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ABSTRACT

Test-time adaptation (TTA) enables models to adapt to test domains using only
unlabeled test data, addressing the challenge of distribution shift during test time.
However, existing TTA methods mainly focus on input distribution shifts, often
neglecting class distribution shifts. In this work, we first reveal that existing meth-
ods can suffer from performance degradation when encountering class distribu-
tion shifts. We also show that there exist class-wise confusion patterns observed
across different input distribution shifts. Based on these observations, we intro-
duce a novel TTA method, named Distribution shift-Aware prediction Refinement
for Test-time adaptation (DART), which refines the predictions made by the trained
classifiers by focusing on class-wise confusion patterns. DART trains a distri-
bution shift-aware module during intermediate time by exposing several batches
with diverse class distributions using the training dataset. This module is then
used during test time to detect and correct class distribution shifts, significantly
improving pseudo-label accuracy for test data. This improvement leads to en-
hanced performance in existing TTA methods, making DART a valuable plug-in
tool. Extensive experiments on CIFAR, PACS, ImageNet, and digit benchmarks
demonstrate DART’s ability to correct inaccurate predictions caused by test-time
distribution shifts, resulting in significant performance gains for TTA methods.

1 INTRODUCTION

Deep learning has achieved remarkable success across various domains, including image classifi-
cation (Krizhevsky et all 2012} [Simonyan & Zissermanl 2014} Radford et al.| [2021) and natural
language processing (Vaswani et al., [2017; Devlin et al., [2018). However, some recent findings
have shown that when a substantial shift occurs between the training and test data distributions,
the performance of trained models on test data often deteriorates considerably (Saenko et al., 2010;
Taor1 et al.,|[2020; [Mendonca et al., 2020). Test-time adaptation (TTA) methods have emerged as a
prominent solution to mitigate the performance drop resulting from distribution shifts. TTA methods
(Wang et al.| 2020; |Goyal et al., 2022; Boudiaf et al.| 2022} Zhao et al.| 2022} Jang et al., [2022) en-
able trained models to adapt to the test domain using only unlabeled test data, effectively addressing
the challenge of distribution shift during test time.

In TTA methods, two primary branches exist: normalization-based and entropy minimization-based
approaches. Normalization-based TTA techniques (Nado et al., [2020; |[Schneider et al., [2020) ad-
dress the challenge by adjusting Batch Normalization (BN) (loffe & Szegedy, |2015) statistics using
statistics obtained from the test domain. On the other hand, entropy minimization-based TTA meth-
ods (Leel 2013} |Liang et al., 2020; Wang et al.| [2020; |Goyal et al., [2022; Jang et al., [2022) adapt
pre-trained models by leveraging predictions generated by the model itself on unlabeled test data,
treating them as pseudo labels.

While these TTA techniques have proven effective against various test-time distribution shifts, in-
cluding image corruptions, recent research (Gong et al., 2022} |Zhou et al., [2023) has revealed that
significant performance degradation can occur when the class distribution of the test domain differs
from that of the training domain, in addition to the shift in input distribution. To assess the impact
of class distribution shifts on existing TTA methods, we first benchmark the BNAdapt (Schneider
et al., 2020) method on long-tailed test sets when the model is trained on balanced training sets.
We observe substantial drops in test accuracy even after applying the BNAdapt, especially as the
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Figure 1: Overview of DART. (Top) At intermediate time, the period between the training and test
times, DART trains a distribution shift-aware module g to detect and correct the class distribution
shifts. By sampling the training data from Dirichlet distributions, we generate batches 5 with di-
verse class distributions during the intermediate time. The distribution shift-aware module takes the
averaged pseudo label distribution of 3 and outputs a square matrix 7 of size K (class numbers) for
prediction modification. Since the label of the training data is available, we optimize g4 to minimize
the cross-entropy loss of B while the pre-trained model fy is frozen. (Bottom) At test-time, we fine-
tune the pre-trained fy using the refined predictions by g4. We can compute the square matrix Tieg
and modify the predictions of test data x € D using gy since g, does not require any label for
generating the square matrix. Thus, DART can be used in conjunction with existing TTA methods.

imbalance ratio between classes increases (Table[I). This shows the challenge in TTA when facing
label distribution shift in addition to input distribution shift during test time. We further examine the
misclassification (confusion) patterns between classes under various input distribution shifts, rep-
resented by eight distinct image corruption patterns. An interesting observation is that consistent
class-wise confusion patterns occur across different input corruption patterns (Fig. [2)).

Motivated by such observations, we propose a novel test-time adaptation method, named Distri-
bution shift-Aware prediction Refinement for Test-time adaptation (DART) as a solution to address
test-time distribution shifts in both input data and label distributions. DART aims to correctly mod-
ify predictions made by trained classifiers by focusing on class-wise confusion patterns that arise
due to label-distribution shifts. Our key insight is that the model can learn how to adjust inaccurate
predictions due to label distribution shifts by experiencing several batches with diverse class distri-
butions using the labeled training dataset before the start of test time. DART trains a distribution
shift-aware module during an intermediate time, situated between the end of training and the start of
testing, by exposing multiple batches composed of labeled training data with diverse class distribu-
tions, sampled from the Dirichlet distribution. The module then outputs a square matrix of the class
dimension that will be multiplied to logit vector of the network for prediction refinement. Since
the distribution shift-aware module only requires a pseudo-label distribution as an input, it can be
readily employed during test time by providing the estimated pseudo-label distribution for the test
data generated by the pre-trained model, as depicted in Fig.

We evaluate the effectiveness of DART on several standard test-time adaptation benchmarks,
including CIFAR-10/100C, ImageNet-C, CIFAR-10.1, PACS, and digit classification (SVHN
—MNIST/USPS/MNIST-M). Our results consistently demonstrate that DART enhances prediction
accuracy across most benchmarks involving test-time distribution shifts in both input data and label
distributions and it contributes to the improved performance of existing TTA methods. Specifi-
cally, DART achieves substantial improvements in test accuracy, enhancing the BNAdapt method
by 5.52% and 16.44% on CIFAR-10C-LT under class imbalance ratios of p = 10 and 100, re-
spectively. Furthermore, our extensive ablation studies demonstrate the pivotal role played by the
prediction refinement scheme in DART’s performance enhancement.
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(c) Confusion matrices from BNAdapt model for 8 different corruption types from CIFAR-10C-LT (p = 100)

Figure 2: Test-time class distribution shifts. (a) The class distribution of four different domains
in PACS. (b) (left) The class distribution of training and (right) test distributions of CIFAR-10C-
LT with the class imbalance ratio p of 100. We evaluate the robustness of classifiers trained on
CIFAR-10, which has a balanced class distribution, on CIFAR-10C-LT, which has a long-tailed
class distribution. (c) Confusion matrices of BNAdapt on CIFAR-10C-LT for eight different types
of corruptions. We mark the cases where the confusion rate exceeds 10% with red squares. We can
observe notable accuracy degradation in classes with large amounts of data (e.g., class 0 and 1), and
similar confusing patterns regardless of the corruption types under class distribution shifts.

2 PROBLEM SETUP AND MOTIVATION

We consider a K-class classification problem under test-time distribution shift. During training

time, a classifier fp is trained using a labeled training dataset D = {(x;, yz)};ial, drawn from a

training distribution Pxy over X x {0,..., K — 1}. However, during test time, the classifier may
encounter test data Dyesy = { (24, y}) ;’;{ drawn from a test distribution Py WA This shift

79
in distribution significantly degrades the classification performance of the trained classifier on the
test data 2020). To address this issue, many test-time adaptation (TTA) methods aim to
adapt the trained model to the test domain using only unlabeled test data. While many existing TTA
methods have predominantly focused on covariate shifts, where the input data distributions change
between the training and test data (e.g., due to image style transfer or image corruption), we focus

on a problem setup where both covariate and label distribution shifts occur during the test time.

2.1 MOTIVATION FOR PREDICTION REFINEMENT SCHEME

Impact of label distribution shifts on existing TTA methods We first examine the impact of
label distribution shifts on BNAdapt on CIFAR-10C. We evaluate the performances of the trained
classifier on the CIFAR-10C-LT test set, when this classifier was initially trained with CIFAR-10
(Krizhevsky & Hintonl[2009). CIFAR-10C (Hendrycks & Dietterichl2019) is a benchmark designed
to evaluate the robustness of models trained on clean CIFAR-10 data against 15 predefined types of
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corruptions, including Gaussian noise. To create a class-imbalanced dataset, CIFAR-10C-LT, which
exhibits a long-tailed class distribution, as depicted in Fig. we set the number of images per class
to decrease exponentially as the class index increases. Specifically, we set the number of samples
for class k as ny, = n(1/p)*/ =1 where p denotes the class imbalance ratio.

In Table[I} we compare the performances of NoAdapt, which makes no modifications to the trained
classifier, and BNAdapt, which updates the Batch Normalization (BN) statistics with those of
the test domain on CIFAR-10C-LT for different class imbalance ratios p set to 1, 10, and 100.
We observe a decline in performance for

BNAdapt as the class imbalance ratio in-  Table 1: Average accuracy (%) on CIFAR-10C-LT
creases, while the performance of NoAd-  ith several class imbalance ratios p.

apt remains consistent regardless of class

irpbalance. When p = 100, BNAdapt ex- CIFAR-10C-LT

hibits even worse performance than NoAd- ~ Method ‘ p=1 p=10 p =100
apt. This shows that in the presence of class
distribution shifts, correcting BN statistics NoAdapt ‘ 71.68£0.00  71.28+£0.08  71.13+0.17
without accounting for the class distribu- BNAdapt | 85.24+0.08 79.01£0.07 66.90+0.16
tion shift significantly degrades TTA perfor- ~ Oracle | 85.53+0.05 85.97+0.18  87.77+0.07
mance.

In Figure we present confusion matrices between classes, where each entry (i, j) represents the
fraction of samples from the ¢-th class classified into the j-th class. These matrices are generated
across eight different types of image corruption patterns for CIFAR-10C-LT, where p = 100. We
observe significant accuracy degradation in head classes (with smaller class index k), for which the
fraction of samples increase the most during test time. Additionally, we notice that the confusion
patterns tend to be consistent across different corruption types when the label distribution shift is
fixed. For instance, frequent class-wise confusion patterns include O to 8 (airplane — ship), 1 to 9
(automobile — truck), and 3 to 5 (cat — dog). In Appendix [C} we provide a theoretical analysis
demonstrating that such a class-wise confusion pattern occurs when facing label distribution shifts
by using a toy example of four-class Gaussian mixture distribution. This observation raises the
question of how to effectively learn and utilize such a confusion pattern between classes to correctly
modify the predictions of the classifier during test time where only unlabeled test data is available.

An oracle’s attempt for prediction refinement To answer this challenging question, we begin
with a simpler but relevant question: Can we prevent the performance degradation of BNAdapt by
refining model predictions through the multiplication of a distribution shift-aware square matrix
T € REXEK with the model outputs? This type of refinement scheme is commonly employed to
adjust model outputs trained with label-noise datasets when specific class-wise confusion patterns,
as seen in Figure exist (Natarajan et al., 2013 |Patrini et al.| 2017; |Zhu et al., |2021). However,
it has not been explored in the context of test-time adaptation, where performance degradation is
caused by distribution shifts rather than label noise. To evaluate the effectiveness of multiplying a
square matrix with the model’s output, we first consider an Oracle method using the labeled test
data to find a desirable Tpree € RE*K . We define Typacie as a solution that minimizes the cross-
entropy loss between the modified softmax probability and the ground truth labels of the test data:
Toractle = argMingpeprxx By y)en,... [CE(softmax(fo(z)T),y)], and we find Tirace by gradient
descent. The last row of Table [1| presents the test accuracy achievable with Tq,ce When applied to
the output of the BNAdapt model. Remarkably, simply multiplying the output with T, reverses
the performance degradation caused by class distribution shifts. Having confirmed the effectiveness
of refining the output by multiplying with Tj,cle, the remaining question is how to obtain such a
square matrix 7" without access to test data labels.

3 DISTRIBUTION SHIFT-AWARE PREDICTION REFINEMENT FOR TTA

We introduce a distribution shift-aware module that can detect test-time class distribution shifts and
output a square matrix to refine the predictions of the trained classifiers. Our core idea is that if
the module experiences various batches with diverse class distributions before the test time, it can
develop the ability to refine inaccurate predictions resulting from label distribution shifts. Based on
this insight, we train a distribution shift-aware module g, during the intermediate time, in between
the training and testing times, by exposing several batches with diverse class distributions using the
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Figure 3: Example of the Dirichlet distribution sampling. IID (i.i.d.) sampling denotes standard
uniform sampling. The black dots indicate the class distribution of the sampled batches. The red,
blue, yellow dots represent the class distributions of different class imbalance ratios p, namely 1,2,
and 10, respectively. By employing the Dirichlet distribution for batch sampling, we can expose the
model to numerous batches with diverse class distributions during the intermediate time, thereby
enabling it to learn how to mitigate performance degradation caused by class distribution shifts.

training datasets. During the test time, g4 takes an averaged pseudo-label distribution for test data as
input to detect class distribution shifts, and generates a square matrix of size K to refine predictions.

Dataset for intermediate time During the intermediate time, we assume that the labeled training
dataset D is available while the test dataset Dy remains unavailable, as is common in previous
settings (Choi et al. [2022; [Lim et al.| 2022; [Park et al., [2023). For example, we use CIFAR-10
dataset during the intermediate time on CIFAR-10C-LT benchmark. In cases where the training
dataset exhibits imbalanced class distribution, as seen in datasets like SVHN or PACS, the imbal-
anced class distribution can inadvertently influence the training of g,. To mitigate this, we create a
class-balanced intermediate dataset Dj,; by uniformly sampling data from each class.

Training of g4 To create batches with diverse class distributions during the intermediate time, we
employ a Dirichlet distribution (Yurochkin et al.,[2019;|Gong et al.,[2022)). Batches sampled through
ii.d. sampling tend to have class distributions, resembling a uniform distribution. In contrast,
batches sampled using the Dirichlet distribution exhibit a wide range of class distributions, including
long-tailed distributions as illustrated in Figure[3] The training objective of g, for a batch B C Diy
is formulated as follows:

L(¢) = E(z,y)es[CE(softmax(fo()ge (P)), y)] where ﬁ=% > softmax(fy(2)). (1)
(z,y)eB

Here, p represents the averaged pseudo-label distribution for batch 53, and CE denotes the standard
cross-entropy loss. During the intermediate time, gy is optimized to minimize the cross-entropy
loss between the modified softmax probability and the ground truth labels of the training samples.
During this time, the parameters of the trained classifier fy are not updated, but the batch statistics
in the classifiers are updated as in BNAdapt (Schneider et al.l [2020). For each pre-trained model,
we train g4 only once, regardless of the number of test domains.

Utilizing g, at test-time Since the distribution shift-aware module g, only requires the averaged
pseudo label distributions generated by the trained classifier as input, it can be employed effectively
at test time when only unlabeled test data is available. During test time, g4 takes the pseudo label

distribution p averaged over the test dataset Dicgt, and generates a square matrix 7Tieq € REXK,
. . 1 R
Tiew = 9(P) where p = 5 > softmax(fy(#)). )
test

TEDrest

We note that g4 remains frozen and does not update its parameters during test time. We obtain
the square matrix Ti.s at the start of the test phase and utilize it throughout the test time. By mul-
tiplying the classifier output with iy, we can effectively enhance the accuracy of pseudo-labels.
Furthermore, as illustrated in Figure [T] (bottom), our method can be integrated as a plug-in with any
test-time adaptation (TTA) methods that rely on pseudo labels obtained from the classifier. Specif-
ically, we can adapt the pre-trained classifier fp by using the modified output softmax( fy(-)Ttest)-
For example, in the case of TENT (Wang et al) 2020), we adapt the classifier fy using a training
objective Ltent(0) = Ezep,... [— 2 softmax(fo(Z)Ties ) x log softmax( fo(Z)Tiest )k ]-
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Table 2: Average accuracy (%) on CIFAR-10C/10.1-LT, digit classification, and PACS. Bold indi-
cates the best performance for each benchmark.

CIFAR-10C-LT CIFAR-10.1-LT I

Method p=10 »— 100 p=10 o= 100 Digit PACS

NoAdapt 71.28+0.08 71.13+0.17 87.13+0.48 86.64+£0.97 58.454+0.00 60.651+0.00
BNAdapt 79.01£0.07 66.90+0.16 77.37+£0.45 64.43£0.97 61.10+0.20 72.0840.11
BNAdapt+ours  84.53+0.20 83.344+0.20 85.81£0.65 80.64+2.12 62.60+0.35 75.33£0.09
TENT 83.02+0.19  70.49+0.43 78.23+0.52 64.53+1.53 63.594+0.19 74.53+0.97
TENT+ours 85.13+0.31 88.56+0.13 86.88+0.78 82.32+1.60 64.85£0.44 80.98%+1.19
PL 83.09+0.28 69.63+£0.46 78.51£0.38 64.384+1.09 63.25+0.23 70.56+£0.75
PL+ours 84.50+0.39 87.88+£0.07 86.02£0.93 82.16+1.44 64.60+0.33 80.12+0.49
DELTA 82.41£0.59 69.88+£1.47 78.57+2.42 64.79£1.61 64.64+0.23 77.60+0.87
DELTA+ours 84.46+0.30 89.25+0.33 87.19+£0.35 84.25+1.54 65.83+0.34 83.46+1.33
NOTE 80.72+0.23  79.49+£0.41 82.94+1.95 81.55£1.59 63.85+£0.41 67.844+0.56
NOTE+ours 80.79+0.14 85.38+£0.29 84.67+£0.83 87.25+1.01 64.15+0.29 68.76+0.90
LAME 80.50+0.06 70.40+0.25 78.79+1.00 67.68£2.58 63.97+0.14 65.434+0.27
LAME+ours 82.27+£0.20 79.66+0.12 82.60+0.76 77.34+1.31 64.54+£0.56 76.50£0.11
ODS 82.01+0.28 78.32+0.34 81.83£1.77 77.74+1.86 65.50+0.26 64.25+0.13
ODS+ours 83.14+0.15 81.58+0.17 82.85£1.12 79.324+1.48 65.81+0.23 65.66+0.75

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks We consider two types of input data distribution shifts: synthetic and natural dis-
tribution shifts, each characterized by its generation process. Synthetic distribution shifts are arti-
ficially created through data augmentation techniques including image corruption using Gaussian
noise. In contrast, natural distribution shifts arise from changes in image style, for instance, from
artistic to photographic styles. We evaluate synthetic distribution shifts on CIFAR-10/100C and
ImageNet-C (Hendrycks & Dietterich, |2019), and natural distribution shifts on CIFAR-10.1 (Recht
et al., 2018), digit classification (SVHN — MNIST/USPS/MNIST-M) and PACS (L1 et al., [2017)
benchmarks. For synthetic distribution shifts, we apply 15 different types of common corruptions,
each at the highest severity level (i.e. level 5). To evaluate the impact of class distribution shifts in
CIFAR benchmarks, we introduce test datasets with long-tailed class distributions, as described in
Section [2.1] For ImageNet-C, we create a new test set with online label distribution shifts follow-
ing the approach in [Niu et al|(2023). This new test set comprises K subsets, each characterized
by a class distribution [p1, pa, ..., Ppk], where pr = Pmax and p; = Pmin = (1 — Pmax)/ (K — 1)
for ¢ # k, where K is the number of classes in ImageNet-C, which is 1,000. Let @ = pmax/Pmin
represent the imbalance ratio. Each subset consists of ImageNet-C test images sampled according
to the aforementioned class distribution. Additionally, we shuffle the subsets to prevent predictions
based on their order. Conversely, for digit classification and PACS benchmarks, we utilize the orig-
inal datasets, as these benchmarks inherently include label distribution shifts across domains. More
details for benchmarks are available in Appendix

Baselines We compare DART with the following baselines: (1) BNAdapt (Schneider et al., [2020)
corrects the batch statistics using the test data; (2) TENT (Wang et al.l |2020) fine-tunes param-
eters in BN layer of the trained classifier to minimize the prediction entropy of test data; (3) PL
(Lee, [2013) fine-tunes the trained classifier using confident pseudo-labeled test samples; (4) NOTE
(Gong et al., 2022) adapts the classifiers while mitigating the effects of non-i.i.d test data streams
through instance-aware BN and prediction-balanced reservoir sampling; (5) DELTA (Zhao et al.,
2022) adapts the classifiers while addressing issues related to incorrect BN statistics and prediction
bias by employing test-time batch renormalization and dynamic online reweighting; (6) ODS (Zhou
et al.l 2023)) estimates the label distribution of test data through Laplacian-regularized maximum
likelihood estimation and adapts the trained model by assigning high and low weights to infre-
quent and frequent classes, respectively; (7) LAME (Boudiaf et al.l [2022) modifies the prediction
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Table 3: Average accuracy (%) on CIFAR-100C and ImageNet-C under several class imbalance
ratios p and . As p and « increase, the severity of the class distribution shifts is intensified.

CIFAR-100C-LT ImageNet-C online imbalanced
p=10 p =100 o = 1000 o = 2000 a = 5000
NoAdapt 41.04+0.17 40.71£0.24  18.15+0.06 18.16£0.01 18.164+0.04
BNAdapt 58.33+0.15 55.25+0.13  19.85+0.10 14.11+0.04  8.48+0.06
BNAdapt+ours  59.79+0.18  59.744+0.16  25.18+0.75 20.48+0.80 14.82+0.78
TENT 61.32+0.20 58.21+£0.40 22.49+0.15 13.52+0.11  6.61£0.08

TENT+ours 62.54£0.28 63.79£0.22 26.18+£0.88 18.51+£0.98 11.17+£0.77

by Laplacian-regularized maximum likelihood estimation considering nearest neighbor information
in the embedding space of classifiers. More details about baselines are available in Appendix [A]

Experimental details We use ResNet-18/26 (He et al.l [2016) as the backbone networks for the
digit and CIFAR, and ResNet-50 for PACS and ImageNet-C benchmarks, respectively. During the
intermediate time, we use a 2-layer MLP (Haykin, [1998) with a hidden dimension of 1,000 for
the distribution shift aware module g5. We train g4 using the labeled dataset from the training
domain with an intermediate batch size of 50/200 for 100 epochs for ImageNet-C and other bench-
marks. We ensure that fine-tuning layers, optimizers, and hyperparameters remain consistent with
those introduced in each baseline for a fair comparison. Implementation details for pre-training,
intermediate-time training, and test-time adaptation are described in Appendix

4.2 EXPERIMENTAL RESULTS

DART-applied TTA methods In Table [2] we present and compare the experimental results for
the original vs. DART-applied TTA methods across CIFAR-10C-LT, CIFAR-10.1-LT, digit classifi-
cation, and PACS benchmarks. We can observe that DART consistently improves the performance
of existing TTA methods for both synthetic and natural distribution shifts. In particular, the perfor-
mance gain achieved by DART becomes more significant as the class imbalance ratio p increases.
For instance, on CIFAR-10C-LT with class imbalance ratios p = 10 and 100, DART boosts the
test accuracy of BNAdapt by 5.52% and 16.44%, respectively. We can see that there is no single
dominant TTA method that outperforms all the other baselines across all benchmarks, as previously
observed in [Zhao et al.| (2023). In experiments on CIFAR-10.1, many TTA methods that rely on
BNAdapt do not improve the performance of the pre-trained model, as demonstrated in|Zhao et al.
(2023). However, DART efficiently mitigates the accuracy degradation caused by test-time distribu-
tion shifts in this scenario and outperforms NoAdapt when combined with either DELTA for p = 10
or NOTE for p = 100. NOTE and ODS, which construct prediction-balanced batches using memory
for adaptation, assume that the pre-trained model has been trained on a balanced training dataset.
Consequently, these methods exhibit poor performance on PACS benchmarks, where training class
distributions are significantly imbalanced. Detailed experimental results and additional findings,
including DART’s performance on balanced test dataset, are reported in Appendix [F]

Comparison between Trace and Tier  To verify the effectiveness of g4, we compare the output
Tiest of the distribution-shift aware module and 7, Obtained using the labeled test data as in Sec-
tion [2.T] for the case of CIFAR-10C-LT with Gaussian noise (p = 100) in Figure[d] We can observe
that the distribution shift module can indeed provide a good estimate Ti. that closely resembles
Toracle €ven without access to the ground truth labels of the test data.

DART on large-scale datasets We proceed to evaluate the effectiveness of DART on large-scale
datasets. As the number of classes increases, the output dimension of g, also increases, becom-
ing more challenging to learn and generate a higher-dimensional square matrix 7" for large-scale
datasets. To address this challenge, we modify the distribution shift-aware module to produce T'
with some entries fixed to O for the large-scale datasets. For CIFAR-100C, we first analyze class-
wise confusion patterns, similar to Figure 2] using an augmented training dataset. Then we set the
entries where class-wise confusion never occurred to 0 when training the distribution-shift aware
module to generate T'. For example, when using a speckle-noised augmentation for the CIFAR-
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Method CIFAR-10C-LT

p=10 p =100
BNAdapt 79.01£0.07  66.90+0.16
BNAdapt+ours 84.53+0.20  83.34+0.20

BNAdapt+ours (diag) 83.94£0.15 76.41£0.21
BNAdapt+ours (online) | 83.544+0.76 82.5740.49

Table 4: Ablation studies to evaluate the effec-
tiveness of two variants of DART: (online) We
Figure 4: Comparison of Ti,ce and Ty on obtain 7" using only the first test batch. (diag)
CIFAR-10C-LT (p = 100) with Gaussian noise. We set all off-diagonal elements of 7" to 0.

100 dataset, we can set 7,400 entries of T € R100x100 ¢4 (. This noise type is not used when
testing the model with CIFAR-100C test sets. On the other hand, for ImageNet-C, given the large
number of classes (1,000), we set all off-diagonal entries to 0. In Table [3} we summarize the exper-
imental results comparing the original TTA methods with DART-applied methods on CIFAR-100C
and ImageNet-C. DART consistently improves the test accuracy of BNAdapt, achieving a 1.46%
improvement for p = 10 and a 4.49% improvement for p = 100 on CIFAR-100C, respectively.
Moreover, DART achieves a performance gain of about 6% for all imbalance ratios on ImageNet-C.

4.3 ABLATION STUDIES

DART for online TTA Some TTA works (Wang et al., [2020; Iwasawa & Matsuol 2021} Jang
et al. [2022) focus on an online approach where each test data sample is encountered only once
during test time. To adapt DART for this online TTA scenario, we modify it to take the averaged
pseudo label distribution of the first test batch to output 7', which is then used throughout the test
time. This differs from the original DART, which takes the averaged pseudo label distribution of the
entire test dataset. We summarize the experimental results of this variant of DART for online TTA
in Table [ (last row). The results indicate that this online variant of DART performs similarly to the
original DART but with a slight decrease in performance.

Effects of diagonal/off-diagonal entires of 7" To assess the importance of both the diagonal and
off-diagonal entries of the square matrix 7', we consider a variant of DART in which all off-diagonal
entries are set to 0. The experimental results presented in Table |4| on CIFAR-10C-LT and Table
[I6] on CIFAR-10.1-LT in Appendix show that this variant achieves performance improvements of
4.93/9.51% on CIFAR-10C-LT with p values of 10/100 and 6.34/9.81% on CIFAR-10.1-LT with
p values of 10/100, respectively. However, this variant exhibits accuracy decreases of 6.94/6.45%
on CIFAR-10C/10.1-LT with p = 100 compared to the original DART, respectively. These results
suggest that both the diagonal and off-diagonal entries in the matrix 7" play important roles in im-
proving TTA performance, and removing the off-diagonal entries can lead to decreased performance
in certain scenarios. More experimental results using these two variants can be found in Appendix [

Effects of Dirichlet sampling and prediction modification scheme of DART We consider three
variants of DART, named DART v1-3, which involve changes to either the sampling strategy or the
prediction modification scheme. For sampling strategy, we consider a scenario where the module ex-
periences only three types of batches during the intermediate time: uniform, long-tailed with a class
imbalance ratio p = 20, and inversely long-tailed class distributions. For prediction modification
scheme, we modify g4 to generate the parameters for a part of the model, including affine parameters
for the output of the feature extractor and the weight difference for the classifier weights, inspired
by the label shift adapter (LSA) (Park et al., [2023)). For this case, the output dimension of g4 gets
larger since it is proportional to the feature dimension of the trained model. In Table[5] we report the
performance of BNAdapt combined with these DART variants on CIFAR-10C-LT. DART v1 shows
worse performances on both p = 10 and 100 compared to DART. This suggests the challenge in
training g4 to generate a high-dimensional output for prediction modification and demonstrates the
benefit of refining the prediction output by simply multiplying the square matrix. DART v2 shows
worse performance compared to DART for the p = 100 case, which is more severely imbalanced
than the class distribution experienced during the intermediate time (p = 20). This observation
shows the benefit of Dirichlet sampling. Lastly, DART v3 exhibits worse performance than DART
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Table 5: Ablation studies to evaluate the effects of the Dirichlet sampling and prediction modifi-
cation scheme of DART. We consider three variants of DART, which replace each component with
the ones used in LSA. We report the performance of BNAdapt combined with DART variants on
CIFAR-10C-LT.

Method Sampling strategy for int. time g output Test acc. (%)
Dirichlet  Unif&LT (p = 20) | Square matrix  Parameters of a model p=10 p =100
DART v v 84.53+0.20 83.34+0.20
DART vl v v 84.00+0.18  79.18+0.11
DART v2 v v 84.74+0.06 81.72+0.18
DART v3 v v 85.184+0.30  82.29+0.41

for p = 100 similar to DART v2. These experiments demonstrate that both the prediction refinement
scheme and the sampling strategy contribute to the effectiveness and scalability of DART.

Due to space limitation, we present other ablation studies in Appendix [E] Throughout these addi-
tional experiments, we confirm that (1) obtaining a square matrix 7" by using only confident pseudo-
labeled test samples during test time results in worse performance compared to DART, and (2) using
the fixed T' generated by DART during test time is more effective than attempting to update T'
through iterative or gradient-based methods.

5 RELATED WORKS

TTA method utilizing intermediate time Some recent works (Choi et al.,[2022} [Lim et al., [2022)
have explored methods to prepare unknown test-time distribution shifts by leveraging the training
dataset at the intermediate time. For instance, LSA (Park et al.,|2023) involves exposing the model
to several batches with three types of class distributions during the intermediate time: the training
class distribution, a uniform distribution, and the inversely imbalanced training distribution. LSA
primarily focuses on adjusting model parameters. Specifically, it trains a label shift adapter to pro-
duce affine parameters for the output of the feature extractor and weight difference for the classifier
weights. In contrast, DART exposes the distribution shift-aware module to a more diverse range of
class distributions during the intermediate time through Dirichlet sampling. DART’s main objective
is to correct predictions with a specific focus on class-wise confusion patterns. It uses a square ma-
trix to modify predictions directly, without necessarily adjusting model parameters. In Section [4.3]
the effectiveness and scalability of DART compared to LSA are demonstrated.

TTA methods considering class-wise relationships Some TTA methods (Iwasawa & Matsuo,
2021;[Kang et al., 2023 |Zhang et al.,|2023)) consider the class-wise relationship as domain-invariant
information and aim to preserve it during test time. The method in (Kang et al., 2023) stores the
class-wise relationship of the training domain and tries to minimize the difference between the class-
wise relationships of the training and test domains. CRS (Zhang et al.| 2023)) estimates the class-wise
relationships using the last linear layer of the trained models and embeds the source-domain class
relationship in contrastive learning. While these methods utilize class-wise relationships to pre-
vent their deterioration during test-time adaptation, DART takes a different approach by focusing on
directly modifying the predictions. DART considers class-wise confusion patterns to refine predic-
tions, effectively addressing performance degradation due to distribution shifts, without explicitly
enforcing preservation of class-wise relationships. More related works are reviewed in Appendix B}

6 CONCLUSION

We proposed DART, a method designed to mitigate the impact of test-time class distribution shifts
including both covariate and label distribution shifts, by taking class-wise confusion patterns into
account. DART achieves this by training a distribution-shift aware module during the intermediate
time to refine the predictions of pre-trained classifiers. Our experimental results demonstrate the
effectiveness of DART across benchmarks that include both synthetic and natural distribution shifts.
We expect that our method can be integrated with various TTA techniques in future applications,
enhancing the robustness and accuracy of models when facing test-time distribution shifts.
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A IMPLEMENTATION DETAILS

A.1 DETAILS ABOUT DATASET

We consider two types of input data distribution shifts: synthetic and natural distribution shifts. The
synthetic and natural distribution shifts differ in their generation process. Synthetic distribution shift
is artificially generated by data augmentation schemes including image corruption like Gaussian
noise and glass blur. On the other hand, the natural distribution shift occurs due to changes in image
style transfer, for example, the domain is shifted from artistic to photographic styles.

For the synthetic distribution shift, we first test on CIFAR-10/100C, which is created by applying 15
types of common image corruptions (e.g. Gaussian noise and impulse noise) to the clean CIFAR-
10/100 test dataset. We test on the highest severity (i.e., level-5). CIFAR-10/100C is composed
of 10,000 generic images of size 32 by 32 from 10/100 classes, respectively. The class distribu-
tions of the original CIFAR-10/100C are balanced. Thus, to change the label distributions between
training and test domains, we consider CIFAR-10/100C-LT, which have long-tailed class distribu-
tions, as described in Section Then, we test on ImageNet-C, which is composed of generic
images of size 224 by 224 from 1,000 classes. The samples of ImageNet-C are created by applying
the same image corruptions of CIFAR-10/100C. We test on the highest severity (i.e., level-5). To
change the label distributions between training and test domains, we can construct a new test set,
named ImageNet-C-LT similar to CIFAR-10/100C-LT. However, unlike CIFAR-10/100C-LT, each
test batch of ImageNet-C-LT does not have imbalanced class distributions, since the test batch size
for the ImageNet-C is set to be smaller than the number of classes, e.g., 32 or 64. Thus we consider a
new test set for ImageNet-C by the online-label distribution shift setup, described in SAR, which is
composed of K subsets, whose K is the number of classes of ImageNet-C. We assume a class distri-
bution of the k-th subset as [py, pa, . . ., Pk, where pr. = Pmax and p; = Pmin = (1 — Pmax)/ (K — 1)
for i # k. Let @ = Pmax/Pmin represent the imbalance ratio. Each subset consists of 1,000 sam-
ples from the ImageNet-C test set based on the above class distribution. Thus, the new test set
for ImageNet-C is composed of 100,000 samples. Additionally, we shuffle the subsets to prevent
predictions based on their order.

For the natural distribution shift, we test on CIFAR-10.1-LT, digit classification, and PACS bench-
marks. CIFAR-10.1 (Rechtetal.,[2018)) is a newly collected test dataset for CIFAR-10 from the Tiny-
Images dataset (Torralba et al.| 2008)), and is known to exhibit a distribution shift from CIFAR-10
due to differences in data collection process and timing. Since the CIFAR-10.1 has a balanced class
distribution, we construct a test set having a long-tailed class distribution, named CIFAR-10.1-LT,
similar to CIFAR-10/100C-LT. The digit classification benchmark consists of one training dataset
(SVHN (Netzer et al.| 2011)) and three test datasets MNIST (Deng| 2012), USPS (Hull, [1994), and
MNIST-M (Ganin et al} [2016)). These four datasets have different styles of digit images. SVHN
is composed of 73,257/26,032 training/test images, and MNIST/USPS/MNIST-M are composed of
10,000/2,007/10,000 test images from 10 classes, respectively. All digit datasets have class imbal-
ance as illustrated in Figure 5] SVHN is composed of colored real-world digit images. MNIST and
USPS are composed of handwritten digits. MNIST-M is generated by combining MNIST digits and
BSDS500 (Arbelaez et al.l |2010) backgrounds. PACS benchmark consists of samples from seven
classes including dogs and elephants in four domains: photo, art, cartoon, and sketch. In PACS, we
test the robustness of classifiers across 12 different scenarios, each using the four domains as training
and test domains, respectively. The data generation/collection process of the digit classification and
PACS benchmarks is different across domains, resulting in differently imbalanced class distribution,
as illustrated in Figure 2]

A.2 DETAILS ABOUT PRE-TRAINING

We use ResNet-18 for digit classification, ResNet-26 for CIFAR datasets, and ResNet-50 for PACS
and ImageNet-C as backbone networks. We use publicly released trained models and codes for a
fair comparison. Specifically, for CIFAR-10/100|'} we train the model with 200 epochs, batch size
200, SGD optimizer, learning rate 0.1, momentum 0.9, and weight decay 0.0005. For PACS, we use
released pre-trained models of TTAB (Zhao et al., [2023) ﬂ For ImageNet-C, we use the released

"nttps://github.com/locuslab/tta_conjugate
https://github.com/LINs-lab/ttab

13


https://github.com/locuslab/tta_conjugate
https://github.com/LINs-lab/ttab

Under review as a conference paper at ICLR 2024

Training dataset Test dataset (0=1) Test dataset (o = 10) Test dataset (p =100)

Class probablity
Class probablity
Class probablity

Class index Class index ) Class index Class index
Digit-SVHN Digit-MNIST Digit-USPS Digit-MNIST-M

Class probablity

Class probablity
Class probablity
Class probablity

" Class index Class index Class index Class index
PACS-ART PACS-CARTOON PACS-PHOTO PACS-SKETCH

Class probablity
] C\fass pr;obabh;ty .

Class probablity

Class probablity

Class index Class index Class index Class index

Figure 5: Class distribution of all benchmarks.

pre-trained models in the PyTorch library (Paszke et al.,[2019) as described in|Niu et al.| (2023)). For
digit classification, we train the model with 50 epochs, batch size 256, SGD optimizer, learning rate
0.01, and weight decay 0.0005 with cosine annealing.

A.3 DETAILS ABOUT INTERMEDIATE TIME TRAINING

We use a 2-layer MLP (Haykin, |1998)) for the distribution shift aware module g4. g4 is composed
of two fully connected layers and ReLU (Agarapl 2018)). The hidden dimension of the distribution
shift-aware module is set to 1,000. During the intermediate time, we train the g, by experiencing
several batches with diverse class distributions using the labeled training dataset. For digit classi-
fication benchmark, we train g4 with SGD optimizer (Ruder, [2016), a learning rate of 0.001, and
cosine annealing for 100 epochs. For other benchmarks, we train g, with Adam optimizer (Kingma
& Bal [2014), a learning rate of 0.001, and cosine annealing for 100 epochs. To make intermediate
batches having diverse class distributions, we use Dirichlet sampling with two hyperparameters, the
Dirichlet sampling concentration parameter ¢, and the number of chunks Ng;;. As these two hyper-
parameters increase, the class distributions of intermediate batches become similar to the uniform.
d is set to 0.001 for ImageNet-C, 10 for digit classification, and 1 for other benchmarks. Ny is set
to 2000 for ImageNet-C, and to the value obtained by dividing the intermediate dataset size by the
intermediate batch size for other benchmarks, e.g. 250 for CIFAR-10C-LT. The intermediate batch
size is set to 50 for ImageNet-C and 200 for other benchmarks.

We use the labeled dataset in the training domain to train the distribution shift-aware module. Specif-
ically, on CIFAR benchmarks and PACS, there is no auxiliary dataset in the training domain and we
use the training dataset as an intermediate dataset. On the other hand, in the digit classification
benchmark, we use the SVHN test dataset as an intermediate dataset. For ImageNet-C, the interme-
diate dataset is a subset of the ImageNet training dataset, composed of 50 samples randomly selected
from each of the classes.

A.4 DETAILS ABOUT TEST-TIME ADAPTATION METHODS
For a fair comparison, we fine-tune the Batch Normalization (BN) layer parameters unless otherwise

specified. We use the Adam optimizer with a learning rate of 0.001 for all TTA methods in all
experiments, except on ImageNet-C, following the approach in TENT (Wang et al.| 2020). We set
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the test batch size to 32/64/200 for PACS, ImageNet-C, and the other benchmarks. We run on 4
different random seeds for the intermediate-time and test-time training (0,1,2, and 3).

BNAdapt (Schneider et al.,|2020) BNAdapt does not update the parameters in the trained model,
but it corrects the BN statistics using the BN statistics computed in the test domain in exponential
moving average with momentum 0.1.

TENT (Wang et al., 2020) TENT replaces the BN statistics of the trained classifier with the
BN statistics computed in each test batch during test time. TENT only optimizes the BN layer
parameters to minimize the prediction entropy of the test data.

PL (Lee,[2013) PL regards the test data with confident predictions as reliable pseudo-labeled data
and fine-tunes the BN layer parameters to minimize cross-entropy loss using these pseudo-labeled
data. We set the confidence threshold to 0.9 for filtering out test data with unconfident predictions.

NOTE (Gong et al.;,2022) NOTE aims to mitigate the negative effects of non-i.i.d stream during
test time by instance-aware BN (IABN) and prediction-balanced reservoir sampling (PBRS). IABN
first detects whether a sample is out-of-distribution or not, by comparing the instance normalization
(IN) and BN statistics for each sample. For in-distribution samples, IABN uses the standard BN
statistics, while for out-of-distribution samples, it corrects the BN statistics using the IN statistics.
We set the hyperparameter to determine the level of detecting out-of-distribution samples to 4 as
used in NOTE (Gong et al., 2022). Due to non-i.i.d stream, class distribution within each batch is
highly imbalanced. Thus, PBRS stores an equal number of predicted test data for each class and
does test-time adaptation using the stored data in memory. We set the memory size the same as the
batch size, for example, 200 for CIFAR benchmarks. NOTE and ODS create prediction-balanced
batches and utilize them for adaptation. Thus, the batches for adaptation in ODS and NOTE have
different class distributions from the test dataset, unlike other baselines including TENT. Therefore,
in NOTE and ODS, DART is used exclusively to enhance the prediction accuracy of the examples
stored in memory.

DELTA (Zhao et al.,2022) DELTA aims to alleviate the negative effects such as wrong BN statis-
tics and prediction bias by test-time batch renormalization (TBR) and dynamic online reweighting
(DOT). Since the BN statistics computed in the test batch are mostly inaccurate, TBR corrects the
BN statistics with renormalization using test-time moving averaged BN statistics with a factor of
0.95. DOT computes the class prediction frequency in exponential moving average with a factor of
0.95 during test time and uses the estimated class prediction frequency to assign low/high weights
to frequent/infrequent classes, respectively.

LAME (Boudiaf et al., 2022) LAME modifies the prediction by Laplacian regularized maxi-
mum likelihood estimation considering nearest neighbor information in the embedding space of the
trained classifier. We compute the similarity among samples for the nearest neighbor information
with k-NN with k = 5.

ODS (Zhou et al., 2023) ODS estimates label distribution of test data using the refined label
distribution by LAME and adapts the trained classifiers using IABN and PBRS like NOTE, while
assigning high/low weights on infrequent/frequent classes, respectively. Thus, we use the same
hyperparameters used in LAME and NOTE.

LSA (Park et al., 2023) LSA estimates the label distribution of test data and produces an affine
layer for feature representation for test data and parameter perturbation for the last linear layer for
trained classifiers by taking the estimated label distribution. During intermediate time, the LSA is
trained to output affine parameters for the feature representation v € R'*? and 3 € R'*¢ and
parameter perturbations AW € R4*¢ and Ab € R'* for the last linear classifier weighted by W
and b by taking ground truth label distribution. Specifically, when z € R¢ is a feature representation
for a test data x, the refined prediction § for (x,y) € D is

§=(yz+ B)(W + AW) + (b + Ab). @)
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The LSA trains a label shift adapter to match the refined prediction ¢ and the ground truth label
y using the logit adjusted loss. At test time, the LSA estimates the pseudo-label distribution in an
online manner similar to DELTA,

Ge = o + (1 — a)gs—1, €]

where ¢, is the estimated test label distribution at time ¢, o is momentum hyperparameter, and ¥; is
the averaged model prediction of test batch at time ¢. « is set to 0.1. Then, the label shift adapter
takes the estimated test label distribution ¢ as an input during the test time. Similar to DART, LSA
is a plug-in method that can be used in any existing entropy-minimization TTA methods.

The label shift adapter structure is a 2-layer MLP with hidden dimension 100. During intermediate
time, LSA originally experiences several batches having three types of class distributions (forward,
uniform, and backward class distributions) to train the label shift adapter. Forward/ backward indi-
cates a class distribution that is same/inverse order of the label distribution of the training dataset,
respectively. If the training class distribution is uniform, then LSA can only experience uniformity
during the intermediate time.

A.5 DART ON LARGE-SCALE BENCHMARK

As the number of classes K increases, the output dimension of g4 also increases as K 2, For instance,
in CIFAR-100C-LT, the output dimension of g is 10,000. The high output dimension makes it hard
to learn and generate good square matrix 7'. To address it, we modify the module g to produce T'
with some entries fixed to O for the large-scale datasets. For CIFAR-100C, we first analyze class-
wise confusion patterns using an augmented training dataset. Then we set the entries where class-
wise confusion never occurred to O when training the distribution-shift aware module to generate 7T'.
For example, when we use a speckle noise augmentation of severity level 1, we can set 7,400 entries
of T" to 0. We note that the noise type is not used when testing the model with CIFAR-100C test set.
On the other hand, for ImageNet-C, we set the off-diagonal entries to 0 since the number of classes
is huge.

During test time, g, takes the averaged pseudo label distribution over the test dataset to output a
square matrix 7" of size K. This is because in benchmarks like CIFAR-10C-LT, the class distribution
of each test batch is similar to the one of the whole test dataset. However, for the online label
distribution shift setup on ImageNet-C, the class distributions within test batches are different. Thus
we compute the square matrix 7" for each test batch.

CPL (Goyal et al| [2022) finds that TTA results can vary significantly when prediction confi-
dence changes although pseudo-label accuracy is the same. DART on the large-scale bench-
marks shows a similar phenomenon. Therefore, we perform TTA with normalization to
maintain the prediction confidence on CIFAR-100C-LT. For example, in the case of TENT
(Wang et al| 2020), we adapt the classifier fy using a training objective Lrenr(0) =

EieDien [— Dok softmax(Hfg(:%)HQ%)k log softmax(||f9(i)||g%)k]. On the other

hand, DART using the normalization shows similar performance compared to the original DART
on CIFAR-10. For example, TENT+DART with the normalization achieves the test accuracy of
85.63£0.19 on CIFAR-10C-LT (p = 10).

A.6 RUNTIME
We conduct experiments on RTX A6000. It takes about 2 hours to train g, during intermediate time

for CIFAR-10C-LT. We train g4 only once for each pre-trained classifier. Since we train a 2-layer
MLP during the intermediate time, it requires a shorter training time compared to pre-training.

B MORE RELATED WORKS

B.1 TTA METHOD UTILIZING INTERMEDIATE TIME
Some recent works (Choi et al., 2022} [Lim et al., 2022} |Park et al., 2023)) try to prepare an unknown

test-time distribution shift by utilizing the training dataset at the time after the training phase and
before the test time, called intermediate time. SWR (Choi et al., 2022) and TTN (Lim et al., 2022)
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compute the importance of each layer in the trained model during intermediate time and prevent the
important layers from significantly changing during test time. SWR and TTN compute the impor-
tance of each layer by computing cosine similarity between gradient vectors of training data and
its augmented data. TTN additionally updates the importance with subsequent optimization using
cross-entropy. Layers with lower importance are encouraged to change significantly during test
time, while layers with higher importance are constrained to change minimally. On the other hand,
our method DART trains a distribution shift aware module during intermediate time by experiencing
several batches with diverse class distributions and learning how to modify the predictions generated
by pre-trained classifiers to mitigate the negative effects caused by the class distribution shift of each
batch.

B.2 TTA METHODS CONSIDERING SAMPLE-WISE RELATIONSHIPS

Some recent works (Boudiaf et al.l 2022} Twasawa & Matsuo}, 2021}, Tang et al., [2022)) focus on pre-
diction modification using the nearest neighbor information based on the idea that nearest neighbors
in the embedding space of the trained classifier share the same label. T3A (Iwasawa & Matsuo,
replaces the last linear layer of the trained classifier with the prototypical classifier, which
predicts the label of test data to the nearest prototype representing each class in the embedding
space. LAME (Boudiaf et al [2022) modifies the prediction of test data by Laplacian-regularized
maximum likelihood estimation considering clustering information.

B.3 LOSS CORRECTION METHODS FOR LEARNING WITH LABEL NOISE

In learning with label noise (LLN), it is assumed that there exists a noise transition matrix 7', which
determines the label-flipping probability of a sample from one class to other classes. For LLN, two
main strategies have been widely used in estimating T": 1) using anchor points
[2020), which are defined as the training examples that belong to a particular class almost
surely, and 2) using the clusterability of nearest neighbors of a training example belonging to the
same true label class 2021). LLN uses the empirical pseudo label distribution of the
anchor points or nearest neighbors to estimate 7'.

For TTA, on the other hand, the misclassification occurs not based on a fixed label-flipping pattern,
but from the combination of covariate shift and label distribution shift. To adjust the pre-trained
model against the covariate shifts, most TTA methods apply the BN adaptation, which updates the
Batch Norm statistics using the test batches. However, when there exists label distribution shift in
addition to the covariate shift, since the updated BN statistics follows the test label distribution, it
induces bias in the classier (by pulling the decision boundary closer to the head classes and pushing
the boundary farther from the tail classes as in Appendix C). Thus, the resulting class-wise confusion
pattern depends not only on the class-wise relationship in the embedding space but also on the
classifier bias originated from the label distribution shift and the updated BN statistics. Such a
classifier bias has not been a problem for LLN, where we don’t modify the BN statistics of the
classifier at the test time.

Our proposed method, DART, focuses on this new class-wise confusion pattern, and is built upon
the idea that if the module experiences various batches with diverse class distributions before the test
time, it can develop the ability to refine inaccurate predictions resulting from label distribution shifts.
Based on this intuition, we train a distribution shift-aware module during the intermediate time, by
exposing several batches with diverse class distributions using the training datasets. As described
in Equation (1) of the manuscript, the module is trained using the labeled training dataset to output
a square matrix of the class dimension for prediction refinement. In this process, the module takes
the averaged pseudo-label distribution as an input to learn the class-wise confusion pattern of the
BN-adapted classifier depending on the label distribution shift.

C MOTIVATING TOY EXAMPLE

To understand the effects of test-time class distribution shift, we consider a four-class Gaussian
mixture distribution with mean centering similar to batch normalization. Let the distribution of
class i is N'(u;, 02 I3) at training time for i = 1,2, 3, and 4, where 11; € R? is the mean of each class
distribution. We set the mean of each class as u1 = (d, 8d), p2 = (—d, 5d), us = (d, —3d), and

17



Under review as a conference paper at ICLR 2024

g = (—d,—pBd), where § controls the distances between the classes, and we assume that § > 1
without loss of generality. Moreover, we assume that the four classes have the same prior probability
at training time, i.e., p,(y = ¢) = 1/4,i = 1,2, 3, and 4. Since the class priors for the training data
are equal, the Bayes classifier fi; predicts z to the class ¢ when

pel(ly = 1) > pu(zly =34), j#i (5)
due to Bayes’ rule. Then, we have
ifxqy > 0,29 > 0;
if x1 < 0,29 > 0;

, ifxy > 0,20 <O0;
, ifxy <0,z <O..

fu(z) = (6)

=W N

At the test time, we assume that the class distribution is imbalanced, similar to the long-tailed dis-
tribution mainly discussed in the manuscript, as

Pe(y=1) = (7N
Pe(y =2) = 1/4 (3
Pe(y =3) = 1/4, 9
pe(y=4)=1/2-p. (10)

Without loss of generality, we set 1/4 < p < 1/2. Due to the mean centering, the distribution of
class i is shifted to N'(y}, 0215), where y, is the shifted class mean as follows:

wy = ((3/2 = 2p)d, (3/2 — 2p)Bd), (11)
e = ((=1/2 = 2p)d, (3/2 — 2p) 3d), (12)
15 = ((3/2 = 2p)d, (=1/2 — 2p)d), (13)
pwy = ((=1/2 = 2p)d, (—1/2 — 2p)Bd). (14)

Then, the probability that the samples from class 1 is wrongly classified to class 2 can be computed
as

Pr|fu(x) =2y =1]| = Pr 1 < 0,29 >0 15
ulr)=2y=11= _  Pr.. . [n<0m>0 ()

_ 3 (<3/22p>d> {1 " <W>} (16)

g g

where @ is the standard normal cumulative density function. Similarly, the probability that the
samples from class 2 is wrongly classified to class 1 can be computed as

Pilie) =y =2 = {1 -0 (S22 o ((CREEEO L 09

Since 1/4 < p < 1/2, we have Pr[f(z) = 2|y = 1] > Pr[fy(z) = 1|y = 2]. With similar
computations, we can obtain Pr[f(z) = ily = 1] > Pr[fu(z) = 1|y = i],Vi = 2,3, and 4.
In other words, the probability that the samples from the class of a larger number of samples are
confused to the rest of classes is greater than the inverse direction.

The probability that samples from class 1 are wrongly classified by fi. as class 1,2, and 3 can be
calculated as follows:

Pr[fe(z) = 2|y = 1] :@(-W) {1-@(-6/2_22’)%)}, (18)

Pilfite) =3y = 1] = (- B2 g g (L 20; 2L a9
Prlfy(x) = 4ly = 1] = (—W) o (—W) . 0)
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(a) T-SNE plots for CIFAR-10C-LT with Gaussian noise, p=100 (b) Estimated 7" by HOC

Figure 6: (a) T-SNE plots of test data with ground truth labels (left) and their predictions (right) for
CIFAR-10C-LT with Gaussian noise, p=100 (b) Estimated 7' by HOC

Note that & (—M> has the following properties: Since 1/4 < p < 1/2,

o

o (-G o1y Sine B> 1, @(-CR20M) o g (BT,

o

202 42
a%q) (*M = C18exp (*W) where C is a positive constant which are

independent of p and 3, decreases as 3 grows for 5 > m.

Thus, we can say that

(1) The probability of samples from the head class (class 1) are being confused to tail classes is
greater than the reverse direction, specifically, Pr(f,(z) = ily = 1] > Pr[fy(z) = 1|y =
i], Vi # 1, where fi, is a Bayes classifier obtained using the training dataset.

(2) The probability that a sample from the head class is confused to the closer class is larger
than the farther classes, specifically, Prf;(z) = 2|y = 1] > Pr[fu(z) = 3|y = 1] >
Pr(fu(z) = 4|y = 1].

(3) The increasing confusing probablhty to close class is larger than the one to farther class
as class distribution imbalance p increases, specifically, 2 o Prlfu(z) = 2ly = 1] >

%Pr[ftr( x) = 3|y = 1] when 20 < d.

The effects of test-time label distribution shift can be consistently observed not only in this toy
example but also in real datasets, including CIFAR-10C-LT.

D TRANSITION MATRIX ESTIMATION BY NOISY LABEL LEARNING METHOD

HOC estimates the noisy label transition matrix for a given noisy label dataset
under the intuition that the nearest neighbor in the embedding space of a trained classifier shares the
same ground truth label. We found that HOC failed to estimate the transition matrix for CIFAR-
10C-LT with the label distribution shift of p = 100. HOC estimates the transition matrix by using
the empirical pseudo label distribution of nearest neighbors of each example. However, as observed
in Figure [f] left, the nearest neighbors in the embedding space already have the same pseudo la-
bels/predictions for the BN-adapted classifier, which makes it impossible to estimate a correct 7'
depending on the label distribution shift. Thus, the estimated matrix by HOC is similar to the iden-
tity matrix as observed in Figure 6] right.
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Table 6: Average accuracy (%) on CIFAR-10C-LT of two Oracles that modify (Oracle (logit)) the
classifier output and (Oracle (prob)) the softmax output, respectively.

Method | p=1 p=10 p =100

NoAdapt 71.68+0.00 71.284+0.08 71.13+0.17

BNAdapt 85.24+£0.08 79.01+0.07 66.90+0.16

Oracle (logit) | 85.53+0.05 85.97+0.18 87.77+0.07

Oracle (prob) | 85.24+0.07 81.03£0.12 78.57+0.16
Torac!e. logit Torac/e, prob
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Figure 7: Comparison of trained 7" of two oracles modifying logit and softmax probability.

E ADDITIONAL EXPERIMENTS

E.1 ORACLE: SOFTMAX OUTPUT MODIFICATION VS LOGIT MODIFICATION
The Oracle method in Section [2.1] modifies the classifier output (logit) by simply multiplying
Toracle, 10gie that minimizes the following objective

Toracte, logic = argmin B, yep,... [CE(softmax(fo(z)T),y)] [@2))

TGRK X K
by gradient descent. However, noisy label learning methods such as HOC usually modify the soft-

max output, not the logit. Thus, we consider a new Oracle method that modifies the softmax output
by simply multiplying Toacle, prob that minimizes the following objective

E(2.4)eDien [CE(sOftmax(fy ()T, y)] - (22)

arg min
TG{TGRKXK:ZJ. T;;=1,0<T}; Sl}

Toraole, prob —

by gradient descent. In Table|§|, we present the test accuracy achievable with T¢,e When applied to
the output of the BNAdapt model on CIFAR-10C-LT. We can observe that the Oracle that modifies
the logits is more effective in mitigating performance degradation by test-time distribution shift
regardless of the class imbalance ratio p. Thus, the distribution shift-aware module g4 of DART
focuses on generating a square matrix 7' that modifies logit, not softmax output.

E.2 ITERATIVE UPDATES OF T

We consider the variant of DART, which modifies the classifier output and obtains a square matrix
by taking the modified classifier outputs iteratively. Specifically, for i € N

T; = 9o (Eaep,, [softmax(fo () I T;)]),

where Ty is set to an identity matrix of size K. In Table[7} we observe that the refined pseudo label
distribution is similar to the ground truth label distribution when modifying the prediction only once
by DART (iteration=1). However, the performance gradually decreases as the number of iterations
increases, which shows that the iterative updates does not help in improving the performance. We
conjecture that these results originated from the fact that g, is trained to learn how to correct the

classifier output of the pre-trained classifier fy, but not any classifier including ng;;é]}.

(23)
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Figure 8: Changes of test accuracy while learning/fine-tuning the square matrix 7" using the confi-
dent pseudo-labeled test data
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Table 7: Iterative update of 7" on CIFAR-10C-LT with Gaussian noise and p of 10 and 100. Average
accuracy (%) and pseudo-label distribution of the test data are reported.

p=10

Ground truth label distribution \
0 1 2 3 4 5 6 7 8 9
0.2449 0.1895 0.1467 0.1136 0.0879 0.0681 0.0526 0.0406 0.0316 0.0245

iteration acc

\
\
\
| Pseudo label distribution
0.7392 | 0.1691 0.1570 0.1221 0.0971 0.0964 0.0816 0.0808 0.0639 0.0696 0.0624

0.8009 | 0.2269 0.2034 0.1382 0.0913 0.0972 0.0717 0.0703 0.0472 0.0391 0.0146
0.6453 | 0.4546 0.2592 0.1035 0.0558 0.0143 0.0503 0.0337 0.0209 0.0065 0.0010
0.4817 | 0.6098 0.3026 0.0078 0.0209 0.0021 0.0231 0.0094 0.0094 0.0113 0.0036
0.4374 | 0.6362 0.3378 0.0017 0.0051 0.0003 0.0045 0.0012 0.0047 0.0056 0.0028

p =100

AL —=O

Ground truth label distribution
0 1 2 3 4 5 6 7 8 9
0.4036 0.2417 0.1449 0.0868 0.0521 0.0311 0.0186 0.0109 0.0065 0.0040

iteration acc

\
\
\
| Pseudo label distribution
0.6240 | 0.2021 0.1854 0.1245 0.0892 0.0805 0.0630 0.0660 0.0522 0.0701 0.0671

0.7922 | 0.3204 0.2408 0.1446 0.0795 0.0688 0.0413 0.0419 0.0203 0.0303 0.0122
0.7019 | 0.5846 0.2899 0.0450 0.0426 0.0038 0.0203 0.0083 0.0033 0.0018 0.0004
0.6378 | 0.6466 0.3101 0.0054 0.0174 0.0009 0.0052 0.0029 0.0045 0.0035 0.0033
0.6246 | 0.6608 0.3261 0.0009 0.0035 0.0001 0.0008 0.0001 0.0028 0.0026 0.0022

AL —=O

Table 8: Average accuracy (%) on CIFAR-10C/10.1-LT, digit classification, and PACS.

CIFAR-10C-LT CIFAR-10.1-LT

Method p=10 p— 100 p=10 p =100 Digit PACS

NoAdapt 71.28+0.08 71.13+0.17 87.13£0.48 86.64+0.97 58.45+0.00 60.65+0.00
BNAdapt 79.01£0.07 66.90£0.16 77.37£0.45 64.43+£0.97 61.10+0.20 72.08+0.11
BNAdapt+ours  84.53+0.20 83.344+0.20 85.81£0.65 80.64+2.12 62.60+0.35 75.33£0.09
TENT 83.02+£0.19 70.49+0.43 78.23£0.52 64.53£1.53 63.59£0.19 74.53+£0.97
TENT+ours 85.13+0.31 88.56+0.13 86.884+0.78 82.32£1.60 64.85+0.44 80.98+1.19
TTT++ 80.15+0.21 68.64+0.37 77.74+0.35 64.74£0.75 60.86+0.06 67.114+0.20

E.3 FINE-TUNE T WITH CONFIDENT PSEUDO-LABELED TEST DATA

DART uses the fixed square matrix Tiese = g4(P) where p is an averaged pseudo label distribution
for test data. We can consider a variant of DART that fine-tunes 7.5 by the confident pseudo-labeled
test data. Specifically, we can obtain by gradient descent

T* = argmin E,ep, ., [1{max softmax fy(z) > 7}CE(softmax(fo(z)T'),p.)] + aMSE(T, Tp),
T
24

where p, = argmax fp(x) is the pseudo label, 7 is the confidence threshold, MSE is the mean
square error, « is a hyperparameter for the regularization term, and 7} is Ti.s. Moreover, one might
consider obtaining the square matrix using only the confident pseudo-labeled test data (i.e., T} is set
to an identity matrix of size K). Here, o and 7 are set to 1 and 0.9, respectively.

In Figure [§] we summarize the test accuracy while fine-tuning 7" for 10 epochs on CIFAR-10C-LT
with Gaussian noise of p = 10 and 100. We find that (1) fine-tuning 7t.s; improves the test accuracy
when p is 100, but it worsens the test accuracy when p is 10; (2) learning 7" from scratch enhances
the test accuracy, but it is marginal so is worse than one of DART. We conjecture that fine-tuning 7'
utilizing wrong pseudo labels can diminish the efficiency of DART.
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E.4 COMPARISON WITH TEST-TIME TRAINING METHOD TTT++

TTT++ adapts the trained classifiers using instance discrimination loss (contrastive learning) while
aligning the feature statistics of training and test time. The original TTT++ performs contrastive
learning in the embedding space of the trained contrastive head. However, the trained head can be
available only when the instance discrimination loss is used during the training time. Thus, for a fair
comparison, we consider a modified TTT++ which performs contrastive learning in the embedding
space of the feature extractor. As data augmentation techniques for the contrastive learning, we use
RandomHorizontalFlip, RandomResizedCrop, Grayscale, Normalize for digit classification, Ran-
domHorizontalFlip, RandomResizedCrop, ColorJitter, RandomGrayscale, Normalize for CIFAR
and PACS benchmarks as described in [Liu et al.[(2021). DART focuses on improving prediction
accuracy that has been reduced due to the test-time class distribution shift. Therefore, DART can
not be used as a plug-in method for TTT++ that does not use prediction in test-time training.

In Table [8] we summarize the results for the original and DART-applied TTA and TTT++. the
modified TTT++ shows slightly better performances than BNAdapt on CIFAR and digit benchmarks,
but it achieves lower performances compared to DART.

E.5 DART ON BALANCED CIFAR-10C

We summarize the experimental results of DART on the balanced CIFAR-10C in Table [T3] We
observe that DART-applied TTA methods show worse performance than naive TTA methods. This
is attributed to the limited gain even with Oracle method. In Table[I] Oracle achieved only a marginal
performance gain of 0.3% on average even when using the labels of test data on balanced CIFAR-
10C. Therefore, DART, which uses the same prediction modification scheme, can only achieve
limited gains even when generating square matrices similar to the ones of Oracle. We note that
experiments on balanced datasets are also challenging for ODS (Zhou et all [2023), one of the
methods alleviating test-time class distribution shift.

E.6 SENSITIVITY ANALYSIS ON HYPERPARAMETERS

We verify the robustness against the changes of the structure of g, and the test batch size B. First,
we conducted experiments to check the sensitivity of DART over the hidden dimension d; and
number of layers of g4, and the results are summarized on CIFAR-10C-LT of p = 100 in TableEl
We can observe that DART is robust against the change in the g4 structure. And then, we conducted
experiments to check the sensitivity of DART over B and the results are summarized in Table [I0}
We can observe that DART is robust against the change in B.

Table 9: Sensitivity analysis about the network design of gg.

2-layer MLP 3-layer MLP
dp, =250 dp, =500 d=1000 dj=2000 | dj=250 d; =500 dj=1000 dj =2000
NoAdapt | 71.13
BNAdapt 66.90
BNAdapt+DART (ours) 80.6 82.17 83.34 83.83 | 83.83 84.27 84.78 84.97
TENT 70.49
TENT+DART (ours) 87.46 88.23 88.56 88.65 | 8881 88.67 88.6 88.09

Table 10: Sensitivity analysis about the test batch size B.

| B=32 B=64 B=128 B=256

NoAdapt \ 71.13

BNAdapt 65.48 66.15  66.68 66.99
BNAdapt+DART (ours) | 81.70 82.65  83.17 83.51
TENT 71.89 7198 7148 69.97
TENT+DART (ours) 85.63 88.20 88.86 88.30
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E.7 COMPARISON WITH SAR

SAR 2023)), which adapts the trained models to lie in a flat region on the entropy loss sur-
face, is widely known as robust to label distribution shifts. Since DART focuses on effectively mod-
ifying the inaccurate predictions/pseudo-labels caused by test-time label distribution shifts, DART
can be integrated as a plug-in method with any TTA methods, including SAR, that rely on pseudo-
labels obtained from the trained classifiers. Thus, DART can also be used with SAR, and we sum-
marize the experimental results on CIFAR-10C-LT in Table [TT} and on ImageNet-C-imbalance in
Table [[2} We can observe that the performances of SAR are worse/better than those of TENT on
CIFAR-10C-LT/ImageNet-C-imbalance, respectively. However, DART consistently improves the
performance of the SAR in a similar way as it improves the performances of other TTA methods,
since DART improves the accuracy of the initial pseudo-labels used for SAR.

Table 11: Average accuracy (%) on CIFAR-10C-LT

p=10 p =100

NoAdapt 71.28 71.13
BNAdapt 79.01 66.9
BNAdapt+DART (ours) 84.53 (+5.52) 83.34 (+16.44)
TENT 83.02 70.49
TENT+DART (ours) 85.13 (+2.11) 88.56 (+18.07)
SAR 79.76 67.3
SAR+DART (ours) 84.90 (+5.14) 83.56 (+16.26)

Table 12: Average accuracy (%) on ImageNet-C-imbalance

o = 1000 o = 2000 a = 5000

NoAdapt 18.15 18.16 18.16
BNAdapt 19.85 14.11 8.48
BNAdapt+ours  25.18 (+5.33)  20.48 (+6.37) 14.82 (+6.34)
TENT 22.49 13.52 6.61
TENT-+ours 26.18 (+3.69)  18.51 (+4.99) 11.17 (+4.56)
SAR 26.46 17.36 9.09
SAR-+ours 32.49 (+6.03) 2338 (+6.02) 12.9 (+3.81)
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F FULL RESULTS

Table 13: Test accuracy of CIFAR-10C-LT with p

optimizer by only one epoch.

1 when the model is fine-tuned using Adam

gaussian_noise_shotnoise__impulse_noise _defocus_blur_glass blur__motion_blur__zoom blur__snow frost fog brighiness  conrast _elastic transform _pixclate _jpeg_compression _avg
NoAdapt 46415000 51614000 27114000 90.69-£0.00 82005000 9187000 8384000 8020000 68794000 91204000 51.59+0.00 8277:+0.00 81194000 77.940.00 71.680.00
BNAdapt 80483012 BI8SL0.10 69.94£0.19 9144015 92694007 86274013 88514014 83.60:0.12 91264005 89494008 83.95:0.10 90464022 8039+0.18 85244008
BNAdapt+ours 79924015 81044010 69.6040.16 91024020 14008 85812000 880420.17 8294:020 9092+0.10 8§9.1220.07 8347026 89.954009 79.7240.28 84.7040.12
BNAdapttours (diag) 79514031 8048031 69.8840.15 90614019 91794013 85614019 87.63:015 82694011 90.65:009 88.9940.12 832140.16 89774014 79.780.10 84.4640.14
BNAdapttours (online) 79.7140.15 80750025 68.784060 9046038 86924025 9136037 8535031 87414032 82364042 90384023 88451021 82944042 89.464039  78.9740.97 84.1640.24
N 82343012 83562042 13625047  9135:030 88545031 9223%015 8754034 88543047 87613042 9150+025 9047+073 8329:035 9020+039 8344047 86354022
TENT+ours TI85E104 77464163 70884074  88.98:0.64 89.5740.61 8491+098 §547+084 8552:098 89.00£049 8832087 8049073 86964080 80.20+0.66 83244075
TENT-+ours (diag) T212E175 T0644256 66354222 81.97:262 82564258 77.183220 7835 78714330 82974223 80.68+240 7296180 80204241 7502143 76.63+2.22
TENT+ours (online) 72794352 74104243 61704293  8098+4.05 79094382 75774314 77435503 78015408 80.60+4.11 78214604 70416.14 80384244 70316.14 74954325
82014030 8244075 7360£0.96 9137042 92104019 8740039 $8.26:036 8746034 91195019 90.46+0.62 83.57+0.92 90324031 83.50+0.57 86.19:0.13

PLitours T822E160 78204095 69.6040.16  90.15+0.96 91324109 85.56£038 86224161 80.824130 89734096 87.96+0.87 82664137 89104108 79.67+0.36 83.50£0.61
PLe+ours (diag) 76294142 77044020 69.5140.65  89.52+088 90014169 84165104 84424053 80144100 88334068 87344219 81.1942.09 87.6741.09 78.614141 82.440.70
PLours (online) 7395431 75584388 62754530  78.614721 T6.50+644 6654273 TTT2E5.66 75024400 79344615 19084519 71284729 77995600 70824526 T4TAEITI
80.9940.88 82404057 72381052 91524032 92031020 $7.28+045 8836035 87158047 9103037 90441041 8339+044 90.1740.18 82884037 85.940.16

DELTA+ours 7726£067  T8I6ELIS 69444143 89.63:035 90485066 8541083 85854086 89784052 89334089 79.92+128 87894084 80.76+0.57 83.5740.77
DELTA+ours (diag) ~ 70.08£337 69264382 63204231 81074326 2134388 74.90+4.25 76554562 81684342 T8.994394 71324310 78614345 73384211 74884338
DELTA+ours (online)  7567£099  7456+178 62204239 8180+5.02 82134482 78.0053.96 8105303 82644447 79974672 T4.58+3.92 83914249 73614674 71.3543.22
NOTE TAINLII4 75574096 66051084 86871042 88031015 52432082 82881065 87531097 88464081 76504061 84641013 76004074 80.6640.21
NOTE+ours T300£141  TS084078 64764143 86094026 87514078 82.19:40. 82784042 86931080 87.994108 76154140 83504012 75234059 79.99:40.41
NOTE+ours (diag) 72664217 73994044 6545L119 85814121 86974022 81474123 82434056 86544063 88174059 75934071 84164011 75174055 79804041
NOTE+ours (online) 67404058 68754164 59364117 83674165 84854093 8074115 S0.88+1.44 78824268 85204148 8596134 7353+133 81724156 7275+2.60 76.87+0.49
80543018  8195£009 70.10£020 9146023 9273005 8635008 88543017 8363022 9121+0.10 8948+006 83.99:0.03 90555023 80.36+0.07 85274006

LAME+ours 80494026 8183£007 7006£023 9143028 92714008 8635007 018 83.58+023 91.20+0.15 89.47+0.10 83.91+0.07 90.5140.19  80.240.13 85224005
LAME+ours (diag) 80464027  81.74+0.10 T0.11+0.13 9137025 9268004 8632006 017 83.56+0.19 91164000 89.47+0.11 83.92+0.11 90.5340.16  80.22+0.19 85.20+0.05
LAME+ours (online) 8053020 81784008 69.93+0.16  9141:£020 87864020 9263008 8631+0.10 88.53+020 83544017 91194007 89.46+0.09 83.97:0.07 90.56+0.13 80.180.07 85.20+0.05
S 77415051 78814054 69.004049  88.83:037 86405030 89731022 85224034 8654:013 84825018 89394030 90.83+026 79.44:0.23 87334028 78.3140.79 83.2140.09
ODS+ours 77504028 78784048 70024083 89.01£031 3 8657062 8989041 85.170. 85294054 89534034 90.92+0.30 79.74:0.57 87754007 78.03+0.25 83.4240.11
ODS-+ours (diag) 78224050 79394073 69414112 88944050 76444059 8648+0.50 89.86+039 $494+022 86654024 85004044 $9.60+020 91.30+028 7978033 87874029 78514062 83.49+007
ODS+ours (online) 77694026 T86140.53 69474028  8879+053 7664094 §649+0.08 89.62+0.16 $5.10£051 §643£0.14 85114042 $9.65+0.38 91.09+0.09 79.61+033 87204048 78054028 83315004

Table 14: Test accuracy of CIFAR-10C-LT with p =
optimizer by only one epoch.

10 when the model is fine-tuned

using Adam

gaussian_noise_sholnoise _impulse_noise _defocus blur_glass blur___motion_blur_zoom blur__snow fog brightness_contrast___elastic transform _pixelale _jpeg_compression _avg
NoAdapt 45833045 50274038 29243023 90.06-008 6593042 84615038 02.46+0.14 8204053 67372048 9169031 54.73+048 8244024 7944037 75424020 71285008
BNAdapt 73925048 75244025 6450+0.18  $560+016 86955021 §0.12+0.70 76605023 86104038 8357+0.12 77514037 $375£035 7367008 79015007
BNAdapt+ours 80.09072 80014042 70554028 90204043 91.50+030  86.07+0.60 82624049 90624038 87874033 84324030 90.08+037  80.17+040 8453020
BNAdaptrours (diag)  79.19+049 79814023 69404024  90.13+0.10 91534036 85324064 81524051 90624036 88524023 8287+0.28 88974033 78.89+043 83945015
BNAdaptrours (online) 7949208 80314036 69.64+030  88.68+140 90.59+1.77  $4.88+149 82024144 8926+115  §7.64+0.97 82324118 88344200 7903051 83545076
A 7828150 79434081 70.13£076  88.30:065 8964062 84795078 83135129 89645059 88154027 8124055 86424128 7793084 83.0220.19
TENT+ours BIL63E080 82224100 7534051 §9.56+0.60 89.09+0.69 §6.580.58 86315078 89214044 88814022 83.39+0.61 8893040 82224109 85132031
TENT+ours (diag) 8108054 81472076 7393082  9040+0.57 90.95:044  86.64=0.61 86572044 90614037 §9.89+0.68 82.68+0.73 89.155049 8107121 85342033
TENT+ours (online)  B0.88137 81384154 75.18£0.87  88.28+1.10 89055085 85.66:1.36 8560118 88404056 §7.86+0.68 81461146 8726136 81215159 84295046
T852EIA4 TRBOL089 69.17£123  S8I7L064 85902062 90.19£062 8484028 83204140 8960111 8795101 B112£071 87294052 78.042080 83.092028

PLtours 8086097  BLIL0S2 73254055 88794063 §7.26£0.19 8933040 86174092 85504070 8938025 88144032 8276063 88204074 81024081 84504039
PLours (diag) 8053092 81381059 6989L145  9045:040 87532071 9081£016 8657+121 84392037 90574017 89214074 82.60+0.61 89294050 8024118 84742047
PLours (online) BO6IL164  BOR3EIAL 71324078 88314086 86512057 89254068 85094127 B381L274 88624036 87384045 1.26:0.58 §7.29£200 8034+127 83.66:0.60
DELTA TI6AEIT 6820179 8184112 85215143 8981142 8454=138 83105226 8815183 86374122 8694287 78.40+183 82412059
DELTA+ours 8069172 72294096 89.57+0.71 86775020 89.09+050 85.73+0.16 86.06-058 89.14041  88.600.66 88375077 81274075 84462030
DELTA +ours (diag) 6574133 77.50+231 66.04+282 8904122 75553234 85772060 89.46:032 8420091 84062088 89.08:0.68 88724196 8633148 7697177 82212082
DELTA+ours (online)  80.15:0.82 78664372 72223240 88304122 7883093 8623:0.86 88193078 8470:2.16 85355172 8886090 88.17+0.87 81275131 8037+151 83612077
NOTE 72264257 2744164 6480+126  87.88£095 727 8858058 83.18+0.62 8190125 88704053 89.7140.62 8662073 76.00+1.62 80.724023
NOTE+ours TA96+15T  TAS4H0S] 68924114 8574£088  T3ST 85765077 8400045 8446+0.57 81092095 87004054 8784043 8 85350042 7595+181 80.79+0.14
NOTE+ours (diag TASTEIZT  TAO240.56 69.04+088 8686125 74T 88.69-073 8513039 84.63£0.77 81762095 88114083 $9S4E188 78704142 8560067 77684153 81624035
NOTE+ours (online) 64314215 6587+1.50 S8.084369  85.14%1.12 7184 8524109 8260+1.65 82845153 7760111 85036096 §5.97+0.90 76.54+047 8427103 7559+094 77554039
75032034 76854016 6606046 87105017 748 8840011 81794086 78225055 87548027 85104032 79.15£029 85305025 74.89+040 80.5020.06

LAME+ours T745:064 77924036 6801061  88.09£027 77 89755062 83.800.64 80325030 89.06£056 86074023 8189033 8744030 77724052 82272020
LAME+ours (diag) 77.39£051 78314029 67513047  88.61£022 767 90.38+0.15 8379058 79842038 89105044  86.86+0.31 8124035 87.14£009 7708038 822820.11
LAMEvours (online)  77.52+132  T84440.61 67.67+0.52 8692141  76.69+0, 8943181 83255114 80302061 8790133 86.07+0.67 80.76+1.20 8645187 7730061 81862068
0oDS 76495117 76424070 67595102 88261057 7444 85105128 S8OIL061 8432128 84925075 S262£048 S878L096 9020051 79.40+153 8653118 76202072 82012028
7625:064 77224055 6R.13ELII 8974030 87162034 9027014 8591048 8593094 83391056 9030£052 9128+033 B0.06EL16 87950079 7831+1.60 83.1420.15

ODS +ours (diag) 76654103 TILO44065 67801092 89261044 90.15£0.64 85461112 83204057 89614096 90454051 80.04£093 87524017 7783130 82824019
ODS+ours (online) 76264187 76034049 68174075 89261064 B6.64£0.60 90274025 85484069 82774055 90224051 9L04:0.73  80.0311.03 87850061 78.16:0.61 82961024
TTT++ 74612080 75904031 66065136 86305026 74542072 83342037 88252062 8082040 78312033 8655074 84901100 7859055 81825059 7612062 80.15021

Table 15: Test accuracy of CIFAR-10C-LT

optimizer by only one epoch.

with p

100 when the model i

s fine-tuned

using Adam

gaussian_noise _shotnoise _impulsenoise _defocus_blur _glass_blur  motionblur  zoom_blur _ snow. fog brightness _ contrast elastic transform _ pixelate jpeg_compression _avg
NoAdapt 43074040 4675046 2794043 90544051 65854067 86741021 93454032 82382081 64024062 92754027 58734069 82.9510.64 81192037 76734031 7113£0.17
BNAdapt 62401026 63474053 53942039 73063067 6085031 70.072022 7444:048 67312073 64225034 7363+020 71484037 65.19£0.58 71405014 6264049 66.90+0.16
BNAdapt+ours 79224030 79.59+0.46 69.52+0.88 89243039  76.64+0.15 86.79=045 90.84+030 84.92:061 8073£0.53  90.15+041 87214054 8274022 87824030 79.05+0.64 83.3420.20
BNAdaptrours (diag) 72004032 73004040 64114073 82174020 20 83352045 7732051 73894060 82964054 80.18£046 75.1040.53 80.59£0.14 72294073 76412021
BNAdapttours (online)  77.6120.55  78.841.50 67.85+086  88.69+-0.49 90274064 83.82+1.74 80.19+0.88  89.88+034 86294144 81.48+1.05 87.56£0.70 78.70+0.62 82.5740.49
TENT 66214146 67.12+185 57654132 7679+120  65.14 78034100 70.04£128 68512055 77484056 75104046 69.05£0.49 75194136 66514122 70494043
TENT+ours 85.03£047 85414024 77914038 931940 832 93654030 90.15+0.54 88104095 93314019 91634042  87.39+£0.42 92244062 85724054 88.5640.13
TENT+ours (diag) 81L07£0.53 81224046 74154046 89490 802 89462082 8617023 83234103 90.124070 87494097 83.82+0.80 88374056 80.90+1.09 84624043
TENT+ours (online) 83474081 84934097 7603130 92674060 8§24 93124022 8951114 86914086 93154037 90.64£1.06  86.27+0.87 91894047 84784036 87.7340.28

65024166 6657122 S6.02£1.05  7581+096 644 72825137 7679+108 7082036 71082087 6854+071 76274053 7387140 68.02%1.15 72842107 65584095 69.6320.46
PLours 84532049 84424052 75254163 92955008 82795064 9076+054 9331£030 89455021 89632080 §7.14:073 93304009 91.24£0.64 8688+0.54 91842021 84714018 87882007
PL+ours (diag) 78684030 7886153 66455129 8833061 7826:066 85831054 89641070 84343078 8467151 7983105 8937+038 86731051 82344109 87274067 78974085 82.6420.53
PL+ours (online) 83002036 8360+L11 72744145 92394028 81982109 §995:054 92904030 8819171 89242056 §588:070 92844064 90391123 85914124 91424049 83.964077 86.96+:0.30

64364133 66244406 S68IL708 77134159  68.9540.63 77704159 68624141 T014£155 75564097 73944302 69.674275 T414E144 66724357 69.8811.47
DELTA+ours 85.05£0.50 86061120 78574098  93.62+0.34 94254048 91024021 89604075 93954024 91744069 87.9510.74 93094035  86.5340.74 89.2510.33
DELTAours (diag) 828310.62 83794057 75244034 92464058 91554166 88.96+0.78 87714119 92314054 90704132 85994124 91054035 83794105 87.2540.55
DELTA+ours (online)  83.68+0.89  8576+046 76054131  93.52+0.62 93944058 90.79£023 88.97+028 93994019 90.93+£1.08 87.06+1.13 92724010 85.8640.75 88.61:0.24
NOTE 66764212 69.18+231 62815399  88.80+0.88 8025174 8383145 71245230 89.02+096 89.05£1.10 78.88+1.37 86205071 74.17+0.70 7949041
N 79334124 7889+L14 72494110 91.58+037 91774038 89.14:0.66 8518143 91744038 91894020 83.42+1.04 89254045 81334103 85.3840.29
NOTE+ours (diag) 75064176 75984285 70204100 91504034 7838+ 91564116 89.16+1.10 82654169 91784096 92154045 84074124 89504036 81.97+1.03 84.7240.13
NOTE+ours (online) 71324110 73144228 61294496 91.5140.64 7533 91664051 88.40+0.60 89.10£0.82 8190+1.33 91654035 91.864038 83.59+40.92 80.43£0.38  80.77+194 83274024
LAME 65404042 67174060 57224059  76.64+105 6455034 74095049 7819+029 71063046 7270110 67.58£0.52 77.17+031 7T475+026 68344058 75034034 66.04+041 70404025
LAME+ours 75294046 7586£079 65562058 86114049 72204063 8429£031 8795+0.56 81463038 8180073 77.46:0.66 86.67+038 83294055 78304037 83894050 74804065 79.6640.12
LAME+ours (diag) 70914014 71704076 6270+0.39 80964060 68924040 8261035 75.67+1.03 <082 72514059 81614053 79324045 73464026 79.6240.14 71064027 75.1640.23
LAME+ours (online)  74.86+0.80 75374106 6453+114 85374059 7242095 87341083 8088112 77074124 86414020 83.06+123 77484157 84.16+1.08  74.824039 79.2840.26

70334159 7LOIEI121 63354192 84.96+048 87031120 81512058 7656+136  8578+086 87.72+157 7679087 8344108 72584141 78324034
ODS+ours 72674187 75194100 66262199  88.52+138 89.77£0.54 8497115 7986111 §9.73+035 90.10£072  80.42+0.50 87134040 75244082 8158+0.17
ODS+ours (diag) TIA4EL12 TA0SE190 6422263 87.88+160 88392081 8368127 7830£099  $8.87+074 8892104  T880+1.07 86.50£080 73474079 803340.17
ODS+ours (online) 72134195 T291£175 66331236 §9.16+£042 90264096 8498060 S481£0.72 7938117 90041061 9106067 BII9EI68 8668024 76.17+1.11 81.6840.12
TTT++ 64074124 64.55L177 56131089  T4.18L113 72232061 76614053 68.92E1.14 71455153 66424055 76384039 72941072 66.25L0.80 73412098 64.194056 68.640.37
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Table 16: Test accuracy of CIFAR-10.1-LT with p = 10 and 100 when the model is fine-tuned using
Adam optimizer by only one epoch.

p=10 p =100
NoAdapt 87.13:0.48  86.64-£0.97

BNAdapt 77.37£0.45 64.43+0.97
BNAdapt+ours 85.81£0.65 80.64+2.12
BNAdapt+ours (diag) 83.71£0.34  74.2941.26
BNAdapt+ours (online) 84.33+0.56 80.79+1.97

TENT 78.23+£0.52 64.53+1.53
TENT+ours 86.88+0.78 82.324+1.60
TENT+ours (diag) 85.41+£0.48 7597+1.52
TENT+ours (online) 85.3140.69 82.324+1.88

PL 78.51+£0.38 64.38+1.09
PL+ours 86.024+0.93 82.16+1.44
PL+ours (diag) 83.90+0.86 74.954+1.35
PL+ours (online) 84.79+0.38 81.81+1.74

DELTA 78.57+2.42 64.79+1.61
DELTA+ours 87.19+0.35 84.25+1.54
DELTA+ours (diag) 86.73+0.32 79.47+0.37
DELTA+ours (online) 85.68+£0.50 84.50+2.33

NOTE 82944195 81.55+1.59
NOTE-+ours 84.67+£0.83 87.25+1.01
NOTE+ours (diag) 85.844+0.45 87.65+0.94
NOTE+ours (online) 81.90+1.54 87.09£0.42

LAME 78.79+1.00 67.68+2.58
LAME-+ours 82.60+0.76  77.344+1.31
LAME-+ours (diag) 82.11+£0.80 72.97+2.86
LAME-+ours (online) 82.24+0.75 78.61+1.51

ODS 81.83+1.77 77.74+1.86
ODS+ours 82.85+1.12  79.324+1.48
ODS+ours (diag) 82.60+£1.11 79.17+1.42
ODS+ours (online) 83.22+1.41 82.01+1.45

TTT++ 77.74+0.35 64.74%0.75

Table 17: Test accuracy of CIFAR-100C-LT with p = 10 when the model is fine-tuned using Adam
optimizer by only one epoch.

gaussian_noise_shotnoise__impulse_noise _defocus_blur_glass blur__motion_blur_zoom blur__snow frost fog brightness_contrast elastictransform_pixelate oo avg
NoAdapt 16605038 17945006 7.094040 6711043 5498053 69724036 33774049 62474059 17504064 52184051 51304047 47.56+042 41042017
BNAdapt 52484105 51772016 42714075  6745£085 62735066 70.60+0.15 52134075 65914036 61564052 57554031 66342039 53334041 583340.15
BNAdapt+ours 53604098 53.19£0.19 4354£076  69.19:0.58 71992020 53414039 6776030 63374075 58894032 68174043 54.124041 59.79:40.18
BNAdapttours (diag) 53262081 52474040 43744076 6826054 0 7163035 52844068 67234040 62444063 58714022 67474020 53914036 59.2340.12
BNAdapttours (online) 5331085 53034033 43354072 69.124061 71942039 53424040 67784024 63274061 59.1140.09 68.164044  54.06+0.38 59.7140.19
TENT 55484092 54814078 46634089 69374077 5545+089 71254047 60445023 68.09+065 67.14+035 59.09+0.78 67474085 56.30+0.80 61324020
TENT+ours 56424075 56774033 48074090 70124041  5678:039 71472039 61134021 69284054 68304019 60.53+0.84 69.064£042  58.020.55 6254028
TENT+ours (diag) S608+£105 55644063 47054106 69734068  5595:0.61 7165038 60. 60804019 68.58+076 67.74+027 59.77:0.60 68454034 56.95+0.67 61.89:+0.12
TENT+ours (online)  56.1940.60 56594029 48114072 70024041 56664029 66.76+0.53 7138+044 60944011 69.184028  68.1240.17 60.50+0.66 68914046 57.8140.55 62444026
PL 53424090 53143084 45373057  68.67+0.73 6432141 70732009 59462036 5766087 6740+072 6590+137 5855+0.55 67124071 55415050 6021024
PLtours SL74%122 52174044 42714065 67.57+0.54 62984076 70224030 5679049 6096077 53.03+088 6600087 61.64+142 57.62:+0.68 6665073 53.51+0.54 58.39+0.22
PLitours (diag) 54304035 54044039 46.13£024  68.63£080 54982027 65185079 71.03£076 59582092 62462068 S840+125 61574091 66374046 5902060 67724071 56.09+0.62 60.77+0.13
PL+ours (online) S1934117 52034053 42474056 67414080 52195081 62495090 7004073 ST1IE107 60605092 5316107 66436107 61374089 57174037 66254081 53.15+0.89 58.2540.16
DELTA 53344088 53654039 4369£0.66  69.28+0.87 066 64.58:0.67 70724082 5 57204043 6696077 66814044 57.79+0.18 6625050 5540+0.59 60.06+0.16
DELTA+ours 54332075 S5.I5H060 4523129 6974049 7087041 59914066 68434108 67344038  59.17:+0.94 68254061 5640+137 61.3140.32
DELTAtours (diag) 5437129 54104047 43614109 6921103 7063027 5 58314085 67914068 66.74+0.60 57.46+0.90 66774035 55.90+0.79 60.4540.10
DELTA+ours (online)  54.14£1.12 55194066 45124133 6978028 7088031 5984068 68.6141.02 67454027 59.05+0.80 68324073 56324140 61314029
NOTE 29104150 3113£197 23812084  47.15£0.70 49372073 3878084 4648109 49225141 37275102 44855077 32855124 39494029
NOTE+ours 26654177 28764161 21431031 41604128 43504096 34404082 39914050 44.944160 3291+0.68 39984084 28534102 35.1640.51
NOTE+ours (diag) 20604152 30614132 23704039 4524%0.19 47482046 38254060 45364098 47.95+127 36074209 42894172 3175£L13 38334035
NOTEtours (online) 24914171 27384066 20116107 40296088 41024082 33194086 39.584031 42434068 31714109 39384079 27.5840.90 33.6440.59
LAME 53474097 52894017 43474068  68.78+037 71882020 53162065 67724050 63012022 5865035 67914027 54064038 59.56+022
LAME+ours 54194081 54084043 44494081 69814023 71924034 54134080 68464073 63624012 59.6340.38 68274053 54324035 60.3440.19
LAME+ours (diag) 53774091 53774032 43964093  69.174054 72124014 53704081 67984034 63224038 59284042 68.0640.60 54.084034 59.9040.24
LAME+ours (online) 54062084 53904033 44394077 69794022  54.99:041 65074049 71854029 54174080 68354072 63.604020 59.734041 68124053 54354051 60.29:0.19
oDS| 42515054 42894066 34794099  5674+038 43143056 55055082 58.49+0.65 48055087 57.15+042 60.73+102 4744092 55.86£046 42962030 49935013
ODS+ours 43424049 43934102 35624060  STE8+£064 4432:015 5580:045 58.52:4022 48224111 57804081 6180+110 48.13:+0.48 56.70£041  4361+0.55 50.69+0.46
ODS-+ours (diag) 42954080 43624038 35024059 57034054 43743019 54781062 58224055 0 48264072 57394057 61114087 47834111 55.6040.56 42924014 50.17:40.21
ODS-+ours (online) 42385064 43274078 35014054 STI4+034 44023031 5526:0.57 S8.04+047 50.34: 47674108 5726+133 61205121 47.63+0.62 56.15£0.98  43.05+0.77 50.09+0.54
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Table 18: Test accuracy of CIFAR-100C-LT with p = 100 when the model is fine-tuned using Adam
optimizer by only one epoch.

gaussian_noise_shotnoise__impulse_noise_defocus_blur_glass blur___motion_blur__zoom blur__snow, fog brightness_contrast____elastic_transform _pixelate____jpeg_compression _avg
NoAdapt 16695030 18384063 6845036 6673051 2695064 54455076 6954062 48.86:0.58 34295078 61.80£0.62  1641£0.60 51145123 51514020 47254039 40715024
BNAdapt 49645068 49504031 40.041041  6375:0.79 6662064 50314096 62484072 57524093 54114048 62764014 50.12+0.74
BNAdapt+ours 53194079 082 43004062 69.09+0.60 71874038 741,03 67.6641.02 076 68.0841.02  54.14+0.73
BNAdaptrours (diag) 52324061 41.95H087 6668027 69.67+0.67 70,98 65.2340.40 56.3140.30 65.660.64 52404061
BNAdapt+ours (online) 5323094 43114069 6903041 71812042 155095 67.66+1.07 58.0040.21 67.89+089  54.00+1.06
TENT 52384159 43431091 66194073 68292057 56095081 G6448E155 62.6 55894046 64.645092  53.52£1.01
TENT+ours 56984080 58281080 47814050  72.06+0.63 73.7620.62 61655036 70894072 69.43£051 61634081 TLOOELI2  58.76+0.99 63794022
TENT+ours (diag) 55384063 54761090 46051108  69.04:025 71434055 58.624070 67774079 65494067 58.54:0.66 67884146 55774049 60.94:0.16
TENT+ours (online) 5714075 57744072 47974105 72014083 73.69+037 61724034 70614094 69.03+094  61.72+0.78 70724099 58.52+1.22 63.69+0.24
PL 50404091 5143072 41674091 65034050 67742059 52704091 63544102 60434044 54974057 63474076 51924098 56.76+0.16
PLtours 52374048 53204064 42444077 6779115 70820045 53634074 67744113 61904070 57.794046 67904130 52654130 59.0840.25
PLtours (diag) 53194094 53914077 44104094  67.95:056 70.76:0.60 9. 56724102 67104072 64284114  57.97+088 67194097 54.76+1.10 59.76+0.18
PLtours (online) 52754059 53074089 42974120  67.96+131 5419163 70954038 57.98+083 53384068 67334104 61334065 S7.68+0.88 61674152 52594121 59.034031
DELTA S094+102 52664160 41545066 6669115 5283086 69125104 56755081 61325060 5643136 65204168 63714143 56164121 64443095 S371+113 5824028
DELTA+ours SS314091 58154053 45404127 7186£0.63 5765160 73724106 61.70:091 65905139 61074119 71155093 69.13+1.76 61614158 70674144 58514139 63.28+0.44
Atours (diag) 53954099 54804110 43834144 6920+083 54894149 6418189 71224081 S8B0L160 63495108 5794133 68494144 65194176 S58.28+136 67254117 55634094 60.48+0.56
Atours (online)  SSA8+1.09 57774054 45194152 71814073 5753+195 73844135 61763087 65975143 61165121 71264108 6896+1.76 61574124 70424117 5849+1.56 63.22+0.38
NOTE 31054162 34604107 25624110 5156203 150,89 47285029 43025065 52854227 5473+146 42714096 5073+153 34704314 44.06:0.80
NOTE+ours 3286+117 35374145 25344044 SISILIS 4608+039 4806143 43374004 52584154 54364231 41.60+128 49934118 35794163 44.10+0.76
NOTE+ours (diag) 34504220 36934145 2656118 53454177 49274079 49255154 45724148 56114075 5740+139 4435+140 5157110 37984043 4631+0.73
NOTE+ours (online) 2945227 31804193 23524053 48014182 5034+121 413 43595110 3956082 4853197 50214252 39.36+1.04 46.06+0.68 32304134 4049+0.58
LAME 53543054 53731056 4297£082  68.00£0.56 71142039 041 62355077 54655098 67415062 62594030 57.71+0.13 67.695059  53.46+0.56 59.390.05
LAME+ours 56374083 57304083 46114046  71.89+0.67 74312090 45 57.605£064 70814044 65744065 61.73+0.73 709075 56.55+1.24 628340.15
LAME+ours (diag) 54994071 54994042 44495056  70.08+0.50 72892046 56 55.024142 68.69+4044 64294081  59.47+0.60 69.16+059  54.76+0.79 60.86+0.16
LAME#ours (online) 56424084 S7.04£102 46164056 71914077 74392064 55 57614067 70724034 65.67+0.68 61.79+0.54 TLOS+0.72 56.58+1.40 6280+0.15
oDS| 42894127 44384018 35114043  58.05+036 60274093 34 54694078 48164037 58494035 62014103 48914065 57045150 4315+114 51.0940.19
ODS+ours 45574123 47784143 37024055 61384077 62.624£0.73 62 5824078 51794096 62044053 65274122 52584070 60994093 46.07+129 54.3440.40
ODS+ours (diag) 45194139 46274084 36544072 59874021 58454078 61514077 07 56324086 50274096 60794062 63874099 51064060 58424092 44424057 528740.19
ODS+ours (online) 01114 46164068 36194049 59444063  d6.52+151 58214090 60.6940.95 53391062 5645:038 4923115 60.02:0.77 6397131 50474029 58.674021 43974093 52494039

Table 19: Test accuracy of PACS when the model is fine-tuned using Adam optimizer by only one

epoch.

alc a2p as 2 2p 25 p2a p2c p2s s2a s2c 2p ave
NoAdapt 66.00£0.00 97.84:0.00 57274000 75.59:0.00 90.24+000 72212000 73.194000 39.72£000 43931000 23.54£0.00 50.30£0.00 37.96=0.00 60.65:0.00
BNAdapt 75.1940.19 9699+023 69.66+0.13 81.92+045 94.69+047 7348+0.10 77.224008 64.61=051 46.131059 59.01£054 68.68£032 57.34£0.60  72.080.11
BNAdapt+ours 7409+£0.09 9663+0.10 72.09+0.50 83.79+044 92.57+072 74.26+034 76.04+042 61.36=076 53.114028 72.01=088 75.81=033 7214105 75332009
BNAdapt+ours (diag) 72.73+1.04 96774047  71.80+0.90 79.69+1.91 86.54+4.93 69.99+1.91 66.41+0.04 54.74+0.65 58.3440.92 56.29+5.38 59.47+8.66 60.70+6.55 69.46+1.84
BNAdapt+ours (online)  73.02£1.16 9533181 71484028 82.32+0.88 90.61=447 74.18+1.39 7556076 60.62+1.35 52914034 70414224 75124043 70944373  7438+0.56
TENT 75.92+3.16  97.53+0.46 732443.00 87.04£0.71 96.65+0.26 73.274+4.89 81.85+0.74 74.1542.13 52.634+6.82 56.24:+1.19 70.38+2.03 55.46+0.78 74.53+0.97
TENT+ours 77.2943.79  97.83+0.29 7523+1.80 88.24+1.51 96.60+0.58 74.6443.27 80444132 5881+347 67404565 84.56+1.04 83.13+0.94 87.59+11.74 80.98+1.19
TENT-ours (diag) 7005+5.75  9692+0.86 60.02+5.28 79.70+137 83804418 S55.06+184 67104131 46342334 63.6414.68 S56.67+3.42 4648470 73.89+4.86  66.64=1.69
TENT+ours (online) 70874425 97.26+043 72.52+1.00 8596368 92.60+559 69.531699 79.10+3.84 5867665 66.57+5.15 8358+1.94 8022+398 8l41+1448 78.19+1.71
PL 76824217 97074039 51894532 84233098 9528+031 66924226 76074126 67175174 46.18+063 57.82+127 69.93£045 57.28£0.91  70.56=0.75
PL+ours 77604173 97574029 72284222 8845+0.88 O4.54+308 73.38+3.00 78604126 66.39+659 61.05+2.60 83.12+1.58 8137167 87.02+4.15  80.12049
PL+ours (diag) 72.01£2.09 93.14+1.33  57.0645.10 77.3843.23 84.60+4.28 48.38+0.67 63.824£2.06 49394294 46.60+3.34 59.09+£3.45 51.33+430 60.91+6.34 63.64+1.27
PL-+ours (online) 72714293 96234230 69274320 8643+1.94 B89.78+7.03 71794689 77314214 64715492 55574588 82.46:3.04 80.73£2.39 §7.01+7.49

DELTA 82034283 98372035 723143.17 90.09:043 98.05+025 79.17+2.12 82981035 79.24%2.03 60.1746.03 58.20£053 73.94=069 56.65-0.61 77.60=087
DELTA+ours 81.35+£1.96 98.28+0.26 77.53+4.20 90.65+0.15 97.38+0.74 80.464+2.31 82.23+1.51 66.25+0.42 67.10+4.28 87.06+0.79 84.33+0.76 88.94+12.07 83.46+1.33
DELTA+ours (diag) ~ 67.78+5.84 97.49+0.54 65.63+4.97 80.90+2.63 83.04+370 6345+758 66.75+099 51262301 67.39+664 55.73=4.16 41412604 73.88+529  67.89=1.17
DELTA+ours (online) ~ 79.49+3.87 98.16+0.19 80214240 89.37+0.84 95133373 78.67+177 80.35+163 65602097 67.67+435 86214080 8330317 8343+1395 82.30=1.06
NOTE 7565122 97194021 61704638 78.96+1.65 9427+128 58974593 76141097 65655778 47374470 46404423 60325257 5145143 67.842056
NOTE +ours 74244352 9633+0.62 63.08+5.63 79.22+1.05 O4.61+021 61.10+694 73.55+144 61985553 43131450 53.342227 65.86=146 58.62+3.58  68.76=090
NOTE-+ours (diag) 75.66+3.12  95.49+0.71 61.704+3.85 76.12+4.57 86.45+5.71 62.954+7.34 66.42+2.00 59914238 46.99+9.34 36.65+£5.38 50.91+£9.76 43.11+£8.91 63.53+3.33
NOTE+ours (online) 73574121 95.94+0.65 62.1546.19 72.6942.69 90.72+1.78 57.394+6.99 73.23+4.21 64.54+445 41364574 30214213 57944359 48.5642.59 64.03+1.91
LAME 7443068 97.23%0.16 67424072 81353057 95373045 67.40+0.86 70.10+0.66 47.34=2.67 13811088 49.19+063 65265037 5629183 6543027
LAME+ours 76.15+0.23  97.38+0.13  72.80+0.39 8531+0.36 94.21+0.61 71.86+0.77 76.73+1.13 61.03+1.32 47414182 75.07+0.97 78.37+0.23 81.72+1.49 76.50+0.11
LAME-+ours (diag) 72924184 95.84+0.65 67.83+0.85 72504291 78944273 59214277 64444102 5021£122 39254201 3384182 41.49+293 5033131 60.57+0.77
LAME+ours (online) ~ 7470+1.92 96.08+1.81 71.79+124 84142044 90.58+6.61 71.56+129 7596:+177 59.92+188 46931136 73.39+2.07 77.74=080 8040824 7527062
oDS 74474303 95604040 63454342 7623+1.02 89.66+1.16 6238+5.18 63724281 54125193 31014302 4617111 6048207 53.65+045  64.25+0.13
ODS-+ours 77604280 9630+0.10 S58.07+848 78.48+0.85 92.68+172 60.30+2.82 66004395 58.37+3.63 30.45+5.00 49.38+078 6393181 5641182  65.66=0.75
ODS-+ours (diag) 7097+1.79 95764024 S8.11+3.67 73963277 89.82+0.82 $59.49+723 65804412 52594156 30.64+5.68 41.831.07 64 49394205 6241+1.14
‘ODS+ours (online) 75.5341.92  96.12+0.47  66.05+5.90 79.1940.83 9234+1.08 60.1146.03 71464299 58781543 36464830 43.18+1.33 62044232 52.01+1.56 66.11+0.68
TTT++ 60.18£1.37 9617046 56034048 76.50=1.18 93.77+008 66.63+1.11 70.35+047 57195070 41.60+134 54412067 6591=082 5747122  67.11=020
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Table 20: Test accuracy of digit classification when the model is fine-tuned using Adam optimizer
by only one epoch.

mnist usps mnistm avg
NoAdapt 57.684+0.00 74.49+0.00 43.17£0.00 58.4540.00

BNAdapt 63.58+0.18 74.31+0.38 45.404+0.11 61.104+0.20
BNAdapt+ours 64.52+0.86 76.15+0.26 47.15+0.27 62.60+0.35
BNAdapt+ours (diag) 63.16+0.75 74.75+0.44 45.854+0.24 61.254+0.42
BNAdapt+ours (online) 64.624+1.04 75.624+0.53 47.16+£0.27 62.47+0.58

TENT 68.43+0.37 75.71+£0.34 46.64+£0.09 63.59+0.19
TENT+ours 68.26+0.85 77.59+0.40 48.70£0.38 64.85+0.44
TENT+ours (diag) 66.79+1.04 76.38+0.71 47.39£0.52 63.5240.66
TENT+ours (online) 68.74+1.68 77.01+£0.35 48.75£0.27 64.83+0.72

PL 67.89+0.29 75.40+0.39 46.45+0.31 63.25+0.23
PL+ours 68.04+0.74 77.43+0.49 48.34+0.18 64.60+0.33
PL+ours (diag) 66.09+2.00 76.06+0.75 46.98+£0.40 63.04+0.97
PL+ours (online) 68.224+2.35 76.88+0.51 48.36+£0.35 64.49+0.97

DELTA 70.424+0.25 76.17+£0.54 47.33£0.17 64.64+0.23
DELTA+ours 70.24+0.75 78.05+0.23 49.21£0.39  65.83+0.34
DELTA+ours (diag) 68.284+1.08 76.46+0.71 47.75£0.58 64.164+0.74
DELTA+ours (online) 70.63+0.67 77.54+0.20 49.22+0.32 65.80+0.29

NOTE 68.50+0.77 76.77£0.30 46.29£0.39 63.85+0.41
NOTE+ours 68.124+0.89 76.38+0.43 47.95£0.25 64.154+0.29
NOTE+ours (diag) 66.40+1.84 73.58+0.83 47.12+£0.35 62.374+0.96
NOTE+ours (online) 65.01+£0.93 75.30+0.95 46.36+£0.38 62.22+0.65

LAME 66.824+0.21 78.94+0.26 46.15£0.06 63.97+0.14
LAME-+ours 66.02+0.81 80.17+0.76 47.42+0.28 64.54+0.56
LAME-+ours (diag) 64.51+£0.42 78.67+0.44 46.62+£0.33 63.274+0.22
LAME-+ours (online) 66.17+1.23  79.87+£0.96 47.40£0.26 64.48+0.70

ODS 69.94+0.58 78.75+0.19 47.80£0.45 65.50+0.26
ODS-+ours 70.05+0.66 79.36+0.10 48.02+0.10 65.81+0.23
ODS+ours (diag) 70.06£0.90 79.36+0.16 47.66+£0.31 65.69+0.33
ODS+ours (online) 69.89+£0.82 79.20+0.17 47.91+0.20 65.66+0.29

TTT++ 62.85+0.30 74.25+0.31 45.47£0.10 60.86+0.06

Table 21: Test accuracy of ImageNet-C online labels distribution shift with @ = 1000 when the
model is fine-tuned using SGD optimizer by only one epoch.

gaussiannoise _shotnoise _impulse_noise _defocus blur _glass blur  motion_blur zoom_blur _ snow frost fog brightness _contrast elastic_transform _ pixelate jpeg_compression _avg
NoAdapt 2.9640.08 3684006 2624005 17825007 9714012 14714007 22494028 16574011 23084011 24050004 59.130.17 5334003 16.66+0.04 2080£0.19 32.63£0.15 18154006

2 10342012 10682007 10642008 9224010 9364018 16124005 23664025 21714003 2126£0.12 3006:0.08 4190£0.16 10474010 27192035 30194019 24964009 19.8540.10
ours 12524038 12885027 12994041 11733042 1113050 20.924084 30414106 27.88£0.89 27.01£0.68 39154104 5317130 13154032 33671.05 38775120 3240+098 25.18+0.75
14544038 15215009 16066014 12395022 11.26£0.57 1826:040 27434032 26474024 19504023 34114018 4255022 31.60+023 34395027 3049+0.19 22490.15
130540.56  1548+1.22 15834154 1300085 10515021 19.674175 34334113 28524166 21.06+139 43424112 496+0.52  3835:110 43155118 38114116 26.18+0.88

I860£1.6] 18642044 2033+0.14  1623+0.66 1620£0.59 25654023 30.10£0.35 29784027 26.60+0.18 3605013 4276+0.18 13.01£394 34.0320.14 36304026 32634024 26.46:£0.39
SAR+ours 24184087 22602060 25224094 18942060 19.162048 32361116 37934124 38124127 33374074 4598+121 53.60=131 ST0=119 4279128 4584142 41554133 32494083

Table 22: Test accuracy of ImageNet-C online labels distribution shift with o« = 2000 when the
model is fine-tuned using SGD optimizer by only one epoch.

gaussian noise _shotnoise __impulse noise _defocus blur _glass_blur _motion_blur _ zoom_blur __snow frost fog brightness _ contrast clastic transform _pixelate _jpeg_compression _avg
NoAdapt 2.98::0.04 3684004 26240005 17904003 9704008 1480£0.06 22524023 16534007 23014000 24004007 59124008 5424002  16.54:40.18 2090£0.03 3272006 18.1620.01
BNAdapt 7542007 7724015 7844007 654£001  6.60£0.14 11475004 16534009 15524006 15394014 2130£0.15 29784021 7.45:005  18.97+0.13 2017016 17.78+006 12112004
BNAdapttours 10163046 10504031 10.75£047 9414051 8615047 16865073 24341097 23004096 22646093 3208+131 43904150 10634041 26.66-£0.82 3LISELI9 2656112 2048+0.80
TENT 8.25+0.18 8594022 9514020 684015 5625022 798+£039 17394020 12355056 1098+£020 2256+0.13 28114023 225:0.11  20.15+0.18 2249£0.18  197620.11 13520.11
TENT+ours  8.70+0.58 975+0.63  1030+107 8554055  6.17£0.62 1075+131 25124115 15204220 14164123 3376+138 42684175 3184043 27774091 32904149 28.70+1.05 1851:0.98
SAR 12745037 9274114 12955082 939+118  890+131 16574075 2053017 20474015 18116054 25224024 3016£024 4744129 2349020 2523£0.18 22.67+0.17 1736+0.13
SAR+ours 16054145 12854097 17674045  10.60£095 7.25+086 2203211 28814116 29354106 21334141 3673£132 43444153 2674049 33304117 36024129 32654139 23382081
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Table 23: Test accuracy of ImageNet-C online labels distribution shift with «
model is fine-tuned using SGD optimizer by only one epoch.

= 5000 when the

gaussian_noise _shotnoise _impulse_noise _defocus_blur _glass blur _ motion_blur _zoom_blur __ snow frost fog brightness _ contrast___elastic_transform _ pixelate ipeg_compression _avg
NoAdapt 2.96+0.06 370£0.03 2604006 17954011 9.694007 14794013 22.5640.14 16564003 23014008 2395:008 59174024 5343006 16.59+0.03 20854006 32.68+0.04 18.16:40.04
BNAdapt 4720.02 4885005 4814009 3914007 3944006 681+0.11 9785009 9.48:0.11 9644005 177940.12 4.58£0.04  11.15£0.13 12324007 10.640.07 8.480.06
BNAdaptsours  7.48£0.42 7774040 7804050 6714049 5904030 12064083 17454099 16724099 16964092 31984139 7725048 18.54:£0.72 22164119 19374111 14824078
TENT 4112005 440014 3042010  250£0.16 353+0.18 8672010 474012  507+0.15 15356011 1.01£0.06  9.75+0.17 11294015 9.94+0.13 6.61=0.08
TENT+ours 5394058 5594023 4504058 3554028 5754054 15324103 788102 7454116 20185164 162024 16274071 20244119 17824131 11174077
SAR 6.081.39 3985034 6124078 3212083 3364042 735EL14  ILISE0.10 11504010 9.40+0.64 17.64£0.11 1812031 13.09£0.08 14254015 12.7240.14 9.090.18
SAR+ours 695:1.76 4003044 6734208 2164062 281£030 S587+150 17643056 1554225 885+162 30564132 081=0.12 21.00+0.77 23984102 21.32+1.03 12904077
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