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Abstract

Spoken semantic parsing (SSP) involves gen-001
erating machine-comprehensible parses from002
input speech. Training robust models for ex-003
isting application domains represented in train-004
ing data or extending to new domains requires005
corresponding triplets of speech-transcript-006
semantic parse data, which is expensive to ob-007
tain. In this paper, we address this challenge008
by examining methods that can use or generate009
transcript-semantic parse data (unpaired text)010
without corresponding speech. First, when un-011
paired text is drawn from existing textual cor-012
pora, we compare Joint Audio Text (JAT) and013
Text-to-Speech (TTS) as ways to use unpaired014
text to generate speech representations. Experi-015
ments on the STOP dataset show that unpaired016
text from existing and new domains improves017
performance by 2% and 30% in absolute Exact018
Match (EM) respectively.019

Second, when unpaired text is not available020
from existing textual corpora, Large Language021
Models (LLMs) can be prompted to generate022
unpaired text for existing and new domains,023
and JAT or TTS can be used with the gener-024
ated unpaired text to improve SSP. Prior work025
has mostly focused on using LLMs to generate026
synthetic data for classification tasks. In this027
paper, we introduce multiple prompting strate-028
gies to obtain synthetic data in existing and029
new domains based on intent classes, intent-030
slot combinations and example transcripts and031
parses. Experiments show that using synthetic032
parse data with JAT for existing domains can033
improve SSP performance on STOP by 1.4 %034
absolute EM. Using synthetic parse data with035
TTS for a new held-out domain improves EM036
on STOP for the held out domain by 2.6% ab-037
solute.038

1 Introduction039

Spoken Language Understanding (SLU) is essen-040

tial for many real-world applications today includ-041

ing conversational agents and virtual assistants.042

Spoken Semantic Parsing (SSP) is the SLU task 043

that involves transforming a recording to a machine- 044

comprehensible parse tree (Wang et al., 2023a). 045

End-to-end models (Arora et al., 2023) operate 046

directly on speech while cascade models (Futami 047

et al., 2023) generate a semantic parse based on the 048

speech transcript. Two-pass deliberation models 049

(Le et al., 2022) combine the best of both worlds, 050

by using first-pass transcripts and speech embed- 051

dings to perform spoken semantic parsing within a 052

second pass. However, training such models with 053

supervision requires matched triplets of speech, 054

transcript, and semantic parse. Annotating these 055

triplets is expensive, which limits the size of train- 056

ing data, and consequently model performance. 057

The need for matched data can be alleviated by 058

developing methods that can use text-only unpaired 059

data. Text data (transcript-semantic parse) is more 060

easily obtained than speech – either from exist- 061

ing textual corpora or by prompting Large Lan- 062

guage Models (LLMs), and training models with 063

a small amount of paired speech-text data and a 064

large amount of unpaired text is useful. It is non- 065

trivial to incorporate text-only data into end-to-end 066

models because model outputs cannot be obtained 067

without speech inputs. Prior work has explored 068

the use of text data for speech recognition (Wang 069

et al., 2020a; Toshniwal et al., 2018; Hori et al., 070

2019). External language models trained on text 071

can be used to interpolate token prediction proba- 072

bilities (Meng et al., 2022), but require additional 073

memory, making them unsuitable for on-device ap- 074

plications. Coordinated learning methods (Chen 075

et al., 2022; Sainath et al., 2023) project speech 076

and text to a shared embedding space for speech 077

recognition, but such models require significant 078

amounts of paired speech-text data to learn robust 079

mappings. The final class of work generates speech 080

representations for unpaired speech - Joint Audio 081

Text (JAT) (Kim et al., 2022) uses mean speech 082

embeddings from paired data to represent unpaired 083
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Figure 1: This paper: We describe ways to unpaired text to train deliberation models, where unpaired data can be
obtained from LLMs or existing textual corpora. We use JAT or TTS to obtain speech representations of unpaired
data

text. This is computationally inexpensive, but the084

speech embeddings do not contain information em-085

bedded in real speech. In contrast, synthetic speech086

from Text-to-speech (TTS) models (Wang et al.,087

2020a) produce informative speech representations,088

but they can be expensive to compute.089

There are two cases where additional textual090

data may be acquired for semantic parsing – (a) to091

improve models on existing domains (ED) and (b)092

to support new domains (ND). In this paper, we093

compare JAT and TTS for SSP when unpaired text094

data is drawn from these two setups - ED and ND.095

When unpaired text is not available from exist-096

ing corpora, we propose to prompt Large Language097

Models (LLMs) (Ouyang et al., 2022; Touvron098

et al., 2023a,b) to generate textual data for SSP.099

LLMs have been used in prior work to generate syn-100

thetic data for text classification using approaches101

such as Self-Instruct (Wang et al., 2023b), Attr-102

Prompt (Yu et al., 2023a), ZeroGen (Ye et al.,103

2022), and more recently use in-context learning104

with seed samples (Yu et al., 2023b). Semantic105

parsing requires sequence labeling, i.e., (a) it re-106

quires the correct identification of identification of107

the number and identity of intent and slot tags, and108

(b) correct placement of entity and slot tags to form109

the right parse tree, all while not inserting unrelated110

or unseen intent and slot tags. Therefore, it is more111

complex to generate useful and diverse data for112

semantic parsing compared to other classification113

tasks.114

Prior work (Tran and Tan, 2020) has proposed115

the use of template-based masked training of BART 116

to produce additional variants for masked words, 117

however this limits the potential lexical diversity of 118

the generated data, and requires significant amount 119

of labeled data, which may not be available for the 120

ND setting. Since LLMs can learn in-context and 121

generalize better under few-shot settings, they con- 122

sequently need fewer exemplars to generate diverse 123

and high quality synthetic data for semantic pars- 124

ing. In this paper, we address the task of generating 125

synthetic text data for semantic parsing by using 126

different prompting approaches with Llama 2. 127

For the ED setup, it is sufficient to generate tran- 128

scripts (similar utterances ) since semantic parses 129

can be obtained from transcripts using pre-trained 130

semantic parsers. We describe two prompting 131

methods: (a) intent-word-based prompting (IWP), 132

where the LLM produces transcripts corresponding 133

to a particular intent class and containing words 134

that co-occur with the intent, and (b) exemplar- 135

based prompting (EP), where it generates tran- 136

scripts that are similar to provided examples. We 137

generate pseudo-labels for the generated utterances 138

using a pre-trained RoBERTa (Liu et al., 2020) 139

model and train SSP models using JAT. We find 140

that EP is simpler but IWP generates the desired 141

intent more often. Using data from both methods 142

improves the Exact Match (EM) on STOP data by 143

1.4 points absolute. 144

For the ND setup, pre-trained models for pseudo- 145

labeling are unavailable for the new domain(s), and 146

hence LLMs are used to generate the seqlogical 147
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form (containing the transcript with intent and slot148

tags annotated) of semantic parses directly. The149

transcript is then inferred from the seqlogical form150

of the semantic parse. Exemplar-based prompting151

(EP) is used with 3 real examples for every possible152

intent-slot combination to generate large-scale data.153

We find that the generated data improves EM by154

2.3 points absolute over a baseline that uses only 3155

examples per combination.156

In summary, this paper makes the following con-157

tributions:158

1. Extends JAT, previously used for ASR, to159

end-to-end spoken semantic parsing, and com-160

pares JAT with TTS for textual data from ex-161

isting domains and new domains.162

2. Develops prompting strategies to generate tex-163

tual transcripts and semantic parses in existing164

and new domains using LLMs.165

3. Demonstrates that LLM-generated textual166

data can be used in conjunction with JAT and167

TTS to improve spoken semantic parsing.168

2 Deliberation Model for SLU169

Deliberation-based SLU models (Le et al., 2022;170

Kim et al., 2023) are two-pass models that predict171

an ASR transcript in the first pass. Using the first172

pass transcript and audio, it then generates the se-173

mantic parse in the second pass. In contrast to174

cascade models that utilize separately trained Au-175

tomatic Speech Recognition (ASR) and SLU com-176

ponents, a deliberation model optimizes both ASR177

and SLU components jointly. To achieve on-device178

streaming functionality, the first pass ASR compo-179

nent is implemented using the Recurrent Neural180

Network Transducer (RNNT) (Graves, 2012; Kim181

et al., 2021; Liu et al., 2021).182

To maintain transcription accuracy, the ASR183

component of our deliberation model is trained184

independently and kept frozen. Our deliberation-185

based SLU model comprises two primary modules:186

(1) Fusion, and (2) Decoder. The fusion module187

combines intermediate audio and text embeddings188

from the first pass RNNT encoder and predictor re-189

spectively. Using Multi-Head Attention (Vaswani190

et al., 2017), the fusion module generates a com-191

bined representation that is used by the transformer-192

based decoder module to predict the target semantic193

parse sequence.194

3 Speech Representations for Unpaired 195

Text 196

3.1 Joint Audio-Text Training (JAT) 197

Joint Audio-Text training (JAT) (Kim et al., 2022) 198

is a recent approach for leveraging unpaired text- 199

only data to improve ASR (Kim et al., 2022; 200

Sainath et al., 2023, 2020; Wang et al., 2020b). 201

Unlike shallow fusion that considers token distri- 202

butions from an external neural network language 203

model (NNLM), JAT does not require additional 204

model parameters or latency, making it suitable 205

for on-device streaming ASR. The core idea be- 206

hind JAT is that speech representations for un- 207

paired text can be generated by simply using aver- 208

age speech embeddings computed over available 209

paired speech/text data. In this paper, we use the 210

JAT approach to train our Spoken Language Under- 211

standing (SLU) models to enable training with both 212

"speech-text-semantic parse" and "text-semantic 213

parse" datasets. 214

3.2 Speech Synthesis with Voicebox 215

Voicebox(Le et al., 2023) is a state-of-the-art non- 216

autoregressive speech generation model based on 217

Flow Matching (Lipman et al., 2022). We gen- 218

erate representations for unpaired text by extract- 219

ing speech features from synthesized speech. Syn- 220

thetic speech can be obtained by using Voicebox 221

in TTS mode, i.e. where audio is generated by 222

conditioning on input text. Different from (Le 223

et al., 2023), the Voicebox model we use repre- 224

sents input text as graphemes rather than phonemes. 225

To generate audio, we first sample unit durations 226

for each grapheme in the input text using a flow- 227

matching-based duration model and then upsample 228

the grapheme sequence using the unit duration in- 229

formation. This information is used as condition- 230

ing to generate the spectrogram using the audio 231

model. Finally, we used a HiFi-GAN (Kong et al., 232

2020) vocoder to convert the spectrograms into 233

time-domain signals. 234

4 Generating Textual Data with LLama 235

2.0 236

LLama 2.0 (Touvron et al., 2023b) is a public open- 237

source large language model trained on large vol- 238

umes of publicly available data and code with con- 239

text as large as 4096. In this paper, we use the 13B 240

parameter chat model. 241
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4.1 Generating Textual Data for Existing242

Domains243

In the ED setup, we propose to use LLMs to gener-244

ate transcripts. Corresponding semantic parses are245

obtained using a pseudo-labeling textual semantic246

parse model trained on existing paired data. The247

semantic parse model here takes transcripts as in-248

puts and produces pseudo-label semantic parses as249

output. Transcripts can be generated using one of250

two prompting strategies, i.e., intent-word-based or251

exemplar-based.252

4.1.1 Intent Word-based prompting (IWP)253

The goal of IWP is to generate transcripts that may254

be classified under a certain intent, optionally con-255

taining "intent words". Intent words are the words256

from semantic parses that occur most frequently257

with given intents after removing stop-words. An258

example is shown in Figure 2. The 40 words that259

co-occur most frequently with every intent in the260

STOP data are used as intent words. 40 examples261

are generated for every intent and intent-word com-262

bination. Though IWP produces good synthetic263

data, it is limited by the fact that words that co-264

occur less frequently with the intent are less related265

to the intent. Such examples produced with less266

relevant intent words may not be classified under267

the desired intent class. This also limits the amount268

of synthetic data that can be generated since the269

LLM cannot generate many unique examples using270

a small number of intent-intent word combinations.271

4.1.2 Exemplar-based Prompting (EP)272

Since LLMs are strong in-context learners (Wei273

et al., 2022), an alternative approach is to prompt274

LLMs to generate transcripts based on examples.275

For every intent-slot combination, we provide up276

to 4 random example transcripts and ask the model277

to generate 60 more transcripts that are similar278

but have diverse sentence structures. An example279

prompt is shown in Fig 3. Though the resulting280

transcripts may not always correspond to the intent281

classes from which the examples are drawn, this282

method enables us to generate larger volumes of283

data without duplication.284

4.1.3 Semantic Parse generation and Quality285

Assessment286

Transcripts generated by LLMs are first normal-287

ized – written text is converted to spoken form,288

punctuation except apostrophes are removed and289

text is transformed into lower case. Semantic parse290

pseudo-labels are obtained from these normalized 291

transcripts using a strong RoBERTa-based seman- 292

tic parser trained on STOP (EM=86.8). To assess 293

data quality, we compare the intent in the obtained 294

pseudo-labels to the intent in the prompt for IWP or 295

the intent of the provided examples for EP. Intent 296

Match Accuracy (IMA) is defined as the percent- 297

age of times the intent of the pseudo-label matches 298

the desired intent of the prompt. 299

4.2 Generating Transcript-Semantic Parse for 300

New Domains 301

For new domains, paired data and pre-trained mod- 302

els are not available, and therefore, we would need 303

to directly generate pairs of transcript and semantic 304

parse. One way to do this is to generate pairs of 305

semantic parse and corresponding transcript using 306

LLMs directly, however, maintaining consistency 307

across generated parses and transcripts is challeng- 308

ing for current LLMs. Another alternative is to 309

generate only the seqlogical form of the semantic 310

parse from the LLM and infer the transcript from 311

the parse. The seqlogical form of the parse, unlike 312

the decoupled form, comprises all the words in the 313

transcript along with slot and intent tags. Therefore, 314

the transcript can be obtained from the seqlogical 315

parse merely by removing slot and intent tags. 316

4.2.1 Exemplar-based Prompting 317

We assume that (a) the intents and slots that must 318

be recognized for the new domain are known, (b) 319

the slots that may occur with every intent, i.e., the 320

intent-slot combinations are known, and (c) some 321

manually annotated examples for every intent-slot 322

combination are known. Using this information, 323

LLMs can be prompted as shown in Figure 4 to 324

produce new seqlogical parses for a given intent- 325

slot combinations. The prompt first describes the 326

steps to generate a valid seqlogical parse and then 327

presents up to 3 examples of seqlogical parses with 328

the desired intent-slot combinations. 329

4.2.2 Post-processing 330

The generated seqlogical parses are checked for in- 331

valid placement of brackets, and Out of Vocabulary 332

(OOV) intents and slots. OOV intents were fixed 333

by re-prompting the model to replace OOV intents 334

with correct intents and replace any intents other 335

than the first. Any OOV slots are removed while 336

retaining corresponding slot words. 337
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Figure 2: Example Prompt for IWP-based utterance generation

Figure 3: Example Prompt for EP-based utterance generation

Figure 4: Example Prompt for EP-based generation of seqlogical parses

5 Experimental Setup338

5.1 STOP Data, Model and Metrics339

Data: STOP 1 (Tomasello et al., 2023) is a public340

dataset with 100 hours of real speech for spoken341

semantic parsing. STOP has data for 8 domains342

- alarm, event, messaging, music, navigation, re-343

minder, timer, and weather. The data contains 28344

unique intents and 82 slot types in all. Table 1 sum-345

marizes some statistics about the STOP dataset.346

1STOP was used in accordance with its LICENSE terms

Table 1: Dataset and Partition Statistics - STOP Dataset

Partition Number of utterances
train 120,903
eval 33,380
test 75,617

Metrics: Exact Match (EM) is used to evaluate all 347

our models. We report EM (No Err) and EM w/ 348

Err, which are the Exact Match accuracies averaged 349

over utterances with no ASR error and averaged 350
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over utterances with any ASR error respectively.351

Model Configuration: For the ASR module, we352

use RNNT with 3 layers of conformer in the en-353

coder, 1 layer of LSTM in the predictor, and 1 lin-354

ear layer in the joiner. For the deliberation model,355

we use attention in the Fusion module, 2 trans-356

former encoder layers in the Pooling module, and a357

transformer decoder layer with a pointer-generator358

in the Decoder module (Kim et al., 2023). Models359

are optimized with Adam (Kingma and Ba, 2015),360

having a peak learning rate of 8e-3.361

Voicebox TTS Model: We use a Voicebox model362

trained on approximately 14k hours of manu-363

ally transcribed data that comprises a diverse364

range of speakers, accents, topics, and acous-365

tic conditions. The audio model has 12 trans-366

former layers (Vaswani et al., 2017) containing367

16 attention heads, convolutional positional em-368

beddings (Baevski et al., 2020) and ALiBi self-369

attention bias (Press et al., 2021). Graphemes are370

embedded into 80-d features and concatenated with371

the 80-d log-mel features. The duration model has372

8 transformer layers with 8 heads, and graphemes373

are embedded into 40-d features. Training hyper-374

parameters are similar to the setup described in (Le375

et al., 2023).376

Computational Cost : Our experiments were per-377

formed on a single node with 8 V100-32 GB GPUs378

on the cluster. Each run took approximately 18379

hours for model training. For LLama2 inference,380

we used 4 x V100-32 GB or 2 x A100-40GB with381

model parallelism and fp32 precision. For Voice-382

box inference, we used 1X V100-32 GB GPUs over383

40 parallel processes to speed up speech synthesis.384

5.2 Setup: Textual Data from Text Corpora385

For experiments where we assume textual data is386

available, we split the STOP datasets into two parts.387

We perform two experiments – one using the first388

and second splits as paired and unpaired data re-389

spectively and the other using the second and first390

splits as paired and unpaired data respectively. The391

average performance across these 2 experiments392

is reported in each case. In the ED setup, equal393

amounts of data from every domain are present in394

the two splits. For the ND setup, STOP is split395

by domain, where one split contains all training396

data from 4 domains(messaging, reminder, time,397

and weather), while the other split contains training398

data from the other 4 domains (alarm, event, music,399

and navigation). Both splits are designed to ensure400

that they have a nearly equal number of utterances.401

5.3 Setup: Textual Data from LLMs 402

When unpaired data is not available, we use Llama 403

2.0 to generate examples for the ED and ND se- 404

tups. For the ED setup, LLama 2.0 is used to gen- 405

erate utterances. We then use a pre-trained 12- 406

layer RoBERTa model trained on STOP to gen- 407

erate pseudo-labels for the generated utterances. 408

We augment STOP with the generated LLama 2.0 409

transcript-semantic parse. JAT is used to represent 410

LLama 2 text. 411

For the ND setup, LLama 2.0 generated data is 412

not suitable as a real test set since it does not have 413

matching real speech. Therefore, we choose to par- 414

tition the existing STOP data into 7 seen domains 415

and 1 new domain - weather. We use exemplar- 416

based prompting to generate transcript-semantic 417

parse pairs for weather. For this, real examples 418

of transcript-semantic parse from STOP are used. 419

We use TTS to generate equivalent speech repre- 420

sentations for the generated data. We compare the 421

performance on the weather domain for models 422

trained on (a) 7 domains of STOP, (b) 7 domains 423

of STOP with examples for the weather (with TTS 424

for examples and real speech for 7 domains), (c) 425

7 domains of STOP with examples and Llama 2.0 426

generated data, and (d) the topline that uses 7 do- 427

mains of STOP with real data and TTS. 428

6 Experimental Results and Discussion 429

6.1 When textual data is available 430

Table 2 compares the performance of different mod- 431

els for the ED and ND settings where unpaired text 432

is drawn from existing domains and new domains 433

respectively. Across both ED and ND setups, we 434

find that the use of unpaired text improves EM 435

scores. 436

For the ED setup, we find that JAT and TTS 437

achieve similar Exact Match scores. Since JAT is 438

comparable in performance to TTS and relatively 439

inexpensive compared to complex TTS models like 440

Voicebox, JAT is optimal for the ED setup. TTS 441

model training depends on the specific model, but 442

in our case Voicebox training takes 3 days on 8 443

GPUs, and inference to produce synthetic speech 444

takes 3 hours on 40 parallel GPU inference jobs. In 445

comparison, JAT data preparation involves using 446

mean speech embeddings, which takes 1 hour on 447

40 CPUs for the STOP training, evaluation and test 448

data. Therefore, JAT indeed takes little time in 449

comparison to TTS. 450

Further, the difference between JAT and TTS 451
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Table 2: Comparing JAT and TTS as speech representations for unpaired text from ED and ND. Number of paired
and unpaired utterances, and Exact Match (EM) is reported

Model #Pair/#Unpair EM EM(No Err) EM w/ Err

E
D

Baseline 60.4k / 0 64.25 80.51 24.37
w/ JAT 60.4k / 60.4k 66.92 83.90 25.25
w/ TTS 60.4 / 60.4k 67.05 83.88 25.80

N
D

Baseline 60.7k / 0 33.28 41.32 13.54
w/ JAT 60.7k / 60.1k 57.74 73.34 19.50
w/ TTS 60.7k / 60.1k 63.95 80.70 22.88

Topline 120.9k / 0 67.67 84.52 26.34

Table 3: Impact of Paired-Unpaired Data Ratio on JAT Performance under the Existing Domain Setting

Paired Data (%) Unpaired Data (%) EM-No Err EM-ASR Error EM (overall)
0 100 85.48 21.22 66.87
30 70 84.27 24.67 67.01
50 50 84.15 25.5 67.17
70 30 84.24 25.43 67.2

100 0 84.52 26.34 67.67

appears to be primarily on utterances with ASR er-452

rors, since synthetic speech representations can be453

used to reduce the impact of ASR errors on seman-454

tic parsing. For the ND setup, we find that though455

JAT outperforms the baseline, TTS outperforms456

JAT. This is because new domains may have dif-457

ferent entities and domain-specific terms that may458

be harder to recognize, and TTS provides valid459

speech representations that can be used to improve460

predictions based on the first-pass ASR. Figure 5461

shows that the amount of unpaired textual data is462

increased with constant paired data, relative gains463

increase to a point and saturate.464

6.2 Ablation: Does JAT work for different465

data ratios?466

In this experiment, we vary the amount of paired467

data with speech-transcript-semantic parse and un-468

paired data with text only to analyze the impact on469

spoken semantic parsing performance.470

From Table 3, we find that JAT works with only471

a 0.8 % degradation compared to the topline that472

uses 100% paired data in Exact Match even when473

no paired speech-text data is used. Therefore, this474

approach can generalize reasonably to other data ra-475

tios apart from the 50-50 ratio used in prior experi-476

ments. Further, utilizing more paired data improves477

performance on the cases when the transcript con-478

tains errors when compared to those where the479

transcript has no errors. This follows as a conse-480

quence of the fact that the transcript for unpaired481

text contains no ASR errors.482

Figure 5: Impact of increasing unpaired text on EM

6.3 LLama 2.0 Generated Data: ED Setup 483

Table 4 compares various prompting strategies 484

for generating utterances in the same domain us- 485

ing Llama 2.0. We find that combining LLama- 486

generated data with existing STOP data can im- 487

prove performance across test examples with and 488

without ASR errors. On further analysis, we find 489

that significant improvements are observed across 490

domains with relatively poor performance in the 491

STOP baseline. Between IWP and EP, we find that 492

EP is slightly better. Since EP is not constrained 493

to generate utterances that may be classified under 494

a given intent, the Intent Match Accuracy (IMA) 495

is lower than that of IWP. Combining the data gen- 496

erated from both these strategies further improves 497

performance over the STOP baseline. 498

6.4 LLama 2.0 Generated Data: ND Setup 499

Table 5 compares the performance of baseline mod- 500

els that have no data for weather or 360 examples 501

for weather with models that use LLama 2.0 gen- 502
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Table 4: Assessing the impact of augmenting the training data with LLama 2.0 generated utterances and RoBERTa
pseudo-labels.EM is Exact Match Accuracy

Model #Utts IMA EM EM(No Err) EM w/ Err

STOP Baseline 160k - 67.37 84.52 26.34
+ IWP-JAT 230k 68.87 68.12 84.96 26.82
+ EP-JAT 218k 64.24 68.21 85.01 27.04
+ (IWP+EP)-JAT 298k 67.87 68.75 85.82 26.86

Table 5: Using TTS to generate speech for LLama 2.0 text when unpaired text is in an unseen new domain

Model #Utts(Weather) Weather EM Overall EM

STOP 7 dom. 0 0 54.61
+ 3 real example-TTS 360 48.18 61.80
+ Exemplar LLama2-TTS 2,910 50.82 62.29

Topline: STOP Weather-TTS 2,910 63.80 66.33

erated data. Llama 2 generated text can improve503

performance by over 2 points absolute EM but lags504

behind the performance of a topline that uses data505

from STOP.506

6.5 Challenges of using LLMs for generating507

large-scale data508

While large language models can generate useful509

data based on the prompting strategies employed,510

there are certain challenges with generating large511

scale data, i.e., something of the order of few to512

many thousands of utterances.513

LLMs can be reasonably consistent while re-514

sponding within the current turn, but tend to re-515

peat previously proposed examples after around 40516

examples per input prompt, with variance arising517

from the complexity of different semantic parse518

structures. Due to input context limits while train-519

ing, there is a limited number of unique and use-520

ful examples that can be elicited for every input521

prompt. It could be argued that each prompt can522

be presented multiple times with slight variations523

to obtain more data. However, LLMs are often524

not consistent across turns and end up repeating525

synthetic examples. One solution to this challenge526

could potentially involve using the "chat" formu-527

lation, where previous prompts and responses are528

part of the hidden states the model can attend to529

while producing new responses. However, due to530

memory limits, it is challenging to retain very long531

contexts in input memory, inhibiting the production532

of truly large scale data.533

In this paper, we attempted to sample multi-534

ple times using different temperatures and seeds535

for every prompt to attempt to scale the obtained536

data. This remains an interesting problem for future 537

work. 538

7 Conclusion 539

We address the high cost of manually labeling 540

speech-transcript-semantic parse data for spoken 541

semantic parsing by enabling models to use text- 542

only data. JAT is preferred for unpaired text in 543

existing domains for its efficiency and gain of 2.5 544

% EM over a paired data baseline while remain- 545

ing within 0.1 % EM of the more computationally 546

expensive TTS. For unpaired text in new domains, 547

TTS outperforms JAT by 6 % absolute EM overall, 548

with a gain of 30.6 % EM over a paired baseline. 549

When text data cannot be obtained from existing 550

text corpora, we propose to prompt LLMs to gener- 551

ate transcript-semantic parse pairs. We show that 552

using different prompting strategies, we can gener- 553

ate unpaired text data in relatively large volumes. 554

Using JAT and TTS, we can leverage this LLM- 555

generated data to further improve SSP by 1.4 % 556

EM and 2.6 % EM absolute for existing and new 557

domains. 558
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Limitations559

Our work uses the public open-source LLama2560

LLM to generate synthetic data due to its open561

source code, public model weights and determin-562

istic generation behavior. However, prompting563

behavior is not standard across all LLMs, and564

though the general structure and strategy behind565

our prompting can remain the same, specific and566

small modifications may need to be made for dif-567

ferent LLMs.568

The STOP dataset, the only public dataset for569

semantic parsing uses real but read speech, rather570

than spontaneous speech. Making public data with571

spontanous speech and experimenting with such572

will definitely be useful to explore.573

Impact and Risks574

Our work will enable the development of SLU mod-575

els for tasks and languages where we have very576

limited labelled data. We hope that this work also577

spurs more collaboration across the fields of speech578

and natural language processing, both of which are579

needed to make progress in this area.580

All the work in this paper was done in such a581

manner so as to minimize the risk of misuse and582

bias. Since the approach uses LLama to generate583

synthetic data, potential risks include the perco-584

lation of inherent biases in LLama into models585

trained on such synthetic data.586
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