifts, often
neglecting class distribution shifts. In this work, we first reveal that existing meth-
ods can suffer from performance degradation when encountering class distribu-
tion shifts. We also show that there exist class-wise confusion patterns observed
across different input distribution shifts. Based on these observations, we intro-
duce a novel TTA method, named Distribution shift-Aware prediction Refinement
for Test-time adaptation (DART), which refines the predictions made by the trained
classifiers by focusing on class-wise confusion patterns. DART trains a distri-
bution shift-aware module during intermediate time by exposing several batches
with diverse class distributions using the training dataset. This module is then
used during test time to detect and correct class distribution shifts, significantly
improving pseudo-label accuracy for test data. This improvement leads to en-
hanced performance in existing TTA methods, making DART a valuable plug-in
tool. Extensive experiments on CIFAR, PACS, ImageNet, and digit benchmarks
demonstrate DART’s ability to correct inaccurate predictions caused by test-time
distribution shifts, resulting in significant performance gains for TTA methods.

1 INTRODUCTION

Deep learning has achieved remarkable success across various domains, including image classifi-
cation (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Radford et al., 2021) and natural
language processing (Vaswani et al., 2017; Devlin et al., 2018). However, some recent findings
have shown that when a substantial shift occurs between the training and test data distributions,
the performance of trained models on test data often deteriorates considerably (Saenko et al., 2010;
Taori et al., 2020; Mendonca et al., 2020). Test-time adaptation (TTA) methods have emerged as a
prominent solution to mitigate the performance drop resulting from distribution shifts. TTA methods
(Wang et al., 2020; Goyal et al., 2022; Boudiaf et al., 2022; Zhao et al., 2022; Jang et al., 2022) en-
able trained models to adapt to the test domain using only unlabeled test data, effectively addressing
the challenge of distribution shift during test time.

In TTA methods, two primary branches exist: normalization-based and entropy minimization-based
approaches. Normalization-based TTA techniques (Nado et al., 2020; Schneider et al., 2020) ad-
dress the challenge by adjusting Batch Normalization (BN) (Ioffe & Szegedy, 2015) statistics using
statistics obtained from the test domain. On the other hand, entropy minimization-based TTA meth-
ods (Lee, 2013; Liang et al., 2020; Wang et al., 2020; Goyal et al., 2022; Jang et al., 2022) adapt
pre-trained models by leveraging predictions generated by the model itself on unlabeled test data,
treating them as pseudo labels.

While these TTA techniques have proven effective against various test-time distribution shifts, in-
cluding image corruptions, recent research (Gong et al., 2022; Zhou et al., 2023) has revealed that
significant performance degradation can occur when the class distribution of the test domain differs
from that of the training domain, in addition to the shift in input distribution. To assess the impact
of class distribution shifts on existing TTA methods, we first benchmark the BNAdapt (Schneider
et al., 2020) method on long-tailed test sets when the model is trained on balanced training sets.
We observe substantial drops in test accuracy even after applying the BNAdapt, especially as the
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Figure 1: Overview of DART. (Top) At intermediate time, the period between the training and test
times, DART trains a distribution shift-aware module gϕ to detect and correct the class distribution
shifts. By sampling the training data from Dirichlet distributions, we generate batches B with di-
verse class distributions during the intermediate time. The distribution shift-aware module takes the
averaged pseudo label distribution of B and outputs a square matrix TB of size K (class numbers) for
prediction modification. Since the label of the training data is available, we optimize gϕ to minimize
the cross-entropy loss of B while the pre-trained model fθ is frozen. (Bottom) At test-time, we fine-
tune the pre-trained fθ using the refined predictions by gϕ. We can compute the square matrix Ttest
and modify the predictions of test data x ∈ Dtest using gϕ since gϕ does not require any label for
generating the square matrix. Thus, DART can be used in conjunction with existing TTA methods.

imbalance ratio between classes increases (Table 1). This shows the challenge in TTA when facing
label distribution shift in addition to input distribution shift during test time. We further examine the
misclassification (confusion) patterns between classes under various input distribution shifts, rep-
resented by eight distinct image corruption patterns. An interesting observation is that consistent
class-wise confusion patterns occur across different input corruption patterns (Fig. 2).

Motivated by such observations, we propose a novel test-time adaptation method, named Distri-
bution shift-Aware prediction Refinement for Test-time adaptation (DART) as a solution to address
test-time distribution shifts in both input data and label distributions. DART aims to correctly mod-
ify predictions made by trained classifiers by focusing on class-wise confusion patterns that arise
due to label-distribution shifts. Our key insight is that the model can learn how to adjust inaccurate
predictions due to label distribution shifts by experiencing several batches with diverse class distri-
butions using the labeled training dataset before the start of test time. DART trains a distribution
shift-aware module during an intermediate time, situated between the end of training and the start of
testing, by exposing multiple batches composed of labeled training data with diverse class distribu-
tions, sampled from the Dirichlet distribution. The module then outputs a square matrix of the class
dimension that will be multiplied to logit vector of the network for prediction refinement. Since
the distribution shift-aware module only requires a pseudo-label distribution as an input, it can be
readily employed during test time by providing the estimated pseudo-label distribution for the test
data generated by the pre-trained model, as depicted in Fig. 1.

We evaluate the effectiveness of DART on several standard test-time adaptation benchmarks,
including CIFAR-10/100C, ImageNet-C, CIFAR-10.1, PACS, and digit classification (SVHN
→MNIST/USPS/MNIST-M). Our results consistently demonstrate that DART enhances prediction
accuracy across most benchmarks involving test-time distribution shifts in both input data and label
distributions and it contributes to the improved performance of existing TTA methods. Specifi-
cally, DART achieves substantial improvements in test accuracy, enhancing the BNAdapt method
by 5.52% and 16.44% on CIFAR-10C-LT under class imbalance ratios of ρ = 10 and 100, re-
spectively. Furthermore, our extensive ablation studies demonstrate the pivotal role played by the
prediction refinement scheme in DART’s performance enhancement.
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(a) Class distributions of PACS

0 1 2 3 4 5 6 7 8 9

Class index
0.0

0.1

0.2

0.3

0.4

0.5

Cl
as

s p
ro

ba
bl

ity

0.
10

0

0.
10

0

0.
10

0

0.
10

0

0.
10

0

0.
10

0

0.
10

0

0.
10

0

0.
10

0

0.
10

0

Training dataset

0 1 2 3 4 5 6 7 8 9

Class index
0.0

0.1

0.2

0.3

0.4

0.5

Cl
as

s p
ro

ba
bl

ity

0.
40

4

0.
24

2

0.
14

5

0.
08

7

0.
05

2

0.
03

1

0.
01

9

0.
01

1

0.
00

6

0.
00

4

Test dataset ( = 100)

(b) Class distribution shift on
CIFAR-10C-LT with ρ = 100
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(c) Confusion matrices from BNAdapt model for 8 different corruption types from CIFAR-10C-LT (ρ = 100)

Figure 2: Test-time class distribution shifts. (a) The class distribution of four different domains
in PACS. (b) (left) The class distribution of training and (right) test distributions of CIFAR-10C-
LT with the class imbalance ratio ρ of 100. We evaluate the robustness of classifiers trained on
CIFAR-10, which has a balanced class distribution, on CIFAR-10C-LT, which has a long-tailed
class distribution. (c) Confusion matrices of BNAdapt on CIFAR-10C-LT for eight different types
of corruptions. We mark the cases where the confusion rate exceeds 10% with red squares. We can
observe notable accuracy degradation in classes with large amounts of data (e.g., class 0 and 1), and
similar confusing patterns regardless of the corruption types under class distribution shifts.

2 PROBLEM SETUP AND MOTIVATION

We consider a K-class classification problem under test-time distribution shift. During training
time, a classifier fθ is trained using a labeled training dataset D = {(xi, yi)}n

train

i=1 , drawn from a
training distribution PXY over X × {0, . . . ,K − 1}. However, during test time, the classifier may
encounter test data Dtest = {(x′

i, y
′
i)}n

test

i=1 drawn from a test distribution P test
XY ̸= P train

XY . This shift
in distribution significantly degrades the classification performance of the trained classifier on the
test data (Wang et al., 2020). To address this issue, many test-time adaptation (TTA) methods aim to
adapt the trained model to the test domain using only unlabeled test data. While many existing TTA
methods have predominantly focused on covariate shifts, where the input data distributions change
between the training and test data (e.g., due to image style transfer or image corruption), we focus
on a problem setup where both covariate and label distribution shifts occur during the test time.

2.1 MOTIVATION FOR PREDICTION REFINEMENT SCHEME

Impact of label distribution shifts on existing TTA methods We first examine the impact of
label distribution shifts on BNAdapt on CIFAR-10C. We evaluate the performances of the trained
classifier on the CIFAR-10C-LT test set, when this classifier was initially trained with CIFAR-10
(Krizhevsky & Hinton, 2009). CIFAR-10C (Hendrycks & Dietterich, 2019) is a benchmark designed
to evaluate the robustness of models trained on clean CIFAR-10 data against 15 predefined types of
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corruptions, including Gaussian noise. To create a class-imbalanced dataset, CIFAR-10C-LT, which
exhibits a long-tailed class distribution, as depicted in Fig. 2b, we set the number of images per class
to decrease exponentially as the class index increases. Specifically, we set the number of samples
for class k as nk = n(1/ρ)k/(K−1), where ρ denotes the class imbalance ratio.

In Table 1, we compare the performances of NoAdapt, which makes no modifications to the trained
classifier, and BNAdapt, which updates the Batch Normalization (BN) statistics with those of
the test domain on CIFAR-10C-LT for different class imbalance ratios ρ set to 1, 10, and 100.

Table 1: Average accuracy (%) on CIFAR-10C-LT
with several class imbalance ratios ρ.

Method CIFAR-10C-LT
ρ = 1 ρ = 10 ρ = 100

NoAdapt 71.68±0.00 71.28±0.08 71.13±0.17
BNAdapt 85.24±0.08 79.01±0.07 66.90±0.16

Oracle 85.53±0.05 85.97±0.18 87.77±0.07

We observe a decline in performance for
BNAdapt as the class imbalance ratio in-
creases, while the performance of NoAd-
apt remains consistent regardless of class
imbalance. When ρ = 100, BNAdapt ex-
hibits even worse performance than NoAd-
apt. This shows that in the presence of class
distribution shifts, correcting BN statistics
without accounting for the class distribu-
tion shift significantly degrades TTA perfor-
mance.

In Figure 2c, we present confusion matrices between classes, where each entry (i, j) represents the
fraction of samples from the i-th class classified into the j-th class. These matrices are generated
across eight different types of image corruption patterns for CIFAR-10C-LT, where ρ = 100. We
observe significant accuracy degradation in head classes (with smaller class index k), for which the
fraction of samples increase the most during test time. Additionally, we notice that the confusion
patterns tend to be consistent across different corruption types when the label distribution shift is
fixed. For instance, frequent class-wise confusion patterns include 0 to 8 (airplane → ship), 1 to 9
(automobile → truck), and 3 to 5 (cat → dog). In Appendix C, we provide a theoretical analysis
demonstrating that such a class-wise confusion pattern occurs when facing label distribution shifts
by using a toy example of four-class Gaussian mixture distribution. This observation raises the
question of how to effectively learn and utilize such a confusion pattern between classes to correctly
modify the predictions of the classifier during test time where only unlabeled test data is available.

An oracle’s attempt for prediction refinement To answer this challenging question, we begin
with a simpler but relevant question: Can we prevent the performance degradation of BNAdapt by
refining model predictions through the multiplication of a distribution shift-aware square matrix
T ∈ RK×K with the model outputs? This type of refinement scheme is commonly employed to
adjust model outputs trained with label-noise datasets when specific class-wise confusion patterns,
as seen in Figure 2c, exist (Natarajan et al., 2013; Patrini et al., 2017; Zhu et al., 2021). However,
it has not been explored in the context of test-time adaptation, where performance degradation is
caused by distribution shifts rather than label noise. To evaluate the effectiveness of multiplying a
square matrix with the model’s output, we first consider an Oracle method using the labeled test
data to find a desirable Toracle ∈ RK×K . We define Toracle as a solution that minimizes the cross-
entropy loss between the modified softmax probability and the ground truth labels of the test data:
Toracle = argminT∈RK×K E(x,y)∈Dtest

[CE(softmax(fθ(x)T ), y)], and we find Toracle by gradient
descent. The last row of Table 1 presents the test accuracy achievable with Toracle when applied to
the output of the BNAdapt model. Remarkably, simply multiplying the output with Toracle reverses
the performance degradation caused by class distribution shifts. Having confirmed the effectiveness
of refining the output by multiplying with Toracle, the remaining question is how to obtain such a
square matrix T without access to test data labels.

3 DISTRIBUTION SHIFT-AWARE PREDICTION REFINEMENT FOR TTA

We introduce a distribution shift-aware module that can detect test-time class distribution shifts and
output a square matrix to refine the predictions of the trained classifiers. Our core idea is that if
the module experiences various batches with diverse class distributions before the test time, it can
develop the ability to refine inaccurate predictions resulting from label distribution shifts. Based on
this insight, we train a distribution shift-aware module gϕ during the intermediate time, in between
the training and testing times, by exposing several batches with diverse class distributions using the
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Dirichlet sampling i.i.d. sampling
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Figure 3: Example of the Dirichlet distribution sampling. IID (i.i.d.) sampling denotes standard
uniform sampling. The black dots indicate the class distribution of the sampled batches. The red,
blue, yellow dots represent the class distributions of different class imbalance ratios ρ, namely 1,2,
and 10, respectively. By employing the Dirichlet distribution for batch sampling, we can expose the
model to numerous batches with diverse class distributions during the intermediate time, thereby
enabling it to learn how to mitigate performance degradation caused by class distribution shifts.

training datasets. During the test time, gϕ takes an averaged pseudo-label distribution for test data as
input to detect class distribution shifts, and generates a square matrix of size K to refine predictions.

Dataset for intermediate time During the intermediate time, we assume that the labeled training
dataset D is available while the test dataset Dtest remains unavailable, as is common in previous
settings (Choi et al., 2022; Lim et al., 2022; Park et al., 2023). For example, we use CIFAR-10
dataset during the intermediate time on CIFAR-10C-LT benchmark. In cases where the training
dataset exhibits imbalanced class distribution, as seen in datasets like SVHN or PACS, the imbal-
anced class distribution can inadvertently influence the training of gϕ. To mitigate this, we create a
class-balanced intermediate dataset Dint by uniformly sampling data from each class.

Training of gϕ To create batches with diverse class distributions during the intermediate time, we
employ a Dirichlet distribution (Yurochkin et al., 2019; Gong et al., 2022). Batches sampled through
i.i.d. sampling tend to have class distributions, resembling a uniform distribution. In contrast,
batches sampled using the Dirichlet distribution exhibit a wide range of class distributions, including
long-tailed distributions as illustrated in Figure 3. The training objective of gϕ for a batch B ⊂ Dint
is formulated as follows:

L(ϕ) = E(x,y)∈B[CE(softmax(fθ(x)gϕ(p̄)), y)] where p̄ =
1

|B|
∑

(x,y)∈B

softmax(fθ(x)). (1)

Here, p̄ represents the averaged pseudo-label distribution for batch B, and CE denotes the standard
cross-entropy loss. During the intermediate time, gϕ is optimized to minimize the cross-entropy
loss between the modified softmax probability and the ground truth labels of the training samples.
During this time, the parameters of the trained classifier fθ are not updated, but the batch statistics
in the classifiers are updated as in BNAdapt (Schneider et al., 2020). For each pre-trained model,
we train gϕ only once, regardless of the number of test domains.

Utilizing gϕ at test-time Since the distribution shift-aware module gϕ only requires the averaged
pseudo label distributions generated by the trained classifier as input, it can be employed effectively
at test time when only unlabeled test data is available. During test time, gϕ takes the pseudo label
distribution p̂ averaged over the test dataset Dtest, and generates a square matrix Ttest ∈ RK×K ,

Ttest = gϕ(p̂) where p̂ =
1

|Dtest|
∑

x̂∈Dtest

softmax(fθ(x̂)). (2)

We note that gϕ remains frozen and does not update its parameters during test time. We obtain
the square matrix Ttest at the start of the test phase and utilize it throughout the test time. By mul-
tiplying the classifier output with Ttest, we can effectively enhance the accuracy of pseudo-labels.
Furthermore, as illustrated in Figure 1 (bottom), our method can be integrated as a plug-in with any
test-time adaptation (TTA) methods that rely on pseudo labels obtained from the classifier. Specif-
ically, we can adapt the pre-trained classifier fθ by using the modified output softmax(fθ(·)Ttest).
For example, in the case of TENT (Wang et al., 2020), we adapt the classifier fθ using a training
objective LTENT(θ) = Ex̂∈Dtest [−

∑
k softmax(fθ(x̂)Ttest)k log softmax(fθ(x̂)Ttest)k].
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Table 2: Average accuracy (%) on CIFAR-10C/10.1-LT, digit classification, and PACS. Bold indi-
cates the best performance for each benchmark.

Method CIFAR-10C-LT CIFAR-10.1-LT Digit PACS
ρ = 10 ρ = 100 ρ = 10 ρ = 100

NoAdapt 71.28±0.08 71.13±0.17 87.13±0.48 86.64±0.97 58.45±0.00 60.65±0.00

BNAdapt 79.01±0.07 66.90±0.16 77.37±0.45 64.43±0.97 61.10±0.20 72.08±0.11
BNAdapt+ours 84.53±0.20 83.34±0.20 85.81±0.65 80.64±2.12 62.60±0.35 75.33±0.09

TENT 83.02±0.19 70.49±0.43 78.23±0.52 64.53±1.53 63.59±0.19 74.53±0.97
TENT+ours 85.13±0.31 88.56±0.13 86.88±0.78 82.32±1.60 64.85±0.44 80.98±1.19

PL 83.09±0.28 69.63±0.46 78.51±0.38 64.38±1.09 63.25±0.23 70.56±0.75
PL+ours 84.50±0.39 87.88±0.07 86.02±0.93 82.16±1.44 64.60±0.33 80.12±0.49

DELTA 82.41±0.59 69.88±1.47 78.57±2.42 64.79±1.61 64.64±0.23 77.60±0.87
DELTA+ours 84.46±0.30 89.25±0.33 87.19±0.35 84.25±1.54 65.83±0.34 83.46±1.33
NOTE 80.72±0.23 79.49±0.41 82.94±1.95 81.55±1.59 63.85±0.41 67.84±0.56
NOTE+ours 80.79±0.14 85.38±0.29 84.67±0.83 87.25±1.01 64.15±0.29 68.76±0.90

LAME 80.50±0.06 70.40±0.25 78.79±1.00 67.68±2.58 63.97±0.14 65.43±0.27
LAME+ours 82.27±0.20 79.66±0.12 82.60±0.76 77.34±1.31 64.54±0.56 76.50±0.11

ODS 82.01±0.28 78.32±0.34 81.83±1.77 77.74±1.86 65.50±0.26 64.25±0.13
ODS+ours 83.14±0.15 81.58±0.17 82.85±1.12 79.32±1.48 65.81±0.23 65.66±0.75

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks We consider two types of input data distribution shifts: synthetic and natural dis-
tribution shifts, each characterized by its generation process. Synthetic distribution shifts are arti-
ficially created through data augmentation techniques including image corruption using Gaussian
noise. In contrast, natural distribution shifts arise from changes in image style, for instance, from
artistic to photographic styles. We evaluate synthetic distribution shifts on CIFAR-10/100C and
ImageNet-C (Hendrycks & Dietterich, 2019), and natural distribution shifts on CIFAR-10.1 (Recht
et al., 2018), digit classification (SVHN → MNIST/USPS/MNIST-M) and PACS (Li et al., 2017)
benchmarks. For synthetic distribution shifts, we apply 15 different types of common corruptions,
each at the highest severity level (i.e. level 5). To evaluate the impact of class distribution shifts in
CIFAR benchmarks, we introduce test datasets with long-tailed class distributions, as described in
Section 2.1. For ImageNet-C, we create a new test set with online label distribution shifts follow-
ing the approach in Niu et al. (2023). This new test set comprises K subsets, each characterized
by a class distribution [p1, p2, . . . , pK ], where pk = pmax and pi = pmin = (1 − pmax)/(K − 1)
for i ̸= k, where K is the number of classes in ImageNet-C, which is 1,000. Let α = pmax/pmin
represent the imbalance ratio. Each subset consists of ImageNet-C test images sampled according
to the aforementioned class distribution. Additionally, we shuffle the subsets to prevent predictions
based on their order. Conversely, for digit classification and PACS benchmarks, we utilize the orig-
inal datasets, as these benchmarks inherently include label distribution shifts across domains. More
details for benchmarks are available in Appendix A.

Baselines We compare DART with the following baselines: (1) BNAdapt (Schneider et al., 2020)
corrects the batch statistics using the test data; (2) TENT (Wang et al., 2020) fine-tunes param-
eters in BN layer of the trained classifier to minimize the prediction entropy of test data; (3) PL
(Lee, 2013) fine-tunes the trained classifier using confident pseudo-labeled test samples; (4) NOTE
(Gong et al., 2022) adapts the classifiers while mitigating the effects of non-i.i.d test data streams
through instance-aware BN and prediction-balanced reservoir sampling; (5) DELTA (Zhao et al.,
2022) adapts the classifiers while addressing issues related to incorrect BN statistics and prediction
bias by employing test-time batch renormalization and dynamic online reweighting; (6) ODS (Zhou
et al., 2023) estimates the label distribution of test data through Laplacian-regularized maximum
likelihood estimation and adapts the trained model by assigning high and low weights to infre-
quent and frequent classes, respectively; (7) LAME (Boudiaf et al., 2022) modifies the prediction
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Table 3: Average accuracy (%) on CIFAR-100C and ImageNet-C under several class imbalance
ratios ρ and α. As ρ and α increase, the severity of the class distribution shifts is intensified.

CIFAR-100C-LT ImageNet-C online imbalanced
ρ = 10 ρ = 100 α = 1000 α = 2000 α = 5000

NoAdapt 41.04±0.17 40.71±0.24 18.15±0.06 18.16±0.01 18.16±0.04

BNAdapt 58.33±0.15 55.25±0.13 19.85±0.10 14.11±0.04 8.48±0.06
BNAdapt+ours 59.79±0.18 59.74±0.16 25.18±0.75 20.48±0.80 14.82±0.78

TENT 61.32±0.20 58.21±0.40 22.49±0.15 13.52±0.11 6.61±0.08
TENT+ours 62.54±0.28 63.79±0.22 26.18±0.88 18.51±0.98 11.17±0.77

by Laplacian-regularized maximum likelihood estimation considering nearest neighbor information
in the embedding space of classifiers. More details about baselines are available in Appendix A.

Experimental details We use ResNet-18/26 (He et al., 2016) as the backbone networks for the
digit and CIFAR, and ResNet-50 for PACS and ImageNet-C benchmarks, respectively. During the
intermediate time, we use a 2-layer MLP (Haykin, 1998) with a hidden dimension of 1,000 for
the distribution shift aware module gϕ. We train gϕ using the labeled dataset from the training
domain with an intermediate batch size of 50/200 for 100 epochs for ImageNet-C and other bench-
marks. We ensure that fine-tuning layers, optimizers, and hyperparameters remain consistent with
those introduced in each baseline for a fair comparison. Implementation details for pre-training,
intermediate-time training, and test-time adaptation are described in Appendix A.

4.2 EXPERIMENTAL RESULTS

DART-applied TTA methods In Table 2, we present and compare the experimental results for
the original vs. DART-applied TTA methods across CIFAR-10C-LT, CIFAR-10.1-LT, digit classifi-
cation, and PACS benchmarks. We can observe that DART consistently improves the performance
of existing TTA methods for both synthetic and natural distribution shifts. In particular, the perfor-
mance gain achieved by DART becomes more significant as the class imbalance ratio ρ increases.
For instance, on CIFAR-10C-LT with class imbalance ratios ρ = 10 and 100, DART boosts the
test accuracy of BNAdapt by 5.52% and 16.44%, respectively. We can see that there is no single
dominant TTA method that outperforms all the other baselines across all benchmarks, as previously
observed in Zhao et al. (2023). In experiments on CIFAR-10.1, many TTA methods that rely on
BNAdapt do not improve the performance of the pre-trained model, as demonstrated in Zhao et al.
(2023). However, DART efficiently mitigates the accuracy degradation caused by test-time distribu-
tion shifts in this scenario and outperforms NoAdapt when combined with either DELTA for ρ = 10
or NOTE for ρ = 100. NOTE and ODS, which construct prediction-balanced batches using memory
for adaptation, assume that the pre-trained model has been trained on a balanced training dataset.
Consequently, these methods exhibit poor performance on PACS benchmarks, where training class
distributions are significantly imbalanced. Detailed experimental results and additional findings,
including DART’s performance on balanced test dataset, are reported in Appendix F.

Comparison between Toracle and Ttest To verify the effectiveness of gϕ, we compare the output
Ttest of the distribution-shift aware module and Toracle obtained using the labeled test data as in Sec-
tion 2.1 for the case of CIFAR-10C-LT with Gaussian noise (ρ = 100) in Figure 4. We can observe
that the distribution shift module can indeed provide a good estimate Ttest that closely resembles
Toracle even without access to the ground truth labels of the test data.

DART on large-scale datasets We proceed to evaluate the effectiveness of DART on large-scale
datasets. As the number of classes increases, the output dimension of gϕ also increases, becom-
ing more challenging to learn and generate a higher-dimensional square matrix T for large-scale
datasets. To address this challenge, we modify the distribution shift-aware module to produce T
with some entries fixed to 0 for the large-scale datasets. For CIFAR-100C, we first analyze class-
wise confusion patterns, similar to Figure 2c, using an augmented training dataset. Then we set the
entries where class-wise confusion never occurred to 0 when training the distribution-shift aware
module to generate T . For example, when using a speckle-noised augmentation for the CIFAR-
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Figure 4: Comparison of Toracle and Ttest on
CIFAR-10C-LT (ρ = 100) with Gaussian noise.

Method CIFAR-10C-LT
ρ = 10 ρ = 100

BNAdapt 79.01±0.07 66.90±0.16
BNAdapt+ours 84.53±0.20 83.34±0.20
BNAdapt+ours (diag) 83.94±0.15 76.41±0.21
BNAdapt+ours (online) 83.54±0.76 82.57±0.49

Table 4: Ablation studies to evaluate the effec-
tiveness of two variants of DART: (online) We
obtain T using only the first test batch. (diag)
We set all off-diagonal elements of T to 0.

100 dataset, we can set 7,400 entries of T ∈ R100×100 to 0. This noise type is not used when
testing the model with CIFAR-100C test sets. On the other hand, for ImageNet-C, given the large
number of classes (1,000), we set all off-diagonal entries to 0. In Table 3, we summarize the exper-
imental results comparing the original TTA methods with DART-applied methods on CIFAR-100C
and ImageNet-C. DART consistently improves the test accuracy of BNAdapt, achieving a 1.46%
improvement for ρ = 10 and a 4.49% improvement for ρ = 100 on CIFAR-100C, respectively.
Moreover, DART achieves a performance gain of about 6% for all imbalance ratios on ImageNet-C.

4.3 ABLATION STUDIES

DART for online TTA Some TTA works (Wang et al., 2020; Iwasawa & Matsuo, 2021; Jang
et al., 2022) focus on an online approach where each test data sample is encountered only once
during test time. To adapt DART for this online TTA scenario, we modify it to take the averaged
pseudo label distribution of the first test batch to output T , which is then used throughout the test
time. This differs from the original DART, which takes the averaged pseudo label distribution of the
entire test dataset. We summarize the experimental results of this variant of DART for online TTA
in Table 4 (last row). The results indicate that this online variant of DART performs similarly to the
original DART but with a slight decrease in performance.

Effects of diagonal/off-diagonal entires of T To assess the importance of both the diagonal and
off-diagonal entries of the square matrix T , we consider a variant of DART in which all off-diagonal
entries are set to 0. The experimental results presented in Table 4 on CIFAR-10C-LT and Table
16 on CIFAR-10.1-LT in Appendix show that this variant achieves performance improvements of
4.93/9.51% on CIFAR-10C-LT with ρ values of 10/100 and 6.34/9.81% on CIFAR-10.1-LT with
ρ values of 10/100, respectively. However, this variant exhibits accuracy decreases of 6.94/6.45%
on CIFAR-10C/10.1-LT with ρ = 100 compared to the original DART, respectively. These results
suggest that both the diagonal and off-diagonal entries in the matrix T play important roles in im-
proving TTA performance, and removing the off-diagonal entries can lead to decreased performance
in certain scenarios. More experimental results using these two variants can be found in Appendix F.

Effects of Dirichlet sampling and prediction modification scheme of DART We consider three
variants of DART, named DART v1-3, which involve changes to either the sampling strategy or the
prediction modification scheme. For sampling strategy, we consider a scenario where the module ex-
periences only three types of batches during the intermediate time: uniform, long-tailed with a class
imbalance ratio ρ = 20, and inversely long-tailed class distributions. For prediction modification
scheme, we modify gϕ to generate the parameters for a part of the model, including affine parameters
for the output of the feature extractor and the weight difference for the classifier weights, inspired
by the label shift adapter (LSA) (Park et al., 2023). For this case, the output dimension of gϕ gets
larger since it is proportional to the feature dimension of the trained model. In Table 5, we report the
performance of BNAdapt combined with these DART variants on CIFAR-10C-LT. DART v1 shows
worse performances on both ρ = 10 and 100 compared to DART. This suggests the challenge in
training gϕ to generate a high-dimensional output for prediction modification and demonstrates the
benefit of refining the prediction output by simply multiplying the square matrix. DART v2 shows
worse performance compared to DART for the ρ = 100 case, which is more severely imbalanced
than the class distribution experienced during the intermediate time (ρ = 20). This observation
shows the benefit of Dirichlet sampling. Lastly, DART v3 exhibits worse performance than DART
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Table 5: Ablation studies to evaluate the effects of the Dirichlet sampling and prediction modifi-
cation scheme of DART. We consider three variants of DART, which replace each component with
the ones used in LSA. We report the performance of BNAdapt combined with DART variants on
CIFAR-10C-LT.

Method Sampling strategy for int. time gϕ output Test acc. (%)
Dirichlet Unif&LT (ρ = 20) Square matrix Parameters of a model ρ = 10 ρ = 100

DART ✓ ✓ 84.53±0.20 83.34±0.20
DART v1 ✓ ✓ 84.00±0.18 79.18±0.11
DART v2 ✓ ✓ 84.74±0.06 81.72±0.18
DART v3 ✓ ✓ 85.18±0.30 82.29±0.41

for ρ = 100 similar to DART v2. These experiments demonstrate that both the prediction refinement
scheme and the sampling strategy contribute to the effectiveness and scalability of DART.

Due to space limitation, we present other ablation studies in Appendix E. Throughout these addi-
tional experiments, we confirm that (1) obtaining a square matrix T by using only confident pseudo-
labeled test samples during test time results in worse performance compared to DART, and (2) using
the fixed T generated by DART during test time is more effective than attempting to update T
through iterative or gradient-based methods.

5 RELATED WORKS

TTA method utilizing intermediate time Some recent works (Choi et al., 2022; Lim et al., 2022)
have explored methods to prepare unknown test-time distribution shifts by leveraging the training
dataset at the intermediate time. For instance, LSA (Park et al., 2023) involves exposing the model
to several batches with three types of class distributions during the intermediate time: the training
class distribution, a uniform distribution, and the inversely imbalanced training distribution. LSA
primarily focuses on adjusting model parameters. Specifically, it trains a label shift adapter to pro-
duce affine parameters for the output of the feature extractor and weight difference for the classifier
weights. In contrast, DART exposes the distribution shift-aware module to a more diverse range of
class distributions during the intermediate time through Dirichlet sampling. DART’s main objective
is to correct predictions with a specific focus on class-wise confusion patterns. It uses a square ma-
trix to modify predictions directly, without necessarily adjusting model parameters. In Section 4.3,
the effectiveness and scalability of DART compared to LSA are demonstrated.

TTA methods considering class-wise relationships Some TTA methods (Iwasawa & Matsuo,
2021; Kang et al., 2023; Zhang et al., 2023) consider the class-wise relationship as domain-invariant
information and aim to preserve it during test time. The method in (Kang et al., 2023) stores the
class-wise relationship of the training domain and tries to minimize the difference between the class-
wise relationships of the training and test domains. CRS (Zhang et al., 2023) estimates the class-wise
relationships using the last linear layer of the trained models and embeds the source-domain class
relationship in contrastive learning. While these methods utilize class-wise relationships to pre-
vent their deterioration during test-time adaptation, DART takes a different approach by focusing on
directly modifying the predictions. DART considers class-wise confusion patterns to refine predic-
tions, effectively addressing performance degradation due to distribution shifts, without explicitly
enforcing preservation of class-wise relationships. More related works are reviewed in Appendix B.

6 CONCLUSION

We proposed DART, a method designed to mitigate the impact of test-time class distribution shifts
including both covariate and label distribution shifts, by taking class-wise confusion patterns into
account. DART achieves this by training a distribution-shift aware module during the intermediate
time to refine the predictions of pre-trained classifiers. Our experimental results demonstrate the
effectiveness of DART across benchmarks that include both synthetic and natural distribution shifts.
We expect that our method can be integrated with various TTA techniques in future applications,
enhancing the robustness and accuracy of models when facing test-time distribution shifts.
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A IMPLEMENTATION DETAILS

A.1 DETAILS ABOUT DATASET

We consider two types of input data distribution shifts: synthetic and natural distribution shifts. The
synthetic and natural distribution shifts differ in their generation process. Synthetic distribution shift
is artificially generated by data augmentation schemes including image corruption like Gaussian
noise and glass blur. On the other hand, the natural distribution shift occurs due to changes in image
style transfer, for example, the domain is shifted from artistic to photographic styles.

For the synthetic distribution shift, we first test on CIFAR-10/100C, which is created by applying 15
types of common image corruptions (e.g. Gaussian noise and impulse noise) to the clean CIFAR-
10/100 test dataset. We test on the highest severity (i.e., level-5). CIFAR-10/100C is composed
of 10,000 generic images of size 32 by 32 from 10/100 classes, respectively. The class distribu-
tions of the original CIFAR-10/100C are balanced. Thus, to change the label distributions between
training and test domains, we consider CIFAR-10/100C-LT, which have long-tailed class distribu-
tions, as described in Section 2.1. Then, we test on ImageNet-C, which is composed of generic
images of size 224 by 224 from 1,000 classes. The samples of ImageNet-C are created by applying
the same image corruptions of CIFAR-10/100C. We test on the highest severity (i.e., level-5). To
change the label distributions between training and test domains, we can construct a new test set,
named ImageNet-C-LT similar to CIFAR-10/100C-LT. However, unlike CIFAR-10/100C-LT, each
test batch of ImageNet-C-LT does not have imbalanced class distributions, since the test batch size
for the ImageNet-C is set to be smaller than the number of classes, e.g., 32 or 64. Thus we consider a
new test set for ImageNet-C by the online-label distribution shift setup, described in SAR, which is
composed of K subsets, whose K is the number of classes of ImageNet-C. We assume a class distri-
bution of the k-th subset as [p1, p2, . . . , pK ], where pk = pmax and pi = pmin = (1− pmax)/(K − 1)
for i ̸= k. Let α = pmax/pmin represent the imbalance ratio. Each subset consists of 1,000 sam-
ples from the ImageNet-C test set based on the above class distribution. Thus, the new test set
for ImageNet-C is composed of 100,000 samples. Additionally, we shuffle the subsets to prevent
predictions based on their order.

For the natural distribution shift, we test on CIFAR-10.1-LT, digit classification, and PACS bench-
marks. CIFAR-10.1 (Recht et al., 2018) is a newly collected test dataset for CIFAR-10 from the Tiny-
Images dataset (Torralba et al., 2008), and is known to exhibit a distribution shift from CIFAR-10
due to differences in data collection process and timing. Since the CIFAR-10.1 has a balanced class
distribution, we construct a test set having a long-tailed class distribution, named CIFAR-10.1-LT,
similar to CIFAR-10/100C-LT. The digit classification benchmark consists of one training dataset
(SVHN (Netzer et al., 2011)) and three test datasets MNIST (Deng, 2012), USPS (Hull, 1994), and
MNIST-M (Ganin et al., 2016)). These four datasets have different styles of digit images. SVHN
is composed of 73,257/26,032 training/test images, and MNIST/USPS/MNIST-M are composed of
10,000/2,007/10,000 test images from 10 classes, respectively. All digit datasets have class imbal-
ance as illustrated in Figure 5. SVHN is composed of colored real-world digit images. MNIST and
USPS are composed of handwritten digits. MNIST-M is generated by combining MNIST digits and
BSDS500 (Arbelaez et al., 2010) backgrounds. PACS benchmark consists of samples from seven
classes including dogs and elephants in four domains: photo, art, cartoon, and sketch. In PACS, we
test the robustness of classifiers across 12 different scenarios, each using the four domains as training
and test domains, respectively. The data generation/collection process of the digit classification and
PACS benchmarks is different across domains, resulting in differently imbalanced class distribution,
as illustrated in Figure 2.

A.2 DETAILS ABOUT PRE-TRAINING

We use ResNet-18 for digit classification, ResNet-26 for CIFAR datasets, and ResNet-50 for PACS
and ImageNet-C as backbone networks. We use publicly released trained models and codes for a
fair comparison. Specifically, for CIFAR-10/100 1, we train the model with 200 epochs, batch size
200, SGD optimizer, learning rate 0.1, momentum 0.9, and weight decay 0.0005. For PACS, we use
released pre-trained models of TTAB (Zhao et al., 2023) 2. For ImageNet-C, we use the released

1https://github.com/locuslab/tta_conjugate
2https://github.com/LINs-lab/ttab
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Figure 5: Class distribution of all benchmarks.

pre-trained models in the PyTorch library (Paszke et al., 2019) as described in Niu et al. (2023). For
digit classification, we train the model with 50 epochs, batch size 256, SGD optimizer, learning rate
0.01, and weight decay 0.0005 with cosine annealing.

A.3 DETAILS ABOUT INTERMEDIATE TIME TRAINING

We use a 2-layer MLP (Haykin, 1998) for the distribution shift aware module gϕ. gϕ is composed
of two fully connected layers and ReLU (Agarap, 2018). The hidden dimension of the distribution
shift-aware module is set to 1,000. During the intermediate time, we train the gϕ by experiencing
several batches with diverse class distributions using the labeled training dataset. For digit classi-
fication benchmark, we train gϕ with SGD optimizer (Ruder, 2016), a learning rate of 0.001, and
cosine annealing for 100 epochs. For other benchmarks, we train gϕ with Adam optimizer (Kingma
& Ba, 2014), a learning rate of 0.001, and cosine annealing for 100 epochs. To make intermediate
batches having diverse class distributions, we use Dirichlet sampling with two hyperparameters, the
Dirichlet sampling concentration parameter δ, and the number of chunks Ndir. As these two hyper-
parameters increase, the class distributions of intermediate batches become similar to the uniform.
δ is set to 0.001 for ImageNet-C, 10 for digit classification, and 1 for other benchmarks. Ndir is set
to 2000 for ImageNet-C, and to the value obtained by dividing the intermediate dataset size by the
intermediate batch size for other benchmarks, e.g. 250 for CIFAR-10C-LT. The intermediate batch
size is set to 50 for ImageNet-C and 200 for other benchmarks.

We use the labeled dataset in the training domain to train the distribution shift-aware module. Specif-
ically, on CIFAR benchmarks and PACS, there is no auxiliary dataset in the training domain and we
use the training dataset as an intermediate dataset. On the other hand, in the digit classification
benchmark, we use the SVHN test dataset as an intermediate dataset. For ImageNet-C, the interme-
diate dataset is a subset of the ImageNet training dataset, composed of 50 samples randomly selected
from each of the classes.

A.4 DETAILS ABOUT TEST-TIME ADAPTATION METHODS

For a fair comparison, we fine-tune the Batch Normalization (BN) layer parameters unless otherwise
specified. We use the Adam optimizer with a learning rate of 0.001 for all TTA methods in all
experiments, except on ImageNet-C, following the approach in TENT (Wang et al., 2020). We set
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the test batch size to 32/64/200 for PACS, ImageNet-C, and the other benchmarks. We run on 4
different random seeds for the intermediate-time and test-time training (0,1,2, and 3).

BNAdapt (Schneider et al., 2020) BNAdapt does not update the parameters in the trained model,
but it corrects the BN statistics using the BN statistics computed in the test domain in exponential
moving average with momentum 0.1.

TENT (Wang et al., 2020) TENT replaces the BN statistics of the trained classifier with the
BN statistics computed in each test batch during test time. TENT only optimizes the BN layer
parameters to minimize the prediction entropy of the test data.

PL (Lee, 2013) PL regards the test data with confident predictions as reliable pseudo-labeled data
and fine-tunes the BN layer parameters to minimize cross-entropy loss using these pseudo-labeled
data. We set the confidence threshold to 0.9 for filtering out test data with unconfident predictions.

NOTE (Gong et al., 2022) NOTE aims to mitigate the negative effects of non-i.i.d stream during
test time by instance-aware BN (IABN) and prediction-balanced reservoir sampling (PBRS). IABN
first detects whether a sample is out-of-distribution or not, by comparing the instance normalization
(IN) and BN statistics for each sample. For in-distribution samples, IABN uses the standard BN
statistics, while for out-of-distribution samples, it corrects the BN statistics using the IN statistics.
We set the hyperparameter to determine the level of detecting out-of-distribution samples to 4 as
used in NOTE (Gong et al., 2022). Due to non-i.i.d stream, class distribution within each batch is
highly imbalanced. Thus, PBRS stores an equal number of predicted test data for each class and
does test-time adaptation using the stored data in memory. We set the memory size the same as the
batch size, for example, 200 for CIFAR benchmarks. NOTE and ODS create prediction-balanced
batches and utilize them for adaptation. Thus, the batches for adaptation in ODS and NOTE have
different class distributions from the test dataset, unlike other baselines including TENT. Therefore,
in NOTE and ODS, DART is used exclusively to enhance the prediction accuracy of the examples
stored in memory.

DELTA (Zhao et al., 2022) DELTA aims to alleviate the negative effects such as wrong BN statis-
tics and prediction bias by test-time batch renormalization (TBR) and dynamic online reweighting
(DOT). Since the BN statistics computed in the test batch are mostly inaccurate, TBR corrects the
BN statistics with renormalization using test-time moving averaged BN statistics with a factor of
0.95. DOT computes the class prediction frequency in exponential moving average with a factor of
0.95 during test time and uses the estimated class prediction frequency to assign low/high weights
to frequent/infrequent classes, respectively.

LAME (Boudiaf et al., 2022) LAME modifies the prediction by Laplacian regularized maxi-
mum likelihood estimation considering nearest neighbor information in the embedding space of the
trained classifier. We compute the similarity among samples for the nearest neighbor information
with k-NN with k = 5.

ODS (Zhou et al., 2023) ODS estimates label distribution of test data using the refined label
distribution by LAME and adapts the trained classifiers using IABN and PBRS like NOTE, while
assigning high/low weights on infrequent/frequent classes, respectively. Thus, we use the same
hyperparameters used in LAME and NOTE.

LSA (Park et al., 2023) LSA estimates the label distribution of test data and produces an affine
layer for feature representation for test data and parameter perturbation for the last linear layer for
trained classifiers by taking the estimated label distribution. During intermediate time, the LSA is
trained to output affine parameters for the feature representation γ ∈ R1×d and β ∈ R1×d and
parameter perturbations ∆W ∈ Rd×C and ∆b ∈ R1×C for the last linear classifier weighted by W
and b by taking ground truth label distribution. Specifically, when z ∈ Rd is a feature representation
for a test data x, the refined prediction ŷ for (x, y) ∈ D is

ŷ = (γz + β)(W +∆W ) + (b+∆b). (3)
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The LSA trains a label shift adapter to match the refined prediction ŷ and the ground truth label
y using the logit adjusted loss. At test time, the LSA estimates the pseudo-label distribution in an
online manner similar to DELTA,

q̂t = αȳt + (1− α)q̂t−1, (4)

where q̂t is the estimated test label distribution at time t, α is momentum hyperparameter, and ȳt is
the averaged model prediction of test batch at time t. α is set to 0.1. Then, the label shift adapter
takes the estimated test label distribution q̂ as an input during the test time. Similar to DART, LSA
is a plug-in method that can be used in any existing entropy-minimization TTA methods.

The label shift adapter structure is a 2-layer MLP with hidden dimension 100. During intermediate
time, LSA originally experiences several batches having three types of class distributions (forward,
uniform, and backward class distributions) to train the label shift adapter. Forward/ backward indi-
cates a class distribution that is same/inverse order of the label distribution of the training dataset,
respectively. If the training class distribution is uniform, then LSA can only experience uniformity
during the intermediate time.

A.5 DART ON LARGE-SCALE BENCHMARK

As the number of classes K increases, the output dimension of gϕ also increases as K2. For instance,
in CIFAR-100C-LT, the output dimension of gϕ is 10,000. The high output dimension makes it hard
to learn and generate good square matrix T . To address it, we modify the module gϕ to produce T
with some entries fixed to 0 for the large-scale datasets. For CIFAR-100C, we first analyze class-
wise confusion patterns using an augmented training dataset. Then we set the entries where class-
wise confusion never occurred to 0 when training the distribution-shift aware module to generate T .
For example, when we use a speckle noise augmentation of severity level 1, we can set 7,400 entries
of T to 0. We note that the noise type is not used when testing the model with CIFAR-100C test set.
On the other hand, for ImageNet-C, we set the off-diagonal entries to 0 since the number of classes
is huge.

During test time, gϕ takes the averaged pseudo label distribution over the test dataset to output a
square matrix T of size K. This is because in benchmarks like CIFAR-10C-LT, the class distribution
of each test batch is similar to the one of the whole test dataset. However, for the online label
distribution shift setup on ImageNet-C, the class distributions within test batches are different. Thus
we compute the square matrix T for each test batch.

CPL (Goyal et al., 2022) finds that TTA results can vary significantly when prediction confi-
dence changes although pseudo-label accuracy is the same. DART on the large-scale bench-
marks shows a similar phenomenon. Therefore, we perform TTA with normalization to
maintain the prediction confidence on CIFAR-100C-LT. For example, in the case of TENT
(Wang et al., 2020), we adapt the classifier fθ using a training objective LTENT(θ) =

Ex̂∈Dtest
[−

∑
k softmax(∥fθ(x̂)∥2 fθ(x̂)Ttest

∥fθ(x̂)Ttest∥2
)k log softmax(∥fθ(x̂)∥2 fθ(x̂)Ttest

∥fθ(x̂)Ttest∥2
)k]. On the other

hand, DART using the normalization shows similar performance compared to the original DART
on CIFAR-10. For example, TENT+DART with the normalization achieves the test accuracy of
85.63±0.19 on CIFAR-10C-LT (ρ = 10).

A.6 RUNTIME

We conduct experiments on RTX A6000. It takes about 2 hours to train gϕ during intermediate time
for CIFAR-10C-LT. We train gϕ only once for each pre-trained classifier. Since we train a 2-layer
MLP during the intermediate time, it requires a shorter training time compared to pre-training.

B MORE RELATED WORKS

B.1 TTA METHOD UTILIZING INTERMEDIATE TIME

Some recent works (Choi et al., 2022; Lim et al., 2022; Park et al., 2023) try to prepare an unknown
test-time distribution shift by utilizing the training dataset at the time after the training phase and
before the test time, called intermediate time. SWR (Choi et al., 2022) and TTN (Lim et al., 2022)
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compute the importance of each layer in the trained model during intermediate time and prevent the
important layers from significantly changing during test time. SWR and TTN compute the impor-
tance of each layer by computing cosine similarity between gradient vectors of training data and
its augmented data. TTN additionally updates the importance with subsequent optimization using
cross-entropy. Layers with lower importance are encouraged to change significantly during test
time, while layers with higher importance are constrained to change minimally. On the other hand,
our method DART trains a distribution shift aware module during intermediate time by experiencing
several batches with diverse class distributions and learning how to modify the predictions generated
by pre-trained classifiers to mitigate the negative effects caused by the class distribution shift of each
batch.

B.2 TTA METHODS CONSIDERING SAMPLE-WISE RELATIONSHIPS

Some recent works (Boudiaf et al., 2022; Iwasawa & Matsuo, 2021; Jang et al., 2022) focus on pre-
diction modification using the nearest neighbor information based on the idea that nearest neighbors
in the embedding space of the trained classifier share the same label. T3A (Iwasawa & Matsuo,
2021) replaces the last linear layer of the trained classifier with the prototypical classifier, which
predicts the label of test data to the nearest prototype representing each class in the embedding
space. LAME (Boudiaf et al., 2022) modifies the prediction of test data by Laplacian-regularized
maximum likelihood estimation considering clustering information.

B.3 LOSS CORRECTION METHODS FOR LEARNING WITH LABEL NOISE

In learning with label noise (LLN), it is assumed that there exists a noise transition matrix T , which
determines the label-flipping probability of a sample from one class to other classes. For LLN, two
main strategies have been widely used in estimating T : 1) using anchor points (Xia et al., 2019;
Yao et al., 2020), which are defined as the training examples that belong to a particular class almost
surely, and 2) using the clusterability of nearest neighbors of a training example belonging to the
same true label class (Zhu et al., 2021). LLN uses the empirical pseudo label distribution of the
anchor points or nearest neighbors to estimate T .

For TTA, on the other hand, the misclassification occurs not based on a fixed label-flipping pattern,
but from the combination of covariate shift and label distribution shift. To adjust the pre-trained
model against the covariate shifts, most TTA methods apply the BN adaptation, which updates the
Batch Norm statistics using the test batches. However, when there exists label distribution shift in
addition to the covariate shift, since the updated BN statistics follows the test label distribution, it
induces bias in the classier (by pulling the decision boundary closer to the head classes and pushing
the boundary farther from the tail classes as in Appendix C). Thus, the resulting class-wise confusion
pattern depends not only on the class-wise relationship in the embedding space but also on the
classifier bias originated from the label distribution shift and the updated BN statistics. Such a
classifier bias has not been a problem for LLN, where we don’t modify the BN statistics of the
classifier at the test time.

Our proposed method, DART, focuses on this new class-wise confusion pattern, and is built upon
the idea that if the module experiences various batches with diverse class distributions before the test
time, it can develop the ability to refine inaccurate predictions resulting from label distribution shifts.
Based on this intuition, we train a distribution shift-aware module during the intermediate time, by
exposing several batches with diverse class distributions using the training datasets. As described
in Equation (1) of the manuscript, the module is trained using the labeled training dataset to output
a square matrix of the class dimension for prediction refinement. In this process, the module takes
the averaged pseudo-label distribution as an input to learn the class-wise confusion pattern of the
BN-adapted classifier depending on the label distribution shift.

C MOTIVATING TOY EXAMPLE

To understand the effects of test-time class distribution shift, we consider a four-class Gaussian
mixture distribution with mean centering similar to batch normalization. Let the distribution of
class i is N (µi, σ

2I2) at training time for i = 1, 2, 3, and 4, where µi ∈ R2 is the mean of each class
distribution. We set the mean of each class as µ1 = (d, βd), µ2 = (−d, βd), µ3 = (d,−βd), and
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µ4 = (−d,−βd), where β controls the distances between the classes, and we assume that β > 1
without loss of generality. Moreover, we assume that the four classes have the same prior probability
at training time, i.e., ptr(y = i) = 1/4, i = 1, 2, 3, and 4. Since the class priors for the training data
are equal, the Bayes classifier ftr predicts x to the class i when

ptr(x|y = i) > ptr(x|y = j), j ̸= i (5)

due to Bayes’ rule. Then, we have

ftr(x) =


1, if x1 > 0, x2 > 0;

2, if x1 < 0, x2 > 0;

3, if x1 > 0, x2 < 0;

4, if x1 < 0, x2 < 0..

(6)

At the test time, we assume that the class distribution is imbalanced, similar to the long-tailed dis-
tribution mainly discussed in the manuscript, as

pte(y = 1) = p, (7)
pte(y = 2) = 1/4, (8)
pte(y = 3) = 1/4, (9)
pte(y = 4) = 1/2− p. (10)

Without loss of generality, we set 1/4 < p < 1/2. Due to the mean centering, the distribution of
class i is shifted to N (µ′

i, σ
2I2), where µ′

i is the shifted class mean as follows:

µ′
1 = ((3/2− 2p)d, (3/2− 2p)βd), (11)

µ′
2 = ((−1/2− 2p)d, (3/2− 2p)βd), (12)

µ′
3 = ((3/2− 2p)d, (−1/2− 2p)βd), (13)

µ′
4 = ((−1/2− 2p)d, (−1/2− 2p)βd). (14)

Then, the probability that the samples from class 1 is wrongly classified to class 2 can be computed
as

Pr[ftr(x) = 2|y = 1] = Pr
x=(x1,x2) N (µ′

1,σ
2I2)

[x1 < 0, x2 > 0] (15)

= Φ

(
− (3/2− 2p)d

σ

){
1− Φ

(
− (3/2− 2p)βd

σ

)}
, (16)

where Φ is the standard normal cumulative density function. Similarly, the probability that the
samples from class 2 is wrongly classified to class 1 can be computed as

Pr[ftr(x) = 1|y = 2] =

{
1− Φ

(
− (−1/2− 2p)d

σ

)}{
1− Φ

(
− (3/2− 2p)βd

σ

)}
. (17)

Since 1/4 < p < 1/2, we have Pr[ftr(x) = 2|y = 1] > Pr[ftr(x) = 1|y = 2]. With similar
computations, we can obtain Pr[ftr(x) = i|y = 1] > Pr[ftr(x) = 1|y = i],∀i = 2, 3, and 4.
In other words, the probability that the samples from the class of a larger number of samples are
confused to the rest of classes is greater than the inverse direction.

The probability that samples from class 1 are wrongly classified by ftr as class 1,2, and 3 can be
calculated as follows:

Pr[ftr(x) = 2|y = 1] = Φ

(
− (3/2− 2p)d

σ

){
1− Φ

(
− (3/2− 2p)βd

σ

)}
, (18)

Pr[ftr(x) = 3|y = 1] = Φ

(
− (3/2− 2p)βd

σ

){
1− Φ

(
− (3/2− 2p)d

σ

)}
, (19)

Pr[ftr(x) = 4|y = 1] = Φ

(
− (3/2− 2p)βd

σ

)
Φ

(
− (3/2− 2p)d

σ

)
. (20)
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(a) T-SNE plots for CIFAR-10C-LT with Gaussian noise, ρ=100
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Figure 6: (a) T-SNE plots of test data with ground truth labels (left) and their predictions (right) for
CIFAR-10C-LT with Gaussian noise, ρ=100 (b) Estimated T by HOC

Note that Φ
(
− (3/2−2p)βd

σ

)
has the following properties: Since 1/4 < p < 1/2,

Φ
(
− (3/2−2p)βd

σ

)
< 1/2; Since β > 1, Φ

(
− (3/2−2p)βd

σ

)
< Φ

(
− (3/2−2p)d

σ

)
;

∂
∂pΦ

(
− (3/2−2p)βd

σ

)
= C1β exp

(
− (3/2−2p)2β2d2

2σ2

)
, where C1 is a positive constant which are

independent of p and β, decreases as β grows for β > σ
(3/2−2p)d .

Thus, we can say that

(1) The probability of samples from the head class (class 1) are being confused to tail classes is
greater than the reverse direction, specifically, Pr[ftr(x) = i|y = 1] > Pr[ftr(x) = 1|y =
i],∀i ̸= 1, where ftr is a Bayes classifier obtained using the training dataset.

(2) The probability that a sample from the head class is confused to the closer class is larger
than the farther classes, specifically, Pr[ftr(x) = 2|y = 1] > Pr[ftr(x) = 3|y = 1] >
Pr[ftr(x) = 4|y = 1].

(3) The increasing confusing probability to close class is larger than the one to farther class
as class distribution imbalance p increases, specifically, ∂

∂p Pr[ftr(x) = 2|y = 1] >
∂
∂p Pr[ftr(x) = 3|y = 1] when 2σ < d.

The effects of test-time label distribution shift can be consistently observed not only in this toy
example but also in real datasets, including CIFAR-10C-LT.

D TRANSITION MATRIX ESTIMATION BY NOISY LABEL LEARNING METHOD

HOC (Zhu et al., 2021) estimates the noisy label transition matrix for a given noisy label dataset
under the intuition that the nearest neighbor in the embedding space of a trained classifier shares the
same ground truth label. We found that HOC failed to estimate the transition matrix for CIFAR-
10C-LT with the label distribution shift of ρ = 100. HOC estimates the transition matrix by using
the empirical pseudo label distribution of nearest neighbors of each example. However, as observed
in Figure 6 left, the nearest neighbors in the embedding space already have the same pseudo la-
bels/predictions for the BN-adapted classifier, which makes it impossible to estimate a correct T
depending on the label distribution shift. Thus, the estimated matrix by HOC is similar to the iden-
tity matrix as observed in Figure 6 right.
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Table 6: Average accuracy (%) on CIFAR-10C-LT of two Oracles that modify (Oracle (logit)) the
classifier output and (Oracle (prob)) the softmax output, respectively.

Method ρ = 1 ρ = 10 ρ = 100

NoAdapt 71.68±0.00 71.28±0.08 71.13±0.17
BNAdapt 85.24±0.08 79.01±0.07 66.90±0.16

Oracle (logit) 85.53±0.05 85.97±0.18 87.77±0.07
Oracle (prob) 85.24±0.07 81.03±0.12 78.57±0.16
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Figure 7: Comparison of trained T of two oracles modifying logit and softmax probability.

E ADDITIONAL EXPERIMENTS

E.1 ORACLE: SOFTMAX OUTPUT MODIFICATION VS LOGIT MODIFICATION

The Oracle method in Section 2.1 modifies the classifier output (logit) by simply multiplying
Toracle, logit that minimizes the following objective

Toracle, logit = argmin
T∈RK×K

E(x,y)∈Dtest
[CE(softmax(fθ(x)T ), y)] (21)

by gradient descent. However, noisy label learning methods such as HOC usually modify the soft-
max output, not the logit. Thus, we consider a new Oracle method that modifies the softmax output
by simply multiplying Toracle, prob that minimizes the following objective

Toracle, prob = argmin
T∈{T∈RK×K :

∑
j Tij=1,0≤Tij≤1}

E(x,y)∈Dtest
[CE(softmax(fθ(x))T, y)] (22)

by gradient descent. In Table 6, we present the test accuracy achievable with Toracle when applied to
the output of the BNAdapt model on CIFAR-10C-LT. We can observe that the Oracle that modifies
the logits is more effective in mitigating performance degradation by test-time distribution shift
regardless of the class imbalance ratio ρ. Thus, the distribution shift-aware module gϕ of DART
focuses on generating a square matrix T that modifies logit, not softmax output.

E.2 ITERATIVE UPDATES OF T

We consider the variant of DART, which modifies the classifier output and obtains a square matrix
by taking the modified classifier outputs iteratively. Specifically, for i ∈ N

Ti = gϕ(Ex∈Dtest [softmax(fθ(x)Π
i−1
j=0Tj)]), (23)

where T0 is set to an identity matrix of size K. In Table 7, we observe that the refined pseudo label
distribution is similar to the ground truth label distribution when modifying the prediction only once
by DART (iteration=1). However, the performance gradually decreases as the number of iterations
increases, which shows that the iterative updates does not help in improving the performance. We
conjecture that these results originated from the fact that gϕ is trained to learn how to correct the
classifier output of the pre-trained classifier fθ, but not any classifier including fθΠ

i−1
j=0Tj .

20



Under review as a conference paper at ICLR 2024

0 2 4 6 8
fine-tuning epochs

0.74

0.76

0.78

0.80

te
st

 a
cc

ur
ac

y

= 10

0 2 4 6 8
fine-tuning epochs

0.65

0.70

0.75

0.80

te
st

 a
cc

ur
ac

y

= 100

T0 = Id10 T0 = Tours

Figure 8: Changes of test accuracy while learning/fine-tuning the square matrix T using the confi-
dent pseudo-labeled test data
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Table 7: Iterative update of T on CIFAR-10C-LT with Gaussian noise and ρ of 10 and 100. Average
accuracy (%) and pseudo-label distribution of the test data are reported.

ρ = 10

iteration acc

Ground truth label distribution

0 1 2 3 4 5 6 7 8 9

0.2449 0.1895 0.1467 0.1136 0.0879 0.0681 0.0526 0.0406 0.0316 0.0245

Pseudo label distribution

0 0.7392 0.1691 0.1570 0.1221 0.0971 0.0964 0.0816 0.0808 0.0639 0.0696 0.0624
1 0.8009 0.2269 0.2034 0.1382 0.0913 0.0972 0.0717 0.0703 0.0472 0.0391 0.0146
2 0.6453 0.4546 0.2592 0.1035 0.0558 0.0143 0.0503 0.0337 0.0209 0.0065 0.0010
3 0.4817 0.6098 0.3026 0.0078 0.0209 0.0021 0.0231 0.0094 0.0094 0.0113 0.0036
4 0.4374 0.6362 0.3378 0.0017 0.0051 0.0003 0.0045 0.0012 0.0047 0.0056 0.0028

ρ = 100

iteration acc

Ground truth label distribution

0 1 2 3 4 5 6 7 8 9

0.4036 0.2417 0.1449 0.0868 0.0521 0.0311 0.0186 0.0109 0.0065 0.0040

Pseudo label distribution

0 0.6240 0.2021 0.1854 0.1245 0.0892 0.0805 0.0630 0.0660 0.0522 0.0701 0.0671
1 0.7922 0.3204 0.2408 0.1446 0.0795 0.0688 0.0413 0.0419 0.0203 0.0303 0.0122
2 0.7019 0.5846 0.2899 0.0450 0.0426 0.0038 0.0203 0.0083 0.0033 0.0018 0.0004
3 0.6378 0.6466 0.3101 0.0054 0.0174 0.0009 0.0052 0.0029 0.0045 0.0035 0.0033
4 0.6246 0.6608 0.3261 0.0009 0.0035 0.0001 0.0008 0.0001 0.0028 0.0026 0.0022

Table 8: Average accuracy (%) on CIFAR-10C/10.1-LT, digit classification, and PACS.

Method CIFAR-10C-LT CIFAR-10.1-LT Digit PACS
ρ = 10 ρ = 100 ρ = 10 ρ = 100

NoAdapt 71.28±0.08 71.13±0.17 87.13±0.48 86.64±0.97 58.45±0.00 60.65±0.00

BNAdapt 79.01±0.07 66.90±0.16 77.37±0.45 64.43±0.97 61.10±0.20 72.08±0.11
BNAdapt+ours 84.53±0.20 83.34±0.20 85.81±0.65 80.64±2.12 62.60±0.35 75.33±0.09

TENT 83.02±0.19 70.49±0.43 78.23±0.52 64.53±1.53 63.59±0.19 74.53±0.97
TENT+ours 85.13±0.31 88.56±0.13 86.88±0.78 82.32±1.60 64.85±0.44 80.98±1.19

TTT++ 80.15±0.21 68.64±0.37 77.74±0.35 64.74±0.75 60.86±0.06 67.11±0.20

E.3 FINE-TUNE T WITH CONFIDENT PSEUDO-LABELED TEST DATA

DART uses the fixed square matrix Ttest = gϕ(p̄) where p̄ is an averaged pseudo label distribution
for test data. We can consider a variant of DART that fine-tunes Ttest by the confident pseudo-labeled
test data. Specifically, we can obtain by gradient descent

T ∗ = argmin
T

Ex∈Dtest [1{max softmaxfθ(x) ≥ τ}CE(softmax(fθ(x)T ), p̂x)] + αMSE(T, T0),

(24)

where p̂x = argmax fθ(x) is the pseudo label, τ is the confidence threshold, MSE is the mean
square error, α is a hyperparameter for the regularization term, and T0 is Ttest. Moreover, one might
consider obtaining the square matrix using only the confident pseudo-labeled test data (i.e., T0 is set
to an identity matrix of size K). Here, α and τ are set to 1 and 0.9, respectively.

In Figure 8, we summarize the test accuracy while fine-tuning T for 10 epochs on CIFAR-10C-LT
with Gaussian noise of ρ = 10 and 100. We find that (1) fine-tuning Ttest improves the test accuracy
when ρ is 100, but it worsens the test accuracy when ρ is 10; (2) learning T from scratch enhances
the test accuracy, but it is marginal so is worse than one of DART. We conjecture that fine-tuning T
utilizing wrong pseudo labels can diminish the efficiency of DART.
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E.4 COMPARISON WITH TEST-TIME TRAINING METHOD TTT++

TTT++ adapts the trained classifiers using instance discrimination loss (contrastive learning) while
aligning the feature statistics of training and test time. The original TTT++ performs contrastive
learning in the embedding space of the trained contrastive head. However, the trained head can be
available only when the instance discrimination loss is used during the training time. Thus, for a fair
comparison, we consider a modified TTT++ which performs contrastive learning in the embedding
space of the feature extractor. As data augmentation techniques for the contrastive learning, we use
RandomHorizontalFlip, RandomResizedCrop, Grayscale, Normalize for digit classification, Ran-
domHorizontalFlip, RandomResizedCrop, ColorJitter, RandomGrayscale, Normalize for CIFAR
and PACS benchmarks as described in Liu et al. (2021). DART focuses on improving prediction
accuracy that has been reduced due to the test-time class distribution shift. Therefore, DART can
not be used as a plug-in method for TTT++ that does not use prediction in test-time training.

In Table 8, we summarize the results for the original and DART-applied TTA and TTT++. the
modified TTT++ shows slightly better performances than BNAdapt on CIFAR and digit benchmarks,
but it achieves lower performances compared to DART.

E.5 DART ON BALANCED CIFAR-10C

We summarize the experimental results of DART on the balanced CIFAR-10C in Table 13. We
observe that DART-applied TTA methods show worse performance than naive TTA methods. This
is attributed to the limited gain even with Oracle method. In Table 1, Oracle achieved only a marginal
performance gain of 0.3% on average even when using the labels of test data on balanced CIFAR-
10C. Therefore, DART, which uses the same prediction modification scheme, can only achieve
limited gains even when generating square matrices similar to the ones of Oracle. We note that
experiments on balanced datasets are also challenging for ODS (Zhou et al., 2023), one of the
methods alleviating test-time class distribution shift.

E.6 SENSITIVITY ANALYSIS ON HYPERPARAMETERS

We verify the robustness against the changes of the structure of gϕ and the test batch size B. First,
we conducted experiments to check the sensitivity of DART over the hidden dimension dh and
number of layers of gϕ, and the results are summarized on CIFAR-10C-LT of ρ = 100 in Table 9.
We can observe that DART is robust against the change in the gϕ structure. And then, we conducted
experiments to check the sensitivity of DART over B and the results are summarized in Table 10.
We can observe that DART is robust against the change in B.

Table 9: Sensitivity analysis about the network design of gϕ.

2-layer MLP 3-layer MLP
dh = 250 dh = 500 dh = 1000 dh = 2000 dh = 250 dh = 500 dh = 1000 dh = 2000

NoAdapt 71.13

BNAdapt 66.90
BNAdapt+DART (ours) 80.6 82.17 83.34 83.83 83.83 84.27 84.78 84.97

TENT 70.49
TENT+DART (ours) 87.46 88.23 88.56 88.65 88.81 88.67 88.6 88.09

Table 10: Sensitivity analysis about the test batch size B.

B=32 B=64 B=128 B=256

NoAdapt 71.13

BNAdapt 65.48 66.15 66.68 66.99
BNAdapt+DART (ours) 81.70 82.65 83.17 83.51

TENT 71.89 71.98 71.48 69.97
TENT+DART (ours) 85.63 88.20 88.86 88.30
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E.7 COMPARISON WITH SAR

SAR (Niu et al., 2023), which adapts the trained models to lie in a flat region on the entropy loss sur-
face, is widely known as robust to label distribution shifts. Since DART focuses on effectively mod-
ifying the inaccurate predictions/pseudo-labels caused by test-time label distribution shifts, DART
can be integrated as a plug-in method with any TTA methods, including SAR, that rely on pseudo-
labels obtained from the trained classifiers. Thus, DART can also be used with SAR, and we sum-
marize the experimental results on CIFAR-10C-LT in Table 11, and on ImageNet-C-imbalance in
Table 12. We can observe that the performances of SAR are worse/better than those of TENT on
CIFAR-10C-LT/ImageNet-C-imbalance, respectively. However, DART consistently improves the
performance of the SAR in a similar way as it improves the performances of other TTA methods,
since DART improves the accuracy of the initial pseudo-labels used for SAR.

Table 11: Average accuracy (%) on CIFAR-10C-LT

ρ = 10 ρ = 100

NoAdapt 71.28 71.13

BNAdapt 79.01 66.9
BNAdapt+DART (ours) 84.53 (+5.52) 83.34 (+16.44)

TENT 83.02 70.49
TENT+DART (ours) 85.13 (+2.11) 88.56 (+18.07)

SAR 79.76 67.3
SAR+DART (ours) 84.90 (+5.14) 83.56 (+16.26)

Table 12: Average accuracy (%) on ImageNet-C-imbalance

α = 1000 α = 2000 α = 5000

NoAdapt 18.15 18.16 18.16

BNAdapt 19.85 14.11 8.48
BNAdapt+ours 25.18 (+5.33) 20.48 (+6.37) 14.82 (+6.34)

TENT 22.49 13.52 6.61
TENT+ours 26.18 (+3.69) 18.51 (+4.99) 11.17 (+4.56)

SAR 26.46 17.36 9.09
SAR+ours 32.49 (+6.03) 23.38 (+6.02) 12.9 (+3.81)
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Table 13: Test accuracy of CIFAR-10C-LT with ρ = 1 when the model is fine-tuned using Adam
optimizer by only one epoch.

gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression avg

NoAdapt 46.41±0.00 51.61±0.00 27.11±0.00 90.69±0.00 67.95±0.00 82.06±0.00 91.87±0.00 83.84±0.00 80.20±0.00 68.79±0.00 91.20±0.00 51.59±0.00 82.77±0.00 81.19±0.00 77.94±0.00 71.68±0.00

BNAdapt 80.48±0.12 81.85±0.10 69.94±0.19 91.44±0.15 80.18±0.20 88.01±0.06 92.69±0.07 86.27±0.13 88.51±0.14 83.60±0.12 91.26±0.05 89.49±0.08 83.95±0.10 90.46±0.22 80.39±0.18 85.24±0.08
BNAdapt+ours 79.92±0.15 81.04±0.10 69.60±0.16 91.02±0.20 79.31±0.18 87.39±0.21 92.31±0.08 85.81±0.09 88.04±0.17 82.94±0.20 90.92±0.10 89.12±0.07 83.47±0.26 89.95±0.09 79.72±0.28 84.70±0.12
BNAdapt+ours (diag) 79.51±0.31 80.48±0.31 69.88±0.15 90.61±0.19 79.31±0.19 87.05±0.23 91.79±0.13 85.61±0.19 87.63±0.15 82.69±0.11 90.65±0.09 88.99±0.12 83.21±0.16 89.77±0.14 79.78±0.10 84.46±0.14
BNAdapt+ours (online) 79.71±0.15 80.75±0.25 68.78±0.60 90.46±0.38 79.15±0.51 86.92±0.25 91.36±0.37 85.35±0.31 87.41±0.32 82.36±0.42 90.38±0.23 88.45±0.21 82.94±0.42 89.46±0.39 78.97±0.97 84.16±0.24

TENT 82.34±0.12 83.56±0.42 73.62±0.47 91.35±0.30 80.98±0.74 88.54±0.31 92.23±0.15 87.54±0.34 88.54±0.47 87.61±0.42 91.50±0.25 90.47±0.73 83.29±0.35 90.20±0.39 83.44±0.47 86.35±0.22
TENT+ours 77.85±1.04 77.46±1.63 70.88±0.74 88.98±0.64 77.04±1.16 85.94±0.74 89.57±0.61 84.91±0.98 85.47±0.84 85.52±0.98 89.00±0.49 88.32±0.87 80.49±0.73 86.96±0.80 80.20±0.66 83.24±0.75
TENT+ours (diag) 72.12±1.75 70.64±2.56 66.35±2.22 81.97±2.62 71.29±1.87 78.44±1.83 82.56±2.58 77.18±2.20 78.35±2.91 78.71±3.30 82.97±2.23 80.68±2.40 72.96±1.80 80.20±2.41 75.02±1.43 76.63±2.22
TENT+ours (online) 72.79±3.52 74.10±2.43 61.70±2.93 80.98±4.05 67.03±6.82 77.36±2.81 79.09±3.82 75.77±3.14 77.43±5.03 78.01±4.08 80.60±4.11 78.21±6.04 70.41±6.14 80.38±2.44 70.31±6.14 74.95±3.25

PL 82.01±0.30 82.44±0.75 73.60±0.96 91.37±0.42 80.67±0.53 88.55±0.32 92.10±0.19 87.40±0.39 88.26±0.36 87.46±0.34 91.19±0.19 90.46±0.62 83.57±0.92 90.32±0.31 83.50±0.57 86.19±0.13
PL+ours 78.22±1.60 78.20±0.95 69.60±0.16 90.15±0.96 77.35±2.73 85.99±1.07 91.32±1.09 85.56±0.38 86.22±1.61 80.82±1.30 89.73±0.96 87.96±0.87 82.66±1.37 89.10±1.08 79.67±0.36 83.50±0.61
PL+ours (diag) 76.29±1.42 77.04±0.20 69.51±0.65 89.52±0.88 78.08±1.74 84.27±1.79 90.01±1.69 84.16±1.04 84.42±0.53 80.14±1.00 88.33±0.68 87.34±2.19 81.19±2.09 87.67±1.09 78.61±1.41 82.44±0.70
PL+ours (online) 73.95±4.31 75.58±3.88 62.75±5.30 78.61±7.21 71.58±4.08 74.22±2.38 76.50±6.44 76.65±2.73 77.72±5.66 75.02±4.09 79.34±6.15 79.08±5.19 71.28±7.29 77.99±6.00 70.82±5.26 74.74±3.71

DELTA 80.99±0.88 82.40±0.57 72.38±0.52 91.52±0.32 80.66±0.41 88.38±0.43 92.03±0.20 87.28±0.45 88.36±0.35 87.15±0.47 91.03±0.37 90.44±0.41 83.39±0.44 90.17±0.18 82.88±0.37 85.94±0.16
DELTA+ours 77.26±0.67 78.36±1.15 69.44±1.43 89.63±0.35 77.18±1.28 86.19±0.88 90.48±0.66 85.41±0.83 86.09±1.08 85.85±0.86 89.78±0.52 89.33±0.89 79.92±1.28 87.89±0.84 80.76±0.57 83.57±0.77
DELTA+ours (diag) 70.08±3.37 69.26±3.82 63.20±2.31 81.07±3.26 68.89±2.16 77.00±3.50 82.13±3.88 74.90±4.25 76.12±5.23 76.55±5.62 81.68±3.42 78.99±3.94 71.32±3.10 78.61±3.45 73.38±2.11 74.88±3.38
DELTA+ours (online) 75.67±0.99 74.56±1.78 62.20±2.39 81.80±5.02 69.02±6.49 81.02±3.08 82.13±4.82 78.00±3.96 80.12±3.38 81.05±3.03 82.64±4.47 79.97±6.72 74.58±3.92 83.91±2.49 73.61±6.74 77.35±3.22

NOTE 74.11±1.14 75.57±0.96 66.05±0.84 86.87±0.42 72.53±0.77 84.40±0.59 88.03±0.15 82.43±0.82 83.92±0.80 82.88±0.65 87.53±0.97 88.46±0.81 76.50±0.61 84.64±0.13 76.00±0.74 80.66±0.21
NOTE+ours 73.00±1.41 75.08±0.78 64.76±1.43 86.09±0.26 71.51±1.54 83.74±0.91 87.51±0.78 82.19±0.65 83.32±0.29 82.78±0.42 86.93±0.80 87.99±1.08 76.15±1.40 83.50±0.12 75.23±0.59 79.99±0.41
NOTE+ours (diag) 72.66±2.17 73.99±0.44 65.45±1.19 85.81±1.21 72.08±1.23 83.63±0.07 86.97±0.22 81.47±1.23 82.58±0.75 82.43±0.56 86.54±0.63 88.17±0.59 75.93±0.71 84.16±0.11 75.17±0.55 79.80±0.41
NOTE+ours (online) 67.40±0.58 68.75±1.64 59.36±1.17 83.67±1.65 67.72±3.11 81.64±1.04 84.85±0.93 80.74±1.15 80.88±1.44 78.82±2.68 85.20±1.48 85.96±1.34 73.53±1.33 81.72±1.56 72.75±2.60 76.87±0.49

LAME 80.54±0.18 81.95±0.09 70.10±0.20 91.46±0.23 80.12±0.21 87.99±0.23 92.73±0.05 86.35±0.08 88.54±0.17 83.63±0.22 91.21±0.10 89.48±0.06 83.99±0.03 90.55±0.23 80.36±0.07 85.27±0.06
LAME+ours 80.49±0.26 81.83±0.07 70.06±0.23 91.43±0.28 80.07±0.27 87.92±0.23 92.71±0.08 86.35±0.07 88.51±0.18 83.58±0.23 91.20±0.15 89.47±0.10 83.91±0.07 90.51±0.19 80.24±0.13 85.22±0.05
LAME+ours (diag) 80.46±0.27 81.74±0.10 70.11±0.13 91.37±0.25 80.05±0.27 87.89±0.19 92.68±0.04 86.32±0.06 88.48±0.17 83.56±0.19 91.16±0.09 89.47±0.11 83.92±0.11 90.53±0.16 80.22±0.19 85.20±0.05
LAME+ours (online) 80.53±0.20 81.78±0.08 69.93±0.16 91.41±0.20 80.01±0.27 87.86±0.20 92.63±0.08 86.31±0.10 88.53±0.20 83.54±0.17 91.19±0.07 89.46±0.09 83.97±0.07 90.56±0.13 80.18±0.07 85.20±0.05

ODS 77.41±0.51 78.81±0.54 69.00±0.49 88.83±0.37 76.12±0.33 86.40±0.30 89.73±0.22 85.22±0.34 86.54±0.13 84.82±0.18 89.39±0.30 90.83±0.26 79.44±0.23 87.33±0.28 78.31±0.79 83.21±0.09
ODS+ours 77.50±0.28 78.78±0.48 70.02±0.83 89.01±0.31 76.36±0.35 86.57±0.62 89.89±0.41 85.17±0.25 86.79±0.30 85.29±0.54 89.53±0.34 90.92±0.30 79.74±0.57 87.75±0.07 78.03±0.25 83.42±0.11
ODS+ours (diag) 78.22±0.50 79.39±0.73 69.41±1.12 88.94±0.50 76.44±0.59 86.48±0.50 89.86±0.39 84.94±0.22 86.65±0.24 85.00±0.44 89.60±0.20 91.30±0.28 79.78±0.33 87.87±0.29 78.51±0.62 83.49±0.07
ODS+ours (online) 77.69±0.26 78.61±0.53 69.47±0.28 88.79±0.53 76.64±0.94 86.49±0.08 89.62±0.16 85.10±0.51 86.43±0.14 85.11±0.42 89.65±0.38 91.09±0.09 79.61±0.33 87.29±0.48 78.05±0.28 83.31±0.04

Table 14: Test accuracy of CIFAR-10C-LT with ρ = 10 when the model is fine-tuned using Adam
optimizer by only one epoch.

gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression avg

NoAdapt 45.83±0.45 50.27±0.38 29.24±0.23 90.06±0.08 65.93±0.42 84.61±0.38 92.46±0.14 82.94±0.53 76.81±0.35 67.37±0.48 91.69±0.31 54.73±0.48 82.44±0.24 79.44±0.37 75.42±0.20 71.28±0.08

BNAdapt 73.92±0.48 75.24±0.25 64.50±0.18 85.60±0.16 73.45±0.46 82.46±0.31 86.95±0.21 80.12±0.70 81.70±0.49 76.60±0.23 86.10±0.38 83.57±0.12 77.51±0.37 83.75±0.35 73.67±0.08 79.01±0.07
BNAdapt+ours 80.09±0.72 80.01±0.42 70.55±0.28 90.20±0.43 79.79±0.41 87.80±0.26 91.50±0.30 86.07±0.60 86.32±0.38 82.62±0.49 90.62±0.38 87.87±0.33 84.32±0.30 90.08±0.37 80.17±0.40 84.53±0.20
BNAdapt+ours (diag) 79.19±0.49 79.81±0.23 69.40±0.24 90.13±0.10 78.67±0.41 87.12±0.27 91.53±0.36 85.32±0.64 86.47±0.66 81.52±0.51 90.62±0.36 88.52±0.23 82.87±0.28 88.97±0.33 78.89±0.43 83.94±0.15
BNAdapt+ours (online) 79.49±2.08 80.31±0.36 69.64±0.30 88.68±1.40 78.28±1.03 86.28±0.82 90.59±1.77 84.88±1.49 86.33±1.25 82.02±1.44 89.26±1.15 87.64±0.97 82.32±1.18 88.34±2.00 79.03±0.51 83.54±0.76

TENT 78.28±1.50 79.43±0.81 70.13±0.76 88.30±0.65 77.34±0.89 85.69±1.12 89.64±0.62 84.79±0.78 85.14±1.31 83.13±1.29 89.64±0.59 88.15±0.27 81.24±0.55 86.42±1.28 77.93±0.84 83.02±0.19
TENT+ours 81.63±0.80 82.22±1.00 75.34±0.51 89.56±0.60 80.37±0.50 86.76±0.34 89.09±0.69 86.58±0.58 86.62±0.47 86.31±0.78 89.21±0.44 88.81±0.22 83.39±0.61 88.93±0.40 82.22±1.09 85.13±0.31
TENT+ours (diag) 81.08±0.54 81.47±0.76 73.93±0.82 90.40±0.57 80.41±0.59 87.98±0.42 90.95±0.44 86.64±0.61 87.32±0.87 86.57±0.44 90.61±0.37 89.89±0.68 82.68±0.73 89.15±0.49 81.07±1.21 85.34±0.33
TENT+ours (online) 80.88±1.37 81.38±1.54 75.18±0.87 88.28±1.10 79.60±1.15 86.39±0.36 89.05±0.85 85.66±1.36 86.13±1.01 85.60±1.18 88.40±0.56 87.86±0.68 81.46±1.46 87.26±1.36 81.21±1.59 84.29±0.46

PL 78.52±1.44 78.89±0.89 69.17±1.23 88.77±0.64 76.63±1.80 85.90±0.62 90.19±0.62 84.84±0.28 86.20±0.38 83.20±1.40 89.60±1.11 87.95±1.01 81.12±0.71 87.29±0.52 78.04±0.80 83.09±0.28
PL+ours 80.86±0.97 81.10±0.52 73.25±0.55 88.79±0.63 79.62±0.40 87.26±0.19 89.33±0.40 86.17±0.92 86.15±0.66 85.50±0.70 89.38±0.25 88.14±0.32 82.76±0.63 88.22±0.74 81.02±0.81 84.50±0.39
PL+ours (diag) 80.53±0.92 81.38±0.59 69.89±1.45 90.45±0.40 80.28±0.69 87.53±0.71 90.81±0.16 86.57±1.21 87.35±0.94 84.39±0.37 90.57±0.17 89.21±0.74 82.60±0.61 89.29±0.50 80.24±1.18 84.74±0.47
PL+ours (online) 80.61±1.64 80.83±1.41 71.32±0.78 88.31±0.86 78.23±1.01 86.51±0.57 89.25±0.68 85.09±1.27 86.00±1.01 83.81±2.74 88.62±0.36 87.38±0.45 81.26±0.58 87.29±2.00 80.34±1.27 83.66±0.60

DELTA 76.85±4.70 77.64±1.37 68.20±1.79 87.84±1.12 78.51±1.36 85.21±1.43 89.81±1.42 84.54±1.38 84.05±4.27 83.10±2.26 88.15±1.83 86.37±1.22 80.59±1.53 86.94±2.87 78.40±1.83 82.41±0.59
DELTA+ours 80.54±1.35 80.69±1.72 72.29±0.96 89.57±0.71 79.25±0.74 86.77±0.20 89.09±0.50 85.73±0.16 86.85±0.46 86.06±0.58 89.14±0.41 88.60±0.66 82.62±0.58 88.37±0.77 81.27±0.75 84.46±0.30
DELTA+ours (diag) 76.57±1.33 77.50±2.31 66.04±2.82 89.04±1.22 75.55±2.34 85.77±0.60 89.46±0.32 84.20±0.91 85.09±1.35 84.06±0.88 89.08±0.68 88.72±1.96 78.81±1.98 86.33±1.48 76.97±1.77 82.21±0.82
DELTA+ours (online) 80.15±0.82 78.66±3.72 72.22±2.40 88.30±1.22 78.83±0.93 86.23±0.86 88.19±0.78 84.70±2.16 85.76±1.30 85.35±1.72 88.86±0.90 88.17±0.87 81.12±1.71 87.27±1.31 80.37±1.51 83.61±0.77

NOTE 72.26±2.57 72.74±1.64 64.80±1.26 87.88±0.95 72.71±1.54 84.59±1.34 88.58±0.58 83.18±0.62 84.39±1.47 81.90±1.25 88.70±0.53 89.71±0.62 76.79±3.26 86.62±0.73 76.00±1.62 80.72±0.23
NOTE+ours 74.96±1.57 74.84±0.51 68.92±1.14 85.74±0.88 73.87±1.07 84.07±0.33 85.76±0.77 84.00±0.45 84.46±0.57 81.09±0.95 87.00±0.54 87.84±0.43 77.92±0.08 85.35±0.42 75.95±1.81 80.79±0.14
NOTE+ours (diag) 74.57±1.37 74.02±0.56 69.04±0.88 86.86±1.25 74.57±0.47 85.43±0.82 88.69±0.73 85.13±0.39 84.63±0.77 81.76±0.95 88.11±0.83 89.54±1.88 78.70±1.42 85.60±0.67 77.68±1.53 81.62±0.35
NOTE+ours (online) 64.31±2.15 65.87±1.50 58.08±3.69 85.14±1.12 71.84±0.59 82.30±0.86 85.24±1.09 82.60±1.65 82.84±1.53 77.60±1.11 85.03±0.96 85.97±0.90 76.54±0.47 84.27±1.03 75.59±0.94 77.55±0.39

LAME 75.13±0.34 76.85±0.16 66.06±0.46 87.10±0.17 74.81±0.32 83.91±0.37 88.40±0.11 81.79±0.86 83.28±0.53 78.22±0.55 87.54±0.27 85.10±0.32 79.15±0.29 85.30±0.25 74.89±0.40 80.50±0.06
LAME+ours 77.45±0.64 77.92±0.36 68.01±0.61 88.09±0.27 77.13±0.39 85.22±0.17 89.75±0.62 83.80±0.64 84.10±0.57 80.32±0.30 89.06±0.56 86.07±0.23 81.89±0.33 87.44±0.30 77.72±0.52 82.27±0.20
LAME+ours (diag) 77.39±0.51 78.31±0.29 67.51±0.47 88.61±0.22 76.76±0.60 85.36±0.40 90.38±0.15 83.79±0.58 84.87±0.66 79.84±0.38 89.10±0.44 86.86±0.31 81.24±0.35 87.14±0.09 77.08±0.38 82.28±0.11
LAME+ours (online) 77.52±1.32 78.44±0.61 67.67±0.52 86.92±1.41 76.69±0.38 84.68±0.98 89.43±1.81 83.25±1.14 84.56±0.92 80.30±0.61 87.90±1.33 86.07±0.67 80.76±1.20 86.45±1.87 77.30±0.61 81.86±0.68

ODS 76.49±1.17 76.42±0.70 67.59±1.02 88.26±0.57 74.44±1.24 85.10±1.28 88.91±0.61 84.32±1.28 84.92±0.75 82.62±0.48 88.78±0.96 90.20±0.51 79.40±1.53 86.53±1.18 76.20±0.72 82.01±0.28
ODS+ours 76.25±0.64 77.22±0.55 68.13±1.11 89.74±0.30 75.26±1.02 87.16±0.34 90.27±0.14 85.91±0.48 85.93±0.94 83.39±0.56 90.30±0.52 91.28±0.33 80.06±1.16 87.95±0.79 78.31±1.60 83.14±0.15
ODS+ours (diag) 76.65±1.03 77.04±0.65 67.80±0.92 89.26±0.44 75.14±1.18 86.56±1.00 90.15±0.64 85.46±1.12 85.50±0.59 83.20±0.57 89.61±0.96 90.45±0.51 80.04±0.93 87.52±0.17 77.83±1.30 82.82±0.19
ODS+ours (online) 76.26±1.87 76.03±0.49 68.17±0.75 89.26±0.64 76.06±0.75 86.64±0.60 90.27±0.25 85.48±0.69 86.23±0.22 82.77±0.55 90.22±0.51 91.04±0.73 80.03±1.03 87.85±0.61 78.16±0.61 82.96±0.24

TTT++ 74.61±0.80 75.90±0.31 66.06±1.36 86.39±0.26 74.54±0.72 83.34±0.37 88.25±0.62 80.82±0.40 83.01±0.41 78.31±0.33 86.55±0.74 84.90±1.00 78.59±0.55 84.82±0.59 76.12±0.62 80.15±0.21

Table 15: Test accuracy of CIFAR-10C-LT with ρ = 100 when the model is fine-tuned using Adam
optimizer by only one epoch.

gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression avg

NoAdapt 43.07±0.40 46.75±0.46 27.29±0.43 90.54±0.51 65.85±0.67 86.74±0.21 93.45±0.32 82.38±0.81 74.46±0.77 64.02±0.62 92.75±0.27 58.73±0.69 82.95±0.64 81.19±0.37 76.73±0.31 71.13±0.17

BNAdapt 62.40±0.26 63.47±0.53 53.94±0.39 73.06±0.67 60.85±0.31 70.07±0.22 74.44±0.48 67.31±0.73 69.42±1.12 64.22±0.34 73.63±0.20 71.48±0.37 65.19±0.58 71.40±0.14 62.64±0.49 66.90±0.16
BNAdapt+ours 79.22±0.30 79.59±0.46 69.52±0.88 89.24±0.39 76.64±0.15 86.79±0.45 90.84±0.30 84.92±0.61 85.69±0.30 80.73±0.53 90.15±0.41 87.21±0.54 82.74±0.22 87.82±0.39 79.05±0.64 83.34±0.20
BNAdapt+ours (diag) 72.00±0.32 73.00±0.40 64.11±0.73 82.17±0.20 70.89±0.20 79.91±0.17 83.35±0.45 77.32±0.51 78.37±0.60 73.89±0.60 82.96±0.54 80.18±0.46 75.10±0.53 80.59±0.14 72.29±0.73 76.41±0.21
BNAdapt+ours (online) 77.61±0.55 78.84±1.50 67.85±0.86 88.69±0.49 75.81±1.15 86.13±0.91 90.27±0.64 83.82±1.74 85.49±0.75 80.19±0.88 89.88±0.34 86.29±1.44 81.48±1.05 87.56±0.70 78.70±0.62 82.57±0.49

TENT 66.21±1.46 67.12±1.85 57.65±1.32 76.79±1.20 65.14±1.65 73.05±1.03 78.03±1.00 70.04±1.28 71.52±2.28 68.51±0.55 77.48±0.56 75.10±0.46 69.05±0.49 75.19±1.36 66.51±1.22 70.49±0.43
TENT+ours 85.03±0.47 85.41±0.24 77.91±0.38 93.19±0.32 83.21±0.33 91.10±0.31 93.65±0.30 90.15±0.54 90.41±1.04 88.10±0.95 93.31±0.19 91.63±0.42 87.39±0.42 92.24±0.62 85.72±0.54 88.56±0.13
TENT+ours (diag) 81.07±0.53 81.22±0.46 74.15±0.46 89.49±0.32 80.29±0.28 87.52±0.43 89.46±0.82 86.17±0.23 85.94±1.21 83.23±1.03 90.12±0.70 87.49±0.97 83.82±0.80 88.37±0.56 80.90±1.09 84.62±0.43
TENT+ours (online) 83.47±0.81 84.93±0.97 76.03±1.30 92.67±0.60 82.47±0.95 90.39±0.53 93.12±0.22 89.51±1.14 89.78±0.81 86.91±0.86 93.15±0.37 90.64±1.06 86.27±0.87 91.89±0.47 84.78±0.36 87.73±0.28

PL 65.02±1.66 66.57±1.22 56.02±1.05 75.81±0.96 64.47±0.82 72.82±1.37 76.79±1.08 70.82±0.36 71.08±0.87 68.54±0.71 76.27±0.53 73.87±1.40 68.02±1.15 72.84±1.07 65.58±0.95 69.63±0.46
PL+ours 84.53±0.49 84.42±0.52 75.25±1.63 92.95±0.18 82.79±0.64 90.76±0.54 93.31±0.30 89.45±0.21 89.63±0.80 87.14±0.73 93.30±0.09 91.24±0.64 86.88±0.54 91.84±0.21 84.71±0.18 87.88±0.07
PL+ours (diag) 78.68±0.30 78.86±1.53 66.45±1.29 88.33±0.61 78.26±0.66 85.83±0.54 89.64±0.70 84.34±0.78 84.67±1.51 79.83±1.05 89.37±0.38 86.73±0.51 82.34±1.09 87.27±0.67 78.97±0.85 82.64±0.53
PL+ours (online) 83.00±0.36 83.60±1.11 72.74±1.45 92.39±0.28 81.98±1.09 89.95±0.54 92.90±0.30 88.19±1.71 89.24±0.56 85.88±0.70 92.84±0.64 90.39±1.23 85.91±1.24 91.42±0.49 83.96±0.77 86.96±0.30

DELTA 64.36±1.33 66.24±4.06 56.81±7.08 77.13±1.59 68.95±0.63 69.22±4.49 77.70±1.59 68.62±1.41 69.04±3.08 70.14±1.55 75.56±0.97 73.94±3.02 69.67±2.75 74.14±1.44 66.72±3.57 69.88±1.47
DELTA+ours 85.05±0.50 86.06±1.20 78.57±0.98 93.62±0.34 84.21±0.75 91.67±0.59 94.25±0.48 91.02±0.21 91.29±0.47 89.69±0.75 93.95±0.24 91.74±0.69 87.95±0.74 93.09±0.35 86.53±0.74 89.25±0.33
DELTA+ours (diag) 82.83±0.62 83.79±0.57 75.24±0.34 92.46±0.58 82.86±1.18 90.31±0.45 91.55±1.66 88.96±0.78 89.18±1.43 87.71±1.19 92.31±0.54 90.70±1.32 85.99±1.24 91.05±0.35 83.79±1.05 87.25±0.55
DELTA+ours (online) 83.68±0.89 85.76±0.46 76.05±1.31 93.52±0.62 83.68±0.70 91.34±1.01 93.94±0.58 90.79±0.23 90.87±0.61 88.97±0.28 93.99±0.19 90.93±1.08 87.06±1.13 92.72±0.10 85.86±0.75 88.61±0.24

NOTE 66.76±2.12 69.18±2.31 62.81±3.99 88.80±0.88 71.05±3.59 83.92±0.97 89.25±1.74 83.83±1.45 82.24±2.04 77.24±2.30 89.02±0.96 89.05±1.10 78.88±1.37 86.20±0.71 74.17±0.70 79.49±0.41
NOTE+ours 79.33±1.24 78.89±1.14 72.49±1.10 91.58±0.37 76.38±3.49 89.26±0.85 91.77±0.38 89.14±0.66 89.07±0.79 85.18±1.43 91.74±0.38 91.89±0.20 83.42±1.04 89.25±0.45 81.33±1.03 85.38±0.29
NOTE+ours (diag) 75.06±1.76 75.98±2.85 70.20±1.00 91.50±0.34 78.38±2.03 88.55±0.87 91.56±1.16 89.16±1.10 88.21±1.33 82.65±1.69 91.78±0.96 92.15±0.45 84.07±1.24 89.59±0.36 81.97±1.03 84.72±0.13
NOTE+ours (online) 71.32±1.10 73.14±2.28 61.29±4.96 91.51±0.64 75.33±1.83 88.12±0.51 91.66±0.51 88.40±0.60 89.10±0.82 81.90±1.33 91.65±0.35 91.86±0.38 83.59±0.92 89.43±0.38 80.77±1.94 83.27±0.24

LAME 65.40±0.42 67.17±0.60 57.22±0.59 76.64±1.05 64.55±0.34 74.09±0.49 78.19±0.29 71.06±0.46 72.70±1.10 67.58±0.52 77.17±0.31 74.75±0.26 68.34±0.58 75.03±0.34 66.04±0.41 70.40±0.25
LAME+ours 75.29±0.46 75.86±0.79 65.56±0.58 86.11±0.49 72.20±0.63 84.29±0.31 87.95±0.56 81.46±0.38 81.80±0.73 77.46±0.66 86.67±0.38 83.29±0.55 78.30±0.37 83.89±0.50 74.80±0.65 79.66±0.12
LAME+ours (diag) 70.91±0.14 71.70±0.76 62.70±0.39 80.96±0.60 68.92±0.40 78.97±0.52 82.61±0.35 75.67±1.03 77.33±0.82 72.51±0.59 81.61±0.53 79.32±0.45 73.46±0.26 79.62±0.14 71.06±0.27 75.16±0.23
LAME+ours (online) 74.86±0.80 75.37±1.06 64.53±1.14 85.37±0.59 72.42±0.95 83.94±0.33 87.34±0.83 80.88±1.12 81.55±1.34 77.07±1.24 86.41±0.20 83.06±1.23 77.48±1.57 84.16±1.08 74.82±0.39 79.28±0.26

ODS 70.33±1.59 71.91±1.21 63.35±1.92 84.96±0.48 69.50±2.11 82.58±0.52 87.03±1.20 81.51±0.58 80.70±1.27 76.56±1.36 85.78±0.86 87.72±1.57 76.79±0.87 83.44±1.08 72.58±1.41 78.32±0.34
ODS+ours 72.67±1.87 75.19±1.00 66.26±1.99 88.52±1.38 72.62±1.98 86.40±0.67 89.77±0.54 84.97±1.15 84.87±1.07 79.86±1.11 89.73±0.35 90.10±0.72 80.42±0.50 87.13±0.40 75.24±0.82 81.58±0.17
ODS+ours (diag) 71.44±1.12 74.05±1.90 64.22±2.63 87.88±1.60 72.96±1.74 84.33±1.18 88.39±0.81 83.68±1.27 83.08±1.19 78.30±0.99 88.87±0.74 88.92±1.04 78.80±1.07 86.50±0.80 73.47±0.79 80.33±0.17
ODS+ours (online) 72.13±1.95 72.91±1.75 66.33±2.36 89.16±0.42 73.40±1.99 86.75±0.86 90.26±0.96 84.98±0.60 84.81±0.72 79.38±1.17 90.04±0.61 91.06±0.67 81.19±1.68 86.68±0.24 76.17±1.11 81.68±0.12

TTT++ 64.07±1.24 64.55±1.77 56.13±0.89 74.18±1.13 61.82±0.78 72.23±0.61 76.61±0.53 68.92±1.14 71.45±1.53 66.42±0.55 76.38±0.39 72.94±0.72 66.25±0.80 73.41±0.98 64.19±0.56 68.64±0.37
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Table 16: Test accuracy of CIFAR-10.1-LT with ρ = 10 and 100 when the model is fine-tuned using
Adam optimizer by only one epoch.

ρ = 10 ρ = 100

NoAdapt 87.13±0.48 86.64±0.97

BNAdapt 77.37±0.45 64.43±0.97
BNAdapt+ours 85.81±0.65 80.64±2.12
BNAdapt+ours (diag) 83.71±0.34 74.29±1.26
BNAdapt+ours (online) 84.33±0.56 80.79±1.97

TENT 78.23±0.52 64.53±1.53
TENT+ours 86.88±0.78 82.32±1.60
TENT+ours (diag) 85.41±0.48 75.97±1.52
TENT+ours (online) 85.31±0.69 82.32±1.88

PL 78.51±0.38 64.38±1.09
PL+ours 86.02±0.93 82.16±1.44
PL+ours (diag) 83.90±0.86 74.95±1.35
PL+ours (online) 84.79±0.38 81.81±1.74

DELTA 78.57±2.42 64.79±1.61
DELTA+ours 87.19±0.35 84.25±1.54
DELTA+ours (diag) 86.73±0.32 79.47±0.37
DELTA+ours (online) 85.68±0.50 84.50±2.33

NOTE 82.94±1.95 81.55±1.59
NOTE+ours 84.67±0.83 87.25±1.01
NOTE+ours (diag) 85.84±0.45 87.65±0.94
NOTE+ours (online) 81.90±1.54 87.09±0.42

LAME 78.79±1.00 67.68±2.58
LAME+ours 82.60±0.76 77.34±1.31
LAME+ours (diag) 82.11±0.80 72.97±2.86
LAME+ours (online) 82.24±0.75 78.61±1.51

ODS 81.83±1.77 77.74±1.86
ODS+ours 82.85±1.12 79.32±1.48
ODS+ours (diag) 82.60±1.11 79.17±1.42
ODS+ours (online) 83.22±1.41 82.01±1.45

TTT++ 77.74±0.35 64.74±0.75

Table 17: Test accuracy of CIFAR-100C-LT with ρ = 10 when the model is fine-tuned using Adam
optimizer by only one epoch.

gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression avg

NoAdapt 16.60±0.38 17.94±0.06 7.09±0.40 67.11±0.43 26.95±0.54 54.98±0.53 69.72±0.36 49.55±0.67 40.88±0.55 33.77±0.49 62.47±0.59 17.50±0.64 52.18±0.51 51.30±0.47 47.56±0.42 41.04±0.17

BNAdapt 52.48±1.05 51.77±0.16 42.71±0.75 67.45±0.85 52.75±0.38 62.73±0.66 70.60±0.15 56.88±0.30 60.72±0.43 52.13±0.75 65.91±0.36 61.56±0.52 57.55±0.31 66.34±0.39 53.33±0.41 58.33±0.15
BNAdapt+ours 53.60±0.98 53.19±0.19 43.54±0.76 69.19±0.58 54.12±0.58 64.66±0.86 71.99±0.20 58.31±0.18 62.48±0.40 53.41±0.39 67.76±0.30 63.37±0.75 58.89±0.32 68.17±0.43 54.12±0.41 59.79±0.18
BNAdapt+ours (diag) 53.26±0.81 52.47±0.40 43.74±0.76 68.26±0.54 53.68±0.49 63.40±0.70 71.63±0.35 57.76±0.12 61.62±0.58 52.84±0.68 67.23±0.40 62.44±0.63 58.71±0.22 67.47±0.20 53.91±0.36 59.23±0.12
BNAdapt+ours (online) 53.31±0.85 53.03±0.33 43.35±0.72 69.12±0.61 54.01±0.53 64.54±0.87 71.94±0.39 58.16±0.06 62.33±0.62 53.42±0.40 67.78±0.24 63.27±0.61 59.11±0.09 68.16±0.44 54.06±0.38 59.71±0.19

TENT 55.48±0.92 54.81±0.78 46.63±0.89 69.37±0.77 55.45±0.89 65.62±0.75 71.25±0.47 60.04±0.40 62.65±0.59 60.44±0.23 68.09±0.65 67.14±0.35 59.09±0.78 67.47±0.85 56.30±0.80 61.32±0.20
TENT+ours 56.42±0.75 56.77±0.33 48.07±0.90 70.12±0.41 56.78±0.39 66.72±0.63 71.47±0.39 61.67±0.27 63.80±0.73 61.13±0.21 69.28±0.54 68.30±0.19 60.53±0.84 69.06±0.42 58.02±0.55 62.54±0.28
TENT+ours (diag) 56.08±1.05 55.64±0.63 47.05±1.06 69.73±0.68 55.95±0.61 65.83±0.70 71.65±0.38 60.49±0.45 63.66±0.78 60.80±0.19 68.58±0.76 67.74±0.27 59.77±0.60 68.45±0.34 56.95±0.67 61.89±0.12
TENT+ours (online) 56.19±0.60 56.59±0.29 48.11±0.72 70.02±0.41 56.66±0.29 66.76±0.53 71.38±0.44 61.69±0.42 63.69±0.73 60.94±0.11 69.18±0.28 68.12±0.17 60.50±0.66 68.91±0.46 57.81±0.55 62.44±0.26

PL 53.42±0.90 53.14±0.84 45.37±0.57 68.67±0.73 54.23±0.43 64.32±1.41 70.73±0.09 59.46±0.36 61.80±0.58 57.66±0.87 67.40±0.72 65.90±1.37 58.55±0.55 67.12±0.71 55.41±0.50 60.21±0.24
PL+ours 51.74±1.22 52.17±0.44 42.71±0.65 67.57±0.54 52.33±0.41 62.98±0.76 70.22±0.30 56.79±0.49 60.96±0.77 53.03±0.88 66.00±0.87 61.64±1.42 57.62±0.68 66.65±0.73 53.51±0.54 58.39±0.22
PL+ours (diag) 54.32±0.35 54.04±0.39 46.13±0.24 68.63±0.80 54.98±0.27 65.18±0.79 71.03±0.76 59.58±0.92 62.46±0.68 58.40±1.25 67.57±0.91 66.37±0.46 59.02±0.60 67.72±0.71 56.09±0.62 60.77±0.13
PL+ours (online) 51.93±1.17 52.03±0.53 42.47±0.56 67.41±0.80 52.19±0.81 62.49±0.90 70.04±0.73 57.11±1.07 60.60±0.92 53.16±1.07 66.43±1.07 61.37±0.89 57.17±0.37 66.25±0.81 53.15±0.89 58.25±0.16

DELTA 53.34±0.88 53.65±0.39 43.69±0.66 69.28±0.87 54.03±0.66 64.58±0.67 70.72±0.82 59.15±0.43 62.03±1.11 57.20±0.43 66.96±0.77 66.81±0.44 57.79±0.18 66.25±0.50 55.40±0.59 60.06±0.16
DELTA+ours 54.33±0.75 55.15±0.60 45.23±1.29 69.74±0.49 55.20±0.68 66.02±0.86 70.87±0.41 60.59±0.75 63.01±0.56 59.91±0.66 68.43±1.08 67.34±0.38 59.17±0.94 68.25±0.61 56.40±1.37 61.31±0.32
DELTA+ours (diag) 54.37±1.29 54.10±0.47 43.61±1.09 69.21±1.03 54.64±0.21 64.82±0.67 70.63±0.27 59.39±0.98 62.82±0.73 58.31±0.85 67.91±0.68 66.74±0.60 57.46±0.90 66.77±0.35 55.90±0.79 60.45±0.10
DELTA+ours (online) 54.14±1.12 55.19±0.66 45.12±1.33 69.78±0.28 55.21±0.77 65.94±0.76 70.88±0.31 60.66±0.71 63.18±0.71 59.84±0.68 68.61±1.02 67.45±0.27 59.05±0.80 68.32±0.73 56.32±1.40 61.31±0.29

NOTE 29.10±1.50 31.13±1.97 23.81±0.84 47.15±0.70 33.62±1.01 45.02±1.66 49.37±0.73 41.29±1.09 42.34±1.65 38.78±0.84 46.48±1.09 49.22±1.41 37.27±1.02 44.85±0.77 32.85±1.24 39.49±0.29
NOTE+ours 26.65±1.77 28.76±1.61 21.43±0.31 41.60±1.28 30.09±1.34 40.67±0.99 43.50±0.96 36.16±0.59 37.82±1.51 34.40±0.82 39.91±0.50 44.94±1.60 32.91±0.68 39.98±0.84 28.53±1.02 35.16±0.51
NOTE+ours (diag) 29.60±1.52 30.61±1.32 23.70±0.39 45.24±0.19 32.54±0.48 43.49±1.12 47.48±0.46 39.72±1.02 40.23±1.22 38.25±0.60 45.36±0.98 47.95±1.27 36.07±2.09 42.89±1.72 31.75±1.13 38.33±0.35
NOTE+ours (online) 24.91±1.71 27.38±0.66 20.11±1.07 40.29±0.88 28.41±1.11 38.62±2.72 41.02±0.82 34.58±0.87 35.35±1.00 33.19±0.86 39.58±0.31 42.43±0.68 31.71±1.09 39.38±0.79 27.58±0.90 33.64±0.59

LAME 53.47±0.97 52.89±0.17 43.47±0.68 68.78±0.37 53.82±0.48 64.08±0.75 71.88±0.20 58.41±0.26 62.13±0.66 53.16±0.65 67.72±0.50 63.01±0.22 58.65±0.35 67.91±0.27 54.06±0.38 59.56±0.22
LAME+ours 54.19±0.81 54.08±0.43 44.49±0.81 69.81±0.23 55.07±0.43 65.04±0.44 71.92±0.34 58.98±0.18 63.09±0.55 54.13±0.80 68.46±0.73 63.62±0.12 59.63±0.38 68.27±0.53 54.32±0.35 60.34±0.19
LAME+ours (diag) 53.77±0.91 53.77±0.32 43.96±0.93 69.17±0.54 54.15±0.21 64.28±0.82 72.12±0.14 58.37±0.15 62.63±0.83 53.70±0.81 67.98±0.34 63.22±0.38 59.28±0.42 68.06±0.60 54.08±0.34 59.90±0.24
LAME+ours (online) 54.06±0.84 53.90±0.33 44.39±0.77 69.79±0.22 54.99±0.41 65.07±0.49 71.85±0.29 59.02±0.15 63.00±0.62 54.17±0.80 68.35±0.72 63.60±0.20 59.73±0.41 68.12±0.53 54.35±0.51 60.29±0.19

ODS 42.51±0.54 42.89±0.66 34.79±0.99 56.74±0.38 43.14±0.56 55.05±0.82 58.49±0.65 50.58±0.70 52.54±0.38 48.05±0.87 57.15±0.42 60.73±1.02 47.44±0.92 55.86±0.46 42.96±0.30 49.93±0.13
ODS+ours 43.42±0.49 43.93±1.02 35.62±0.60 57.68±0.64 44.32±0.15 55.80±0.45 58.52±0.22 50.92±1.21 53.89±0.71 48.22±1.11 57.80±0.81 61.80±1.10 48.13±0.48 56.70±0.41 43.61±0.55 50.69±0.46
ODS+ours (diag) 42.95±0.80 43.62±0.38 35.02±0.59 57.03±0.54 43.74±0.19 54.78±0.62 58.22±0.55 50.86±1.07 53.26±0.56 48.26±0.72 57.39±0.57 61.11±0.87 47.83±1.11 55.60±0.56 42.92±0.14 50.17±0.21
ODS+ours (online) 42.38±0.64 43.27±0.78 35.01±0.54 57.14±0.34 44.02±0.31 55.26±0.57 58.04±0.47 50.34±0.82 52.92±1.04 47.67±1.08 57.26±1.33 61.20±1.21 47.63±0.62 56.15±0.98 43.05±0.77 50.09±0.54
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Table 18: Test accuracy of CIFAR-100C-LT with ρ = 100 when the model is fine-tuned using Adam
optimizer by only one epoch.

gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression avg

NoAdapt 16.69±0.30 18.38±0.63 6.84±0.36 66.73±0.51 26.95±0.64 54.45±0.76 69.54±0.62 48.86±0.58 39.85±0.43 34.29±0.78 61.80±0.62 16.41±0.60 51.14±1.23 51.51±0.20 47.25±0.39 40.71±0.24

BNAdapt 49.64±0.68 49.50±0.31 40.04±0.41 63.75±0.79 49.98±1.34 59.62±1.45 66.62±0.64 54.36±0.34 57.98±0.67 50.31±0.96 62.48±0.72 57.52±0.93 54.11±0.48 62.76±0.14 50.12±0.74 55.25±0.13
BNAdapt+ours 53.19±0.79 53.82±0.82 43.00±0.62 69.09±0.60 54.43±1.34 64.62±1.39 71.87±0.38 58.51±0.29 62.83±0.30 54.27±1.03 67.66±1.02 62.55±0.76 58.08±0.32 68.08±1.02 54.14±0.73 59.74±0.16
BNAdapt+ours (diag) 52.32±0.61 52.23±0.44 41.95±0.87 66.68±0.27 52.76±1.61 61.84±0.99 69.67±0.67 56.55±0.44 60.73±0.49 52.67±0.98 65.23±0.40 60.23±1.01 56.31±0.30 65.66±0.64 52.40±0.61 57.82±0.31
BNAdapt+ours (online) 53.23±0.94 53.39±1.04 43.11±0.69 69.03±0.41 54.49±1.34 64.45±1.30 71.81±0.42 58.42±0.74 62.75±0.49 54.15±0.95 67.66±1.07 62.33±0.98 58.00±0.21 67.89±0.89 54.00±1.06 59.65±0.25

TENT 52.38±1.59 52.16±1.16 43.43±0.91 66.19±0.73 53.30±1.20 62.65±1.52 68.29±0.57 56.93±0.67 60.48±0.69 56.09±0.81 64.48±1.55 62.66±0.99 55.89±0.46 64.64±0.92 53.52±1.01 58.21±0.40
TENT+ours 56.98±0.80 58.28±0.80 47.81±0.50 72.06±0.63 58.49±0.94 67.98±1.47 73.76±0.62 61.90±0.38 66.27±1.08 61.65±0.36 70.89±0.72 69.43±0.51 61.63±0.81 71.00±1.12 58.76±0.99 63.79±0.22
TENT+ours (diag) 55.38±0.63 54.76±0.90 46.05±1.08 69.04±0.25 55.94±2.19 64.91±1.38 71.43±0.55 59.02±1.23 63.42±1.23 58.62±0.70 67.77±0.79 65.49±0.67 58.54±0.66 67.88±1.46 55.77±0.49 60.94±0.16
TENT+ours (online) 57.14±0.75 57.74±0.72 47.97±1.05 72.01±0.83 58.61±1.02 67.81±1.25 73.69±0.37 61.73±1.06 66.26±1.43 61.72±0.34 70.61±0.94 69.03±0.94 61.72±0.78 70.72±0.99 58.52±1.22 63.69±0.24

PL 50.40±0.91 51.43±0.72 41.67±0.91 65.03±0.50 51.65±1.43 61.05±0.99 67.74±0.59 55.51±0.37 59.92±0.90 52.70±0.91 63.54±1.02 60.43±0.44 54.97±0.57 63.47±0.76 51.92±0.98 56.76±0.16
PL+ours 52.37±0.48 53.20±0.64 42.44±0.77 67.79±1.15 54.29±1.18 63.80±1.59 70.82±0.45 57.93±0.31 61.94±0.83 53.63±0.74 67.74±1.13 61.90±0.70 57.79±0.46 67.90±1.30 52.65±1.30 59.08±0.25
PL+ours (diag) 53.19±0.94 53.91±0.77 44.10±0.94 67.95±0.56 54.59±1.58 63.97±0.81 70.76±0.60 57.90±0.94 62.04±1.06 56.72±1.02 67.10±0.72 64.28±1.14 57.97±0.88 67.19±0.97 54.76±1.10 59.76±0.18
PL+ours (online) 52.75±0.59 53.07±0.89 42.97±1.20 67.96±1.31 54.19±1.63 63.77±1.57 70.95±0.38 57.98±0.83 61.84±0.99 53.38±0.68 67.33±1.04 61.33±0.65 57.68±0.88 67.67±1.52 52.59±1.21 59.03±0.31

DELTA 50.94±1.02 52.66±1.60 41.54±0.66 66.69±1.15 52.83±0.86 62.07±2.12 69.12±1.04 56.75±0.81 61.32±0.60 56.43±1.36 65.20±1.68 63.71±1.43 56.16±1.21 64.44±0.95 53.71±1.13 58.24±0.28
DELTA+ours 55.31±0.91 58.15±0.53 45.40±1.27 71.86±0.63 57.65±1.60 67.35±1.58 73.72±1.06 61.70±0.91 65.90±1.39 61.07±1.19 71.15±0.93 69.13±1.76 61.61±1.58 70.67±1.44 58.51±1.39 63.28±0.44
DELTA+ours (diag) 53.95±0.99 54.80±1.10 43.83±1.44 69.20±0.83 54.89±1.49 64.18±1.89 71.22±0.81 58.80±1.60 63.49±1.08 57.94±1.33 68.49±1.44 65.19±1.76 58.28±1.36 67.25±1.17 55.63±0.94 60.48±0.56
DELTA+ours (online) 55.48±1.09 57.77±0.54 45.19±1.52 71.81±0.73 57.53±1.95 67.14±1.51 73.84±1.35 61.76±0.87 65.97±1.43 61.16±1.21 71.26±1.08 68.96±1.76 61.57±1.24 70.42±1.17 58.49±1.56 63.22±0.38

NOTE 31.05±1.62 34.60±1.07 25.62±1.10 51.56±2.03 38.37±1.09 51.38±0.76 55.85±1.29 46.41±0.89 47.28±0.29 43.02±0.65 52.85±2.27 54.73±1.46 42.71±0.96 50.73±1.53 34.70±3.14 44.06±0.80
NOTE+ours 32.86±1.17 35.37±1.45 25.34±0.44 51.81±1.18 39.71±1.91 51.21±1.33 53.47±0.92 46.08±0.39 48.06±1.43 43.37±0.94 52.58±1.54 54.36±2.31 41.60±1.28 49.93±1.18 35.79±1.63 44.10±0.76
NOTE+ours (diag) 34.50±2.20 36.93±1.45 26.56±1.18 53.45±1.77 41.31±1.32 52.99±1.25 57.30±1.27 49.27±0.79 49.25±1.54 45.72±1.48 56.11±0.75 57.40±1.39 44.35±1.40 51.57±1.10 37.98±0.43 46.31±0.73
NOTE+ours (online) 29.45±2.27 31.80±1.93 23.52±0.53 48.01±1.82 36.13±2.33 47.13±2.15 50.34±1.21 41.33±2.01 43.59±1.10 39.56±0.82 48.53±1.97 50.21±2.52 39.36±1.04 46.06±0.68 32.30±1.34 40.49±0.58

LAME 53.54±0.54 53.73±0.56 42.97±0.82 68.00±0.56 53.86±0.92 63.33±1.24 71.14±0.39 58.40±0.41 62.35±0.77 54.65±0.98 67.41±0.62 62.59±0.30 57.71±0.13 67.69±0.59 53.46±0.56 59.39±0.05
LAME+ours 56.37±0.83 57.30±0.83 46.11±0.46 71.89±0.67 58.17±1.35 67.37±1.45 74.31±0.90 61.46±0.45 65.95±0.32 57.65±0.64 70.81±0.44 65.74±0.65 61.73±0.73 71.09±0.75 56.55±1.24 62.83±0.15
LAME+ours (diag) 54.99±0.71 54.99±0.42 44.49±0.56 70.08±0.50 55.44±1.49 65.00±1.07 72.89±0.46 59.50±0.56 63.49±0.80 55.62±1.42 68.69±0.44 64.29±0.81 59.47±0.60 69.16±0.59 54.76±0.79 60.86±0.16
LAME+ours (online) 56.42±0.84 57.04±1.02 46.16±0.56 71.91±0.77 58.11±1.37 67.18±1.20 74.39±0.64 61.41±0.55 65.87±0.42 57.61±0.67 70.72±0.34 65.67±0.68 61.79±0.54 71.08±0.72 56.58±1.40 62.80±0.15

ODS 42.89±1.27 44.38±0.18 35.11±0.43 58.05±0.36 45.12±0.96 56.51±0.84 60.27±0.93 51.49±0.34 54.69±0.78 48.16±0.37 58.49±0.35 62.01±1.03 48.91±0.65 57.14±1.50 43.15±1.14 51.09±0.19
ODS+ours 45.57±1.23 47.78±1.43 37.02±0.55 61.38±0.77 48.47±1.77 60.44±0.94 62.62±0.73 54.80±0.62 58.24±0.78 51.79±0.96 62.04±0.53 65.27±1.22 52.58±0.70 60.99±0.93 46.07±1.29 54.34±0.40
ODS+ours (diag) 45.19±1.39 46.27±0.84 36.54±0.72 59.87±0.21 46.64±1.63 58.45±0.78 61.51±0.77 53.46±1.07 56.32±0.86 50.27±0.96 60.79±0.62 63.87±0.99 51.06±0.60 58.42±0.92 44.42±0.57 52.87±0.19
ODS+ours (online) 44.01±1.14 46.16±0.68 36.19±0.49 59.44±0.63 46.52±1.51 58.21±0.90 60.69±0.95 53.39±0.62 56.45±0.38 49.23±1.15 60.02±0.77 63.97±1.31 50.47±0.29 58.67±0.21 43.97±0.93 52.49±0.39

Table 19: Test accuracy of PACS when the model is fine-tuned using Adam optimizer by only one
epoch.

a2c a2p a2s c2a c2p c2s p2a p2c p2s s2a s2c s2p avg

NoAdapt 66.00±0.00 97.84±0.00 57.27±0.00 75.59±0.00 90.24±0.00 72.21±0.00 73.19±0.00 39.72±0.00 43.93±0.00 23.54±0.00 50.30±0.00 37.96±0.00 60.65±0.00

BNAdapt 75.19±0.19 96.99±0.23 69.66±0.13 81.92±0.45 94.69±0.47 73.48±0.10 77.22±0.08 64.61±0.51 46.13±0.59 59.01±0.54 68.68±0.32 57.34±0.60 72.08±0.11
BNAdapt+ours 74.09±0.09 96.63±0.10 72.09±0.50 83.79±0.44 92.57±0.72 74.26±0.34 76.04±0.42 61.36±0.76 53.11±0.28 72.01±0.88 75.81±0.33 72.14±1.05 75.33±0.09
BNAdapt+ours (diag) 72.73±1.04 96.77±0.47 71.80±0.90 79.69±1.91 86.54±4.93 69.99±1.91 66.41±0.04 54.74±0.65 58.34±0.92 56.29±5.38 59.47±8.66 60.70±6.55 69.46±1.84
BNAdapt+ours (online) 73.02±1.16 95.33±1.81 71.48±0.28 82.32±0.88 90.61±4.47 74.18±1.39 75.56±0.76 60.62±1.35 52.91±0.34 70.41±2.24 75.12±0.43 70.94±3.73 74.38±0.56

TENT 75.92±3.16 97.53±0.46 73.24±3.00 87.04±0.71 96.65±0.26 73.27±4.89 81.85±0.74 74.15±2.13 52.63±6.82 56.24±1.19 70.38±2.03 55.46±0.78 74.53±0.97
TENT+ours 77.29±3.79 97.83±0.29 75.23±1.80 88.24±1.51 96.60±0.58 74.64±3.27 80.44±1.32 58.81±3.47 67.40±5.65 84.56±1.04 83.13±0.94 87.59±11.74 80.98±1.19
TENT+ours (diag) 70.05±5.75 96.92±0.86 60.02±5.28 79.70±1.37 83.80±4.18 55.06±1.84 67.10±1.31 46.34±3.34 63.64±4.68 56.67±3.42 46.48±4.70 73.89±4.86 66.64±1.69
TENT+ours (online) 70.87±4.25 97.26±0.43 72.52±1.00 85.96±3.68 92.60±5.59 69.53±6.99 79.10±3.84 58.67±6.65 66.57±5.15 83.58±1.94 80.22±3.98 81.41±14.48 78.19±1.71

PL 76.82±2.17 97.07±0.39 51.89±5.32 84.23±0.98 95.28±0.31 66.92±2.26 76.07±1.26 67.17±1.74 46.18±0.63 57.82±1.27 69.93±0.45 57.28±0.91 70.56±0.75
PL+ours 77.69±1.73 97.57±0.29 72.28±2.22 88.45±0.88 94.54±3.08 73.38±3.09 78.60±1.26 66.39±6.59 61.05±2.60 83.12±1.58 81.37±1.67 87.02±4.15 80.12±0.49
PL+ours (diag) 72.01±2.09 93.14±1.33 57.06±5.10 77.38±3.23 84.60±4.28 48.38±0.67 63.82±2.06 49.39±2.94 46.60±3.34 59.09±3.45 51.33±4.30 60.91±6.34 63.64±1.27
PL+ours (online) 72.71±2.93 96.23±2.30 69.27±3.20 86.43±1.94 89.78±7.03 71.79±6.89 77.31±2.14 64.71±4.92 55.57±5.88 82.46±3.04 80.73±2.39 87.01±7.49 77.83±2.32

DELTA 82.03±2.83 98.37±0.35 72.31±3.17 90.09±0.43 98.05±0.25 79.17±2.12 82.98±0.35 79.24±2.03 60.17±6.03 58.20±0.53 73.94±0.69 56.65±0.61 77.60±0.87
DELTA+ours 81.35±1.96 98.28±0.26 77.53±4.20 90.65±0.15 97.38±0.74 80.46±2.31 82.23±1.51 66.25±0.42 67.10±4.28 87.06±0.79 84.33±0.76 88.94±12.07 83.46±1.33
DELTA+ours (diag) 67.78±5.84 97.49±0.54 65.63±4.97 80.90±2.63 83.04±3.70 63.45±7.58 66.75±0.99 51.26±3.01 67.39±6.64 55.73±4.16 41.41±6.04 73.88±5.29 67.89±1.17
DELTA+ours (online) 79.49±3.87 98.16±0.19 80.21±2.40 89.37±0.84 95.13±3.73 78.67±1.77 80.35±1.63 65.60±0.97 67.67±4.35 86.21±0.89 83.30±3.17 83.43±13.95 82.30±1.06

NOTE 75.65±1.22 97.19±0.21 61.70±6.38 78.96±1.65 94.27±1.28 58.97±5.93 76.14±0.97 65.65±7.78 47.37±4.70 46.40±4.23 60.32±2.57 51.45±1.43 67.84±0.56
NOTE+ours 74.24±3.52 96.33±0.62 63.08±5.63 79.22±1.05 94.61±0.21 61.10±6.94 73.55±1.44 61.98±5.53 43.13±4.50 53.34±2.27 65.86±1.46 58.62±3.58 68.76±0.90
NOTE+ours (diag) 75.66±3.12 95.49±0.71 61.70±3.85 76.12±4.57 86.45±5.71 62.95±7.34 66.42±2.00 59.91±2.38 46.99±9.34 36.65±5.38 50.91±9.76 43.11±8.91 63.53±3.33
NOTE+ours (online) 73.57±1.21 95.94±0.65 62.15±6.19 72.69±2.69 90.72±1.78 57.39±6.99 73.23±4.21 64.54±4.45 41.36±5.74 30.21±2.13 57.94±3.59 48.56±2.59 64.03±1.91

LAME 74.43±0.68 97.23±0.16 67.42±0.72 81.35±0.57 95.37±0.45 67.40±0.86 70.10±0.66 47.34±2.67 13.81±0.88 49.19±0.63 65.26±0.37 56.29±1.83 65.43±0.27
LAME+ours 76.15±0.23 97.38±0.13 72.80±0.39 85.31±0.36 94.21±0.61 71.86±0.77 76.73±1.13 61.03±1.32 47.41±1.82 75.07±0.97 78.37±0.23 81.72±1.49 76.50±0.11
LAME+ours (diag) 72.92±1.84 95.84±0.65 67.83±0.85 72.50±2.91 78.94±2.73 59.21±2.77 64.44±1.02 50.21±1.22 39.25±2.01 33.84±1.82 41.49±2.93 50.33±1.31 60.57±0.77
LAME+ours (online) 74.70±1.92 96.08±1.81 71.79±1.24 84.14±0.44 90.58±6.61 71.56±1.29 75.96±1.77 59.92±1.88 46.93±1.36 73.39±2.07 77.74±0.80 80.40±8.24 75.27±0.62

ODS 74.47±3.03 95.60±0.40 63.45±3.42 76.23±1.02 89.66±1.16 62.38±5.18 63.72±2.81 54.12±1.93 31.01±3.02 46.17±1.11 60.48±2.07 53.65±0.45 64.25±0.13
ODS+ours 77.60±2.80 96.30±0.10 58.07±8.48 78.48±0.85 92.68±1.72 60.30±2.82 66.00±3.95 58.37±3.63 30.45±5.00 49.38±0.78 63.93±1.81 56.41±1.82 65.66±0.75
ODS+ours (diag) 70.97±1.79 95.76±0.24 58.11±3.67 73.96±2.77 89.82±0.82 59.49±7.23 65.80±4.12 52.59±1.56 30.64±5.68 41.83±1.07 60.61±0.64 49.39±2.05 62.41±1.14
ODS+ours (online) 75.53±1.92 96.12±0.47 66.05±5.90 79.19±0.83 92.34±1.08 60.11±6.03 71.46±2.99 58.78±5.43 36.46±8.30 43.18±1.33 62.04±2.32 52.01±1.56 66.11±0.68

TTT++ 69.18±1.37 96.17±0.46 56.03±0.48 76.59±1.18 93.77±0.08 66.63±1.11 70.35±0.47 57.19±0.70 41.60±1.34 54.41±0.67 65.91±0.82 57.47±1.22 67.11±0.20
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Table 20: Test accuracy of digit classification when the model is fine-tuned using Adam optimizer
by only one epoch.

mnist usps mnistm avg

NoAdapt 57.68±0.00 74.49±0.00 43.17±0.00 58.45±0.00

BNAdapt 63.58±0.18 74.31±0.38 45.40±0.11 61.10±0.20
BNAdapt+ours 64.52±0.86 76.15±0.26 47.15±0.27 62.60±0.35
BNAdapt+ours (diag) 63.16±0.75 74.75±0.44 45.85±0.24 61.25±0.42
BNAdapt+ours (online) 64.62±1.04 75.62±0.53 47.16±0.27 62.47±0.58

TENT 68.43±0.37 75.71±0.34 46.64±0.09 63.59±0.19
TENT+ours 68.26±0.85 77.59±0.40 48.70±0.38 64.85±0.44
TENT+ours (diag) 66.79±1.04 76.38±0.71 47.39±0.52 63.52±0.66
TENT+ours (online) 68.74±1.68 77.01±0.35 48.75±0.27 64.83±0.72

PL 67.89±0.29 75.40±0.39 46.45±0.31 63.25±0.23
PL+ours 68.04±0.74 77.43±0.49 48.34±0.18 64.60±0.33
PL+ours (diag) 66.09±2.00 76.06±0.75 46.98±0.40 63.04±0.97
PL+ours (online) 68.22±2.35 76.88±0.51 48.36±0.35 64.49±0.97

DELTA 70.42±0.25 76.17±0.54 47.33±0.17 64.64±0.23
DELTA+ours 70.24±0.75 78.05±0.23 49.21±0.39 65.83±0.34
DELTA+ours (diag) 68.28±1.08 76.46±0.71 47.75±0.58 64.16±0.74
DELTA+ours (online) 70.63±0.67 77.54±0.20 49.22±0.32 65.80±0.29

NOTE 68.50±0.77 76.77±0.30 46.29±0.39 63.85±0.41
NOTE+ours 68.12±0.89 76.38±0.43 47.95±0.25 64.15±0.29
NOTE+ours (diag) 66.40±1.84 73.58±0.83 47.12±0.35 62.37±0.96
NOTE+ours (online) 65.01±0.93 75.30±0.95 46.36±0.38 62.22±0.65

LAME 66.82±0.21 78.94±0.26 46.15±0.06 63.97±0.14
LAME+ours 66.02±0.81 80.17±0.76 47.42±0.28 64.54±0.56
LAME+ours (diag) 64.51±0.42 78.67±0.44 46.62±0.33 63.27±0.22
LAME+ours (online) 66.17±1.23 79.87±0.96 47.40±0.26 64.48±0.70

ODS 69.94±0.58 78.75±0.19 47.80±0.45 65.50±0.26
ODS+ours 70.05±0.66 79.36±0.10 48.02±0.10 65.81±0.23
ODS+ours (diag) 70.06±0.90 79.36±0.16 47.66±0.31 65.69±0.33
ODS+ours (online) 69.89±0.82 79.20±0.17 47.91±0.20 65.66±0.29

TTT++ 62.85±0.30 74.25±0.31 45.47±0.10 60.86±0.06

Table 21: Test accuracy of ImageNet-C online labels distribution shift with α = 1000 when the
model is fine-tuned using SGD optimizer by only one epoch.

gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression avg

NoAdapt 2.96±0.08 3.68±0.06 2.62±0.05 17.82±0.07 9.71±0.12 14.71±0.07 22.49±0.28 16.57±0.11 23.08±0.11 24.05±0.04 59.13±0.17 5.33±0.03 16.66±0.04 20.80±0.19 32.63±0.15 18.15±0.06

BNAdapt 10.34±0.12 10.68±0.07 10.64±0.08 9.22±0.10 9.36±0.18 16.12±0.05 23.66±0.25 21.71±0.03 21.26±0.12 30.06±0.08 41.90±0.16 10.47±0.10 27.19±0.35 30.19±0.19 24.96±0.09 19.85±0.10
BNAdapt+ours 12.52±0.38 12.88±0.27 12.99±0.41 11.73±0.42 11.13±0.50 20.92±0.84 30.41±1.06 27.88±0.89 27.01±0.68 39.15±1.04 53.17±1.30 13.15±0.32 33.67±1.05 38.77±1.20 32.40±0.98 25.18±0.75

TENT 14.54±0.38 15.21±0.09 16.06±0.14 12.39±0.22 11.26±0.57 18.26±0.40 27.43±0.32 26.47±0.24 19.50±0.23 34.11±0.18 41.31±0.18 4.25±0.22 31.60±0.23 34.39±0.27 30.49±0.19 22.49±0.15
TENT+ours 13.05±0.56 15.48±1.22 15.83±1.54 13.00±0.85 10.51±0.21 19.67±1.75 34.33±1.13 28.52±1.66 21.06±1.39 43.42±1.12 53.25±1.48 4.96±0.52 38.35±1.10 43.15±1.18 38.11±1.16 26.18±0.88

SAR 18.60±1.61 18.64±0.44 20.33±0.14 16.23±0.66 16.20±0.59 25.65±0.23 30.10±0.35 29.78±0.27 26.60±0.18 36.05±0.13 42.76±0.18 13.01±3.94 34.03±0.14 36.30±0.26 32.63±0.24 26.46±0.39
SAR+ours 24.18±0.87 22.60±0.60 25.22±0.94 18.94±0.60 19.16±0.48 32.36±1.16 37.93±1.24 38.12±1.27 33.37±0.74 45.98±1.21 53.60±1.31 5.70±1.19 42.79±1.28 45.84±1.42 41.55±1.33 32.49±0.83

Table 22: Test accuracy of ImageNet-C online labels distribution shift with α = 2000 when the
model is fine-tuned using SGD optimizer by only one epoch.

gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression avg

NoAdapt 2.98±0.04 3.68±0.04 2.62±0.05 17.90±0.03 9.70±0.08 14.80±0.06 22.52±0.23 16.53±0.07 23.01±0.09 24.00±0.07 59.12±0.08 5.42±0.02 16.54±0.18 20.90±0.03 32.72±0.06 18.16±0.01

BNAdapt 7.54±0.07 7.72±0.15 7.84±0.07 6.54±0.01 6.60±0.14 11.47±0.04 16.53±0.09 15.52±0.06 15.39±0.14 21.30±0.15 29.78±0.21 7.45±0.05 18.97±0.13 21.17±0.16 17.78±0.06 14.11±0.04
BNAdapt+ours 10.16±0.46 10.50±0.31 10.75±0.47 9.41±0.51 8.61±0.47 16.86±0.73 24.34±0.97 23.00±0.96 22.64±0.93 32.08±1.31 43.90±1.50 10.63±0.41 26.66±0.82 31.15±1.19 26.56±1.12 20.48±0.80

TENT 8.25±0.18 8.59±0.22 9.51±0.20 6.84±0.15 5.62±0.22 7.98±0.39 17.39±0.20 12.35±0.56 10.98±0.20 22.56±0.13 28.11±0.23 2.25±0.11 20.15±0.18 22.49±0.18 19.76±0.11 13.52±0.11
TENT+ours 8.70±0.58 9.75±0.63 10.30±1.07 8.55±0.55 6.17±0.62 10.75±1.31 25.12±1.15 15.20±2.20 14.16±1.23 33.76±1.38 42.68±1.75 3.18±0.43 27.77±0.91 32.90±1.49 28.70±1.05 18.51±0.98

SAR 12.74±0.37 9.27±1.14 12.95±0.82 9.39±1.18 8.90±1.31 16.57±0.75 20.53±0.17 20.47±0.15 18.11±0.54 25.22±0.24 30.16±0.24 4.74±1.29 23.49±0.20 25.23±0.18 22.67±0.17 17.36±0.13
SAR+ours 16.05±1.45 12.85±0.97 17.67±0.45 10.60±0.95 7.25±0.86 22.03±2.11 28.81±1.16 29.35±1.06 21.33±1.41 36.73±1.32 43.44±1.53 2.67±0.49 33.30±1.17 36.02±1.29 32.65±1.39 23.38±0.81

28



Under review as a conference paper at ICLR 2024

Table 23: Test accuracy of ImageNet-C online labels distribution shift with α = 5000 when the
model is fine-tuned using SGD optimizer by only one epoch.

gaussian noise shot noise impulse noise defocus blur glass blur motion blur zoom blur snow frost fog brightness contrast elastic transform pixelate jpeg compression avg

NoAdapt 2.96±0.06 3.70±0.03 2.60±0.06 17.95±0.11 9.69±0.07 14.79±0.13 22.56±0.14 16.56±0.03 23.01±0.08 23.98±0.08 59.17±0.24 5.34±0.06 16.59±0.03 20.85±0.06 32.68±0.04 18.16±0.04

BNAdapt 4.72±0.02 4.88±0.05 4.81±0.09 3.91±0.07 3.94±0.06 6.81±0.11 9.78±0.09 9.48±0.11 9.64±0.05 12.73±0.04 17.79±0.12 4.58±0.04 11.15±0.13 12.32±0.07 10.64±0.07 8.48±0.06
BNAdapt+ours 7.48±0.42 7.77±0.40 7.80±0.50 6.71±0.49 5.90±0.30 12.06±0.83 17.45±0.99 16.72±0.99 16.96±0.92 23.63±1.05 31.98±1.39 7.72±0.48 18.54±0.72 22.16±1.19 19.37±1.11 14.82±0.78

TENT 4.04±0.16 4.11±0.05 4.40±0.14 3.04±0.10 2.50±0.16 3.53±0.18 8.67±0.10 4.74±0.12 5.07±0.15 11.72±0.27 15.35±0.11 1.01±0.06 9.75±0.17 11.29±0.15 9.94±0.13 6.61±0.08
TENT+ours 5.05±0.45 5.39±0.58 5.59±0.23 4.50±0.58 3.55±0.28 5.75±0.54 15.32±1.03 7.88±1.02 7.45±1.16 21.96±1.14 29.18±1.64 1.62±0.24 16.27±0.71 20.24±1.19 17.82±1.31 11.17±0.77

SAR 6.08±1.39 3.98±0.34 6.12±0.78 3.21±0.83 3.36±0.42 7.35±1.14 11.18±0.10 11.50±0.10 9.40±0.64 14.59±0.08 17.64±0.11 1.81±0.31 13.09±0.08 14.25±0.15 12.72±0.14 9.09±0.18
SAR+ours 6.95±1.76 4.00±0.44 6.73±2.08 2.16±0.62 2.81±0.30 5.87±1.50 17.64±0.56 15.54±2.25 8.85±1.62 25.22±1.11 30.56±1.32 0.81±0.12 21.00±0.77 23.98±1.02 21.32±1.03 12.90±0.77
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