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Abstract

Spoken semantic parsing (SSP) involves gen-
erating machine-comprehensible parses from
input speech. Training robust models for ex-
isting application domains represented in train-
ing data or extending to new domains requires
corresponding triplets of speech-transcript-
semantic parse data, which is expensive to ob-
tain. In this paper, we address this challenge
by examining methods that can use or generate
transcript-semantic parse data (unpaired text)
without corresponding speech. First, when un-
paired text is drawn from existing textual cor-
pora, we compare Joint Audio Text (JAT) and
Text-to-Speech (TTS) as ways to use unpaired
text to generate speech representations. Experi-
ments on the STOP dataset show that unpaired
text from existing and new domains improves
performance by 2% and 30% in absolute Exact
Match (EM) respectively.

Second, when unpaired text is not available
from existing textual corpora, Large Language
Models (LLMs) can be prompted to generate
unpaired text for existing and new domains,
and JAT or TTS can be used with the gener-
ated unpaired text to improve SSP. Prior work
has mostly focused on using LLMs to generate
synthetic data for classification tasks. In this
paper, we introduce multiple prompting strate-
gies to obtain synthetic data in existing and
new domains based on intent classes, intent-
slot combinations and example transcripts and
parses. Experiments show that using synthetic
parse data with JAT for existing domains can
improve SSP performance on STOP by 1.4 %
absolute EM. Using synthetic parse data with
TTS for a new held-out domain improves EM
on STOP for the held out domain by 2.6% ab-
solute.

1 Introduction

Spoken Language Understanding (SLU) is essen-
tial for many real-world applications today includ-
ing conversational agents and virtual assistants.

Spoken Semantic Parsing (SSP) is the SLU task
that involves transforming a recording to a machine-
comprehensible parse tree (Wang et al., 2023a).
End-to-end models (Arora et al., 2023) operate
directly on speech while cascade models (Futami
et al., 2023) generate a semantic parse based on the
speech transcript. Two-pass deliberation models
(Le et al., 2022) combine the best of both worlds,
by using first-pass transcripts and speech embed-
dings to perform spoken semantic parsing within a
second pass. However, training such models with
supervision requires matched triplets of speech,
transcript, and semantic parse. Annotating these
triplets is expensive, which limits the size of train-
ing data, and consequently model performance.
The need for matched data can be alleviated by
developing methods that can use text-only unpaired
data. Text data (transcript-semantic parse) is more
easily obtained than speech — either from exist-
ing textual corpora or by prompting Large Lan-
guage Models (LLMs), and training models with
a small amount of paired speech-text data and a
large amount of unpaired text is useful. It is non-
trivial to incorporate text-only data into end-to-end
models because model outputs cannot be obtained
without speech inputs. Prior work has explored
the use of text data for speech recognition (Wang
et al., 2020a; Toshniwal et al., 2018; Hori et al.,
2019). External language models trained on text
can be used to interpolate token prediction proba-
bilities (Meng et al., 2022), but require additional
memory, making them unsuitable for on-device ap-
plications. Coordinated learning methods (Chen
et al., 2022; Sainath et al., 2023) project speech
and text to a shared embedding space for speech
recognition, but such models require significant
amounts of paired speech-text data to learn robust
mappings. The final class of work generates speech
representations for unpaired speech - Joint Audio
Text (JAT) (Kim et al., 2022) uses mean speech
embeddings from paired data to represent unpaired
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Figure 1: This paper: We describe ways to unpaired text to train deliberation models, where unpaired data can be
obtained from LLMs or existing textual corpora. We use JAT or TTS to obtain speech representations of unpaired

data

text. This is computationally inexpensive, but the
speech embeddings do not contain information em-
bedded in real speech. In contrast, synthetic speech
from Text-to-speech (TTS) models (Wang et al.,
2020a) produce informative speech representations,
but they can be expensive to compute.

There are two cases where additional textual
data may be acquired for semantic parsing — (a) to
improve models on existing domains (ED) and (b)
to support new domains (ND). In this paper, we
compare JAT and TTS for SSP when unpaired text
data is drawn from these two setups - ED and ND.

When unpaired text is not available from exist-
ing corpora, we propose to prompt Large Language
Models (LLMs) (Ouyang et al., 2022; Touvron
et al., 2023a,b) to generate textual data for SSP.
LLMs have been used in prior work to generate syn-
thetic data for text classification using approaches
such as Self-Instruct (Wang et al., 2023b), Attr-
Prompt (Yu et al., 2023a), ZeroGen (Ye et al.,
2022), and more recently use in-context learning
with seed samples (Yu et al., 2023b). Semantic
parsing requires sequence labeling, i.e., (a) it re-
quires the correct identification of identification of
the number and identity of intent and slot tags, and
(b) correct placement of entity and slot tags to form
the right parse tree, all while not inserting unrelated
or unseen intent and slot tags. Therefore, it is more
complex to generate useful and diverse data for
semantic parsing compared to other classification
tasks.

Prior work (Tran and Tan, 2020) has proposed

the use of template-based masked training of BART
to produce additional variants for masked words,
however this limits the potential lexical diversity of
the generated data, and requires significant amount
of labeled data, which may not be available for the
ND setting. Since LLMs can learn in-context and
generalize better under few-shot settings, they con-
sequently need fewer exemplars to generate diverse
and high quality synthetic data for semantic pars-
ing. In this paper, we address the task of generating
synthetic text data for semantic parsing by using
different prompting approaches with Llama 2.

For the ED setup, it is sufficient to generate tran-
scripts (similar utterances ) since semantic parses
can be obtained from transcripts using pre-trained
semantic parsers. We describe two prompting
methods: (a) intent-word-based prompting (IWP),
where the LLM produces transcripts corresponding
to a particular intent class and containing words
that co-occur with the intent, and (b) exemplar-
based prompting (EP), where it generates tran-
scripts that are similar to provided examples. We
generate pseudo-labels for the generated utterances
using a pre-trained RoBERTa (Liu et al., 2020)
model and train SSP models using JAT. We find
that EP is simpler but IWP generates the desired
intent more often. Using data from both methods
improves the Exact Match (EM) on STOP data by
1.4 points absolute.

For the ND setup, pre-trained models for pseudo-
labeling are unavailable for the new domain(s), and
hence LLMs are used to generate the seqlogical



form (containing the transcript with intent and slot
tags annotated) of semantic parses directly. The
transcript is then inferred from the seqlogical form
of the semantic parse. Exemplar-based prompting
(EP) is used with 3 real examples for every possible
intent-slot combination to generate large-scale data.
We find that the generated data improves EM by
2.3 points absolute over a baseline that uses only 3
examples per combination.

In summary, this paper makes the following con-
tributions:

1. Extends JAT, previously used for ASR, to
end-to-end spoken semantic parsing, and com-
pares JAT with TTS for textual data from ex-
isting domains and new domains.

2. Develops prompting strategies to generate tex-
tual transcripts and semantic parses in existing
and new domains using LLMs.

3. Demonstrates that LLM-generated textual
data can be used in conjunction with JAT and
TTS to improve spoken semantic parsing.

2 Deliberation Model for SLU

Deliberation-based SLU models (Le et al., 2022;
Kim et al., 2023) are two-pass models that predict
an ASR transcript in the first pass. Using the first
pass transcript and audio, it then generates the se-
mantic parse in the second pass. In contrast to
cascade models that utilize separately trained Au-
tomatic Speech Recognition (ASR) and SLU com-
ponents, a deliberation model optimizes both ASR
and SLU components jointly. To achieve on-device
streaming functionality, the first pass ASR compo-
nent is implemented using the Recurrent Neural
Network Transducer (RNNT) (Graves, 2012; Kim
et al., 2021; Liu et al., 2021).

To maintain transcription accuracy, the ASR
component of our deliberation model is trained
independently and kept frozen. Our deliberation-
based SLU model comprises two primary modules:
(1) Fusion, and (2) Decoder. The fusion module
combines intermediate audio and text embeddings
from the first pass RNNT encoder and predictor re-
spectively. Using Multi-Head Attention (Vaswani
et al., 2017), the fusion module generates a com-
bined representation that is used by the transformer-
based decoder module to predict the target semantic
parse sequence.

3 Speech Representations for Unpaired
Text

3.1 Joint Audio-Text Training (JAT)

Joint Audio-Text training (JAT) (Kim et al., 2022)
is a recent approach for leveraging unpaired text-
only data to improve ASR (Kim et al., 2022;
Sainath et al., 2023, 2020; Wang et al., 2020b).
Unlike shallow fusion that considers token distri-
butions from an external neural network language
model (NNLM), JAT does not require additional
model parameters or latency, making it suitable
for on-device streaming ASR. The core idea be-
hind JAT is that speech representations for un-
paired text can be generated by simply using aver-
age speech embeddings computed over available
paired speech/text data. In this paper, we use the
JAT approach to train our Spoken Language Under-
standing (SLU) models to enable training with both
"speech-text-semantic parse" and "text-semantic
parse” datasets.

3.2 Speech Synthesis with Voicebox

Voicebox(Le et al., 2023) is a state-of-the-art non-
autoregressive speech generation model based on
Flow Matching (Lipman et al., 2022). We gen-
erate representations for unpaired text by extract-
ing speech features from synthesized speech. Syn-
thetic speech can be obtained by using Voicebox
in TTS mode, i.e. where audio is generated by
conditioning on input text. Different from (Le
et al., 2023), the Voicebox model we use repre-
sents input text as graphemes rather than phonemes.
To generate audio, we first sample unit durations
for each grapheme in the input text using a flow-
matching-based duration model and then upsample
the grapheme sequence using the unit duration in-
formation. This information is used as condition-
ing to generate the spectrogram using the audio
model. Finally, we used a HiFi-GAN (Kong et al.,
2020) vocoder to convert the spectrograms into
time-domain signals.

4 Generating Textual Data with LLama
2.0

LLama 2.0 (Touvron et al., 2023b) is a public open-
source large language model trained on large vol-
umes of publicly available data and code with con-
text as large as 4096. In this paper, we use the 13B
parameter chat model.



4.1 Generating Textual Data for Existing
Domains

In the ED setup, we propose to use LLMs to gener-
ate transcripts. Corresponding semantic parses are
obtained using a pseudo-labeling textual semantic
parse model trained on existing paired data. The
semantic parse model here takes transcripts as in-
puts and produces pseudo-label semantic parses as
output. Transcripts can be generated using one of
two prompting strategies, i.e., intent-word-based or
exemplar-based.

4.1.1 Intent Word-based prompting (IWP)

The goal of IWP is to generate transcripts that may
be classified under a certain intent, optionally con-
taining "intent words". Intent words are the words
from semantic parses that occur most frequently
with given intents after removing stop-words. An
example is shown in Figure 2. The 40 words that
co-occur most frequently with every intent in the
STOP data are used as intent words. 40 examples
are generated for every intent and intent-word com-
bination. Though IWP produces good synthetic
data, it is limited by the fact that words that co-
occur less frequently with the intent are less related
to the intent. Such examples produced with less
relevant intent words may not be classified under
the desired intent class. This also limits the amount
of synthetic data that can be generated since the
LLM cannot generate many unique examples using
a small number of intent-intent word combinations.

4.1.2 Exemplar-based Prompting (EP)

Since LLMs are strong in-context learners (Wei
et al., 2022), an alternative approach is to prompt
LLMs to generate transcripts based on examples.
For every intent-slot combination, we provide up
to 4 random example transcripts and ask the model
to generate 60 more transcripts that are similar
but have diverse sentence structures. An example
prompt is shown in Fig 3. Though the resulting
transcripts may not always correspond to the intent
classes from which the examples are drawn, this
method enables us to generate larger volumes of
data without duplication.

4.1.3 Semantic Parse generation and Quality
Assessment

Transcripts generated by LLMs are first normal-
ized — written text is converted to spoken form,
punctuation except apostrophes are removed and
text is transformed into lower case. Semantic parse

pseudo-labels are obtained from these normalized
transcripts using a strong RoOBERTa-based seman-
tic parser trained on STOP (EM=86.8). To assess
data quality, we compare the intent in the obtained
pseudo-labels to the intent in the prompt for IWP or
the intent of the provided examples for EP. Intent
Match Accuracy (IMA) is defined as the percent-
age of times the intent of the pseudo-label matches
the desired intent of the prompt.

4.2 Generating Transcript-Semantic Parse for
New Domains

For new domains, paired data and pre-trained mod-
els are not available, and therefore, we would need
to directly generate pairs of transcript and semantic
parse. One way to do this is to generate pairs of
semantic parse and corresponding transcript using
LLMs directly, however, maintaining consistency
across generated parses and transcripts is challeng-
ing for current LLMs. Another alternative is to
generate only the seqlogical form of the semantic
parse from the LLM and infer the transcript from
the parse. The seqlogical form of the parse, unlike
the decoupled form, comprises all the words in the
transcript along with slot and intent tags. Therefore,
the transcript can be obtained from the seqlogical
parse merely by removing slot and intent tags.

4.2.1 Exemplar-based Prompting

We assume that (a) the intents and slots that must
be recognized for the new domain are known, (b)
the slots that may occur with every intent, i.e., the
intent-slot combinations are known, and (c) some
manually annotated examples for every intent-slot
combination are known. Using this information,
LLMs can be prompted as shown in Figure 4 to
produce new seqlogical parses for a given intent-
slot combinations. The prompt first describes the
steps to generate a valid seqlogical parse and then
presents up to 3 examples of seqlogical parses with
the desired intent-slot combinations.

4.2.2 Post-processing

The generated seqlogical parses are checked for in-
valid placement of brackets, and Out of Vocabulary
(OOV) intents and slots. OOV intents were fixed
by re-prompting the model to replace OOV intents
with correct intents and replace any intents other
than the first. Any OOV slots are removed while
retaining corresponding slot words.



Intent Word based Prompting for Utterance Generation

You are working in an intent-and-slot framework where every utterance can be classified under an intent. Here are some examples of
intents and a description of their function:

1. INNADD_TIME_TIMER - Creates a new timer
2. IN.GET_ESTIMATED_DEPARTURE - gets estimated depariure
Mow, we want to clagsify intents for the weather application. Given the intents IN:-GET_WEATHER, generate 40 utterances that arg

classified under this intent. You may use the word "weather" along with names of people and places to generate 40 uiterances.
Your response should have numbered utterances, with one utterance on each line. Make sure not to repeat any responses. Start with 1.

Figure 2: Example Prompt for IWP-based utterance generation

Exemplar based Prompting for Utterance Generation

Generate 60 more sentences that are similar in intent to the following sentences:
1. Is it going to be around 95 in degree Fahrenheit san francisco tomaorrow
2 s it around 72 in degree celsius karachi tonight

VWrite one senfence per ling. Generate statements and questions with different sentence structure.

o J

Figure 3: Example Prompt for EP-based utterance generation

Exemplar based Prompting for Seqlogical Semantic Parse Generation
Each sentence should be enclosed in square brackets [ ]. The first square bracket [ should be followed by an intent that is in uppercase
letters and begins with IN:, for example, IN.GET_WEATHER. Inside the sentence, you should label some nouns with slots, which are
also enclosed in brackets [ ]. Slots are in all uppercase letters and begin with SL:, for example, SL.LOCATION. In each sentence, there
can only be 1 intent, but there can be many slots. Here are some examples:
1. [IN:GET_WEATHER what kind of weather is in [SL.LOCATION paris ] ]
2. [IN:GET_WEATHER what is the temperature at the [SL.LOCATION north pole ] ]

3. [IN:GET_WEATHER tell me what the weather in [SLLLOCATION central park ] is like ]

Please generate more examples with the intent IN-GET_WEATHER and any of the slots SL:LOCATION. The sentences should have an
intent/slot format like [IN:GET_WEATHER [SL.LOCATION] ], but with some other text, like the examples above. Write 30 similar

sentences and then stop. Use names of people and places in your examples.

Figure 4: Example Prompt for EP-based generation of seqlogical parses

5 Experimental Setup Table 1: Dataset and Partition Statistics - STOP Dataset
5.1 STOP Data, Model and Metrics Partition Number of utterances
Data: STOP ! (Tomasello et al., 2023) is a public train 120,903

eval 33,380

dataset with 100 hours of real speech for spoken
semantic parsing. STOP has data for 8 domains
- alarm, event, messaging, music, navigation, re-
minder, timer, and weather. The data contains 28
unique intents and 82 slot types in all. Table 1 sum-
marizes some statistics about the STOP dataset.

test 75,617

Maetrics: Exact Match (EM) is used to evaluate all
our models. We report EM (No Err) and EM w/
Err, which are the Exact Match accuracies averaged

'STOP was used in accordance with its LICENSE terms over utterances with no ASR error and averaged



over utterances with any ASR error respectively.
Model Configuration: For the ASR module, we
use RNNT with 3 layers of conformer in the en-
coder, 1 layer of LSTM in the predictor, and 1 lin-
ear layer in the joiner. For the deliberation model,
we use attention in the Fusion module, 2 trans-
former encoder layers in the Pooling module, and a
transformer decoder layer with a pointer-generator
in the Decoder module (Kim et al., 2023). Models
are optimized with Adam (Kingma and Ba, 2015),
having a peak learning rate of 8e-3.

Voicebox TTS Model: We use a Voicebox model
trained on approximately 14k hours of manu-
ally transcribed data that comprises a diverse
range of speakers, accents, topics, and acous-
tic conditions. The audio model has 12 trans-
former layers (Vaswani et al., 2017) containing
16 attention heads, convolutional positional em-
beddings (Baevski et al., 2020) and ALiBi self-
attention bias (Press et al., 2021). Graphemes are
embedded into 80-d features and concatenated with
the 80-d log-mel features. The duration model has
8 transformer layers with 8 heads, and graphemes
are embedded into 40-d features. Training hyper-
parameters are similar to the setup described in (Le
et al., 2023).

Computational Cost : Our experiments were per-
formed on a single node with 8§ V100-32 GB GPUs
on the cluster. Each run took approximately 18
hours for model training. For LLama?2 inference,
we used 4 x V100-32 GB or 2 x A100-40GB with
model parallelism and fp32 precision. For Voice-
box inference, we used 1X V100-32 GB GPUs over
40 parallel processes to speed up speech synthesis.

5.2 Setup: Textual Data from Text Corpora

For experiments where we assume textual data is
available, we split the STOP datasets into two parts.
We perform two experiments — one using the first
and second splits as paired and unpaired data re-
spectively and the other using the second and first
splits as paired and unpaired data respectively. The
average performance across these 2 experiments
is reported in each case. In the ED setup, equal
amounts of data from every domain are present in
the two splits. For the ND setup, STOP is split
by domain, where one split contains all training
data from 4 domains(messaging, reminder, time,
and weather), while the other split contains training
data from the other 4 domains (alarm, event, music,
and navigation). Both splits are designed to ensure
that they have a nearly equal number of utterances.

5.3 Setup: Textual Data from LLMs

When unpaired data is not available, we use Llama
2.0 to generate examples for the ED and ND se-
tups. For the ED setup, LLama 2.0 is used to gen-
erate utterances. We then use a pre-trained 12-
layer ROBERTa model trained on STOP to gen-
erate pseudo-labels for the generated utterances.
We augment STOP with the generated LLama 2.0
transcript-semantic parse. JAT is used to represent
LLama 2 text.

For the ND setup, LLama 2.0 generated data is
not suitable as a real test set since it does not have
matching real speech. Therefore, we choose to par-
tition the existing STOP data into 7 seen domains
and 1 new domain - weather. We use exemplar-
based prompting to generate transcript-semantic
parse pairs for weather. For this, real examples
of transcript-semantic parse from STOP are used.
We use TTS to generate equivalent speech repre-
sentations for the generated data. We compare the
performance on the weather domain for models
trained on (a) 7 domains of STOP, (b) 7 domains
of STOP with examples for the weather (with TTS
for examples and real speech for 7 domains), (c)
7 domains of STOP with examples and Llama 2.0
generated data, and (d) the topline that uses 7 do-
mains of STOP with real data and TTS.

6 Experimental Results and Discussion

6.1 When textual data is available

Table 2 compares the performance of different mod-
els for the ED and ND settings where unpaired text
is drawn from existing domains and new domains
respectively. Across both ED and ND setups, we
find that the use of unpaired text improves EM
scores.

For the ED setup, we find that JAT and TTS
achieve similar Exact Match scores. Since JAT is
comparable in performance to TTS and relatively
inexpensive compared to complex TTS models like
Voicebox, JAT is optimal for the ED setup. TTS
model training depends on the specific model, but
in our case Voicebox training takes 3 days on 8
GPUs, and inference to produce synthetic speech
takes 3 hours on 40 parallel GPU inference jobs. In
comparison, JAT data preparation involves using
mean speech embeddings, which takes 1 hour on
40 CPUs for the STOP training, evaluation and test
data. Therefore, JAT indeed takes little time in
comparison to TTS.

Further, the difference between JAT and TTS



Table 2: Comparing JAT and TTS as speech representations for unpaired text from ED and ND. Number of paired
and unpaired utterances, and Exact Match (EM) is reported

Model #Pair/#Unpair EM EM(®No Err) EM w/ Err
Baseline 60.4k/0 64.25 80.51 24.37
% w/ JAT 60.4k / 60.4k  66.92 83.90 25.25
w/ TTS 60.4/60.4k 67.05 83.88 25.80
Baseline 60.7k /0 33.28 41.32 13.54
% w/ JAT 60.7k / 60.1k  57.74 73.34 19.50
w/ TTS 60.7k / 60.1k  63.95 80.70 22.88
Topline 1209k /0 67.67 84.52 26.34

Table 3: Impact of Paired-Unpaired Data Ratio on JAT Performance under the Existing Domain Setting

Paired Data (%) Unpaired Data (%) EM-No Err  EM-ASR Error EM (overall)
0 100 85.48 21.22 66.87
30 70 84.27 24.67 67.01
50 50 84.15 25.5 67.17
70 30 84.24 25.43 67.2
100 0 84.52 26.34 67.67
appears to be primarily on utterances with ASR er- 68
rors, since synthetic speech representations can be . ‘
used to reduce the impact of ASR errors on seman- = ‘
. . £ 66
tic parsing. For the ND setup, we find that though = ‘
. L
JAT outperforms the baseline, TTS outperforms 85
JAT. This is because new domains may have dif- 64
0 25 50 75 100

ferent entities and domain-specific terms that may
be harder to recognize, and TTS provides valid
speech representations that can be used to improve
predictions based on the first-pass ASR. Figure 5
shows that the amount of unpaired textual data is
increased with constant paired data, relative gains
increase to a point and saturate.

6.2 Ablation: Does JAT work for different
data ratios?

In this experiment, we vary the amount of paired
data with speech-transcript-semantic parse and un-
paired data with text only to analyze the impact on
spoken semantic parsing performance.

From Table 3, we find that JAT works with only
a 0.8 % degradation compared to the topline that
uses 100% paired data in Exact Match even when
no paired speech-text data is used. Therefore, this
approach can generalize reasonably to other data ra-
tios apart from the 50-50 ratio used in prior experi-
ments. Further, utilizing more paired data improves
performance on the cases when the transcript con-
tains errors when compared to those where the
transcript has no errors. This follows as a conse-
quence of the fact that the transcript for unpaired
text contains no ASR errors.

Unpaired data as percentage of paired

Figure 5: Impact of increasing unpaired text on EM

6.3 LLama 2.0 Generated Data: ED Setup

Table 4 compares various prompting strategies
for generating utterances in the same domain us-
ing Llama 2.0. We find that combining LLama-
generated data with existing STOP data can im-
prove performance across test examples with and
without ASR errors. On further analysis, we find
that significant improvements are observed across
domains with relatively poor performance in the
STOP baseline. Between IWP and EP, we find that
EP is slightly better. Since EP is not constrained
to generate utterances that may be classified under
a given intent, the Intent Match Accuracy (IMA)
is lower than that of IWP. Combining the data gen-
erated from both these strategies further improves
performance over the STOP baseline.

6.4 LLama 2.0 Generated Data: ND Setup

Table 5 compares the performance of baseline mod-
els that have no data for weather or 360 examples
for weather with models that use LLama 2.0 gen-



Table 4: Assessing the impact of augmenting the training data with LLama 2.0 generated utterances and ROBERTa

pseudo-labels.EM is Exact Match Accuracy

Model #Uts IMA EM EM(NoErr) EM w/Err
STOP Baseline 160k - 6737 84.52 26.34
+ IWP-JAT 230k 68.87 68.12 84.96 26.82
+EP-JAT 218k 6424 6821 85.01 27.04
+ (IWP+EP)-JAT 298k 67.87 68.75 85.82 26.86

Table 5: Using TTS to generate speech for LLama 2.0 text when unpaired text is in an unseen new domain

Model #Utts(Weather) Weather EM  Overall EM
STOP 7 dom. 0 0 54.61
+ 3 real example-TTS 360 48.18 61.80
+ Exemplar LLama2-TTS 2910 50.82 62.29
Topline: STOP Weather-TTS 2910 63.80 66.33

erated data. Llama 2 generated text can improve
performance by over 2 points absolute EM but lags
behind the performance of a topline that uses data
from STOP.

6.5 Challenges of using LLMs for generating
large-scale data

While large language models can generate useful
data based on the prompting strategies employed,
there are certain challenges with generating large
scale data, i.e., something of the order of few to
many thousands of utterances.

LLMs can be reasonably consistent while re-
sponding within the current turn, but tend to re-
peat previously proposed examples after around 40
examples per input prompt, with variance arising
from the complexity of different semantic parse
structures. Due to input context limits while train-
ing, there is a limited number of unique and use-
ful examples that can be elicited for every input
prompt. It could be argued that each prompt can
be presented multiple times with slight variations
to obtain more data. However, LLMs are often
not consistent across turns and end up repeating
synthetic examples. One solution to this challenge
could potentially involve using the "chat" formu-
lation, where previous prompts and responses are
part of the hidden states the model can attend to
while producing new responses. However, due to
memory limits, it is challenging to retain very long
contexts in input memory, inhibiting the production
of truly large scale data.

In this paper, we attempted to sample multi-
ple times using different temperatures and seeds
for every prompt to attempt to scale the obtained

data. This remains an interesting problem for future
work.

7 Conclusion

We address the high cost of manually labeling
speech-transcript-semantic parse data for spoken
semantic parsing by enabling models to use text-
only data. JAT is preferred for unpaired text in
existing domains for its efficiency and gain of 2.5
% EM over a paired data baseline while remain-
ing within 0.1 % EM of the more computationally
expensive TTS. For unpaired text in new domains,
TTS outperforms JAT by 6 % absolute EM overall,
with a gain of 30.6 % EM over a paired baseline.
When text data cannot be obtained from existing
text corpora, we propose to prompt LLMs to gener-
ate transcript-semantic parse pairs. We show that
using different prompting strategies, we can gener-
ate unpaired text data in relatively large volumes.
Using JAT and TTS, we can leverage this LLM-
generated data to further improve SSP by 1.4 %
EM and 2.6 % EM absolute for existing and new
domains.



Limitations

Our work uses the public open-source LLama2
LLM to generate synthetic data due to its open
source code, public model weights and determin-
istic generation behavior. However, prompting
behavior is not standard across all LLMs, and
though the general structure and strategy behind
our prompting can remain the same, specific and
small modifications may need to be made for dif-
ferent LLMs.

The STOP dataset, the only public dataset for
semantic parsing uses real but read speech, rather
than spontaneous speech. Making public data with
spontanous speech and experimenting with such
will definitely be useful to explore.

Impact and Risks

Our work will enable the development of SLU mod-
els for tasks and languages where we have very
limited labelled data. We hope that this work also
spurs more collaboration across the fields of speech
and natural language processing, both of which are
needed to make progress in this area.

All the work in this paper was done in such a
manner so as to minimize the risk of misuse and
bias. Since the approach uses LLama to generate
synthetic data, potential risks include the perco-
lation of inherent biases in LLama into models
trained on such synthetic data.
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A Example Appendix

This is an appendix.
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