Under review as a conference paper at ICLR 2026

FAST AND SIMPLEX: 2-SIMPLICIAL ATTENTION
IN TRITON

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has shown that training loss scales as a power law with both model
size and the number of tokens, and that achieving compute-optimal models requires
scaling model size and token count together. However, these scaling laws assume
an infinite supply of data and apply primarily in compute-bound settings. As
modern large language models increasingly rely on massive internet-scale datasets,
the assumption that they are compute-bound is becoming less valid. This shift
highlights the need for architectures that prioritize token efficiency.

In this work, we investigate the use of the 2-simplicial Transformer, an architecture
that generalizes standard dot-product attention to trilinear functions through an
efficient Triton kernel implementation. We demonstrate that the 2-simplicial
Transformer achieves better token efficiency than standard Transformers: for a fixed
token budget, similarly sized models outperform their dot-product counterparts on
tasks involving mathematics, coding, reasoning, and logic. We quantify these gains
by demonstrating that 2-simplicial attention changes the exponent in the scaling
laws for knowledge and reasoning tasks compared to dot product attention.

1 INTRODUCTION

Large language models (LLMs) based on the Transformer architecture (Vaswani et al., 2017) have
become foundational to many state-of-the-art artificial intelligence systems, including GPT-3 (Brown
et al., 2020), GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2023), and Llama (Touvron et al.,
2023). The remarkable progress in scaling these models has been guided by neural scaling laws
(Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022), which empirically establish a
power-law relationship between training loss, number of model parameters, and size of training data.

A key insight from this body of work is that optimal model performance is achieved not simply by
increasing model size, but by scaling both the number of parameters and the amount of training data
in tandem. Notably, Hoffmann et al. (2022) demonstrate that compute-optimal models require a
balanced scaling approach. Their findings show that the Chinchilla model, with 70 billion parameters,
outperforms the much larger Gopher model (280 billion parameters) by being trained on four times
as much data. This result underscores the importance of data scaling alongside model scaling for
achieving superior performance in large language models.

As artificial intelligence (Al) continues to advance, a significant emerging challenge is the availability
of sufficiently high-quality tokens. As we approach this critical juncture, it becomes imperative to
explore novel methods and architectures that can scale more efficiently than traditional Transformers
under a limited token budget. However, most architectural and optimizer improvements merely shift
the error but do not meaningfully change the exponent of the power law (Everett, 2025). The work of
Kaplan et al. (2020); Shen et al. (2024) showed that most architectural modifications do not change
the exponent, while Hestness et al. (2017) show a similar result for optimizers. The only positive
result has been on data due to the works of Sorscher et al. (2022); Bahri et al. (2024); Brandfonbrener
et al. (2024) who show that changing the data distribution can affect the exponent in the scaling laws.

In this context we revisit an old work Clift et al. (2020) which generalizes the dot product attention
of Transformers to trilinear forms as the 2-simplicial Transformer. We explore generalizations of
ROPE (Su et al., 2024) to trilinear functions and present a rotation invariant trilinear form that we
prove is as expressive as 2-simplicial attention. We further show that the 2-simplicial Transformer

Under review as a conference paper at ICLR 2026

scales better than the Transformer under a limited token budget: for a fixed number of tokens, a similar
sized 2-simplicial Transformer out-performs the Transformer on math, coding and reasoning tasks.
Furthermore, our experiments also reveal that the 2-simplicial Transformer has a more favorable
scaling exponent corresponding to the number of parameters than the Transformer (Vaswani et al.,
2017). This suggests that, unlike Chinchilla scaling (Hoffmann et al., 2022), it is possible to increase
tokens at a slower rate than the parameters for the 2-simplicial Transformer. Our findings imply that,
when operating under token constraints, the 2-simplicial Transformer can more effectively approach
the irreducible entropy of natural language compared to dot product attention Transformers.

2 RELATED WORK

Several generalizations of attention have been proposed since the seminal work of Vaswani et al.
(2017). A line of work that started immediately after was to reduce the quadratic complexity of
attention with sequence length. In particular, the work of Parmar et al. (2018) proposed local attention
in the context of image generation and several other works subsequently used it in conjunction with
other methods for language modeling (Zaheer et al., 2020; Roy et al., 2021). Other work has proposed
doing away with softmax attention altogether - e.g., Katharopoulos et al. (2020) show that replacing
the softmax with an exponential without normalization leads to linear time Transformers using
the associativity of matrix multiplication. Other linear time attention work are state space models
such as Mamba (Gu & Dao, 2023); however these linear time attention methods have received less
widespread adoption due to their worse quality compared to Transformers in practice. According to
Allen (2025), the key factor contributing to Mamba’s success in practical applications is the utilization
of the conv1d operator; see also So et al. (2021) and Roy et al. (2022) for similar proposals to the
Transformer architecture.

The other end of the spectrum is going from quadratic to higher order attention. The first work in this
direction to the best of our knowledge was 2-simplicial attention proposed by Clift et al. (2020) which
showed that it is a good proxy for logical problems in the context of deep reinforcement learning.
A similar generalization of Transformers was proposed in Bergen et al. (2021) which proposed the
Edge Transformer where the authors proposed triangular attention. The AlphaFold (Jumper et al.,
2021) paper also used an attention mechanism similar to the Edge Transformer which the authors
called triangle self-attention induced by the 2D geometry of proteins. Higher order interactions were
also explored in Wang et al. (2021) in the context of recommender systems. Simplical attention
was also explored in the context of Hopfield networks in Burns & Fukai (2023). Recent work by
Sanford et al. (2023) shows that the class of problems solved by an n-layer 2-simplicial Transformer
is strictly larger than the class of problems solved by dot product attention Transformers. In particular,
the authors define a class of problems referred to as Mat ch3 and show that dot product attention
requires exponentially many layers in the sequence length to solve this task. Follow up work by
Kozachinskiy et al. (2025) propose a scalable approximation to 2-simplicial attention and prove
lowerbounds between Strassen attention and dot product attention on tasks that require more complex
reasoning using VC dimension (Vapnik, 1968) arguments.

Also related is work on looping Transformer layers (Dehghani et al., 2018) as in Universal Transform-
ers; see also Yang et al. (2023); Saunshi et al. (2025) for a more recent treatment of the same idea.
Both higher order attention and looping serve a similar purpose: compute a more expressive function
per parameter. It has been established in these works that looped Transformers are better at logical
reasoning tasks. A key challenge in scaling looped Transformers to larger models is their trainability.
Specifically, looping k times increases the model depth by a factor of &, which can significantly
exacerbate the difficulties associated with training deeper models. As a result, it remains unclear how
well large looped Transformers can be trained, and further research is needed to address this concern.

Notation. We use small and bold letters to denote vectors, capital letters to denote matrices and

tensors and small letters to denote scalars. We denote (a, b) to denote dot product between two vectors

a and b. Similarly, the trilinear dot product is denoted as follows:(a, b, c) = Z?zl (a;, b, ci). We

use @ to highlight a matrix multiplication, for e.g., (AB)@QC, for matrices A, B, C. To denote array
slicing, we use a[l : [+m] = (ay, . .., Gj+m—1) With zero-based indexing. Some tensor operations
are described using Finstein summation notation as used in the Numpy library (Harris et al., 2020).
We use F'LOPs to denote floating point operations. Column stacking of arrays are denoted by
[a, b, c]. We use det to denote determinant of a square matrix.

Under review as a conference paper at ICLR 2026

3 OVERVIEW OF NEURAL SCALING LAWS

In this section we provide a brief overview of neural scaling laws as introduced in Kaplan et al. (2020).
We will adopt the approach outlined by Hoffmann et al. (2022), which proposes that the loss L(N, D)
decays as a power law in the total number of model parameters /V and the number of tokens D:

A B

L(N.D) = B+~ + 75. (1

The first term FE is often described as the irreducible loss which corresponds to the entropy of natural
text. The second term captures the fact that a model with N parameters underperforms this ideal
generative process. The third term corresponds to the fact that we train on only a finite sample of
the data and do not train the model to convergence. Theoretically, as N — co and D — oo a large

language model should approach the irreducible loss E of the underlying text distribution.

For a given compute budget C where FFLOPs(N, D) = C, one can express the optimal number of
parameters as Vo, oc C* and the optimal dataset size as Dy, o< C b The authors of Hoffmann et al.
(2022) perform several experiments and fit parametric functions to the loss to estimate the exponents
a and b: multiple different approaches confirm that roughly a ~ 0.49 while b ~ 0.5. This leads to
the central thesis of Hoffmann et al. (2022): one must scale the number of tokens proportionally to
the model size.

However, as discussed in Section 1, the quantity of sufficiently high-quality tokens is an emerging
bottleneck in pre-training scaling, necessitating an exploration of alternative training algorithms and
architectures. On the other hand recent studies have shown that most modeling and optimization
techniques proposed in the literature merely shift the error (offset £) and do not fundamentally
change exponent in the power law. We refer the readers to the excellent discussion in Everett (2025).

4 THE 2-SIMPLICIAL TRANSFORMER
O
(J
(a) 1-simplex for two nodes ¢, j

The 2-simplicial Transformer was introduced in Clift et al. (2020)
where the authors extended the dot product attention from bilinear to
trilinear forms, or equivalently from the 1-simplex to the 2-simplex.
Let us recall the attention mechanism in a standard Transformer k
(Vaswani et al., 2017). Given a sequence X € R™*? we have three

projection matrices W, Wi, Wy € R4*? which we refer to as

the query, key and value projections respectively. These projection

matrices are used to infer the query Q@ = XWq, key K = XWgk

and value V' = X Wy, respectively. This is then used to construct

the attention logits:

A=QK"/VdeR™™, 2 i J
where each entry is a dot product A;; = (q;, k;)/v/d which are both (b) 2-simplex between three

entries in R? . The attention scores (logits) are then transformed into nodes i, j, &
probability weights by using a row-wise softmax operation: Figure 1: Geometry of
n dot product attention and
Sij = exp (Ayj)/ Z exp (4;j). 3 2-simplical attention.

=1
The final output of the attention layer is then a linear combination of the values according to these
attention scores:

v; = ZAijUj “
=1

The 2-simplicial Transformer paper Clift et al. (2020) generalizes this to trilinear products where we
have two additional key and value projection matrices W and Wy, which give us K/ = X W
and V' = XWy.. The attention logits for 2-simplicial Transformer are then given by the trilinear
product between @, K and K’, resulting in the following third-order tensor:

d
1
AR =K NS QK K, 5
ijk Vd \/gl:1Ql JUB KL Q)

Under review as a conference paper at ICLR 2026

Algorithm 1 Pseudocode for the forward pass of 2-simplicial attention

1: procedure 2-SIMPLICIAL ATTENTION(Q, K, V, K', V")

2 logits < einsum(“btnh, bsnh, brnh — bntsr”, Q, K, K’)

3 attention <+ softmax(logits 4+ causal-mask, axis = [—-1, —2])

4: output + einsum(“bntsr, bsnh, brnh — btnh”, attention, V, V')
5 return output

6: end procedure

so that the attention tensor becomes:
2s) (2
S(= = exp(A(* 2/ E exp(”Z) 6)

with the final output of the attention operation being deﬁned as

n
~(28) 2s
50 = 3 S5 (v v, ™
Jk=1
where v; o v}, represents the element wise Hadamard product between two vectors in R%. The

pseudo-code for 2-simplicial attention is depicted in Algorithm 1. Note that Equation 5 does not
incorporate any position encoding such as RoPE (Su et al., 2024); we discuss this in the next section.

5 DETERMINANT BASED TRILINEAR FORMS

ROPE (Su et al., 2024) was proposed as a way to capture the positional information in a sequence for
Transformer language models. RoPE applies a position dependent rotation to the queries g; and the
key k; so that the dot product (g;, k;) is a function of the relative distance ¢ — j. In particular, note
that the dot product is invariant to orthogonal transformations R € R?*¢:

(¢i,k;) = (Ra;, Rk;).
This is important for RoPE to work as for a query g; and key k; at the same position i, we expect its
dot product to be unchanged by the application of position based rotations: (g;,k;) = (Rq;, Rk;).
Note that the trilinear form defined in Equation 5 is not invariant to rotation and the application of the
same rotation to g;, k; and k} no longer preserves the inner product: (g;, k;, k}) = Zld:l qiki k), #

(Rq;, Rk;, RK.). Therefore, to generalize RoPE to 2-simplicial attention, it is important to explore
alternative bilinear and trilinear forms that are rotation invariant.

We note that the following functions are also invariant to rotations:

fo(a,b) = det(‘éi (fE) = a1by — agby,

R a; a2 as
fg(a7b7C) = det bl bg b3 s

1 C2 C3
= a1bacz + azbzcy + agbica — arbzcy — azbicz — aszbacy
= ((a1,az2,a3), (b2, b3, b1), (3, c1,¢2)) — ((a1,az,a3), (b3, b1,b2), (c2, c3,¢1)), (8)

the rearrangement in the last equality is popularly called Sarrus rule (Strang, 2022). Here, fg isa
bilinear form in a = (a1, az) and b = (by, by) and f5 is a trilinear form in a = (ay, az,as), b =
(b1,b2,b3), ¢ = (c1,¢2,c3). Geometrically, | f2(a, b)| measures the area of the parallelogram
spanned by a and b, and similarly, | f>(a, b, ¢)| measures the volume of the parallelotope spanned
by a, b and c. We use the signed determinant operation fsto compute A4 € R**"*"_ For any
vector g, let ¢) = g = q[3(1 — 1) : 3I] be its [th chunk of size 3. The logits are defined as:

Al Zdet ([, kP 1 @),)

171J2 v 0 J1’

Under review as a conference paper at ICLR 2026

Since Equation 8 has 2 dot product terms due to Sarrus rule, it would modify Algorithm 1 to use 2
einsums instead of 1 in line 2. The final attention weights S' are computed by applying a softmax
function on the logits above, similar to Equation 6. The output for token i is then the weighted sum
of value vectors as in Equation 7.

Theorem 5.1. For any input size n and input range m = n°W), there exists a transformer architecture
with a single head of attention with logits computed as in (9), with attention head dimension
d = T, such that for all X € [M]Y, the transformer’s output for element x; is 1 if 351, jo s.t.
z; + 25, +xj, =0 (mod M), and 0 otherwise.

We provide the proof in Appendix A. Since the sum-of-determinants trilinear function of Equation 9
involves 6 terms compared to the simpler trilinear form of Equation 5, in the following sections where
we compute the backwards function for 2-simplicial attention, we will use the simpler trilinear form
of Equation 5 without loss of generality.

6 TRACE BASED TRILINEAR FORMS AND 2-D ROPE

In this section we present an additional rotation invariant trilinear form using the trace operator on
matrices. Given a vector & € R¢, we denote by mat (x) the v/d x v/d matrix obtained by reshaping
the vector x. Therefore, equivalently we have the following identity mat(a) = «. Then we note that
the following function is also invariant to rotation and is equivalent to dot product attention in the
2-D case:

(@i, k;) = tr (mat(g;) " mat(k;)), (10)

where mat(g;) mat(k;) corresponds to matrix multiplication of the v/d x v/d matrices and tr is
the trace operator tr(A) = >, A;; which sums over the diagonal elements of a matrix A. An
alternate (and elegant) formulation of the trace of a matrix is that it is the sum of its eigenvalues.
Note that equation 10 follows from the identity that for any two square matrices A, B we have
tr(ATB) = (vec(A),vec(B)). We note that this bilinear form is also invariant to orthogonal
transformations (rotations) R as

tr((RAR")"RBR") = tr(RATBR") = tr(A" B). (11)

This follows since the eigenvalues of a matrix are invariant to orthogonal transformations. This leads
us to the trilinear generalization (g;, k;1, k;2>tr:

<q1', kj17 kj2>tr = tr(mat(q,;) mat(kjl) mat(k}z)), (12)

which is no longer equivalent to the standard trilinear product, (g;, k1, kj2)¢r # (@i, kj1, k;2). The
logits of the trace based trilinear attention is then defined as:
t

Agjj)j-Q = tr(mat(g;) mat(k;,) mat(k’,)). (13)
While the trilinear form of Equation 13 is arguably simpler than the determinant based form and also
preserves rotational invariance, the requirement of reshaping the matrix dimensions to v/d makes it
more challenging to integrate with Flash attention (Dao et al., 2022). Hence we do not present any
experimental results with this formulation.

7 MODEL DESIGN

Since 2-simplicial attention scales as O(n?) in the sequence length n, it is impractical to apply it
over the entire sequence. Instead, we parametrize it as O(n X wy X ws), where wy and ws define
the dimensions of a sliding window over the sequence. Each query vector (); attends to a localized
region of wy K keys and wo K’ keys, thereby reducing the computational burden. We systematically
evaluate various configurations of w; and w, to identify optimal trade-offs between computational
efficiency and model performance (see Table 1).

For causal dot product attention, the complexity for a sequence of length n is given by:

Under review as a conference paper at ICLR 2026

K:dxwi
k: d x Bk

Q:Nxd K:w2xd
q:Bgxd k:1xd gk:Bgxd

H Tensor Core MatMul
= CUDA core

elementwise mul

Sliding Window 2-Simplical Attention 3D Flash Attention Tiling

Figure 2: Left: Visualization of sliding window 2-simplical attention. Each @, attends to a [w1, w2]
shaped rectangle of K, K'. Right: Tiling to reduce 2-simplicial einsum QK K’ to elementwise mul
QK' on CUDA core and tiled matmul (QK’)@QK on tensor core.

where n is the sequence length. This involves two matrix multiplications: one for Q@K , one for
P@V, each requiring two floating-point operations per element. The causal mask allows us to skip %
of these computations.

In contrast, the complexity of 2-simplical attention, parameterized by w; and wo, is expressed as:
O(A(ZS)) = 3 2nwiwy = 6nwiws

This increase in complexity arises from the trilinear einsum operation, which necessitates an additional
multiplication compared to standard dot product attention.

We choose a window size of (512, 32), balancing latency

and quality. With this configuration, the computational

complexity of 2-simplical attention is comparable to dot W X2 wz _ Latency (ms)
product attention at 48k context length. 32k 1024 32 104.1 ms

. L 32k 512 64 110.7 ms
A naive sliding window 2-simplicial attention implemen- 16k 128 128 59.2 ms
tation has each); vector attending to wy + wo — 1 differ- 16k 256 64 55.8 ms
ent KK’ vectors, as illustrated in Figure 2. Thus, tiling 16k 512 32 55.1 ms
queries () like in flash attention leads to poor compute 16k 1024 16 55.1 ms
throughput. Inspired by Native Sparse Attention (Yuan 8K 256 32 28.3 ms

et al., 2025), we adopt a model architecture leveraging a

high Grouped Query Attention GQA (Ainslie et al., 2023) Table 1: Latency for different combina-
ratio of 64 . This approach enabled efficient tiling along tions of wy, wo

query heads, ensuring dense computation and eliminating

the need for costly element-wise masking.

8 KERNEL OPTIMIZATION

We introduce a series of kernel optimizations tailored for 2-simplical attention, building off of Flash
Attention (Dao et al., 2022) using online softmax. For the trilinear operations, we perform 2d
tiling by merging one of the inputs via elementwise multiplication and executing matmul on the
product as illustrated in Figure 2. This allows us to overlap both QK and V'V’ on CUDA Core with
(QK)QK' and PQ(VV’) on Tensor Core. Implementing this in Triton, we achieve 520 TFLOPS,
rivaling the fastest FAv3 Triton implementations. Further optimization could be achieved with a
lower-level language like CUTLASS for finer grained tuning and optimizations. Despite this, we
achieve competitive performance compared to CUTLASS FAv3 for large sequence lengths, as shown
in Figure 3.

Under review as a conference paper at ICLR 2026

Theoretical TeraFLOPs vs Sequence Length Execution Time vs Sequence Length

—— Dot-product Attention TeraFLOPs BN FAV-3 ms
2-Simplical Attention TeraFLOPs 2-Simplical ms |

400
.III||

10000 20000 30000 40000 50000 60000 8k 16k 24k 32k 40k 48k 56k 64k
Sequence Length Sequence Length

o ~
[=] [=]

V]
o

IS

o
w
o
o

w
o

TeraFLOPs
N
o
o

Milliseconds

N
o

1

-

o
o
o

(=]

Figure 3: FLOPs and Latencies of FAv3 vs 2-simplical attention

For the backwards pass, aggregations across three different dimension orderings introduces significant
overhead from atomic operations. (Exact computation needed provided in Appendix B.) To mitigate
this, we decompose the backward pass into two distinct kernels: one for computing dK and dV/, and
another for dK’, dV’, and d@. Although this approach incurs additional overhead from recomputing
O and dS, we find it is better than the extra overhead from atomics needed for a single fused kernel.
We note this may be a limitation of Triton’s coarser grained pipeline control making it difficult to
hide the overhead from atomics.

For small w9, we employ a two-stage approach to compute dQ jointly with dK’, dV’ without atomics
as detailed in Algorithm 2. We divide () along the sequence dimension into

[wa, dim)

sized tiles. First we iterate over even tiles, storing dQ, dK, dK’, and dV/, dV’. Then we iterate over
odd tiles, storing d@, and adding to dK, dK’ and dV, dV".

Algorithm 2 Backward pass for 2-simplicial attention

1: procedure 2-SIMPLICIAL FLASH ATTENTION BWD(Q, K, V, K', V', w, ws)
2 for stage in [0, 1] do

3 for q_start in range(stage * wo, seq_len, wy * 2) do

4: q_end < q_start + wo

5: for kv1_start in range(q_start - wy, q_end) do

6: q_tile «+ Q[q_start : q_end]

7
8

: i;2_tile + K'[kvl_start : q_end]
9: dQ += dQ(q_tile, k2_tile, ...)

10: AV’ +=dV'(q_tile, k2_tile, ...)
11: dK' + = dK'(q_tile,k2_tile, ...)
12: end for

13: if stage == 1 then

14: dK' +=load dK’

15: dV’ +=load dV’

16: end if

17: store dQ, ..., dK'

18: end for

19: end for

20: end procedure

9 EXPERIMENTS & RESULTS

We train a series of MoE models (Jordan & Jacobs, 1994; Shazeer et al., 2017) ranging from 1 billion
active parameters and 57 billion total parameters to 3.5 billion active parameters and 176 billion

Under review as a conference paper at ICLR 2026

total parameters. We use interleaved sliding-window 2-simplicial attention, where every fourth layer
is a 2-simplicial attention layer. The choice of this particular ordering is to distribute the load in
attention computation when using pipeline parallelism (Huang et al., 2019; Narayanan et al., 2019),
since 2-simplicial attention and global attention are the most compute intensive operations in a single
pipeline stage and have comparable FLOPs.

We use the AdamW optimizer (Loshchilov et al., 2017) with a peak learning rate of 4 x 103 and
weight decay of 0.0125. We use a warmup of 4000 steps and use a cosine decay learning schedule
decreasing the learning rate to 0.01 x of the peak learning rate. We report the negative log-likelihood
on GSM&k (Cobbe et al., 2021), MMLU (Hendrycks et al., 2020), MMLU-pro (Wang et al., 2024)
and MBPP (Austin et al., 2021), since these benchmarks most strongly test math, reasoning and
coding skills in pre-training.

Model Active Params Total Params GSM8k MMLU MMLU-pro MBPP
Transformer 1B 57B 0.3277 0.6411 0.8718 0.2690
2-simplicial 1B 57B 0.3302 0.6423 0.8718 0.2714
A(%) +0.79% +0.19% -0.01% +0.88%
Transformer 2B 100B 0.2987 0.5932 0.8193 0.2435
2-simplicial 2B 100B 0.2942 0.5862 0.8135 0.2411
A(%) -1.51% -1.19% -0.71% -1%

Transformer 3.5B 176B 0.2781 0.5543 0.7858 0.2203
2-simplicial 3.5B 176B 0.2718 0.5484 0.7689 0.2193
A(%) -2.27% -1.06% -2.15% -0.45%

Table 2: Negative log-likelihood of Transformer (Vaswani et al., 2017) versus 2-simplicial attention.
For MMLU (Hendrycks et al., 2020) and MMLU-pro (Wang et al., 2024) we measure the negative
log-likelihood of the choice together with the entire answer. For GSM8k (Cobbe et al., 2021) we use
5-shots for the results.

We see that the decrease (A) in negative log-likelihood scaling from a 1.0 billion (active) parameter
model increases going to a 3.5 billion (active) parameter model. Furthermore, on models smaller
than 2.0 billion (active) parameters, we see no gains from using 2-simplicial attention. From Table 2
we can estimate how the power law coefficients for the 2-simplicial attention differ from dot product
attention. Recall from Section 3 that the loss can be expressed as:
A B
LIN,D)=FE+ — + —.
(’) + Na + Dﬁ
Since we train both the models on the same fixed number of tokens, we may ignore the third term
and simply write the loss as L(N) = E' + A/N® with E' = E + B/D". We can approximate for
curve fitting as follows:

(14)

—log L(N) =~ alog N + 83, (15)

where we used log(a + b) = log(1 + a/b)+log(b) to separate out the two terms and § = — log E" —
log A with the 1 4 a/b term hidden in E” along with. Now we estimate «, 3 for both sets of models
from the losses in Table 2 where we use for N the active parameters in each model. We estimate
the slope « and the intercept S for both the Transformer as well as the 2-simplicial Transformer in
Table 3. We see that 2-simplicial attention has a steeper slope ¢, i.e. a higher exponent in its scaling
law compared to dot product attention Transformer (Vaswani et al., 2017).

9.1 ABLATION ON TRILINEAR FORMS

We conduct an ablation study to evaluate the effectiveness of different trilinear functions within the
2-simplicial attention mechanism. The goal is to determine which mathematical construction offers
the best inductive bias for the logical and reasoning tasks our model is evaluated on. All experiments
are performed on a 125M parameter model, and we report the negative log-likelihood on several
downstream benchmarks.

Under review as a conference paper at ICLR 2026

Model GSMS8k MMLU MMLU-pro MBPP
o B o B o B o B
Transformer 0.1420 -1.8280 0.1256 -2.1606 0.0901 -1.7289 0.1720 -2.2569

2-simplicial ~ 0.1683 -2.3939 0.1364 -2.3960 0.1083 -2.1181 0.1837 -2.5201
A(%) 18.5% 8.5% 20.2% 6.8%

Table 3: Estimates of the power law coefficients a and 3 for the Transformer (Vaswani et al., 2017)
and 2-simplicial attention.

Model GSMS8k MMLU MMLU-pro MBPP
R? residual R? residual R? residual R? residual

Transformer 0.9998 2.8 x 107 0.9995 4.7x107% 09972 15x107° 0.9962 7.5x107°
2-simplicial 0.9974 4.9 x107° 09989 1.3x107° 0.9999 4.6x10"% 09999 1.5x107°

Table 4: R? and residuals measuring goodness of fit for Table 3.

The results, summarized in Table 5, show a clear advantage for using a determinant-based trilinear
form. This approach consistently outperforms both the standard dot-product attention baseline
and the unsigned scalar triple product proposed by Clift et al. (2020) across most reasoning and
knowledge-intensive benchmarks, including MBPP, MMLU Pro, MMLU, and ARC.

Table 5: Ablation study on different trilinear forms for 2-simplicial attention in a 125M LLaMA
model. Lower values indicate better performance (negative log-likelihood).

Experiment MBPP GSMS8K MMLUPro MMLU ARC

Trilinear Product 0.3352 0.4363 1.0400 0.8028 0.6740
Unsigned Scalar Triple Product 0.3412 0.4294 1.0437 0.8065 0.6845
Determinant 0.3296 0.4329 1.0323 0.7982 0.6700
Dot Product (Baseline) 0.3377 0.4426 1.0477 0.8089 0.6901

This performance gain is noteworthy given the computational trade-offs. While the simple trilinear
product is the most efficient, the determinant-based form requires approximately twice the floating-
point operations (FLOPs). The unsigned scalar triple product, as defined by its polynomial form
in Clift et al. (2020), is 3 times more computationally intensive.

10 CONCLUSION

We show that a similar sized 2-simplicial attention (Clift et al., 2020) improves on dot product attention
of Vaswani et al. (2017) by improving the negative log likelihood on reasoning, math and coding
problems (see Table 2). We quantify this explicitly in Table 3 by demonstrating that 2-simplicial
attention changes the exponent corresponding to parameters in the scaling law of Equation 15: in
particular it has a higher « for reasoning and coding tasks compared to the Transformer (Vaswani et al.,
2017) which leads to more favorable scaling under token constraints. Furthermore, the percentage
increase in the scaling exponent « is higher for less saturated and more challenging benchmarks such
as MMLU-pro and GSM8k.

While 2-simplicial attention improves the exponent in the scaling laws, we should caveat that the
technique maybe more useful when we are in the regime when token efficiency becomes more
important. Our Triton kernel while efficient for prototyping is still far away from being used in
production. More work in co-designing the implementation of 2-simplicial attention tailored to the
specific hardware accelerator is needed in the future.

We hope that scaling 2-simplicial Transformers could unlock significant improvements in downstream
performance on reasoning-heavy tasks, helping to overcome the current limitations of pre- training
scalability. Furthermore, we believe that developing a specialized and efficient implementation is key
to fully unlocking the potential of this architecture.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jachoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.

Leon Bergen, Timothy O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge
transformers. Advances in Neural Information Processing Systems, 34:1390-1402, 2021.

David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham Kakade. Loss-to-loss
prediction: Scaling laws for all datasets. arXiv preprint arXiv:2411.12925, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Thomas F Burns and Tomoki Fukai. Simplicial hopfield networks. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=_QLsH8gatwx.

James Clift, Dmitry Doryn, Daniel Murfet, and James Wallbridge. Logic and the 2-simplicial
transformer, 2020. URL https://openreview.net/forum?id=rkecJ6VEvr.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-

efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344-16359, 2022.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Katie Everett. Observation on scaling laws, May 2025. URL https://x.com/
_katieeverett/status/1925665335727808651. [Tweet].

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357-362, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,

Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

10

https://openreview.net/forum?id=_QLsH8gatwx
https://openreview.net/forum?id=_QLsH8gatwx
https://openreview.net/forum?id=rkecJ6VFvr
https://x.com/_katieeverett/status/1925665335727808651
https://x.com/_katieeverett/status/1925665335727808651

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181-214, 1994.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583-589, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are rnns:
fast autoregressive transformers with linear attention. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Alexander Kozachinskiy, Felipe Urrutia, Hector Jimenez, Tomasz Steifer, Germén Pizarro, Matias
Fuentes, Francisco Meza, Cristian B Calderon, and Cristébal Rojas. Strassen attention: Unlocking
compositional abilities in transformers based on a new lower bound method. arXiv preprint
arXiv:2501.19215, 2025.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5:5, 2017.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP *19, pp. 1-15, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450368735. doi: 10.1145/3341301.3359646. URL https:
//doi.org/10.1145/3341301.3359646.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, pp. 4055-4064.
PMLR, 2018.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53-68, 2021.

Aurko Roy, Rohan Anil, Guangda Lai, Benjamin Lee, Jeffrey Zhao, Shuyuan Zhang, Shibo Wang,
Ye Zhang, Shen Wu, Rigel Swavely, et al. N-grammer: Augmenting transformers with latent
n-grams. arXiv preprint arXiv:2207.06366, 2022.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36:36677-36707, 2023.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with
latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416, 2025.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Xuyang Shen, Dong Li, Ruitao Leng, Zhen Qin, Weigao Sun, and Yiran Zhong. Scaling laws for
linear complexity language models. arXiv preprint arXiv:2406.16690, 2024.

11

https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646

Under review as a conference paper at ICLR 2026

David So, Wojciech Marike, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching for
efficient transformers for language modeling. Advances in neural information processing systems,
34:6010-6022, 2021.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523-19536, 2022.

Gilbert Strang. Introduction to linear algebra. SIAM, 2022.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Vladimir Vapnik. On the uniform convergence of relative frequencies of events to their probabilities.
In Doklady Akademii Nauk USSR, volume 181, pp. 781-787, 1968.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the web conference 2021, pp. 1785-1797, 2021.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Mangzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283-17297, 2020.

12

Under review as a conference paper at ICLR 2026

A ROTATION INVARIANT TRILINEAR FORMS

A.1 PROOF FOR THEOREM 5.1

We define the embedding functions for the Query and Key vectors such that their interaction within
the Sum-of-Determinants attention mechanism computes the Mat ch3 function. To handle cases
where no match exists, we use a 7-dimensional embedding where the 7th dimension acts as a selector
for a "blank pair" option, a technique adapted from Mat ch2 construction in Sanford et al. (2023).

The construction for regular token pairs is based on the mathematical identity:
COS(91 + 92 + 93) = det(Ml) + det(—Mg), (16)
where the matrices M1, M> € R3*3 are defined as:
cos(fy) sin(6y) 0 —sin(f;) cos(6y) 0
M, = (sin(eg) cos(fz) 0) , —My= (— sin(f2) —cos(62) 0)
0 0 cos(f3) 0 0 — sin(63)

Let 6, = 2’;;’“ . We define the 7-dimensional query vector g; and key vectors k;, , k;Q via an input

MLP ¢ and matrices @, K, K'. Let ¢ be a large scaling constant.
The 7-dimensional query vector ¢; = Q¢(z;) is defined as:
q; = (ccos(6;), csin(b;),0, —csin(b;), ccos(6;), 0, ¢)
The key vectors kj, = K¢(z;,) and k), = K'¢(x;,) for regular tokens are defined as:
k;, = (sin(0},),cos(;,),0, —sin(0;,), — cos(6;,), 0,0)
k, = (0,0,cos(6),),0,0, —sin(6,), 0)

The attention score is computed via a hybrid mechanism:

1. For regular pairs (ji, j2), the score is the sum of determinants of two 3D chunks formed
from the first 6 dimensions of the vectors. The 7th dimension of the keys is 0, so it is ignored
in this term.

Ai,j17j2 = det(qz[3], kjl [Z 3},1(;2[3]) + det(ql[?) . 6], kjl [3 . 6],1(;2 [3 . 6])

= ¢+ (det(M;) + det(—Ms)) (from (16))

)
2m(z; + x; j .
= c-cos(m(z +X4jl —|—sz)> (since 0; = 2wz /M),

where q;[l : 1 +m] = {(qi),---,(qi)i+m—1}, denotes array slicing.
2. For the blank pair, the score is computed using the 7th dimension. It is the dot product of
the query vector g; and a fixed key vector kypc = (0,0,0,0,0,0,1):
Aj plank = @i - Kplank = ¢
As a result, the attention score is maximized to a value of ¢ if and only if z; 4+ 2;, + 24, = 0

(mod M). The blank pair also receives a score of ¢. For any non-matching triple, the score is strictly
less than c.

The value vectors are defined by matrices V and V.

* For any regular token x;, we set its value embeddings to be V¢(x;) = 1 and V'¢(x;) = 1.
The resulting value for the pair (ji, j2) in the final value matrix is their Kronecker product,
which is 1.

* For the blank pair, the corresponding value is 0.

Let §; be the number of pairs (j1, j2) that form a match with x;. The softmax function distributes the
attention weight almost exclusively among the entries with a score of c.

* If no match exists (5; = 0), the blank pair receives all the attention, and the output is ~ 0
since its value is 0.

13

Under review as a conference paper at ICLR 2026

* If at least one match exists (3; > 1), the attention is distributed among the 3; matching pairs

and the 1 blank pair. The output of the attention layer will be approximately W =
Bi
Bi+1°

The final step is to design an output MLP 1) such that ¢)(z) = 1if z > 1/2 and ¢(z) = 0 otherwise,
which is straightforward to implement.

B BACKWARD PASS COMPUTATION

For completeness we provide the backwards pass terms explicitly. Note that each compuation would
need aggregation over three different dimension orderings.

dVja =Y (Aijr - dOia - Viy) (17)
i,k

dViq = Z (Aiji - dOiq - Viq) (18)
]

dPiji =Y (dOia - Via - Viy) (19)

ds = ((iisoftmaxjk(dP) (20)

dKja =" (Qia-dSi - Ki) @1)
ik

dKpq = Z(Qid -dSijr - Kja) (22)
i,k

dQia =Y (dSij - Kja - Kjy) (23)
7,k

C TRITON KERNELS

We document here the forward and backward passes for the 2-simplicial attention mechanism. We
will release the complete kernel on Github upon acceptance.

@triton.autotune (
configs=[
Config(
{
64,
: 32,

br
num_warps=4,
)
1,
key=[1/
)
@triton.Jjit
def two_simplicial_attn_fwd_kernel (
Q ptr, # [b, s, k, h]

Kl_ptr, # [b, s, k, h]
K2_ptr, # [b, s, k, h]
V1l _ptr, # [b, s, k, h]
V2_ptr, # [b, s, k, h]
O_ptr, # [b, s, k, h]
M_ptr, # [b, k, s]

bs,

seqg_len,

14

Under review as a conference paper at ICLR 2026

num_heads,

head_dim,

wl: tl.constexpr,

w2: tl.constexpr,
g_stride_Db,

g_stride_s,

g_stride_k,

g_stride_h,

kl_stride_b,

kl_stride_s,

k1l_stride_k,

k1l_stride_h,

k2_stride_Db,

k2_stride_s,

k2_stride_k,

k2_stride_h,

vl_stride_b,

vl_stride_s,

vl_stride_k,

vl_stride_h,

v2_stride_b,

v2_stride_s,

v2_stride_k,

v2_stride_h,
out_stride_b,
out_stride_s,
out_stride_k,
out_stride_h,

m_stride_b,

m_stride_k,

m_stride_s,

BLOCK_SIZE_Q: tl.constexpr,
BLOCK_SIZE_KV: tl.constexpr,
HEAD_DIM: tl.constexpr,
INPUT_PRECISION: tl.constexpr,
SM_SCALE: tl.constexpr,
K2_BIAS: tl.constexpr,
V2_BIAS: tl.constexpr,
num_stages: tl.constexpr,

data_dtype = tl.bfloatl6
compute_dtype = tl.float32
gemm_dtype = tl.bfloatl6

g_start = tl.program_id(0) x BLOCK_SIZE_Q
g_end = g_start + BLOCK_SIZE_Q

bk = tl.program_id(1)

offs_b = bk // num_heads

offs_k = bk % num_heads

gkv_offs_bk = offs_b » g _stride_b + offs_k % g_stride_k

Q_ptr += gkv_offs_bk
Kl_ptr += gkv_offs_bk
K2_ptr += gkv_offs_bk
Vl_ptr += gkv_offs_bk
V2_ptr += gkv_offs_bk
O_ptr += gkv_offs_bk
M ptr += offs_b » m_stride_b + offs_k » m_stride_k

m_ i = tl.zeros((BLOCK_SIZE_Q,), dtype=compute_dtype) - float (
11 tl.zeros ((BLOCK_SIZE_Q,), dtype=compute_dtype)
acc = tl.zeros ((BLOCK_SIZE_Q, HEAD_DIM), dtype=compute_dtype)

g offs_s = g_start + tl.arange (0, BLOCK_SIZE_Q)

15

90
91
92

93

96

126

128

129
130
131

132
133
134
135
136
137
138
139
140

144

146

Under review as a conference paper at ICLR 2026

gkv_offs_h = tl.arange (0, HEAD_DIM)

g _mask_s = g offs_s < seqg_len

gkv_mask_h = gkv_offs_h < head_dim

g offs = g offs_s[:, None] % g_stride_s + gkv_offs_h[None, :] x
g_stride_h

g_mask = g _mask_s[:, None] & (gkv_mask_h[None, :])

g _tile = tl.load(Q_ptr + g offs, mask=g _mask) .to(
compute_dtype

) # [BLOCK_SIZE_Q, HEAD_DIM]

softmax_scale = tl.cast (SM_SCALE, gemm_dtype)

for kvl_idx in tl.range(tl.maximum(0, g_start - wl), tl.minimum(

seqg_len, g_end)):

kl_offs = kvl_idx » kl_stride_s + gkv_offs_h % kl_stride_h

kl_tile = (tl.load(Kl_ptr + k1l_offs, mask=gkv_mask_h) .to(
compute_dtype)) [
None,

] # [1, HEAD_DIM]

gkl = g tile x kl_tile # [BLOCK_SIZE_Q, HEAD_DIM]

gkl = gkl.to(gemm_dtype)

vl _offs = kvl_idx % vl_stride_s + gkv_offs_h * vl_stride_h
vl_tile = (tl.load(V1l_ptr + vl_offs, mask=gkv_mask_h) .to(
compute_dtype)) [
None,
] # [1, HEAD_DIM]

for kv2_idx in tl.range (
tl.maximum (0, g_start - w2),
tl.minimum(seq_len, g _end),
BLOCK_SIZE_KV,
num_stages=num_stages,

kv2_offs_s = kv2_idx + tl.arange (0, BLOCK_SIZE_KV)
kv2_mask_s = kv2_offs_s < seqg_len

k2t_mask = kv2_mask_s[None, :] & gkv_mask_h[:, None]
v2_mask = kv2_mask_s[:, None] & gkv_mask_h[None, :]
k2_offs = (

kv2_offs_s[None, :] x k2_stride_s + gkv_offs_h[:, None]

k2_stride_h
)
v2_offs = (
kv2_offs_s[:, None] » v2_stride_s + gkv_offs_h[None,
v2_stride_h
)
k2t_tile = tl.load(K2_ptr + k2_offs, mask=k2t_mask) .to(
compute_dtype
) # [HEAD_DIM, BLOCK_SIZE_KV]
v2_tile = tl.load(V2_ptr + v2_offs, mask=v2_mask) .to(
compute_dtype
) # [BLOCK_SIZE_KV, HEAD_DIM]
k2t_tile += K2_BIAS
v2_tile += V2_BIAS
k2t_tile = k2t_tile.to(gemm_dtype)
v2_tile = v2_tile.to(compute_dtype)

gk = tl.dot (
gkl % softmax_scale,
k2t_tile,
input_precision="tf32", # INPUT_PRECISION,
out_dtype=tl.float32,
) # [BLOCK_SIZE_Q, BLOCK_SIZE_KV]

gk_mask = g mask_s[:, None] & kv2_mask_s[None, :]

16

31

*

Under review as a conference paper at ICLR 2026

Mask for g _idx - wl < kvl_idx <= g_idx

and g _idx - w2 < kv2_offs_s <= g _idx

kvl_local_mask = ((g_offs_s[:, None] - wl) < kvl_idx) &
kvl _idx <= g _offs_s[:, None]

)

kv2_local_mask = ((gq_offs_s[:, None] - w2) < kv2_offs_s[None,

1) & |

kv2_offs_s[None, :] <= g offs_s[:, None]
)
gk_mask &= kvl_local_mask & kv2_local_mask
gk += tl.where(gk_mask, 0, -1.0e38)

m_ij = tl.maximum(m_31i, tl.max(gk, 1))
p = tl.math.exp(gk — m_ij[:, None])
1_ij = tl.sum(p, 1)

alpha = tl.math.exp(m_1i - m_ij)

1 i =11 % alpha + 1_1ij

acc = acc * alphal[:, None]

(

vl2_tile = vl_tile » v2_tile # [BLOCK_SIZE_KV, HEAD_DIM]

acc += tl.dot (
p.to(gemm_dtype),
v1l2_tile.to(gemm_dtype),
input_precision="ieee", # INPUT_PRECISION,
out_dtype=tl.float32,

m m_ij

_i =
acc = acc / 1_i[:, None]

acc = tl.where(g_mask, acc, 0.0)

acc = acc.to(data_dtype)

out_offs = g offs_s[:, None] » out_stride_s + gkv_offs_h[None,
out_stride_h

tl.store(O_ptr + out_offs, acc, mask=qg_mask)

m=mi + tl.log(l_1)
m_offs = g offs_s x m_stride_s

m_mask = g _offs_s < seqg_len
tl.store(M ptr + m_offs, m, mask=m_mask)

:]

Listing 1: Forward pass for 2-simplicial attention.

D TRITON KERNEL: BACKWARD PASS FOR 2-SIMPLICIAL ATTENTION

@triton.jit
def two_simplicial_attn_bwd_kvl_kernel (
Q ptr, # [b, s, k, h]

Kl_ptr, # [b, s, k, h]
K2_ptr, # [b, s, k, h]
Vl_ptr, # [b, s, k, h]
V2_ptr, # [b, s, k, h]
dO_ptr, # [b, s, k, h]
M ptr, # [b, k, s]

D_ptr, # [b, k, sl

do_ptr, # [b, s, k, h

14]
dK1l_ptr, # [b, s, k, h]
dvl_ptr, # [b, s, k, h]
Skip writing dk2, dv2 for now.
bs,
seg_len,
num_heads,

’

17

Under review as a conference paper at ICLR 2026

18 head_dim,

19 wl, # Q[i]: KVI(i-wl,i]
20 w2, # Q[i]l: RKV2(i-w2,1]
21 g_stride_b,

22 g_stride_s,

23 g_stride_k,

24 g_stride_h,

25 kl_stride_Db,

26 kl_stride_s,

27 kl_stride_k,

28 k1l_stride_h,

29 k2_stride_Db,

30 k2_stride_s,

31 k2_stride_k,

32 k2_stride_h,

33 vl_stride_b,

34 vl_stride_s,

35 vl_stride_k,

36 vl_stride_h,

37 v2_stride_b,

38 v2_stride_s,

39 v2_stride_k,

40 v2_stride_h,

41 dO_stride_b,

42 dO_stride_s,

43 dO_stride_k,

44 dO_stride_h,

45 m_stride_b,

46 m_stride_k,

47 m_stride_s,

48 d_stride_b,

49 d_stride_k,

50 d_stride_s,

51 dg_stride_b,

52 dg_stride_s,

53 dg_stride_k,

54 dg_stride_h,

55 dkl_stride_b,

56 dkl_stride_s,

57 dkl_stride_k,

58 dkl_stride_h,

59 dvl_stride_b,

60 dvl_stride_s,

61 dvl_stride_k,

62 dvl_stride_h,

63 BLOCK_SIZE_Q: tl.constexpr,
64 BLOCK_SIZE_KV: tl.constexpr,
65 HEAD_DIM: tl.constexpr,
66 SM_SCALE: tl.constexpr,
67 K2_BIAS: tl.constexpr,

68 V2_BIAS: tl.constexpr,

69 COMPUTE_DQ: tl.constexpr,
70 num_stages: tl.constexpr,
71 is_flipped: tl.constexpr,
72 1)

73 data_dtype = tl.bfloatl6
74 compute_dtype = tl.float32
75 gemm_dtype = tl.bfloatlb
76

77 kvl_start = tl.program_id(0) x BLOCK_SIZE_KV
78 kvl_end = kvl_start + BLOCK_SIZE_KV
79 bk = tl.program_id (1)

80 offs_b = bk // num_heads
81 offs_k = bk % num_heads
82

18

Under review as a conference paper at ICLR 2026

83 gkv_offs_bk = offs_b » g_stride_b + offs_k * g_stride_k
84 Q_ptr += gkv_offs_bk

85 Kl_ptr += gkv_offs_bk

86 K2_ptr += gkv_offs_bk

87 Vl_ptr += gkv_offs_bk

88 V2_ptr += gkv_offs_bk

89

90 dO_ptr += offs_b x dO_stride_b + offs_k x dO_stride_k

91 M_ptr += offs_b » m_stride_b + offs_k * m_stride_k

92 D_ptr += offs_b * d_stride_b + offs_k % d_stride_k

93 dK1l_ptr += offs_b x dkl_stride_b + offs_k * dkl_stride_k
94 dvl_ptr += offs_b * dvl_stride_b + offs_k % dvl_stride_k
95 if COMPUTE_DQ:

96 dQ_ptr += offs_b % dg_stride_b + offs_k x dg_stride_k
97

98 softmax_scale = tl.cast (SM_SCALE, gemm_dtype)

99 gkv_offs_h = tl.arange (0, HEAD_DIM)
100 gkv_mask_h = gkv_offs_h < head_dim

102 kvl _offs_s = kvl_start + tl.arange (0, BLOCK_SIZE_KV)

103

104 k1l _offs = kvl_offs_s[:, None] % kl_stride_s + gkv_offs_h[None, :] =*
k1l_stride_h

105 kvl_mask_s = kvl_offs_s < seqg_len

106 kvl_mask = kvl_mask_s[:, None] & gkv_mask_h[None, :]

107 kl_tile = tl.load(Kl_ptr + kl_offs, mask=kvl_mask) .to(

108 compute_dtype

109) # [BLOCK_SIZE_KV, HEAD_DIM]

110 vl offs = kvl_offs_s[:, None] = vl_stride_s + gkv_offs_h[None, :] *

vl _stride_h
111 vl tile = tl.load(Vl_ptr + vl1_offs, mask=kvl_mask) .to(

112 compute_dtype

113) # [BLOCK_SIZE_KV, HEAD_DIM]

114 if is_flipped:

115 kl_tile += K2_BIAS

116 vl tile += V2_BIAS

117 dvl = tl.zeros ((BLOCK_SIZE_KV, HEAD_DIM), compute_dtype)

118 dkl = tl.zeros ((BLOCK_SIZE_KV, HEAD_DIM), compute_dtype)

119 # for kv2_idx in tl.range (0, seqg_len):

120 # kvl - w2 < kv2 <= kvl + wl

421 for kv2_idx in tl.range(

122 tl.maximum (0, kvl_start - w2), tl.minimum(seqg_len, kvl_end + wl)

123)t

124 k2_offs = kv2_idx x k2_stride_s + gkv_offs_h % k2_stride_h

125 k2_tile = (tl.load(K2_ptr + k2_offs, mask=gkv_mask_h) .to(
compute_dtype)) [

126 None,

127] # [1, HEAD_DIM]

128 v2_offs = kv2_idx x v2_stride_s + gkv_offs_h x v2_stride_h

129 v2_tile = (tl.load(V2_ptr + v2_offs, mask=gkv_mask_h) .to(
compute_dtype)) [

130 None,

31] # [1, HEAD_DIM]

132 if not is_flipped:

133 k2_tile += K2_BIAS

134 v2_tile += V2_BIAS

35 klk2 = k1l _tile % k2_tile # [BLOCK_SIZE_KV, HEAD_DIM]

136 viv2 = vl_tile * v2_tile # [BLOCK_SIZE_KV, HEAD_DIM]

137 k1lk2 = klk2.to (gemm_dtype)

138 viv2 = vlv2.to (gemm_dtype)

139 # kvl <= g < kvl + wl

140 # kv2 <= g < kv2 + w2

141 g_start = tl.maximum(kvl_start, kv2_idx)

142 g end = tl.minimum(seq_len, tl.minimum(kvl_end + wl, kv2_idx + w2

))

19

143
144
145
146

162

164

165
166
167
168
169
170
171
172
173
174
175

176

189
190
191

192

193
194
195
196
197
198

Under review as a conference paper at ICLR 2026

for g _idx in tl.range(g_start,
Load gt, m, d, dO

g_end, BLOCK_SIZE_Q):

g offs_s = g_idx + tl.arange (0, BLOCK_SIZE_Q)

g offs = g offs_s[None, :] x g_stride_s + gkv_offs_h[:, None]
* g_stride_h

g _mask_s = g offs_s < seqg_len

gt_mask = g _mask_s[None, :] & gkv_mask_h[:, None]

gt_tile = tl.load(Q_ptr + g _offs, mask=gt_mask) .to(
gemm_dtype

) # [HEAD_DIM, BLOCK_SIZE_Q]

m_offs = g offs_s » m_stride_s

m_tile = tl.load(M_ptr + m_offs, mask=g mask_s) .to(
compute_dtype) [
None,

] # [1, BLOCK_SIZE_Q]

d_offs = g offs_s * d_stride_s

d_tile = tl.load(D_ptr + d_offs, mask=qg mask_s) .to(
compute_dtype) [
None,

] # [1, BLOCK_SIZE_Q]

dO_offs = (
g offs_s[:, None] % dO_stride_s + gkv_offs_h[None, :] =*

dO_stride_h
)
dO_tile = tl.load(
dO_ptr + dO_offs,
None, :]
) .to (compute_dtype) #
if COMPUTE_DQ:
dg =
Compute dvl.

mask=q_mask_s/[:,
[BLOCK_SIZE_Q,

tl.zeros ((BLOCK_SIZE_Q,

None] & gkv_mask_h[
HEAD DIM]
HEAD_DIM), tl.float32)

out_dtype=tl.float32

[KV, D] @ [D, Q] => [KV, Q]
gkkT = tl.dot (

k1k2, gt_tile * softmax_scale,
) # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]

Mask gkkT to —-inf.
kvl_local_mask =
None]) & (

kvl_offs_s[:, None]
)
kv2_local_mask =
g _offs_s)
local_mask = (

((g_offs_s[None, :]

((g_offs_s - w2)

- wl) < kvl_offs_s/[:,

<= g_offs_s[None, :]

< kv2_idx) & (kv2_idx <=

kvl_local_mask & kv2_local_mask[None, :]

[BLOCK_SIZE_KV, BLOCK_SIZE_OQ]

HEAD_ DIM]

out_dtype=tl.

out_dtype=tl.

[BLOCK_SIZE_KV, BLOCK_SIZE Q]

) # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]
gkkT = tl.where(local_mask, gkkT, -1.0e38)
pT = tl.exp(gkkT - m_tile) #
pT = tl.where(local_mask, pT, 0.0)
dov2 = dO_tile * v2_tile # [BLOCK_SIZE_Q,
dvl += tl.dot (
pT.to (gemm_dtype), dOv2.to (gemm_dtype),
float32
) # [BLOCK_SIZE_KV, HEAD_DIM]
dpT = tl.dot (
vliv2, tl.trans(dO_tile.to (gemm_dtype)),
float32
) # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]
dsT = pT * (dpT - d_tile) #
dsT = tl.where(local_mask, dsT, 0.0)
dsT = dsT.to (gemm_dtype)
dkl += (

20

216

217

L o S

29

Under review as a conference paper at ICLR 2026

tl.dot (dsT, tl.trans(gt_tile), out_dtype=tl.float32)
* k2_tile.to(tl.float32)
* softmax_scale
)
if COMPUTE_DQ:
dqlg, d] = dsT.T[qg, kvl] @ klk2[kvl, d]
dg += (
tl.dot (tl.trans (dsT), klk2, out_dtype=tl.float32)
softmax_scale
) # [BLOCK_SIZE_Q, HEAD_DIM]
dg_offs = (
g offs_s[:, None] % dg_stride_s + gkv_offs_h[None,
* dg_stride_h
)
tl.atomic_add (
dQ_ptr + dg_offs, dg, mask=qg_mask_s[:, None] &
gkv_mask_h[None, :]
)
dvl_offs = kvl_offs_s[:, None] * dvl_stride_s + gkv_offs_h[None,
dvl_stride_h
dkl_offs = kvl_offs_s[:, None] * dkl_stride_s + gkv_offs_h[None,
dkl_stride_h
tl.store(dVl_ptr + dvl_offs, dvl.to(data_dtype), mask=kvl_mask)
tl.store(dKl_ptr + dkl_offs, dkl.to(data_dtype), mask=kvl_mask)

*

2]

Listing 2: Backward pass for 2-simplicial attention.

@triton.autotune (
configs=[
Config (

b
num_warps=4,
)
1,
key=["HEAD_DIM"],
)
@triton.jit
def two_simplicial_attn_bwd_kv2qg_kernel (
Q_ptr, # [b, s, k, h]

Kl_ptr, # [b, s, k, h]
K2_ptr, # [b, s, k, h]
Vli_ptr, # [b, s, k, h]
V2_ptr, # [b, s, k, h]
do_ptr, # [b, s, k, h]
M ptr, # [b, k, s]
D_ptr, # [b, k, sl
do_ptr, # [b, s, k, h]
dk2_ptr, # [b, s, k, h]
dv2_ptr, # [b, s, k, h]
bs,

seqg_len,

num_heads,

head_dim,

wl, # Q[i]: KV1 (i-wl,i]
w2, # Q[i]l: KV2(i-w2,1i]

g_stride_Db,
g_stride_s,
g_stride_k,
g_stride_h,
kl_stride_Db,
kl_stride_s,

21

Under review as a conference paper at ICLR 2026

k1l_stride_k,
k1l_stride_h,
k2_stride_Db,
k2_stride_s,
k2_stride_k,
k2_stride_h,
vl_stride_b,
vl_stride_s,
vl_stride_k,
vl_stride_h,
v2_stride_b,
v2_stride_s,
v2_stride_k,
v2_stride_h,
dO_stride_Db,
dO_stride_s,
dO_stride_k,
dO_stride_h,
m_stride_b,

m_stride_k,

m_stride_s,

60 d_stride_b,

61 d_stride_k,

62 d_stride_s,

63 dg_stride_b,

o I T T S N S S SOt}
S B8 % 4 a3 RO LK =3 ©

o =

N U L L L L U L WD
© A N B

v

64 dg_stride_s,
65 dg_stride_k,
66 dg_stride_h,
67 dk2_stride_b,
68 dk2_stride_s,

69 dk2_stride_k,
70 dk2_stride_h,

71 dv2_stride_b,

72 dv2_stride_s,

73 dv2_stride_k,

74 dv2_stride_h,

75 BLOCK_SIZE_Q: tl.constexpr,

76 BLOCK_SIZE_KV2: tl.constexpr,

77 HEAD_DIM: tl.constexpr,

78 SM_SCALE: tl.constexpr,

79 K2_BIAS: tl.constexpr,

80 V2_BIAS: tl.constexpr,

81 num_stages: tl.constexpr,

82 IS_SECOND_PASS: tl.constexpr,

83 |):

84 assert BLOCK_SIZE_KV2 == BLOCK_SIZE_Q + w2
85 data_dtype = tl.bfloatl6

86 compute_dtype = tl.float32

87 gemm_dtype = tl.bfloatl6

88

89 # First pass does even tiles, second pass does odd tiles.
90 g_start = tl.program_id(0) * BLOCK_SIZE_KV2
91 if IS_SECOND_PASS:

92 g_start += BLOCK_SIZE_Q

93 g_end = g_start + BLOCK_SIZE_OQ

94 kv2_start = g_start - w2

95

96 bk = tl.program_id (1)

97 offs_b = bk // num_heads
98 offs_k = bk % num_heads

99
100 gkv_offs_bk = offs_b » g_stride_b + offs_k * g_stride_k
101 Q_ptr += gkv_offs_bk
102 Kl _ptr += gkv_offs_bk
103 K2_ptr += gkv_offs_bk

22

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

122
123

124

125
126
127
128
129
130
131
132
133

134

139

140

Under review as a conference paper at ICLR 2026

Vl_ptr += gkv_offs_bk
V2_ptr += gkv_offs_bk

dO_ptr += offs_b % dO_stride_b + offs_k x dO_stride_k
M_ptr += offs_b » m_stride_b + offs_k * m_stride_k

D_ptr += offs_b * d_stride_b + offs_k % d_stride_k
dQ_ptr += offs_b x dg_stride_b + offs_k * dg_stride_k
dK2_ptr += offs_b * dk2_stride_b + offs_k % dk2_stride_k
dv2_ptr += offs_b x dv2_stride_b + offs_k * dv2_stride_k

softmax_scale = tl.cast (SM_SCALE, gemm_dtype)
gkv_offs_h = tl.arange (0, HEAD_DIM)
gkv_mask_h = gkv_offs_h < head_dim

g offs_s = g_start + tl.arange (0, BLOCK_SIZE_Q)

kv2_offs_s = kv2_start + tl.arange (0, BLOCK_SIZE_KV2)

g offs = g offs_s[:, None] x g _stride_s + gkv_offs_h[None, :] =
g_stride_h

kv2_offs = kv2_offs_s[:, None] » k2_stride_s + gkv_offs_h[None, :]
k2_stride_h

m_offs = g offs_s » m_stride_s
d_offs = g offs_s * d_stride_s
dO_offs = g offs_s[:, None] = dO_stride_s + gkv_offs_h[None, :] =

dO_stride_h
g _mask_s = g offs_s < seg_len
g _mask = g _mask_s[:, None] & gkv_mask_h[None, :]
kv2_mask_s = 0 <= kv2_offs_s and kv2_offs_s < seqg_len
kv2_mask = kv2_mask_s[:, None] & gkv_mask_h[None, :]

g _tile = tl.load(Q_ptr + g offs, mask=g mask) .to(
compute_dtype

) # [BLOCK_SIZE_Q, HEAD_DIM]

k2_tile = tl.load(K2_ptr + kv2_offs, mask=kv2_mask) .to (gemm_dtype)
[KV2, HEAD_DIM]

v2_tile = tl.load(V2_ptr + kv2_offs, mask=kv2_mask) .to (gemm_dtype)
[KV2, HEAD_DIM]

m_tile = tl.load(M ptr + m_offs, mask=g_mask_s) .to (compute_dtype)
BLOCK_SIZE_Q]

d_tile = tl.load(D_ptr + d_offs, mask=g mask_s) .to (compute_dtype)
BLOCK_SIZE_Q]

dO_tile = tl.load(dO_ptr + dO_offs, mask=qg_mask) .to(
gemm_dtype

) # [BLOCK_SIZE_Q, HEAD_DIM]

Apply KV2 norm.

k2_tile += K2_BIAS

v2_tile += V2_BIAS

k2_tile = k2_tile.to(gemm_dtype)
v2_tile = v2_tile.to(gemm_dtype)

dg = tl.zeros ((BLOCK_SIZE_Q, HEAD_DIM), tl.float32)
dk2 = tl.zeros((BLOCK_SIZE_KV2, HEAD_DIM), tl.float32)
dv2 = tl.zeros ((BLOCK_SIZE_KV2, HEAD_DIM), tl.float32)

kvl_start = tl.maximum(0, g_start - wl)
kvl _end = tl.minimum(seqg_len, g_end)

#
#
0

0

for kvl_idx in tl.range(kvl_start, kvl_end, num_stages=num_stages) :

k1l _offs = kvl_idx % kl_stride_s + gkv_offs_h % kl_stride_h

vl _offs = kvl_idx % vl_stride_s + gkv_offs_h * vl_stride_h

kl _tile = tl.load(Kl_ptr + kl_offs, mask=gkv_mask_h).to(
compute_dtype

) # [HEAD_DIM]

vl_tile = tl.load(V1l_ptr + vl_offs, mask=gkv_mask_h) .to(

23

Under review as a conference paper at ICLR 2026

162 compute_dtype
163) # [HEAD_DIM]
164

165 gkl_s = g tile % (kl_tile[None, :] * softmax_scale) # [Q, D]

166 gkl_s = gkl_s.to(gemm_dtype)

167 # k2[KV, Q] @ gkl_s.T[Q, D] => [KV2, Q]

168 gkkT = tl.dot (k2_tile, gkl_s.T, out_dtype=tl.float32) # [KV2, Q]

169

170 gkT_mask = kv2_mask_s[:, None] & g _mask_s[None, :]

171 kvl_local_mask = ((g_offs_s[None, :] - wl) < kvl _idx) & (

172 kvl_idx <= g _offs_s[None, :]

173) # [KV2, Q]

174 kv2_local_mask = ((g_offs_s[None, :] — w2) < kv2_offs_s[:, Nonel)
& (

175 kv2_offs_s[:, None] <= g _offs_s[None, :]

176) # [KV2, Q]

177 local_mask = (

178 kvl_local_mask & kv2_local_mask

179) # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]

180 gkT_mask &= kvl_local_mask & kv2_local_mask

181

182 pT = tl.exp(gkkT - m_tile[None, :]) # [KV2, Q]

183 pT = tl.where(gkT_mask, pT, 0.0)

184

185 gkkT = tl.where(local_mask, gkkT, -1.0e38)

186

187 dovl = dO_tile % vl _tile[None, :] # [Q, D]

188 dOvl = dOvl.to (gemm_dtype)

189 # pT[KV2, Q] @ dovl[Q, D] => [KV2, D]

190 dv2 += tl.dot (pT.to(gemm_dtype), dOvl, out_dtype=tl.float32)

191

192 # v2[KV2, D] @ dovl.T[D, Q] => dpT[KV2, Q]

193 dpT = tl.dot(v2_tile, dOv1l.T, out_dtype=tl.float32)

194 dsT = pT % (dpT - d_tile[None, :]7 # [KV2, Q]

195 dsT = tl.where(gkT_mask, dsT, 0.0)

196 dsT = dsT.to(gemm_dtype) # [KV2, Q]

197

log # dsT[KV2, Q] @ gkl[Q, D] => dk2[KV2, D]

199 dk2 += tl.dot(dsT, gkl_s, out_dtype=tl.float32)
200

201 k1lk2 = kl_tile[None, :] * k2_tile # [KV2, D]

202 k1lk2 = klk2.to (gemm_dtype)

203

04 dg += tl.dot (dsT.T, klk2) # » softmax scale at the end.
b05

P06 # End. update derivatives.

207 if IS_SECOND_PASS:

208 #load, add.

209 prev_dk2 = tl.load(dK2_ptr + kv2_offs, kv2_mask)
210 prev_dv2 = tl.load(dV2_ptr + kv2_offs, kv2_mask)
b1l dk2 += prev_dk2

p12 dv2 += prev_dv2

213

214 dg x*= softmax_scale

215 tl.store(dK2_ptr + kv2_offs, dk2, kv2_mask)

216 tl.store(dv2_ptr + kv2_offs, dv2, kv2_mask)

b17 tl.store(dQ_ptr + g offs, dg, g _mask)

Listing 3: Backward pass for 2-simplicial attention optimized for small wy avoiding atomic adds.

24

Under review as a conference paper at ICLR 2026

It

V1wl Tiles

WarpGroup 0 | K2_b0 Tile
Producer
warp 0-3

V2.b0 Tile

[V2_b0 T\le] K2_b1 Tile V2_b1 Tile

K2_b1 Tile

V2_b1 Tile

= Fel
Ellze
28S
+ =

)

=

»

g

3

5

J

WarpGroup 1 QxK1 : : : ‘
Consumer 0 h] H H H H Q_0 and Output_0
warp 4-7 : : : : : :

WarpGroup 2

Consumer 1 i i J Y ; ; Q-1 and Output_1
warp 8-12 ‘ ‘ (Qm @ Kz_b{ Softmax I P@V2.b0 I PV2xV1 IQKl @ KZ_bJI Softmax I P@V2.bl I PV2x V1]

! W1 Loop! : 1-W2 Loop

Timel

Figure 4: Scheduling Flow of TLX Kernel-3

E TLX (TRITON LOW-LEVEL LANGUAGE EXTENSIONS): FORWARD PASS FOR
2-SIMPLICIAL ATTENTION

Despite implementing all the kernel optimizations mentioned above, our Triton kernel implementation
remained significantly below state-of-the-art performance. Our best forward attention kernel achieved
only 336 Tensor Core TFLOPS with 34% Tensor Core utilization.

Analysis of the generated PTX code revealed that several important GPU optimization passes failed
to work with the kernel, including software pipelining and warp specialization.

To rapidly integrate modern attention optimization techniques on Hopper, we rewrote the kernel using
TLX (Triton Low-level Language Extensions), described in Figure 4. We developed three distinct
versions:

* Kernel-1: Forward + Warp Specialization, described in Algorithm 3
* Kernel-2: Forward + Warp Specialization + Computation Pipelining
* Kernel-3: Forward + Warp Specialization + Pingpong Scheduling

The benchmark results show that the TLX kernel can achieve up to 588 TFLOPS peak performance
with BFloat16 for the forward pass, with approximately 60% BFloat16 Tensor Core utilization, which
is approximately 1.75x that of the Triton forward pass.

25

Under review as a conference paper at ICLR 2026

Algorithm 3 Fast 2-Simplicial Attention Forward Pass with Warp Specialization

Require: Tensors Q; € RE-*4 and K, Ky, Vi, Vo € RNXd

Require: Output O; € RB-xd

Require: Sliding window size for K1, V7 is wy and for Ko, V5 is wo

Require: Number of circular K5, Vo SMEM buffers is num_buffers
1: procedure FAST2SIMPLICIALATTENTION(Q;, K1, Ks, V1, V3)

2 Initialize O; < 0 € RB-x? ¢, « 0 € RBr, m,; + (—0) € REB-
3 For each CTA:
4 if in producer warpgroup then
5 Deallocate number of registers
6: Load Q); tile from GMEM to SMEM < RBr*4
7 Load K ; tile and V; ; tile from GMEM to SMEM € R x4
8: Set acc_cnt =0
9: for j € range(w;) do
10: for k& € (i — wo + 1,4] with step B, do
11: Wait for buffer_id = acc_cnt mod num_buffers to be released
12: Issue the load of K i, V3 j, from HBM to SMEM
13: Notify consumers of the load complete of K ;, and V5 j,
14: acc_cnt = acc_cnt +1
15: end for
16: end for
17: else > in consumer warpgroup
18: Reallocate the number of registers
19: Wait for); tile to be loaded in SMEM
20: Load @; from SMEM to RMEM
21: Wait for K ;, Vi ; tiles to be loaded in SMEM
22: acc_cnt =0
23: for j € (i —w; + 1,4] do
24: Load K1 ;, V1,; from SMEM to RMEM € R!*¢
25: Compute QKLU = Qz ® Kl,j S REB-xd
26: for k € (i — wo + 1,4] with step B, do
27: Wait for K3 . to be loaded in SMEM &< RBexd
28: Compute S, = QK1,;K7), € RP>Pe > RS-GEMM
29: Store m¢'d = m;
30: Compute m; = max(m'd, rowmax(S;x))
31: Compute P;j;, = exp(Sijx —m;) € RBrxBe
32: Compute 2% = exp(m'd — m;)¢; + rowsum(P;;y)
33: Wait for V5, to be loaded in SMEM € RB:x4
34: Compute PV3 ;1 = PijpVo i € RBrxd > RS-GEMM
35: Compute PVig ;1 = PVa i, © Vi 5 € RBrxd
36: Update O; = exp(m$ — m;)O; + Piji,Via jk
37: buffer_id = acc_cnt mod num_buffers
38: Release buffer_id for K ;, and Vi,
39: Update ¢; = ¢7°V, acc_cnt = acc_cnt +1
40: end for
41: end for
42: Compute O; = O,»/Ei, Li=m; + 10g(£1)
43: Write O; and L; to HBM
44 end if

45: return O;
46: end procedure

26

	Introduction
	Related work
	Overview of neural scaling laws
	The 2-simplicial Transformer
	Determinant based Trilinear Forms
	Trace based Trilinear forms and 2-D RoPE
	Model design
	Kernel Optimization
	Experiments & Results
	Ablation on Trilinear Forms

	Conclusion
	Rotation invariant trilinear forms
	Proof for Theorem 5.1

	Backward Pass Computation
	Triton Kernels
	Triton Kernel: Backward pass for 2-simplicial Attention
	TLX (Triton Low-level Language Extensions): Forward Pass for 2-Simplicial Attention

