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Abstract

We study stochastic optimization algorithms for constrained nonconvex stochastic
optimization problems with Markovian data. In particular, we focus on the case
when the transition kernel of the Markov chain is state-dependent. Such stochas-
tic optimization problems arise in various machine learning problems including
strategic classification and reinforcement learning. For this problem, we study both
projection-based and projection-free algorithms. In both cases, we establish that
the number of calls to the stochastic first-order oracle to obtain an appropriately
defined ϵ-stationary point is of the order O(1/ϵ2.5). In the projection-free setting
we additionally establish that the number of calls to the linear minimization oracle
is of order O(1/ϵ5.5). We also empirically demonstrate the performance of our
algorithm on the problem of strategic classification with neural networks.

1 Introduction

We consider the following stochastic optimization problem

argmin
θ∈Θ

f(θ) = argmin
θ∈Θ

E [F (θ;x)] , (1)

where (i) the expectation is taken over the stationary distribution, πθ, of the random vector x, (ii) F
(and hence f ) is a potentially non-convex function in θ, and (iii) Θ is a compact and convex constraint
set. Stochastic approximation algorithms for solving problem (1), given an independent and identically
distributed (iid) data stream {xk}k drawn from π, are well-studied. Such iid assumptions are
commonly made in various machine learning and statistical problems including empirical risk
minimization [SSBD14], sparse recovery [BJMO12] and compressed sensing [FR13, Lan20]. We
refer to [MB11, ABRW12, RSS12, GL13, SZ13, LZ16, ACD+19] for a partial list of non-asymptotic
upper and lower bounds on the oracle complexity of widely-used stochastic approximation algorithms
like the Stochastic Gradient Descent (SGD) and the Stochastic Conditional Gradient Algorithm.

Our focus in this work is on the case when the data sequence {xk}k is drawn from a Markov
chain with a state-dependent transition kernel Pθ. Such a setting arises in several machine learning
applications including but not limited to strategic classification [HMPW16, CDP15, MDPZH20,
LW22] and reinforcement learning [Bar92, GSK13, ZJM21, KMMW19, QW20]. Despite their
prevalence in practice, a deeper understanding of the non-asymptotic oracle complexity of stochastic
approximation for Markovian data is only now starting to emerge. We establish non-asymptotic
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oracle complexity results for the stochastic conditional gradient algorithm for non-convex constrained
stochastic optimization with Markovian data. To establish our results, from a methodological
point-of-view, we leverage the moving-average stochastic gradient estimation technique recently
used in [ZSM+20, GRW20, XBG22] in the context of constrained optimization with iid data. This
technique avoids having to a use a mini-batch of samples in each iteration, which turns out to be crucial
in the non-iid setup we consider. From a theoretical point-of-view, we assume the so-called drift
conditions, a classical assumption in Markov Chain literature [AMP05]. This ensures the existence
of a solution to the Poisson equation associated with the underlying Markov chain [DMPS18] which
enables one to decompose the noise present in the stochastic gradient into three components: a
martingale difference sequence, a time-decaying sequence, and a telescopic sum type sequence. The
key idea of our paper is to use this decomposition to construct an auxiliary sequence of iterates with a
time-decaying noise-variance and show that these sequence of iterates are close to the iterates of the
original sequence produced by our algorithm. This novel technique in then used in combination with
a merit-function based analysis to establish the oracle complexity results.

1.1 Motivating Example

Problems of the form in (1) arise in various important applications, e.g., strategic classification, and
reinforcement learning as mentioned above. Below we illustrate the motivation of this work through
the example of strategic classification with adapted best response [LW22]. In strategic classification,
there is a learner whose task is to classify a given dataset which is collected from a set of agents.
Given the knowledge of the classifier, the agents can distort some of their personal features, in order to
get classified in a predetermined target class. This scenario arises in various applications, e.g., spam
email filtering, and credit score classification. Optimizing the classifier to classify such strategically
modified data where the agents modify the data iteratively can be formulated as problem (1).

Formally, let the classifier be h(x, θ) where x ∈ Rd is the feature and θ is the parameter to be
optimized. h(x; ·) : Θ → R is potentially nonconvex. Let the loss function be logistic loss which for
a sample (x, y), where y ∈ {−1, 1} denotes the corresponding class, is given by,

L(θ;x, y) = log (1 + exp (−h(x; θ))) + (1− y)h(x; θ)/2. (2)

We use xS , and x−S to denote the subset of feature x which are respectively strategically modifiable,
and non-modifiable by the agents. Then the modified feature (the best response) x′

S reported by the
agent is the solution to the following optimization problem:

x′
S = argmax

xS

(h(x; θ)− c(xS , x
′
S)) , (3)

where c(x, x′) is the cost of modifying xS to x′
S . Let the agents iteratively learn x′

S similar to
[LW22]. Note that unlike [LW22], where the authors deploy a logistic regression classifier and the
closed form solution of the best response is readily known to the agents, it may not be the case in
general. In that case the agents have to possibly learn the best response x′

S using some iterative
optimization algorithm. For example, if the agents use Gradient Ascent then, at every iteration k, a
set Ik of n1 ≤ M randomly chosen agents out of M agents modify their features as:

xk
S,i =

{
xk−1
S,i + α

(
∇h(xk−1

S,i ; θk)−∇c(xk−1
S,i , x0

S,i)
)

i ∈ Ik
xk−1
S,i i /∈ Ik

(4)

where α is the stepsize. With a little abuse of notation, we use ∇h(xk−1
S,i ; θ) in (4) to denote the

fact that the gradient is with respect to xk−1
S,i while x−S,i remains unchanged. This introduces the

state-dependent Markov chain dynamics in the training data. The objective function, analogous to
f(θ) in (1), is

min
θ∈Θ

Eπθ
[L(θ;x, y)] ,

where πθ is the stationary joint distribution of (x, y), and Θ is a convex and compact set, e.g., sparsity
inducing constraint ∥θ∥1 ≤ R from some R > 0. The loss evaluated at a single data point (x, y),
L(θ;x, y), is analogous to F (θ;x) in (1). [DX20], and [LW22] study this problem theoretically and
empirically respectively in an unconstrained strongly convex setting. Our results takes a step towards
analyzing this problem in constrained nonconvex setting. We empirically show the performance of
the stochastic conditional gradient algorithm on a strategic classification problem in Section 4.1.
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1.2 Preliminaries and Main Contributions

Before we present our main contributions, we introduce our convergence criterion. In constrained
optimization literature, most commonly used convergence criteria are: (i) Gradient Mapping (GM),
and (ii) Frank-Wolfe Gap (FW-gap). The Gradient Mapping at a point θ̄ ∈ Θ is defined as

GΘ(θ̄,∇f(θ̄), β) := β

(
θ̄ −ΠΘ

(
θ̄ − 1

β
∇f(θ̄)

))
, (5)

where ΠΘ(x) denotes the orthogonal projection of the vector x onto the set Θ, i.e.,

ΠΘ

(
θ̄ − 1

β
∇f(θ̄)

)
= argmin

y∈Θ

{
⟨∇f(θ̄), y − θ̄⟩+ β

2
∥y − θ∥22

}
.

We will use ΠΘ(θ̄,∇f(θ̄), β) to denote ΠΘ

(
θ̄ −∇f(θ̄)/β

)
when there is no confusion. Note that

when Θ ≡ Rd we have GΘ(θ̄,∇f(θ̄), β) = ∇f(θ̄). In other words, for constrained optimization
gradient mapping plays an analogous role of the gradient for unconstrained optimization. The gradient
mapping is a frequently used measure in the literature as a convergence criterion for nonconvex
constrained optimization [Nes18]. We should emphasize here that although the gradient mapping
cannot be computed in the stochastic setting, one can still use it as a convergence measure.

[BG22] shows that the above notion of convergence criterion is closely related to the so-called
Frank-Wolfe Gap. The FW-gap is defined as

gΘ(θ̄,∇f(θ̄)) := max
y∈Θ

⟨∇f(θ̄), θ̄ − y⟩. (6)

The following proposition from [BG22] establishes the relation between the gradient mapping
criterion and the Frank-Wolfe gap:

Proposition 1.1 [BG22] Let gΘ(·) be the Frank-Wolfe gap defined in (6) and GΘ(·) be the gradient
mapping defined in (5). Then, we have

∥GΘ(θ̄,∇f(θ̄), β)∥2 ≤ gΘ(θ̄,∇f(θ̄)), ∀θ̄ ∈ Θ.

Moreover, under standard regularity assumption in smooth optimization (specifically, Assumption 2.1,
and 2.2), we have

gΘ(θ̄,∇f(θ̄)) ≤ L
∥∥GΘ(θ̄,∇f(θ̄), β)

∥∥
2
/β. (7)

In this work we use a suboptimality measure, closely related to both GM and the FW-gap. At point
θ̄ ∈ Θ, we define the suboptimality measure V (θ̄, z) : Rd × Rd → R as [GRW20]

V (θ̄, z) :=
∥∥ΠΘ

(
θ̄ − z/β

)
− θ̄
∥∥2
2
+
∥∥z −∇f(θ̄)

∥∥2
2
, (8)

where z, formally defined in Algorithm 1, is the moving-average estimate of ∇f(θ̄). We show the
relation among V (θ, z), and GM GΘ(θ, z, β) in the following proposition.

Proposition 1.2 Let {zk} be the sequence generated in Algorithm 1. Then, for k = 1, 2, · · · , N , we
have ∥GΘ(θk, zk, β)∥22 ≤ max(2, 2β2)V (θk, zk).

The proof is provided in Appendix A. The main objective of this work is to find an ϵ-stationary
solution to (1), where an ϵ-stationary solution is defined as follows:

Definition 1 A point θ̄ is said to be an ϵ-stationary solution to (1), if E
[
V (θ̄, z)

]
≤ ϵ, where the

expectation is taken over all the randomness involved in the problem.

For stochastic Frank-Wolfe-type algorithms, the oracle complexity is measured in terms of number of
calls to the Stochastic First-order Oracle (SFO) and the Linear Minimization Oracle (LMO) used to
the solve the sub-problems of the algorithm which involves minimizing a linear function over the
convex constraint set. Formally, we have the following definition.

Definition 2 For a given point θ ∈ Θ, SFO returns the stochastic gradient ∇F (θ, x). Given a vector
z, LMO returns a vector v := argminy∈Θ⟨z, y⟩.
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non-iidiid State-independent MC State-dependent MC
Algorithm Criterion SFO LMO SFO LMO SFO LMO
1-SFW [ZSM+20] FW-gap O

(
ϵ−3
)

O
(
ϵ−3
)

✗ ✗ ✗ ✗

(ASA+ICG) [XBG22] GM O
(
ϵ−2
)

O
(
ϵ−3
)

✗ ✗ ✗ ✗

(ASA+ICG) [This paper] GM Õ
(
ϵ−2
)

Õ
(
ϵ−3
)

O
(
ϵ−2.5

)
O
(
ϵ−5.5

)
Table 1: Oracle complexity of projection-free one-sample stochastic conditional gradient algorithms
for constrained non-convex optimization, to find an ϵ-stationary point.

Hence, in this work, the oracle complexity is measured in terms of the number of calls to SFO and
LMO required by the proposed algorithm to obtain an ϵ-stationary solution as in Definition 1. With
the above preliminaries, we now list our main contributions:

• In Theorem 3.1, we show that the number of calls to the SFO and LMO required by the
stochastic conditional gradient-type method in Algorithm 1, with state-dependent Markovian
data, is of order O(ϵ−2.5) and O(ϵ−5.5) respectively. To the best of our knowledge, these
are the first oracle complexity results for projection-free one-sample stochastic optimization
algorithm for constrained nonconvex optimization in the Markovian setting.

• In Theorem 3.2, for the sake of completion, we also show that the number of calls to the
SFO and LMO required for the case of state-independent Markovian data is of the order
Õ(ϵ−2) and Õ(ϵ−3) respectively. In particular, this turns out to be of the same order as that
of iid data ignoring the logarithmic factors.

A summary of the our contributions is provided in Table 1. We also empirically evaluate our algorithm
on a strategic classification problem with 2-layer neural network classifier and show that the proposed
method obtains encouraging results. We provide an experiment on single-index model regression
with sparsity-inducing nuclear-norm ball constraint in Appendix 4.2.

1.3 Related Work
Stochastic Optimization with Dependent Data. Understanding stochastic approximation algorithms
like SGD with dependent data in the asymptotic setting has been well-explored in the optimization
literature. We refer to [KY03, Bor09, BMP12] for a text-book introduction to such classical results.
A few recent results include [AMP05, TD17]. In the unconstrained non-asymptotic setting, [DAJJ12]
studies convex optimization with ergodic data sequence. [DL22] uses multi-level gradient estimator
and analyze AdaGrad for nonconvex optimization with Markovian Data. Block coordinate descent
with homogeneous Markov chain has been analyzed in [SSXY20] for nonconvex unconstrained
optimization. [DX20] studies stochastic optimization with decision-dependent data distribution for
strongly convex functions in the context of strategic classification.

Sample-average approximation algorithms for constrained convex optimization with ϕ-mixing data
was considered in [WPT+21]. [SSY18], and [AL22] analyze projected SGD for constrained non-
convex optimization with time-homogeneous Markov chain. None of these works consider state-
dependent data distribution except [DX20]. But unlike [DX20], we consider constrained nonconvex
optimization. There also exists work in the reinforcement learning literature on understanding stochas-
tic optimization with Markovian data; see, for example [XXLZ20, BRS18, DNPR20]. However, such
works are invariably focused on specific objective functions arising in the reinforcement learning
setup, while our focus is on obtaining results for a general class of functions.

Conditional Gradient-Type Method. There has been significant recent advancements in the
conditional gradient algorithm literature although it was developed long back [FW56, LP66];
see [Mig94, Jag13, LJJ15, LJJ15, HJN15, GKS21, BS17], for a non-exhaustive list of recent works.
[HK12, HL16] provided expected oracle complexity results for stochastic conditional gradient algo-
rithm in the stochastic convex setup. Better rates were provided by a sliding procedure in [LZ16]. In
the non-convex setting, [RSPS16, YSC19, HL16] considered variance reduced stochastic conditional
gradient algorithms, and provided expected oracle complexities. [QLX18] analyzed the sliding
algorithm in the non-convex setting and provided results for the gradient mapping criterion. All of
the above works use increasing orders of mini-batch based gradient-estimate.

To avoid mini-batches, a moving-average gradient estimator based on only one-sample in each itera-
tion for a stochastic conditional gradient-type algorithm was proposed in [MHK20] and [ZSM+20]
for the convex and non-convex setting. However, several restrictive assumptions have been made in
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[MHK20] and [ZSM+20]. Specifically, [ZSM+20] requires that the stochastic gradient G1(x, ξ1) has
uniformly bounded function value, gradient-norm, and Hessian spectral-norm, and the distribution of
the random vector ξ1 has an absolutely continuous density p such that the norm of the gradient of
log p and spectral norm of the Hessian of log p has finite fourth and second-moments respectively. In
contrasts, we do not require such stringent assumptions.

2 Assumptions
We now introduce the precise assumptions we make in this work. Let Fk be the filtration generated
by {θ0, · · · , θk, z0, · · · , zk, x1, · · · , xk}. For any mapping g : Rd → Rd define the following norm
with respect to a function V : Rd → [1,∞): ∥g∥V = sup

x∈X
(∥g(x)∥2 /V(x)), and let LV = {g :

Rd → Rd, supx∈X ∥g∥V < ∞}.

Assumption 2.1 (Constraint set) The set Θ ⊂ Rd is convex and closed with max
x,y∈Θ

∥x− y∥2 ≤ DΘ,

form some DΘ > 0.

Assumption 2.2 Let f be a continuously differentiable function.

Assumption 2.3 Let ξk+1(θk, xk+1) := ∇F (θk, xk+1)−∇f(θk). Then,

E
[
∥ξk+1(θk, xk+1)∥22 |Fk

]
≤ σ2

1 E
[
∥∇F (θk, xk+1)∥22 |Fk

]
≤ σ2

2 σ2 := max(σ2
1 , σ

2
2).

Assumption 2.4 Let {xk}k be a Markov chain with transition kernel Pθ. For any θ ∈ Θ, Pθ is
irreducible and aperiodic. Additionally, there exists a function V : Rd → [1,∞) and a constant
α ≥ 2 such that for any compact set Θ′ ⊂ Θ:

(a) There exist a set C ⊂ Rd, an integer I , constants 0 < λ < 1, b, κ, δ > 0, and a probability
measure ν such that,

sup
θ∈Θ′

P l
θVα(x) ≤ λVα(x) + bI(x ∈ C) ∀x ∈ Rd, (9)

sup
θ∈Θ′

PθVα(x) ≤ κVα(x) ∀x ∈ Rd, (10)

inf
θ∈Θ′

P l
θ(x,A) ≥ δν(A) ∀x ∈ C, ∀A ∈ BRd . (11)

where BRd is the Borel σ-algebra over Rd.

(b) There exists a constant c > 0, such that, for all x ∈ Rd and for all θ, θ′ ∈ Θ′,

sup
θ∈Θ′

∥∇F (θ, x)∥V ≤ c, (12)

∥∇F (θ, x)−∇F (θ′, x)∥V ≤ c ∥θ − θ′∥2 . (13)

(c) There exists a constant c > 0, such that, for all (θ, θ′) ∈ Θ′ ×Θ′,

∥Pθg − Pθ′g∥V ≤ c ∥g∥V ∥θ − θ′∥2 ∀g ∈ LV (14)

∥Pθg − Pθ′g∥Vα ≤ c ∥g∥Vα ∥θ − θ′∥2 ∀g ∈ LVα . (15)

Some comments regarding the assumptions are in order. Assumption 2.1, and Assumption 2.2 are
common for constrained optimization [GRW20, XBG22, AL22, ZSM+20]. Assumption 2.1, and
Assumption 2.2 together imply the Lipschitz continuity of f(·), i.e., there is a constant L > 0 such
that for any θ1, θ2 ∈ Θ, we have |f(θ1)− f(θ2)| ≤ L ∥θ1 − θ2∥2. Assumption 2.3 is common in
stochastic optimization literature. Assumption 2.4(a) is a frequently used assumption in Markov
chain literature. It implies that for every θ ∈ Θ, there exists a stationary distribution πθ(x), and the
chain is Vα-uniformly ergodic [AMP05]. Assumption 2.4(c) provides smoothness guarantee on the
function f(·). More formally, we have the following proposition.

Proposition 2.1 (Lipschitz continuous gradient [AMP05]) Let Assumption 2.4 be true. Then f(·)
has Lipschitz continuous gradient, i.e., there is a constant LG > 0 such that for any θ1, θ2 ∈ Θ:

∥∇f(θ1)−∇f(θ2)∥2 ≤ LG ∥θ1 − θ2∥2 . (16)
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Finally, the most important implication of Assumption 2.4 is that it ensures the existence and regularity
of a solution u(θ, x) to Poisson equation of the transition kernel Pθ given by u(θ, x)− Pθu(θ, x) =
∇F (θ, x)−∇f(θ). Solution of Poisson equation has been crucial in analyzing additive functionals
of Markov chain (see [AMP05] for details). In this work, the Poisson equation solution facilitates a
decomposition of the noise as presented in Lemma 3.1 which is a key component of our analysis.

3 Main Result
In this section we present our main result on the oracle complexity to establish a bound on
E [V (θk, zk)]. In order to do so we use Algorithm 1, and 2 similar to [XBG22]. If an exact

Algorithm 1 Inexact Averaged Stochastic Approximation (I-ASA)
Input: z0, θ0 ∈ Rd, ηk = (N + k)−a, 1/2 < a < 1, β.

for k = 1, 2, · · · , N do

yk =

min
y∈Θ

{
⟨zk, y − θk⟩+ β

2 ∥y − θk∥22
}

(Projection)

ICG(zk, θk, β, tk, ω) (No Projection)
θk+1 = θk + ηk+1(yk − θk)
zk+1 = (1− ηk+1)zk + ηk+1∇F (θk, xk+1)
end for

Output: θR where P (R = i) = ηi∑N
j=1 ηj

for i = 1, 2, · · · , N .

Algorithm 2 Inexact Conditional Gradient (ICG)
Input: z, θ, β, t, ω.

Set w0 = θ
for i = 1, 2, · · · , t− 1 do
Find vi such that

⟨vi, z + β(wi − θ)⟩ ≤ argmin
v∈Θ

⟨v, z + β(wi − θ)⟩+ βωD2
Θ/(i+ 2)

wi+1 = (1− µi)wi + µivi where µi =
2

i+2
end for

Output: wt

minimizer of the following subproblem, which is the projection of θk − zk/β on to Θ, is available,
then Algorithm 1 is same as ASA algorithm introduced in [GRW20].

min
y∈Θ

{
⟨zk, y − θk⟩+

β

2
∥y − θk∥22

}
. (17)

When a projection operator is unavailable or computationally costly, we use Algorithm 2 instead to
solve (17). At iteration k, Algorithm 2 finds an approximate solution to (17) based on the conditional
gradient algorithm. Algorithm 2 needs access to LMO which is often much cheaper and simpler
to compute than projection operator. We should emphasize that our results are not limited to ICG
method but are valid for any method which can solve (17) within an error of the order of {ηk}.

Theorem 3.1 Let Assumption 2.1-2.4 be true. Then, for Algorithm 1,

(a) when a projection operator is available, choosing

ηk = (N + k)−3/5, β = 1 (18)

for k = 1, 2, · · · , N we have

E [V (θR, zR)] = O
(
N− 2

5

)
,

(b) when Algorithm 2 is used to solve (17), choosing

ηk = (N + k)−3/5, tk = η−2
k , β = 1, ω = 1, µi = 2/(i+ 2) (19)
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for k = 1, 2, · · · , N we have

E [V (θR, zR)] = O
(
N− 2

5

)
,

where the expectations are taken with respect to all the randomness of the algorithm, and an
independent integer random variable R ∈ {1, 2, · · · , N} with probability mass function,

P (R = k) = ηk/

N∑
k=1

ηk k ∈ {1, 2, · · · , N}.

Remark 1 Note that total number of LMO calls are
∑N

k=1 tk =
∑N

k=1 tk =
∑N

k=1(N + k)2a =

O(N11/5). In other words, to achieve ∥GΘ(θR,∇f(θR), β)∥22 ≤ E [V (θR, zR)] ≤ ϵ, SFO and LMO
complexities are respectively ϵ−2.5, and ϵ−5.5. Note that the SFO complexity will be ϵ−2.5 as long as
one has an approximation of the projection operator with approximation error O(ηk).
Remark 2 In Theorem 3.1, one obtains sublinear rate max(Na−1, N2−4a) with ηk = (N + k)−a

for 1/2 < a < 1. Choosing a = 3/5 provides the fastest rate of convergence.

Before sketching the outline of the proof, we present the following lemma which provides a decom-
position of the noise ξk(θk−1, xk) – one of the key result used in the proof of the main theorem.
The lemma and its proof are almost same as Lemma A.5 in [Lia10] with the only difference that
unlike [Lia10], where the iterates are of SGD, we need to prove it for the iterates of Algorithm 1. We
provide the proof in Appendix A.

Lemma 3.1 Let Assumption 2.1-2.4 be true. Then the following decomposition takes place:
ξk(θk−1, xk) = ek + νk + ζk,

where, {ek} is martingale difference sequence, E [∥νk∥2] ≤ ηk, and ζk = (ζ̃k − ζ̃k+1)/ηk, where

E
[
∥ζ̃k∥2

]
≤ ηk.

Outline of the proof of Theorem 3.1: A key step in the analysis of Algorithm 1
involves controlling the expectation of interaction with noise of the form ⟨∇f(θk) −
∇f(θk−1), ξk+1(θk, xk+1)⟩. For iid or martingale difference data it is easy to control because
E [⟨∇f(θk)−∇f(θk−1), ξk+1(θk, xk+1)⟩|Fk] = 0. But this is no longer true for Markov chain
data. To resolve the issue, first notice that under our assumptions, the noise sequence ξk can be
decomposed into the sum of a martingale difference sequence {ek} and some residual terms {νk}, and
{ζk} as shown in Lemma 3.1. Then the key step is to introduce a different sequence of hypothetical
iterates (θ̃k, ỹk, z̃k) for which the noise is small enough so that we can bound E

[
V (θ̃k, z̃k)

]
, and

then show that these hypothetical iterates and the original sequence generated by Algorithm 1 are
close enough so that E [V (θk, zk)] is of the same order as E

[
V (θ̃k, z̃k)

]
. This step is the main

novelty of the proof.

Specifically, consider the following sequence:
θ̃0 = θ0 z̃0 = z0 (20)

ỹk = argmin
y∈Θ

{〈
z̃k, y − θ̃k

〉
+

β

2

∥∥∥y − θ̃k

∥∥∥2
2

}
(21)

θ̃k+1 = θ̃k + ηk+1(ỹk − θ̃k) (22)

z̃k+1 = zk+1 + ζ̃k+2 (23)
This also means,

z̃k+1 = (1− aηk+1)z̃k + aηk+1 (∇f(θk) + ϵ̃k+1) , (24)

where, ϵ̃k = ek + νk + ζ̃k. Note that by Lemma 3.1, E [ek] = 0, and E
[∥∥∥νk + ζ̃k

∥∥∥
2

]
≤ ηk. First we

show that by choosing ηk = (N + k)−a, 1/2 < a < 1, and tk = 1/η2k one has E
[
∥θ̃k − θk∥22

]
=

O
(
N2−4a

)
, and E [V (θk, zk)] ≤ 2E

[
V (θ̃k, z̃k)

]
+ O

(
N2−4a

)
. Then we establish the bound on

V (θ̃k, z̃k). Combining the above two facts proves Theorem 3.1. We defer the detailed proof to
Appendix A.1.
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3.1 State-independent Markov Chain

While our main goal in this work is to analyze Algorithm 1 for constrained nonconvex optimization
with state-dependent Markov chain data, we provide the following result on the complexity of
Algorithm 1 for Markov chain data with state-independent transition kernel for the sake of completion.
Here we use P to denote the transition kernel (as opposed to Pθ for state-dependent kernel). Note
that under Assumption 2.4(a), for each θ, the chain is V-uniformly ergodic, and hence, exponentially
mixing [MT12] in the following sense:

Definition 3 A Markov chain is said to be exponentially mixing, if there exists C, r > 0 such that,
for any initial state x,

∥Pn(x, ·)− π∥V ≤ Cexp(−rn), (25)

where Pn(x, ·) is the distribution of Xn with initial state X0 = x.

Now we present our result on the complexity of Algorithm 1 to find an ϵ-stationary solution to (1) for
exponentially-mixing Markov chain data with state-independent transition kernel.

Theorem 3.2 Let Assumption 2.1-2.3 be true. Let Assumption 2.4(a)-(b) be true with Pθ replaced by
P . Then, for Algorithm 1,

(a) when the projection operator is available, choosing

ηk = 1/
√
N, β = 1 (26)

for k = 1, 2, · · · , N we have

E [V (θR, zR)] = O
(
logN/

√
N
)
,

(b) when Algorithm 2 is used, choosing

ηk = 1/
√
N, tk = ⌈

√
k⌉, β = 1, ω = 1, µi = 2/(i+ 2) (27)

for k = 1, 2, · · · , N we have

E [V (θR, zR)] = O
(
logN/

√
N
)
,

where the expectation is taken with respect to all the randomness of the algorithm, and an independent
integer random variable R ∈ {1, 2, · · · , N} whose probability mass function is given by,

P (R = k) = ηk/

N∑
k=1

ηk k ∈ {1, 2, · · · , N}.

We defer the proof to the Appendix.

Remark 3 To find an ϵ-stationary point, the total number of calls to SFO and LMO are Õ
(
ϵ−2
)
,

and Õ
(
ϵ−3
)
, where Õ(·) denotes the order ignoring logarithmic factors.

Remark 4 The authors of [AL22] obtain the same rate as in Theorem 3.2 for constrained (but
projection-based) nonconvex optimization with state-independent exponentially mixing data. In the
state-dependent case, since the transition kernel of the Markov chain is controlled by θk, and the
transition kernel is assumed to be only Lipschitz smooth in θ (15), the chain does not necessarily
exponentially mix. In the state-independent case, since the chain mixes exponentially we obtain the
same rate as well. While their results are for projection-based algorithms, we analyze a projection-
free LMO-based algorithm since LMO is often computationally cheaper than projection.

4 Experimental Evaluation
4.1 Strategic Classification

In this section we illustrate our algorithm on the strategic classification problem as described in
Section 1.1 with the GiveMeSomeCredit4 dataset. The main task is a credit score classification

4Available at https://www.kaggle.com/c/GiveMeSomeCredit/data
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Figure 1: Strategic Classification: (Left): Performance of Algorithm 1 with and without the projection
operator. (Right): Test Accuracy with Algorithm 1 with and without the projection operator.

problem where the bank (learner) has to decide whether a loan should be granted to a client. Given
the knowledge of the classifier the clients (agents) can distort some of their personal traits in order to
get approved for a loan. Here we use a 2-layer neural network with width m as the classifier, given by

h(x;W,A,B) =
m∑
i=1

Aiυ(W⊤
i x+ Bi),

where υ(·) is the activation function, Wi ∈ Rd, W = [W1,W2, · · · ,Wd]
⊤ ∈ Rm×d, A =

(A1,A2, · · · ,Am) ∈ Rm, B = (B1,B2, · · · ,Bm) ∈ Rm. We will use θ to collectively denote
(W,A,B). We impose the constraint of sparsity on the classifier given by ∥θ∥1 ≤ R for some R > 0.
As loss function we consider logistic loss as shown in (2). We consider a quadratic cost given by
c(x, x′) = ∥xS − x′

S∥
2
2 /(2λ) where λ is the sensitivity of the underlying distribution on θ. We

assume that the agents iteratively learn x′
S similar to [LW22]. Note that unlike [LW22], the closed

form of best response is not known here. So we assume that the agents use Gradient Ascent (GA) to
learn the best response. For ∥θ∥1 ≤ R constraint, the LMO in Algorithm 2 at iteration k is given by
−R sign (qi), where i = argmaxj=1,··· ,d |qj |, q = z + β(wk − θ), and qj is the j-th coordinate of q.
We select a subset of randomly chosen M = 2000 samples (agents) such that the dataset is balanced.
Each agent has 10 features. Note that since Algorithm 1 computes the gradient on one sample at
every iterate, the computation time is independent of the total number of agents. We assume that
the agents can modify Revolving Utilization, Number of Open Credit Lines, and Number of Real
Estate Loans or Lines. In this experiment we set n1 = 200. Similar to [LW22], we set α = 0.5λ,
and λ = 0.01. For the classifier, the activation function is chosen as sigmoidal, and m = 400. We
set N = 20000, and R = 4000. All the parameters of Algorithm 1 are chosen as described in (19).
Figure 4.1 shows that Algorithm 1 finds an ϵ-stationary point of the strategic classification problem.
We show that Algorithm 1 performs comparably with Averaged Stochastic Approximation with the
projection operator. Each curve in Figure 4.1 is an average of 50 repetitions.

4.2 Single Index Model with Trace-norm Ball Constraint

In this section we illustrate our algorithm on a synthetic example of single-index model regression
with a nuclear-norm constraint on the model parameter. Let ∥·∥∗ denote the nuclear norm. The
features {xk}k ∈ Rd1×d2 are a matrix-valued time-series given by,

xk = Axk−1 + Ek +Wkυθk,

where A ∈ Rd1×d1 matrix with spectral radius less than 1, Ek ∈ Rd1×d2 is the noise matrix with
each entry of Ek is iid N(0, 1) random variable, Wk is a Bernoulli(0.5) random variable, and
υ ∈ R. For a fixed θk = θ, {xk}k has a stationary distribution as shown in Proposition 1 of
[CXY21]. {Ek}k, and {Wk}k are iid sequence. This Markov chain follows conditions (b) and (c)
of Assumption 2.4 since the evolution of xk only involves linear terms in θk. The responses {yk}k
are generated according to the following single index model,

yk = g(x⊤
k θ

∗) + Ẽk,

where {Ẽk}k is an iid sequence of standard normal random variables, θ∗ ∈ Rd1×d2 is a matrix
with ∥θ∗∥∗ ≤ 1, and g(·) : R → R is the link function. For this experiment we choose g(x) = 3x+
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Figure 2: Single-index model with nuclear-norm constraint: (Left): Performance of Algorithm 1 with
and without the projection operator. (Middle): Test Mean Squared Error (MSE) with Algorithm 1
with and without the projection operator. (Right): ∥θ − θ∗∥F with Algorithm 1 with and without the
projection operator.

5 sin(x). Since yk only depends on xk, and g is a Lipschitz continuous function of θ, Assumption 2.4
holds for (xk, yk). It is easy to see that Assumptions 2.1 - 2.3 holds for this example. The constraint
set is given by ∥θ∥∗ ≤ 1, i.e., we assume that θ∗ has a low-rank structure. The goal is to minimize
the expected squared loss with the constraint ∥θ∥∗ ≤ 1, i.e.,

min
∥θ∥∗≤1

E
[
(y − g(x⊤θ))2

]
. (28)

The advantages of conditional-gradient based method for nuclear-norm ball constrained problems
have been studied extensively [JS10, Jag13, HJN15]. The main advantage of ICG-based method is
that calculating the LMO in this case requires computation of the leading singular vector of gradient
matrix whereas to calculate the projection on the trace-norm ball one needs to compute the complete
singular value decomposition. Let u1, v1 are the leading left and right singular vectors of the noisy
gradient matrix evaluated at (θ;x, y), −2(y− g(x⊤θ))g′(x⊤θ)x. Then the LMO is given by −u1v

⊤
1 .

For this experiment we choose d1 = 10, d2 = 20, υ = 0.1, and N = 2000. Rest of the parameters of
Algorithm 1 are chosen according to Theorem 3.1. In Figure 2, we compare the projection-based and
ICG based version of Algorithm 1 with respect to V (θk, zk), test Mean Squared Error (MSE), and
∥θk − θ∗∥F where ∥·∥F is the Fröbenius norm. Figure 2 shows that the performance of projection-
based and the ICG-based versions of Algorithm 1 are almost same. Each plot in Figure 2 is the
average of 50 repetitions.

5 Discussion
In this work we provide oracle complexity results for the stochastic conditional gradient algorithm
to find an ϵ-stationary point of a constrained nonconvex optimization problem with state-dependent
Markovian data. In Theorem 3.1, we show that the number of calls to the SFO and LMO required
by the stochastic conditional gradient-type method in Algorithm 1, with state-dependent Markovian
data, is O(ϵ−2.5) and O(ϵ−5.5) respectively. To the best of our knowledge, these are the first oracle
complexity results in this setting. In Theorem 3.2, we show that SFO and LMO complexity in the
case of state-independent Markovian data is Õ(ϵ−2) and Õ(ϵ−3) respectively, which matches the
corresponding results in the iid setting.

There are various avenues for further extensions. Establishing lower bounds on the oracle complexity
of projection-free algorithms in the Markovian data setting is extremely interesting. It is also
intriguing to establish upper and lower bounds on the oracle complexity for more general types of
dependent data sequences arising in applications, including ϕ and α mixing sequences. Yet another
exciting direction is that of designing algorithms adaptive to the dependency in the data that achieve
potentially better oracle complexity bounds.

10



References
[ABRW12] Alekh Agarwal, Peter Bartlett, Pradeep Ravikumar, and Martin Wainwright.

Information-theoretic lower bounds on the oracle complexity of stochastic convex
optimization. IEEE Transactions on Information Theory, 58(5):3235–3249, 2012.
(Cited on page 1.)

[ACD+19] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. arXiv preprint
arXiv:1912.02365, 2019. (Cited on page 1.)

[AL22] Ahmet Alacaoglu and Hanbaek Lyu. Convergence and complexity of stochastic
subgradient methods with dependent data for nonconvex optimization. arXiv preprint
arXiv:2203.15797, 2022. (Cited on pages 4, 5, and 8.)

[AMP05] Christophe Andrieu, Éric Moulines, and Pierre Priouret. Stability of stochastic ap-
proximation under verifiable conditions. SIAM Journal on control and optimization,
44(1):283–312, 2005. (Cited on pages 2, 4, 5, 6, 16, and 25.)

[Bar92] Peter L Bartlett. Learning with a slowly changing distribution. In Proceedings of the
fifth annual workshop on Computational learning theory, pages 243–252, 1992. (Cited
on page 1.)

[BG22] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order nonconvex stochas-
tic optimization: Handling constraints, high dimensionality, and saddle points. Foun-
dations of Computational Mathematics, 22(1):35–76, 2022. (Cited on page 3.)

[BJMO12] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Structured
sparsity through convex optimization. Statistical Science, 27(4):450–468, 2012. (Cited
on page 1.)

[BMP12] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and
stochastic approximations, volume 22. Springer Science & Business Media, 2012.
(Cited on page 4.)

[Bor09] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48.
Springer, 2009. (Cited on page 4.)

[BRS18] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal
difference learning with linear function approximation. In Conference on learning
theory, pages 1691–1692. PMLR, 2018. (Cited on page 4.)

[BS17] Amir Beck and Shimrit Shtern. Linearly convergent away-step conditional gradient
for non-strongly convex functions. Mathematical Programming, 164(1-2):1–27, 2017.
(Cited on page 4.)

[CDP15] Yang Cai, Constantinos Daskalakis, and Christos Papadimitriou. Optimum statistical
estimation with strategic data sources. In Conference on Learning Theory, pages
280–296. PMLR, 2015. (Cited on page 1.)

[CXY21] Rong Chen, Han Xiao, and Dan Yang. Autoregressive models for matrix-valued time
series. Journal of Econometrics, 222(1):539–560, 2021. (Cited on page 9.)

[DAJJ12] John C Duchi, Alekh Agarwal, Mikael Johansson, and Michael I Jordan. Ergodic
mirror descent. SIAM Journal on Optimization, 22(4):1549–1578, 2012. (Cited on
page 4.)

[DL22] Ron Dorfman and Kfir Y Levy. Adapting to mixing time in stochastic optimization
with markovian data. arXiv preprint arXiv:2202.04428, 2022. (Cited on page 4.)

[DMPS18] Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier. Markov chains.
Springer, 2018. (Cited on page 2.)

11



[DNPR20] Thinh T Doan, Lam M Nguyen, Nhan H Pham, and Justin Romberg. Convergence rates
of accelerated markov gradient descent with applications in reinforcement learning.
arXiv preprint arXiv:2002.02873, 2020. (Cited on page 4.)

[DX20] Dmitriy Drusvyatskiy and Lin Xiao. Stochastic optimization with decision-dependent
distributions. arXiv preprint arXiv:2011.11173, 2020. (Cited on pages 2 and 4.)

[FR13] Simon Foucart and Holger Rauhut. An invitation to compressive sensing. In A
mathematical introduction to compressive sensing, pages 1–39. Springer, 2013. (Cited
on page 1.)

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956. (Cited on page 4.)

[GKS21] Dan Garber, Atara Kaplan, and Shoham Sabach. Improved complexities of condi-
tional gradient-type methods with applications to robust matrix recovery problems.
Mathematical Programming, 186(1):185–208, 2021. (Cited on page 4.)

[GL13] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for
nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368,
2013. (Cited on page 1.)

[GRW20] Saeed Ghadimi, Andrzej Ruszczynski, and Mengdi Wang. A single timescale stochastic
approximation method for nested stochastic optimization. SIAM Journal on Optimiza-
tion, 30(1):960–979, 2020. (Cited on pages 2, 3, 5, 6, 22, 23, and 24.)

[GSK13] Yair Goldberg, Rui Song, and Michael R Kosorok. Adaptive q-learning. In From Prob-
ability to Statistics and Back: High-Dimensional Models and Processes–A Festschrift
in Honor of Jon A. Wellner, pages 150–162. Institute of Mathematical Statistics, 2013.
(Cited on page 1.)

[HJN15] Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski. Conditional gradient algo-
rithms for norm-regularized smooth convex optimization. Mathematical Programming,
152(1-2):75–112, 2015. (Cited on pages 4 and 10.)

[HK12] Elad Hazan and Satyen Kale. Projection-free online learning. In 29th International
Conference on Machine Learning, ICML 2012, pages 521–528, 2012. (Cited on page 4.)

[HL16] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic opti-
mization. In International Conference on Machine Learning, pages 1263–1271, 2016.
(Cited on page 4.)

[HMPW16] Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic
classification. In Proceedings of the 2016 ACM conference on innovations in theoretical
computer science, pages 111–122, 2016. (Cited on page 1.)

[Jag13] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In
International Conference on Machine Learning, pages 427–435. PMLR, 2013. (Cited
on pages 4, 10, 17, and 25.)
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