FAST AND SIMPLEX: 2-SIMPLICIAL ATTENTION IN TRITON

Anonymous authorsPaper under double-blind review

ABSTRACT

Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency.

In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that 2-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.

1 Introduction

Large language models (LLMs) based on the Transformer architecture (Vaswani et al., 2017) have become foundational to many state-of-the-art artificial intelligence systems, including GPT-3 (Brown et al., 2020), GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2023), and Llama (Touvron et al., 2023). The remarkable progress in scaling these models has been guided by neural scaling laws (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022), which empirically establish a power-law relationship between training loss, number of model parameters, and size of training data.

A key insight from this body of work is that optimal model performance is achieved not simply by increasing model size, but by scaling both the number of parameters and the amount of training data in tandem. Notably, Hoffmann et al. (2022) demonstrate that compute-optimal models require a balanced scaling approach. Their findings show that the Chinchilla model, with 70 billion parameters, outperforms the much larger Gopher model (280 billion parameters) by being trained on four times as much data. This result underscores the importance of data scaling alongside model scaling for achieving superior performance in large language models.

As artificial intelligence (AI) continues to advance, a significant emerging challenge is the availability of sufficiently high-quality tokens. As we approach this critical juncture, it becomes imperative to explore novel methods and architectures that can scale more efficiently than traditional Transformers under a limited token budget. However, most architectural and optimizer improvements merely shift the error but do not meaningfully change the exponent of the power law (Everett, 2025). The work of Kaplan et al. (2020); Shen et al. (2024) showed that most architectural modifications do not change the exponent, while Hestness et al. (2017) show a similar result for optimizers. The only positive result has been on data due to the works of Sorscher et al. (2022); Bahri et al. (2024); Brandfonbrener et al. (2024) who show that changing the data distribution can affect the exponent in the scaling laws.

In this context we revisit an old work Clift et al. (2020) which generalizes the dot product attention of Transformers to trilinear forms as the 2-simplicial Transformer. We explore generalizations of RoPE (Su et al., 2024) to trilinear functions and present a rotation invariant trilinear form that we prove is as expressive as 2-simplicial attention. We further show that the 2-simplicial Transformer

scales better than the Transformer under a limited token budget: for a fixed number of tokens, a similar sized 2-simplicial Transformer out-performs the Transformer on math, coding and reasoning tasks. Furthermore, our experiments also reveal that the 2-simplicial Transformer has a more favorable scaling exponent corresponding to the number of parameters than the Transformer (Vaswani et al., 2017). This suggests that, unlike Chinchilla scaling (Hoffmann et al., 2022), it is possible to increase tokens at a slower rate than the parameters for the 2-simplicial Transformer. Our findings imply that, when operating under token constraints, the 2-simplicial Transformer can more effectively approach the irreducible entropy of natural language compared to dot product attention Transformers.

2 Related work

Several generalizations of attention have been proposed since the seminal work of Vaswani et al. (2017). A line of work that started immediately after was to reduce the quadratic complexity of attention with sequence length. In particular, the work of Parmar et al. (2018) proposed local attention in the context of image generation and several other works subsequently used it in conjunction with other methods for language modeling (Zaheer et al., 2020; Roy et al., 2021). Other work has proposed doing away with softmax attention altogether - e.g., Katharopoulos et al. (2020) show that replacing the softmax with an exponential without normalization leads to linear time Transformers using the associativity of matrix multiplication. Other linear time attention work are state space models such as Mamba (Gu & Dao, 2023); however these linear time attention methods have received less widespread adoption due to their worse quality compared to Transformers in practice. According to Allen (2025), the key factor contributing to Mamba's success in practical applications is the utilization of the conv1d operator; see also So et al. (2021) and Roy et al. (2022) for similar proposals to the Transformer architecture.

The other end of the spectrum is going from quadratic to higher order attention. The first work in this direction to the best of our knowledge was 2-simplicial attention proposed by Clift et al. (2020) which showed that it is a good proxy for logical problems in the context of deep reinforcement learning. A similar generalization of Transformers was proposed in Bergen et al. (2021) which proposed the Edge Transformer where the authors proposed triangular attention. The AlphaFold (Jumper et al., 2021) paper also used an attention mechanism similar to the Edge Transformer which the authors called triangle self-attention induced by the 2D geometry of proteins. Higher order interactions were also explored in Wang et al. (2021) in the context of recommender systems. Simplical attention was also explored in the context of Hopfield networks in Burns & Fukai (2023). Recent work by Sanford et al. (2023) shows that the class of problems solved by an n-layer 2-simplicial Transformer is strictly larger than the class of problems solved by dot product attention Transformers. In particular, the authors define a class of problems referred to as Match3 and show that dot product attention requires exponentially many layers in the sequence length to solve this task. Follow up work by Kozachinskiy et al. (2025) propose a scalable approximation to 2-simplicial attention and prove lowerbounds between Strassen attention and dot product attention on tasks that require more complex reasoning using VC dimension (Vapnik, 1968) arguments.

Also related is work on looping Transformer layers (Dehghani et al., 2018) as in Universal Transformers; see also Yang et al. (2023); Saunshi et al. (2025) for a more recent treatment of the same idea. Both higher order attention and looping serve a similar purpose: compute a more expressive function per parameter. It has been established in these works that looped Transformers are better at logical reasoning tasks. A key challenge in scaling looped Transformers to larger models is their trainability. Specifically, looping k times increases the model depth by a factor of k, which can significantly exacerbate the difficulties associated with training deeper models. As a result, it remains unclear how well large looped Transformers can be trained, and further research is needed to address this concern.

Notation. We use small and bold letters to denote vectors, capital letters to denote matrices and tensors and small letters to denote scalars. We denote $\langle \mathbf{a}, \mathbf{b} \rangle$ to denote dot product between two vectors \mathbf{a} and \mathbf{b} . Similarly, the trilinear dot product is denoted as follows: $\langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle = \sum_{i=1}^d \langle \mathbf{a}_i, \mathbf{b}_i, \mathbf{c}_i \rangle$. We use @ to highlight a matrix multiplication, for e.g., (AB)@C, for matrices A, B, C. To denote array slicing, we use $\mathbf{a}[l:l+m]=(a_l,\ldots,a_{l+m-1})$ with zero-based indexing. Some tensor operations are described using Einstein summation notation as used in the Numpy library (Harris et al., 2020). We use FLOPs to denote floating point operations. Column stacking of arrays are denoted by $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$. We use det to denote determinant of a square matrix.

3 OVERVIEW OF NEURAL SCALING LAWS

In this section we provide a brief overview of neural scaling laws as introduced in Kaplan et al. (2020). We will adopt the approach outlined by Hoffmann et al. (2022), which proposes that the loss L(N, D) decays as a power law in the total number of model parameters N and the number of tokens D:

$$L(N,D) = E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}.$$
 (1)

The first term E is often described as the irreducible loss which corresponds to the entropy of natural text. The second term captures the fact that a model with N parameters underperforms this ideal generative process. The third term corresponds to the fact that we train on only a finite sample of the data and do not train the model to convergence. Theoretically, as $N \to \infty$ and $D \to \infty$ a large language model should approach the irreducible loss E of the underlying text distribution.

For a given compute budget C where FLOPs(N,D)=C, one can express the optimal number of parameters as $N_{opt} \propto C^a$ and the optimal dataset size as $D_{opt} \propto C^b$. The authors of Hoffmann et al. (2022) perform several experiments and fit parametric functions to the loss to estimate the exponents a and b: multiple different approaches confirm that roughly $a \sim 0.49$ while $b \sim 0.5$. This leads to the central thesis of Hoffmann et al. (2022): one must scale the number of tokens proportionally to the model size.

However, as discussed in Section 1, the quantity of sufficiently high-quality tokens is an emerging bottleneck in pre-training scaling, necessitating an exploration of alternative training algorithms and architectures. On the other hand recent studies have shown that most modeling and optimization techniques proposed in the literature merely shift the error (offset E) and do not fundamentally change exponent in the power law. We refer the readers to the excellent discussion in Everett (2025).

4 THE 2-SIMPLICIAL TRANSFORMER

The 2-simplicial Transformer was introduced in Clift et al. (2020) where the authors extended the dot product attention from bilinear to trilinear forms, or equivalently from the 1-simplex to the 2-simplex. Let us recall the attention mechanism in a standard Transformer (Vaswani et al., 2017). Given a sequence $X \in \mathbb{R}^{n \times d}$ we have three projection matrices $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$ which we refer to as the query, key and value projections respectively. These projection matrices are used to infer the query $Q = XW_Q$, key $K = XW_K$ and value $V = XW_V$ respectively. This is then used to construct the *attention logits*:

$$A = QK^{\top} / \sqrt{d} \in \mathbb{R}^{n \times n}, \tag{2}$$

where each entry is a dot product $A_{ij} = \langle \mathbf{q}_i, \mathbf{k}_j \rangle / \sqrt{d}$ which are both entries in \mathbb{R}^d . The attention scores (logits) are then transformed into probability weights by using a row-wise softmax operation:

$$S_{ij} = \exp(A_{ij}) / \sum_{j=1}^{n} \exp(A_{ij}).$$
 (3)

(b) 2-simplex between three nodes i, j, k

Figure 1: Geometry of dot product attention and 2-simplical attention.

The final output of the attention layer is then a linear combination of the values according to these attention scores:

$$\tilde{\boldsymbol{v}}_i = \sum_{j=1}^n A_{ij} \boldsymbol{v}_j \tag{4}$$

The 2-simplicial Transformer paper Clift et al. (2020) generalizes this to trilinear products where we have two additional key and value projection matrices $W_{K'}$ and $W_{V'}$, which give us $K' = XW_{K'}$ and $V' = XW_{V'}$. The attention logits for 2-simplicial Transformer are then given by the trilinear product between Q, K and K', resulting in the following third-order tensor:

$$A_{ijk}^{(2s)} = \frac{\langle \mathbf{q}_i, \mathbf{k}_j, \mathbf{k}_k' \rangle}{\sqrt{d}} = \frac{1}{\sqrt{d}} \sum_{l=1}^d Q_{il} K_{jl} K_{kl}', \tag{5}$$

Algorithm 1 Pseudocode for the forward pass of 2-simplicial attention

```
1: procedure 2-SIMPLICIAL ATTENTION(Q, K, V, K', V')
2: logits \leftarrow einsum("btnh, bsnh, brnh \rightarrow bntsr", Q, K, K')
3: attention \leftarrow softmax(logits + causal-mask, axis = [-1, -2])
4: output \leftarrow einsum("bntsr, bsnh, brnh \rightarrow btnh", attention, V, V')
5: return output
6: end procedure
```

so that the attention tensor becomes:

$$S_{ijk}^{(2s)} = \exp(A_{ijk}^{(2s)}) / \sum_{i,k} \exp(A_{ijk}^{(2s)}), \tag{6}$$

with the final output of the attention operation being defined as

$$\tilde{\boldsymbol{v}}^{(2\mathrm{s})}(i) = \sum_{j,k=1}^{n} S_{ijk}^{(2\mathrm{s})} \left(\boldsymbol{v}_{j} \circ \boldsymbol{v}_{k}' \right), \tag{7}$$

where $v_j \circ v_k'$ represents the element wise Hadamard product between two vectors in \mathbb{R}^d . The pseudo-code for 2-simplicial attention is depicted in Algorithm 1. Note that Equation 5 does not incorporate any position encoding such as RoPE (Su et al., 2024); we discuss this in the next section.

5 DETERMINANT BASED TRILINEAR FORMS

RoPE (Su et al., 2024) was proposed as a way to capture the positional information in a sequence for Transformer language models. RoPE applies a position dependent rotation to the queries q_i and the key \mathbf{k}_j so that the dot product $\langle q_i, \mathbf{k}_j \rangle$ is a function of the relative distance i-j. In particular, note that the dot product is invariant to orthogonal transformations $R \in \mathbb{R}^{d \times d}$:

$$\langle \mathbf{q}_i, \mathbf{k}_i \rangle = \langle R \mathbf{q}_i, R \mathbf{k}_i \rangle.$$

This is important for RoPE to work as for a query q_i and key \mathbf{k}_i at the same position i, we expect its dot product to be unchanged by the application of position based rotations: $\langle q_i, \mathbf{k}_i \rangle = \langle Rq_i, R\mathbf{k}_i \rangle$.

Note that the trilinear form defined in Equation 5 is not invariant to rotation and the application of the same rotation to \mathbf{q}_i , \mathbf{k}_i and \mathbf{k}_i' no longer preserves the inner product: $\langle \mathbf{q}_i, \mathbf{k}_i, \mathbf{k}_i' \rangle = \sum_{l=1}^d \mathbf{q}_{il} \mathbf{k}_{il} \mathbf{k}_{il}' \neq \langle R\mathbf{q}_i, R\mathbf{k}_i, R\mathbf{k}_i' \rangle$. Therefore, to generalize RoPE to 2-simplicial attention, it is important to explore alternative bilinear and trilinear forms that are rotation invariant.

We note that the following functions are also invariant to rotations:

$$\hat{f}_{2}(\mathbf{a}, \mathbf{b}) = \det\begin{pmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \end{pmatrix} = a_{1}b_{2} - a_{2}b_{1},
\hat{f}_{3}(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \det\begin{pmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{pmatrix},
= a_{1}b_{2}c_{3} + a_{2}b_{3}c_{1} + a_{3}b_{1}c_{2} - a_{1}b_{3}c_{2} - a_{2}b_{1}c_{3} - a_{3}b_{2}c_{1}
= \langle (a_{1}, a_{2}, a_{3}), (b_{2}, b_{3}, b_{1}), (c_{3}, c_{1}, c_{2}) \rangle - \langle (a_{1}, a_{2}, a_{3}), (b_{3}, b_{1}, b_{2}), (c_{2}, c_{3}, c_{1}) \rangle, (8)$$

the rearrangement in the last equality is popularly called Sarrus rule (Strang, 2022). Here, \hat{f}_2 is a bilinear form in $\mathbf{a}=(a_1,a_2)$ and $\mathbf{b}=(b_1,b_2)$ and \hat{f}_3 is a trilinear form in $\mathbf{a}=(a_1,a_2,a_3),\ \mathbf{b}=(b_1,b_2,b_3),\ \mathbf{c}=(c_1,c_2,c_3).$ Geometrically, $|\hat{f}_2(\mathbf{a},\mathbf{b})|$ measures the area of the parallelogram spanned by \mathbf{a} and \mathbf{b} , and similarly, $|\hat{f}_2(\mathbf{a},\mathbf{b},\mathbf{c})|$ measures the volume of the parallelotope spanned by \mathbf{a} , \mathbf{b} and \mathbf{c} . We use the signed determinant operation \hat{f}_3 to compute $A^{(\det)} \in \mathbb{R}^{n \times n \times n}$. For any vector \mathbf{q} , let $\mathbf{q}^{(l)} = \mathbf{q} = \mathbf{q}[3(l-1):3l]$ be its lth chunk of size 3. The logits are defined as:

$$A_{ij_1j_2}^{(\text{det})} = \sum_{l=1}^{p} \det([\boldsymbol{q}_i^{(l)}, \mathbf{k}_{j_1}^{(l)}, \mathbf{k}_{j_2}^{(l)}]). \tag{9}$$

Since Equation 8 has 2 dot product terms due to Sarrus rule, it would modify Algorithm 1 to use 2 einsums instead of 1 in line 2. The final attention weights S are computed by applying a softmax function on the logits above, similar to Equation 6. The output for token i is then the weighted sum of value vectors as in Equation 7.

Theorem 5.1. For any input size n and input range $m = n^{O(1)}$, there exists a transformer architecture with a single head of attention with logits computed as in (9), with attention head dimension d = 7, such that for all $X \in [M]^N$, the transformer's output for element x_i is 1 if $\exists j_1, j_2$ s.t. $x_i + x_{j_1} + x_{j_2} = 0 \pmod{M}$, and 0 otherwise.

We provide the proof in Appendix A. Since the sum-of-determinants trilinear function of Equation 9 involves 6 terms compared to the simpler trilinear form of Equation 5, in the following sections where we compute the backwards function for 2-simplicial attention, we will use the simpler trilinear form of Equation 5 without loss of generality.

6 Trace based Trilinear forms and 2-D RoPE

In this section we present an additional rotation invariant trilinear form using the trace operator on matrices. Given a vector $\boldsymbol{x} \in \mathbb{R}^d$, we denote by $\operatorname{mat}(\boldsymbol{x})$ the $\sqrt{d} \times \sqrt{d}$ matrix obtained by reshaping the vector \boldsymbol{x} . Therefore, equivalently we have the following identity $\operatorname{mat}(\boldsymbol{x}) = \boldsymbol{x}$. Then we note that the following function is also invariant to rotation and is equivalent to dot product attention in the 2-D case:

$$\langle \mathbf{q}_i, \mathbf{k}_j \rangle = \operatorname{tr} \left(\operatorname{mat}(\mathbf{q}_i)^{\top} \operatorname{mat}(\mathbf{k}_j) \right),$$
 (10)

where $\operatorname{mat}(q_i)\operatorname{mat}(\mathbf{k}_j)$ corresponds to matrix multiplication of the $\sqrt{d}\times\sqrt{d}$ matrices and tr is the trace operator $\operatorname{tr}(A)=\sum_i A_{ii}$ which sums over the diagonal elements of a matrix A. An alternate (and elegant) formulation of the trace of a matrix is that it is the sum of its eigenvalues. Note that equation 10 follows from the identity that for any two square matrices A,B we have $\operatorname{tr}(A^\top B)=\langle \operatorname{vec}(A),\operatorname{vec}(B)\rangle$. We note that this bilinear form is also invariant to orthogonal transformations (rotations) R as

$$\operatorname{tr}((RAR^{\top})^{\top}RBR^{\top}) = \operatorname{tr}(RA^{\top}BR^{\top}) = \operatorname{tr}(A^{\top}B). \tag{11}$$

This follows since the eigenvalues of a matrix are invariant to orthogonal transformations. This leads us to the trilinear generalization $\langle q_i, \mathbf{k}_{j1}, \mathbf{k}'_{j2} \rangle_{\mathrm{tr}}$:

$$\langle \boldsymbol{q}_i, \mathbf{k}_{j1}, \mathbf{k}_{j2} \rangle_{\text{tr}} = \text{tr}(\text{mat}(\boldsymbol{q}_i) \, \text{mat}(\mathbf{k}_{j1}) \, \text{mat}(\mathbf{k}'_{j2})),$$
 (12)

which is no longer equivalent to the standard trilinear product, $\langle q_i, \mathbf{k}_{j1}, \mathbf{k}_{j2} \rangle_{\mathrm{tr}} \neq \langle q_i, \mathbf{k}_{j1}, \mathbf{k}_{j2} \rangle$. The logits of the trace based trilinear attention is then defined as:

$$A_{ij_1j_2}^{(\text{tr})} = \text{tr}(\text{mat}(\boldsymbol{q}_i) \, \text{mat}(\mathbf{k}_{j_1}) \, \text{mat}(\mathbf{k}'_{j_2})). \tag{13}$$

While the trilinear form of Equation 13 is arguably simpler than the determinant based form and also preserves rotational invariance, the requirement of reshaping the matrix dimensions to \sqrt{d} makes it more challenging to integrate with Flash attention (Dao et al., 2022). Hence we do not present any experimental results with this formulation.

7 MODEL DESIGN

Since 2-simplicial attention scales as $\mathcal{O}(n^3)$ in the sequence length n, it is impractical to apply it over the entire sequence. Instead, we parametrize it as $\mathcal{O}(n \times w_1 \times w_2)$, where w_1 and w_2 define the dimensions of a sliding window over the sequence. Each query vector Q_i attends to a localized region of w_1 K keys and w_2 K' keys, thereby reducing the computational burden. We systematically evaluate various configurations of w_1 and w_2 to identify optimal trade-offs between computational efficiency and model performance (see Table 1).

For causal dot product attention, the complexity for a sequence of length n is given by:

$$O(A) = \frac{1}{2} \cdot 2 \cdot 2n^2 = 2n^2,$$

Figure 2: **Left:** Visualization of sliding window 2-simplical attention. Each Q_i attends to a [w1, w2] shaped rectangle of K, K'. **Right:** Tiling to reduce 2-simplical einsum QKK' to elementwise mul QK' on CUDA core and tiled matmul (QK')@K on tensor core.

where n is the sequence length. This involves two matrix multiplications: one for Q@K, one for P@V, each requiring two floating-point operations per element. The causal mask allows us to skip $\frac{1}{2}$ of these computations.

In contrast, the complexity of 2-simplical attention, parameterized by w_1 and w_2 , is expressed as:

$$O(A^{(2s)}) = 3 \cdot 2nw_1w_2 = 6nw_1w_2$$

This increase in complexity arises from the trilinear einsum operation, which necessitates an additional multiplication compared to standard dot product attention.

We choose a window size of (512, 32), balancing latency and quality. With this configuration, the computational complexity of 2-simplical attention is comparable to dot product attention at 48k context length.

A naive sliding window 2-simplicial attention implementation has each Q_i vector attending to w_1+w_2-1 different KK' vectors, as illustrated in Figure 2. Thus, tiling queries Q like in flash attention leads to poor compute throughput. Inspired by Native Sparse Attention (Yuan et al., 2025), we adopt a model architecture leveraging a high Grouped Query Attention GQA (Ainslie et al., 2023) ratio of 64. This approach enabled efficient tiling along query heads, ensuring dense computation and eliminating the need for costly element-wise masking.

$w_1 \times w_2$	w_1	w_2	Latency (ms)
32k	1024	32	104.1 ms
32k	512	64	110.7 ms
16k	128	128	59.2 ms
16k	256	64	55.8 ms
16k	512	32	55.1 ms
16k	1024	16	55.1 ms
8k	256	32	28.3 ms

Table 1: Latency for different combinations of w_1 , w_2

8 KERNEL OPTIMIZATION

We introduce a series of kernel optimizations tailored for 2-simplical attention, building off of Flash Attention (Dao et al., 2022) using online softmax. For the trilinear operations, we perform 2d tiling by merging one of the inputs via elementwise multiplication and executing matmul on the product as illustrated in Figure 2. This allows us to overlap both QK and VV' on CUDA Core with (QK)@K' and P@(VV') on Tensor Core. Implementing this in Triton, we achieve 520 TFLOPS, rivaling the fastest FAv3 Triton implementations. Further optimization could be achieved with a lower-level language like CUTLASS for finer grained tuning and optimizations. Despite this, we achieve competitive performance compared to CUTLASS FAv3 for large sequence lengths, as shown in Figure 3.

325

326

327

328

330

331

332

333

334

335

336 337

338 339

340

341

342

343

344

345

346

347

348

349 350

351

352 353

354

355

356

357

358

359

360

361

362

364

365

366

367

368

369

370

371

372373374

375376

377

Figure 3: FLOPs and Latencies of FAv3 vs 2-simplical attention

For the backwards pass, aggregations across three different dimension orderings introduces significant overhead from atomic operations. (Exact computation needed provided in Appendix B.) To mitigate this, we decompose the backward pass into two distinct kernels: one for computing dK and dV, and another for dK', dV', and dQ. Although this approach incurs additional overhead from recomputing O and dS, we find it is better than the extra overhead from atomics needed for a single fused kernel. We note this may be a limitation of Triton's coarser grained pipeline control making it difficult to hide the overhead from atomics.

For small w_2 , we employ a two-stage approach to compute dQ jointly with dK', dV' without atomics as detailed in Algorithm 2. We divide Q along the sequence dimension into

```
[w_2, dim]
```

sized tiles. First we iterate over even tiles, storing dQ, dK, dK', and dV, dV'. Then we iterate over odd tiles, storing dQ, and adding to dK, dK' and dV, dV'.

Algorithm 2 Backward pass for 2-simplicial attention

```
1: procedure 2-SIMPLICIAL FLASH ATTENTION BWD(Q, K, V, K', V', w_1, w_2)
        for stage in [0, 1] do
 2:
 3:
            for q start in range(stage * w_2, seq len, w_2 * 2) do
 4:
                q_{end} \leftarrow q_{start} + w_2
 5:
                for kv1_start in range(q_start - w_1, q_end) do
 6:
                    q_{tile} \leftarrow Q[q_{start} : q_{end}]
 7:
                    k2\_tile \leftarrow K'[kv1\_start : q\_end]
 8:
 9.
                    dQ += dQ(q_{tile}, k2_{tile}, ...)
                    dV' += dV'(q_{tile}, k2_{tile}, ...)
10:
                    dK' += dK'(q_{tile}, k2_{tile}, ...)
11:
                end for
12:
                if stage == 1 then
13:
                    dK' += load dK'
14:
15:
                    dV' += load dV'
                end if
16:
                store dQ, ..., dK'
17:
18:
            end for
19:
        end for
20: end procedure
```

9 EXPERIMENTS & RESULTS

We train a series of MoE models (Jordan & Jacobs, 1994; Shazeer et al., 2017) ranging from 1 billion active parameters and 57 billion total parameters to 3.5 billion active parameters and 176 billion

total parameters. We use interleaved sliding-window 2-simplicial attention, where every fourth layer is a 2-simplicial attention layer. The choice of this particular ordering is to distribute the load in attention computation when using pipeline parallelism (Huang et al., 2019; Narayanan et al., 2019), since 2-simplicial attention and global attention are the most compute intensive operations in a single pipeline stage and have comparable FLOPs.

We use the AdamW optimizer (Loshchilov et al., 2017) with a peak learning rate of 4×10^{-3} and weight decay of 0.0125. We use a warmup of 4000 steps and use a cosine decay learning schedule decreasing the learning rate to $0.01\times$ of the peak learning rate. We report the negative log-likelihood on GSM8k (Cobbe et al., 2021), MMLU (Hendrycks et al., 2020), MMLU-pro (Wang et al., 2024) and MBPP (Austin et al., 2021), since these benchmarks most strongly test math, reasoning and coding skills in pre-training.

Model	Active Params	Total Params	GSM8k	MMLU	MMLU-pro	MBPP
Transformer	1B	57B	0.3277	0.6411	0.8718	0.2690
2-simplicial	1B	57B	0.3302	0.6423	0.8718	0.2714
$\Delta(\%)$			+0.79%	+0.19%	-0.01%	+0.88%
Transformer	2B	100B	0.2987	0.5932	0.8193	0.2435
2-simplicial	2B	100B	0.2942	0.5862	0.8135	0.2411
$\Delta(\%)$			-1.51%	-1.19%	-0.71%	-1%
Transformer	3.5B	176B	0.2781	0.5543	0.7858	0.2203
2-simplicial	3.5B	176B	0.2718	0.5484	0.7689	0.2193
$\Delta(\%)$			-2.27%	-1.06%	-2.15%	-0.45%

Table 2: Negative log-likelihood of Transformer (Vaswani et al., 2017) versus 2-simplicial attention. For MMLU (Hendrycks et al., 2020) and MMLU-pro (Wang et al., 2024) we measure the negative log-likelihood of the choice together with the entire answer. For GSM8k (Cobbe et al., 2021) we use 5-shots for the results.

We see that the decrease (Δ) in negative log-likelihood scaling from a 1.0 billion (active) parameter model increases going to a 3.5 billion (active) parameter model. Furthermore, on models smaller than 2.0 billion (active) parameters, we see no gains from using 2-simplicial attention. From Table 2 we can estimate how the power law coefficients for the 2-simplicial attention differ from dot product attention. Recall from Section 3 that the loss can be expressed as:

$$L(N,D) = E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}.$$
 (14)

Since we train both the models on the same fixed number of tokens, we may ignore the third term and simply write the loss as $L(N) = E' + A/N^{\alpha}$ with $E' = E + B/D^{\beta}$. We can approximate for curve fitting as follows:

$$-\log L(N) \approx \alpha \log N + \beta,\tag{15}$$

where we used $\log(a+b) = \log(1+a/b) + \log(b)$ to separate out the two terms and $\beta = -\log E'' - \log A$ with the 1+a/b term hidden in E'' along with. Now we estimate α, β for both sets of models from the losses in Table 2 where we use for N the active parameters in each model. We estimate the slope α and the intercept β for both the Transformer as well as the 2-simplicial Transformer in Table 3. We see that 2-simplicial attention has a steeper slope α , i.e. a higher exponent in its scaling law compared to dot product attention Transformer (Vaswani et al., 2017).

9.1 ABLATION ON TRILINEAR FORMS

We conduct an ablation study to evaluate the effectiveness of different trilinear functions within the 2-simplicial attention mechanism. The goal is to determine which mathematical construction offers the best inductive bias for the logical and reasoning tasks our model is evaluated on. All experiments are performed on a 125M parameter model, and we report the negative log-likelihood on several downstream benchmarks.

Model	GSM8k		MMLU		MMLU-pro		MBPP	
	α	β	α	β	α	β	α	β
Transformer	0.1420	-1.8280	0.1256	-2.1606	0.0901	-1.7289	0.1720	-2.2569
2-simplicial	0.1683	-2.3939	0.1364	-2.3960	0.1083	-2.1181	0.1837	-2.5201
$\Delta(\%)$	18.5%		8.5%		20.2%		6.8%	

Table 3: Estimates of the power law coefficients α and β for the Transformer (Vaswani et al., 2017) and 2-simplicial attention.

Model	GSM8k		MMLU		MMLU-pro		MBPP	
	R^2	residual	R^2	residual	R^2	residual	R^2	residual
Transformer 2-simplicial		$2.8 \times 10^{-6} 4.9 \times 10^{-5}$						

Table 4: R^2 and residuals measuring goodness of fit for Table 3.

The results, summarized in Table 5, show a clear advantage for using a determinant-based trilinear form. This approach consistently outperforms both the standard dot-product attention baseline and the *unsigned scalar triple product* proposed by Clift et al. (2020) across most reasoning and knowledge-intensive benchmarks, including MBPP, MMLU Pro, MMLU, and ARC.

Table 5: Ablation study on different trilinear forms for 2-simplicial attention in a 125M LLaMA model. Lower values indicate better performance (negative log-likelihood).

Experiment	MBPP	GSM8K	MMLU Pro	MMLU	ARC
Trilinear Product	0.3352	0.4363	1.0400	0.8028	0.6740
Unsigned Scalar Triple Product	0.3412	0.4294	1.0437	0.8065	0.6845
Determinant	0.3296	0.4329	1.0323	0.7982	0.6700
Dot Product (Baseline)	0.3377	0.4426	1.0477	0.8089	0.6901

This performance gain is noteworthy given the computational trade-offs. While the simple trilinear product is the most efficient, the determinant-based form requires approximately twice the floating-point operations (FLOPs). The unsigned scalar triple product, as defined by its polynomial form in Clift et al. (2020), is 3 times more computationally intensive.

10 CONCLUSION

We show that a similar sized 2-simplicial attention (Clift et al., 2020) improves on dot product attention of Vaswani et al. (2017) by improving the negative log likelihood on reasoning, math and coding problems (see Table 2). We quantify this explicitly in Table 3 by demonstrating that 2-simplicial attention changes the exponent corresponding to parameters in the scaling law of Equation 15: in particular it has a higher α for reasoning and coding tasks compared to the Transformer (Vaswani et al., 2017) which leads to more favorable scaling under token constraints. Furthermore, the percentage increase in the scaling exponent α is higher for less saturated and more challenging benchmarks such as MMLU-pro and GSM8k.

While 2-simplicial attention improves the exponent in the scaling laws, we should caveat that the technique maybe more useful when we are in the regime when token efficiency becomes more important. Our Triton kernel while efficient for prototyping is still far away from being used in production. More work in co-designing the implementation of 2-simplicial attention tailored to the specific hardware accelerator is needed in the future.

We hope that scaling 2-simplicial Transformers could unlock significant improvements in downstream performance on reasoning-heavy tasks, helping to overcome the current limitations of pre-training scalability. Furthermore, we believe that developing a specialized and efficient implementation is key to fully unlocking the potential of this architecture.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints. *arXiv preprint arXiv:2305.13245*, 2023.
- Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021.
- Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural scaling laws. *Proceedings of the National Academy of Sciences*, 121(27):e2311878121, 2024.
- Leon Bergen, Timothy O'Donnell, and Dzmitry Bahdanau. Systematic generalization with edge transformers. *Advances in Neural Information Processing Systems*, 34:1390–1402, 2021.
- David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham Kakade. Loss-to-loss prediction: Scaling laws for all datasets. *arXiv preprint arXiv:2411.12925*, 2024.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Thomas F Burns and Tomoki Fukai. Simplicial hopfield networks. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=_QLsH8gatwx.
- James Clift, Dmitry Doryn, Daniel Murfet, and James Wallbridge. Logic and the 2-simplicial transformer, 2020. URL https://openreview.net/forum?id=rkecJ6VFvr.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness. *Advances in neural information processing systems*, 35: 16344–16359, 2022.
- Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transformers. *arXiv preprint arXiv:1807.03819*, 2018.
- Katie Everett. Observation on scaling laws, May 2025. URL https://x.com/_katieeverett/status/1925665335727808651. [Tweet].
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
- Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array programming with numpy. *Nature*, 585(7825):357–362, 2020.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.
- Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable, empirically. *arXiv preprint arXiv:1712.00409*, 2017.

- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
 - Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural networks using pipeline parallelism. *Advances in neural information processing systems*, 32, 2019.
 - Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. *Neural computation*, 6(2):181–214, 1994.
 - John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.
 - Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv* preprint arXiv:2001.08361, 2020.
 - Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are rnns: fast autoregressive transformers with linear attention. In *Proceedings of the 37th International Conference on Machine Learning*, ICML'20. JMLR.org, 2020.
 - Alexander Kozachinskiy, Felipe Urrutia, Hector Jimenez, Tomasz Steifer, Germán Pizarro, Matías Fuentes, Francisco Meza, Cristian B Calderon, and Cristóbal Rojas. Strassen attention: Unlocking compositional abilities in transformers based on a new lower bound method. *arXiv preprint arXiv:2501.19215*, 2025.
 - Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. *arXiv preprint arXiv:1711.05101*, 5:5, 2017.
 - Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: generalized pipeline parallelism for dnn training. In *Proceedings of the 27th ACM Symposium on Operating Systems Principles*, SOSP '19, pp. 1–15, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450368735. doi: 10.1145/3341301.3359646. URL https://doi.org/10.1145/3341301.3359646.
 - Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Image transformer. In *International conference on machine learning*, pp. 4055–4064. PMLR, 2018.
 - Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention with routing transformers. *Transactions of the Association for Computational Linguistics*, 9:53–68, 2021.
 - Aurko Roy, Rohan Anil, Guangda Lai, Benjamin Lee, Jeffrey Zhao, Shuyuan Zhang, Shibo Wang, Ye Zhang, Shen Wu, Rigel Swavely, et al. N-grammer: Augmenting transformers with latent n-grams. *arXiv preprint arXiv:2207.06366*, 2022.
 - Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of transformers. *Advances in Neural Information Processing Systems*, 36:36677–36707, 2023.
 - Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with latent thoughts: On the power of looped transformers. *arXiv preprint arXiv:2502.17416*, 2025.
 - Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv* preprint arXiv:1701.06538, 2017.
 - Xuyang Shen, Dong Li, Ruitao Leng, Zhen Qin, Weigao Sun, and Yiran Zhong. Scaling laws for linear complexity language models. *arXiv preprint arXiv:2406.16690*, 2024.

- David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching for efficient transformers for language modeling. *Advances in neural information processing systems*, 34:6010–6022, 2021.
- Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural scaling laws: beating power law scaling via data pruning. *Advances in Neural Information Processing Systems*, 35:19523–19536, 2022.
- Gilbert Strang. Introduction to linear algebra. SIAM, 2022.
- Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- Vladimir Vapnik. On the uniform convergence of relative frequencies of events to their probabilities. In *Doklady Akademii Nauk USSR*, volume 181, pp. 781–787, 1968.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems. In *Proceedings of the web conference 2021*, pp. 1785–1797, 2021.
- Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multitask language understanding benchmark. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
- Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are better at learning learning algorithms. *arXiv preprint arXiv:2311.12424*, 2023.
- Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively trainable sparse attention. *arXiv preprint arXiv:2502.11089*, 2025.
- Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences. *Advances in neural information processing systems*, 33:17283–17297, 2020.

A ROTATION INVARIANT TRILINEAR FORMS

A.1 Proof for Theorem 5.1

We define the embedding functions for the Query and Key vectors such that their interaction within the Sum-of-Determinants attention mechanism computes the Match3 function. To handle cases where no match exists, we use a 7-dimensional embedding where the 7th dimension acts as a selector for a "blank pair" option, a technique adapted from Match2 construction in Sanford et al. (2023).

The construction for regular token pairs is based on the mathematical identity:

$$\cos(\theta_1 + \theta_2 + \theta_3) = \det(M_1) + \det(-M_2), \tag{16}$$

where the matrices $M_1, M_2 \in \mathbb{R}^{3 \times 3}$ are defined as:

$$M_1 = \begin{pmatrix} \cos(\theta_1) & \sin(\theta_1) & 0 \\ \sin(\theta_2) & \cos(\theta_2) & 0 \\ 0 & 0 & \cos(\theta_3) \end{pmatrix}, \quad -M_2 = \begin{pmatrix} -\sin(\theta_1) & \cos(\theta_1) & 0 \\ -\sin(\theta_2) & -\cos(\theta_2) & 0 \\ 0 & 0 & -\sin(\theta_3) \end{pmatrix}$$

Let $\theta_k = \frac{2\pi x_k}{M}$. We define the 7-dimensional query vector \mathbf{q}_i and key vectors $\mathbf{k}_{j_1}, \mathbf{k}'_{j_2}$ via an input MLP ϕ and matrices Q, K, K'. Let c be a large scaling constant.

The 7-dimensional query vector $q_i = Q\phi(x_i)$ is defined as:

$$\mathbf{q}_i = (c\cos(\theta_i), c\sin(\theta_i), 0, -c\sin(\theta_i), c\cos(\theta_i), 0, c)$$

The key vectors $\mathbf{k}_{j_1} = K\phi(x_{j_1})$ and $\mathbf{k}'_{j_2} = K'\phi(x_{j_2})$ for regular tokens are defined as:

$$\mathbf{k}_{j_1} = (\sin(\theta_{j_1}), \cos(\theta_{j_1}), 0, -\sin(\theta_{j_1}), -\cos(\theta_{j_1}), 0, 0)$$
$$\mathbf{k}'_{j_2} = (0, 0, \cos(\theta_{j_2}), 0, 0, -\sin(\theta_{j_2}), 0)$$

The attention score is computed via a hybrid mechanism:

1. For regular pairs (j_1, j_2) , the score is the sum of determinants of two 3D chunks formed from the first 6 dimensions of the vectors. The 7th dimension of the keys is 0, so it is ignored in this term.

$$\begin{split} A_{i,j_1,j_2} &= \det(\boldsymbol{q}_i[:3], k_{j_1}[:3], \mathbf{k}'_{j_2}[:3]) + \det(\boldsymbol{q}_i[3:6], k_{j_1}[3:6], \mathbf{k}'_{j_2}[3:6]) \\ &= c \cdot (\det(M_1) + \det(-M_2)) \quad \text{(from (16))} \\ &= c \cdot \cos\left(\frac{2\pi(x_i + x_{j_1} + x_{j_2})}{M}\right) \quad \text{(since $\theta_i = 2\pi x_k/M$)}, \end{split}$$

where $q_i[l:l+m] = \{(q_i)_l, \dots, (q_i)_{l+m-1}\}$, denotes array slicing.

2. For the blank pair, the score is computed using the 7th dimension. It is the dot product of the query vector \mathbf{q}_i and a fixed key vector $\mathbf{k}_{blank} = (0, 0, 0, 0, 0, 0, 1)$:

$$A_{i,\text{blank}} = \mathbf{q}_i \cdot \mathbf{k}_{\text{blank}} = c$$

As a result, the attention score is maximized to a value of c if and only if $x_i + x_{j_1} + x_{j_2} = 0 \pmod{M}$. The blank pair also receives a score of c. For any non-matching triple, the score is strictly less than c.

The value vectors are defined by matrices V and V'.

- For any **regular token** x_j , we set its value embeddings to be $V\phi(x_j) = 1$ and $V'\phi(x_j) = 1$. The resulting value for the pair (j_1, j_2) in the final value matrix is their Kronecker product, which is 1.
- For the **blank pair**, the corresponding value is 0.

Let β_i be the number of pairs (j_1, j_2) that form a match with x_i . The softmax function distributes the attention weight almost exclusively among the entries with a score of c.

If no match exists (β_i = 0), the blank pair receives all the attention, and the output is ≈ 0 since its value is 0.

• If at least one match exists ($\beta_i \geq 1$), the attention is distributed among the β_i matching pairs and the 1 blank pair. The output of the attention layer will be approximately $\frac{\beta_i \cdot (1) + 1 \cdot (0)}{\beta_i + 1} = \frac{\beta_i}{\beta_i + 1}$.

The final step is to design an output MLP ψ such that $\psi(z) = 1$ if $z \ge 1/2$ and $\psi(z) = 0$ otherwise, which is straightforward to implement.

B BACKWARD PASS COMPUTATION

For completeness we provide the backwards pass terms explicitly. Note that each computation would need aggregation over three different dimension orderings.

$$dV_{jd} = \sum_{i,k} \left(A_{ijk} \cdot dO_{id} \cdot V'_{kd} \right) \tag{17}$$

$$dV'_{kd} = \sum_{i,j} (A_{ijk} \cdot dO_{id} \cdot V_{jd})$$
(18)

$$dP_{ijk} = \sum_{d} \left(dO_{id} \cdot V_{jd} \cdot V'_{kd} \right) \tag{19}$$

$$dS = d \operatorname{softmax}_{jk}(dP) \tag{20}$$

$$dK_{jd} = \sum_{i,k} (Q_{id} \cdot dS_{ijk} \cdot K'_{kd}) \tag{21}$$

$$dK'_{kd} = \sum_{i,k} (Q_{id} \cdot dS_{ijk} \cdot K_{jd})$$
(22)

$$dQ_{id} = \sum_{j,k} (dS_{ijk} \cdot K_{jd} \cdot K'_{kd}) \tag{23}$$

C TRITON KERNELS

We document here the forward and backward passes for the 2-simplicial attention mechanism. We will release the complete kernel on Github upon acceptance.

```
736
       @triton.autotune(
737
           configs=[
738
                Config(
739
                         "BLOCK_SIZE_Q": 64,
740
                         "BLOCK_SIZE_KV": 32,
741
                         "num_stages": 1,
742
                    },
743
                    num_warps=4,
744
                )
745
   11
           ],
           key=["HEAD_DIM"],
   12
746
    13
747
       @triton.jit
748
       def two_simplicial_attn_fwd_kernel(
749
           Q_ptr, # [b, s, k, h]
           K1_ptr, # [b, s, k, h]
750
751 18
           K2_ptr, # [b, s, k, h]
752 19
           V1_ptr,
                    # [b, s, k, h]
           V2_ptr, # [b, s, k, h]
753
           O_ptr,
                    # [b, s, k, h]
754 22
           M_ptr,
                    # [b, k, s]
755 23
           seq_len,
```

```
num_heads,
757 26
           head_dim,
758 27
           w1: tl.constexpr,
759 28
           w2: tl.constexpr,
760 29
           q_stride_b,
761 30
           q_stride_s,
   31
           q_stride_k,
762 32
           q_stride_h,
763 33
           k1_stride_b,
764 34
           k1_stride_s,
765 35
           k1_stride_k,
           k1_stride_h,
766 36
           k2_stride_b,
767 38
           k2_stride_s,
768 39
           k2_stride_k,
769 40
           k2_stride_h,
           v1_stride_b,
770 41
771 42
           v1_stride_s,
           v1_stride_k,
772 44
           v1_stride_h,
773 45
           v2_stride_b,
774 46
           v2_stride_s,
775 47
           v2_stride_k,
776 48
           v2_stride_h,
           out_stride_b,
   49
777 <sub>50</sub>
           out_stride_s,
778 51
           out_stride_k,
779 52
           out_stride_h,
780 53
           m_stride_b,
           m_stride_k,
781 54
           m_stride_s,
782 56
           BLOCK_SIZE_Q: tl.constexpr,
783 57
           BLOCK_SIZE_KV: tl.constexpr,
784 58
           HEAD_DIM: tl.constexpr,
           INPUT_PRECISION: tl.constexpr,
785 59
           SM_SCALE: tl.constexpr,
786 60
   61
           K2_BIAS: tl.constexpr,
787 62
           V2_BIAS: tl.constexpr,
788 63
           num_stages: tl.constexpr,
789 64
       ):
790 65
           data_dtype = tl.bfloat16
791 66
           compute_dtype = t1.float32
           gemm_dtype = tl.bfloat16
792 68
793 69
           q_start = tl.program_id(0) * BLOCK_SIZE_Q
794 70
           q_end = q_start + BLOCK_SIZE_Q
795 71
           bk = tl.program_id(1)
796 72
           offs_b = bk // num_heads
           offs_k = bk % num_heads
797 <sub>74</sub>
798 75
           qkv_offs_bk = offs_b * q_stride_b + offs_k * q_stride_k
799 76
800 77
           Q_ptr += qkv_offs_bk
801 78
           K1_ptr += qkv_offs_bk
           K2_ptr += qkv_offs_bk
802 <sub>80</sub>
           V1_ptr += qkv_offs_bk
803 81
           V2_ptr += qkv_offs_bk
           O_ptr += qkv_offs_bk
804 82
805 83
           M_ptr += offs_b * m_stride_b + offs_k * m_stride_k
806 84
           m_i = tl.zeros((BLOCK_SIZE_Q,), dtype=compute_dtype) - float("inf")
    85
807 86
           l_i = tl.zeros((BLOCK_SIZE_Q,), dtype=compute_dtype)
808 87
           acc = tl.zeros((BLOCK_SIZE_Q, HEAD_DIM), dtype=compute_dtype)
809 88
           q_offs_s = q_start + tl.arange(0, BLOCK_SIZE_Q)
```

```
810
            qkv_offs_h = tl.arange(0, HEAD_DIM)
811 <sub>91</sub>
            q_mask_s = q_offs_s < seq_len
812 92
            qkv_mask_h = qkv_offs_h < head_dim
813 93
            q_offs = q_offs_s[:, None] * q_stride_s + qkv_offs_h[None, :] *
                q_stride_h
814
815 94
            q_mask = q_mask_s[:, None] & (qkv_mask_h[None, :])
816 <sub>96</sub>
            q_tile = tl.load(Q_ptr + q_offs, mask=q_mask).to(
817 97
                compute_dtype
818 98
               # [BLOCK_SIZE_Q, HEAD_DIM]
819 99
            softmax_scale = tl.cast(SM_SCALE, gemm_dtype)
820 100
            for kv1_idx in tl.range(tl.maximum(0, q_start - w1), tl.minimum(
   101
821
                seq_len, q_end)):
822 102
                 k1_offs = kv1_idx * k1_stride_s + qkv_offs_h * k1_stride_h
823 103
                 k1_tile = (tl.load(K1_ptr + k1_offs, mask=qkv_mask_h).to(
                     compute_dtype))[
824
                     None, :
825 104
   105
                 ] # [1, HEAD_DIM]
826 106
                 qk1 = q_tile * k1_tile # [BLOCK_SIZE_Q, HEAD_DIM]
827 <sub>107</sub>
                 qk1 = qk1.to(gemm_dtype)
828 108
829 109
                 v1_offs = kv1_idx * v1_stride_s + qkv_offs_h * v1_stride_h
830 <sup>110</sup>
                 v1_tile = (t1.load(V1_ptr + v1_offs, mask=qkv_mask_h).to(
                     compute_dtype))[
831 <sub>111</sub>
                     None.:
832 112
                 ] # [1, HEAD_DIM]
833 113
                 for kv2_idx in tl.range(
834 114
                     tl.maximum(0, q_start - w2),
835 <sup>115</sup>
                     tl.minimum(seq_len, q_end),
   116
836 <sub>117</sub>
                     BLOCK_SIZE_KV,
837 118
                     num_stages=num_stages,
                 ):
838 119
                     kv2_offs_s = kv2_idx + tl.arange(0, BLOCK_SIZE_KV)
839 120
840 121
                      kv2_mask_s = kv2_offs_s < seq_len
                      k2t_mask = kv2_mask_s[None, :] & qkv_mask_h[:, None]
841
                     v2_mask = kv2_mask_s[:, None] & qkv_mask_h[None, :]
842 <sub>124</sub>
                     k2\_offs = (
843 125
                          kv2_offs_s[None, :] * k2_stride_s + qkv_offs_h[:, None] *
                               k2_stride_h
844
845 126
846 128
   127
                     v2 \text{ offs} = (
                          kv2_offs_s[:, None] * v2_stride_s + qkv_offs_h[None, :] *
847
                               v2_stride_h
848 129
                     k2t\_tile = t1.load(K2\_ptr + k2\_offs, mask=k2t\_mask).to(
849 130
850 <sup>131</sup>
                         compute_dtype
                       # [HEAD_DIM, BLOCK_SIZE_KV]
   132
851 <sub>133</sub>
                      v2_tile = tl.load(V2_ptr + v2_offs, mask=v2_mask).to(
852 134
                         compute_dtype
853 135
                        # [BLOCK_SIZE_KV, HEAD_DIM]
854 <sup>136</sup>
                      k2t_tile += K2_BIAS
855 137
                      v2_tile += V2_BIAS
                     k2t_tile = k2t_tile.to(gemm_dtype)
   138
856 <sub>139</sub>
                     v2_tile = v2_tile.to(compute_dtype)
857 <sub>140</sub>
                     qk = tl.dot(
858 141
859 142
                          qk1 * softmax_scale,
860 <sup>143</sup>
                          k2t_tile,
                          input_precision="tf32", # INPUT_PRECISION,
   144
861 <sub>145</sub>
                          out_dtype=tl.float32,
862 <sub>146</sub>
                      ) # [BLOCK_SIZE_Q, BLOCK_SIZE_KV]
863 147
                     qk_mask = q_mask_s[:, None] & kv2_mask_s[None, :]
   148
```

```
864 149
                      # Mask for q_idx - w1 < kv1_idx <= q_idx
865 150
                      \# and q_idx - w2 < kv2_offs_s <= <math>q_idx
866 151
                      kv1\_local\_mask = ((q\_offs\_s[:, None] - w1) < kv1\_idx) & (
867 152
                           kv1_idx <= q_offs_s[:, None]</pre>
868 153
869 154
                      kv2_local_mask = ((q_offs_s[:, None] - w2) < kv2_offs_s[None,</pre>
                           :]) & (
870 <sub>155</sub>
                           kv2_offs_s[None, :] <= q_offs_s[:, None]</pre>
871 156
872 157
                      qk_mask &= kv1_local_mask & kv2_local_mask
                      qk += tl.where(qk_mask, 0, -1.0e38)
873 158
874 159
                      m_{ij} = tl.maximum(m_{i}, tl.max(qk, 1))
   160
875 161
                      p = tl.math.exp(qk - m_ij[:, None])
876 162
                      l_{ij} = tl.sum(p, 1)
877 163
                      alpha = tl.math.exp(m_i - m_ij)
                      l_i = l_i * alpha + l_ij
878 164
879 165
                      acc = acc * alpha[:, None]
   166
880 167
                      v12_tile = v1_tile * v2_tile # [BLOCK_SIZE_KV, HEAD_DIM]
881 168
                      acc += tl.dot(
882 169
                           p.to(gemm_dtype),
883 <sup>170</sup>
                           v12_tile.to(gemm_dtype),
                           input_precision="ieee", # INPUT_PRECISION,
884 <sup>171</sup>
   172
                           out_dtype=t1.float32,
885 173
886 <sub>174</sub>
887 175
                      m_i = m_{ij}
            acc = acc / l_i[:, None]
888 176
889 177
            acc = tl.where(q_mask, acc, 0.0)
890 <sub>179</sub>
            acc = acc.to(data_dtype)
891 <sub>180</sub>
            out_offs = q_offs_s[:, None] * out_stride_s + qkv_offs_h[None, :] *
892
                 out_stride_h
            tl.store(O_ptr + out_offs, acc, mask=q_mask)
893 181
894 <sup>182</sup>
            m = m_i + tl.log(l_i)
   183
895 184
896 185
            m_offs = q_offs_s * m_stride_s
            m_mask = q_offs_s < seq_len</pre>
897 186
            tl.store(M_ptr + m_offs, m, mask=m_mask)
898 <sup>187</sup>
```

Listing 1: Forward pass for 2-simplicial attention.

D TRITON KERNEL: BACKWARD PASS FOR 2-SIMPLICIAL ATTENTION

899

900901902

```
904
       @triton.jit
905
       def two_simplicial_attn_bwd_kv1_kernel(
906 <sub>3</sub>
           Q_ptr, # [b, s, k, h]
           K1_ptr, # [b, s, k, h]
907 4
                    # [b, s, k, h]
           K2_ptr,
908 5
           V1_ptr,
                    # [b, s, k, h]
909
           V2_ptr,
                     #
                        [b, s, k, h]
910
           dO_ptr, # [b, s, k, h]
911 9
           M_ptr, # [b, k, s]
           D_ptr, # [b, k, s]
912 10
913 11
           dQ_ptr, # [b, s, k, h]
914 12
           dK1_ptr, # [b, s, k, h]
           dV1_ptr, # [b, s, k, h]
   13
915 14
            # Skip writing dk2, dv2 for now.
916 <sub>15</sub>
           bs,
917 16
           seq_len,
           num_heads,
    17
```

```
918
            head_dim,
919
            w1, # Q[i]: KV1(i-w1,i]
   19
920 20
            w2, # Q[i]: KV2(i-w2,i]
921 21
            q_stride_b,
922 22
            q_stride_s,
923 23
            q_stride_k,
            q_stride_h,
924
    25
            k1_stride_b,
925 26
            k1_stride_s,
926 27
            k1_stride_k,
927 28
            k1_stride_h,
            k2_stride_b,
928 <sup>29</sup>
            k2_stride_s,
929 31
            k2_stride_k,
930 32
            k2_stride_h,
931 33
            v1_stride_b,
            v1_stride_s,
932 34
            v1_stride_k,
933 35
            v1_stride_h,
934 37
            v2_stride_b,
935 38
           v2_stride_s,
936 39
            v2_stride_k,
937 40
            v2_stride_h,
938 41
            d0_stride_b,
           dO_stride_s,
    42
939
   43
            d0_stride_k,
940 44
            dO_stride_h,
941 45
            m_stride_b,
            m_stride_k,
942 46
            m_stride_s,
943 47
            d_stride_b,
944 49
            d_stride_k,
945 50
            d_stride_s,
946 51
            dq_stride_b,
            dq_stride_s,
947 52
948 53
            dq_stride_k,
            dq_stride_h,
949 55
            dk1_stride_b,
950 56
            dk1_stride_s,
            dk1_stride_k,
951 57
952 58
            dk1_stride_h,
953 <sup>59</sup>
            dv1_stride_b,
            dv1_stride_s,
954 61
            dv1_stride_k,
955 62
            dv1_stride_h,
            BLOCK_SIZE_Q: tl.constexpr,
956 63
            BLOCK_SIZE_KV: tl.constexpr,
957 64
958 65
            HEAD_DIM: tl.constexpr,
            SM_SCALE: tl.constexpr,
959 67
            K2_BIAS: tl.constexpr,
960 68
            V2_BIAS: tl.constexpr,
961 69
            COMPUTE_DQ: tl.constexpr,
962 70
            num_stages: tl.constexpr,
    71
            is_flipped: tl.constexpr,
963
964 73
            data_dtype = tl.bfloat16
965 <sub>74</sub>
            compute_dtype = t1.float32
            gemm_dtype = tl.bfloat16
966 75
967 76
            kv1_start = tl.program_id(0) * BLOCK_SIZE_KV
968
            kv1_end = kv1_start + BLOCK_SIZE_KV
969
            bk = tl.program_id(1)
970 80
            offs_b = bk // num_heads
            offs_k = bk % num_heads
971 81
```

```
qkv_offs_bk = offs_b * q_stride_b + offs_k * q_stride_k
973 84
            Q_ptr += qkv_offs_bk
974 85
            K1_ptr += qkv_offs_bk
975 86
            K2_ptr += qkv_offs_bk
            V1_ptr += qkv_offs_bk
976 87
977 88
            V2_ptr += qkv_offs_bk
978 <sub>90</sub>
            \label{eq:control_double_double} \mbox{d0\_ptr} \ += \ \mbox{offs\_b} \ * \ \mbox{d0\_stride\_b} \ + \ \mbox{offs\_k} \ * \ \mbox{d0\_stride\_k}
979 91
            M_ptr += offs_b * m_stride_b + offs_k * m_stride_k
980 92
            D_ptr += offs_b * d_stride_b + offs_k * d_stride_k
981 93
            dK1_ptr += offs_b * dk1_stride_b + offs_k * dk1_stride_k
            dV1_ptr += offs_b * dv1_stride_b + offs_k * dv1_stride_k
982 94
            if COMPUTE_DQ:
983 96
                 dQ_ptr += offs_b * dq_stride_b + offs_k * dq_stride_k
984 97
            softmax_scale = tl.cast(SM_SCALE, gemm_dtype)
985 98
            qkv_offs_h = tl.arange(0, HEAD_DIM)
986 99
987 100
            qkv_mask_h = qkv_offs_h < head_dim
   101
988 102
            kv1_offs_s = kv1_start + tl.arange(0, BLOCK_SIZE_KV)
989 <sub>103</sub>
990 104
            k1_offs = kv1_offs_s[:, None] * k1_stride_s + qkv_offs_h[None, :] *
                k1 stride h
991
992 <sup>105</sup>
            kv1_mask_s = kv1_offs_s < seq_len
            kv1_mask = kv1_mask_s[:, None] & qkv_mask_h[None, :]
   106
993 <sub>107</sub>
            k1_tile = tl.load(K1_ptr + k1_offs, mask=kv1_mask).to(
994 108
                compute_dtype
995 109
               # [BLOCK_SIZE_KV, HEAD_DIM]
            v1_offs = kv1_offs_s[:, None] * v1_stride_s + qkv_offs_h[None, :] *
996 110
                v1_stride_h
997
            v1_tile = t1.load(V1_ptr + v1_offs, mask=kv1_mask).to(
998 <sub>112</sub>
                compute_dtype
999 113
              # [BLOCK_SIZE_KV, HEAD_DIM]
            if is_flipped:
100014
                k1_tile += K2_BIAS
1001115
1002<sup>116</sup>
                 v1_tile += V2_BIAS
            dv1 = tl.zeros((BLOCK_SIZE_KV, HEAD_DIM), compute_dtype)
1003
            dk1 = tl.zeros((BLOCK_SIZE_KV, HEAD_DIM), compute_dtype)
1004119
            # for kv2_idx in tl.range(0, seq_len):
            # kv1 - w2 < kv2 <= kv1 + w1
1005120
            for kv2_idx in tl.range(
1006<sup>121</sup>
1007<sup>122</sup>
                 tl.maximum(0, kv1_start - w2), tl.minimum(seq_len, kv1_end + w1)
            ):
1008
                 k2_offs = kv2_idx * k2_stride_s + qkv_offs_h * k2_stride_h
1009125
                 k2_tile = (tl.load(K2_ptr + k2_offs, mask=qkv_mask_h).to(
1010
                     compute_dtype))[
                     None, :
1011126
{\bf 1012}^{\!127}
                 ] # [1, HEAD_DIM]
                 v2_offs = kv2_idx * v2_stride_s + qkv_offs_h * v2_stride_h
1013<sub>129</sub>
                 v2_tile = (tl.load(V2_ptr + v2_offs, mask=qkv_mask_h).to(
1014
                     compute_dtype))[
                     None, :
101530
                   # [1, HEAD_DIM]
1016<sup>131</sup>
1017 132
                 if not is_flipped:
                     k2_tile += K2_BIAS
1018
                     v2_tile += V2_BIAS
1019<sub>35</sub>
                k1k2 = k1_tile * k2_tile # [BLOCK_SIZE_KV, HEAD_DIM]
                 v1v2 = v1_tile * v2_tile # [BLOCK_SIZE_KV, HEAD_DIM]
102036
                 k1k2 = k1k2.to(gemm_dtype)
1021137
1022<sup>138</sup>
                v1v2 = v1v2.to(gemm_dtype)
    139
                 \# kv1 \le q \le kv1 + w1
1023
                 \# kv2 \le q \le kv2 + w2
1024<sub>141</sub>
                 q_start = tl.maximum(kv1_start, kv2_idx)
1025142
                 q_end = tl.minimum(seq_len, tl.minimum(kv1_end + w1, kv2_idx + w2
                    ))
```

```
1026 143
                 for q_idx in tl.range(q_start, q_end, BLOCK_SIZE_Q):
1027
                      # Load qt, m, d, d0
102845
                     q_offs_s = q_idx + tl.arange(0, BLOCK_SIZE_Q)
102946
                     q_offs = q_offs_s[None, :] * q_stride_s + qkv_offs_h[:, None]
                           * q_stride_h
1030
1031<sup>147</sup>
                     q_mask_s = q_offs_s < seq_len
                     qt_mask = q_mask_s[None, :] & qkv_mask_h[:, None]
1032
                     qt_tile = tl.load(Q_ptr + q_offs, mask=qt_mask).to(
1033<sub>150</sub>
                          gemm_dtype
1034151
                     ) # [HEAD_DIM, BLOCK_SIZE_Q]
1035152
                     m_offs = q_offs_s * m_stride_s
                     m_tile = tl.load(M_ptr + m_offs, mask=q_mask_s).to(
1036<sup>153</sup>
                          compute_dtype) [
1037
                          None, :
1038155
                     ] # [1, BLOCK_SIZE_Q]
1039156
                     d_offs = q_offs_s * d_stride_s
                     d_tile = tl.load(D_ptr + d_offs, mask=q_mask_s).to(
1040157
                          compute_dtype) [
1041 158
                          None, :
1042
                      ] # [1, BLOCK_SIZE_Q]
1043<sub>160</sub>
                     dO_offs = (
1044161
                          q_offs_s[:, None] * dO_stride_s + qkv_offs_h[None, :] *
                               dO stride h
1045
1046<sup>162</sup>
                     dO_tile = tl.load(
   163
1047
                          dO_ptr + dO_offs, mask=q_mask_s[:, None] & qkv_mask_h[
1048
                              None, :]
104965
                      ).to(compute_dtype) # [BLOCK_SIZE_Q, HEAD_DIM]
                     if COMPUTE_DQ:
1050<sup>166</sup>
                          dq = tl.zeros((BLOCK_SIZE_Q, HEAD_DIM), tl.float32)
1051<sup>167</sup>
                      # Compute dv1.
1052<sub>169</sub>
                      \# [KV, D] @ [D, Q] => [KV, Q]
1053<sub>170</sub>
                     qkkT = tl.dot(
1054171
                          k1k2, qt_tile * softmax_scale, out_dtype=t1.float32
                        # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]
1055<sup>172</sup>
1056<sup>173</sup>
1050
174
1057<sub>175</sub>
                      # Mask qkkT to -inf.
                     kv1_local_mask = ((q_offs_s[None, :] - w1) < kv1_offs_s[:,</pre>
1058
                          None]) & (
                          kv1_offs_s[:, None] <= q_offs_s[None, :]</pre>
1059176
1060^{177}
                     kv2\_local\_mask = ((q\_offs\_s - w2) < kv2\_idx) & (kv2\_idx <=
1061<sup>178</sup>
                         q_offs_s)
1062<sub>179</sub>
                      local_mask = (
1063<sub>180</sub>
                          kv1_local_mask & kv2_local_mask[None, :]
                        # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]
106481
                     qkkT = tl.where(local_mask, qkkT, -1.0e38)
1065<sup>182</sup>
1066<sup>183</sup>
                     pT = tl.exp(qkkT - m_tile) # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]
1067
                     pT = tl.where(local_mask, pT, 0.0)
1068 86
                     dOv2 = dO_tile * v2_tile # [BLOCK_SIZE_Q, HEAD_DIM]
106987
                     dv1 += tl.dot(
                          pT.to(gemm_dtype), dOv2.to(gemm_dtype), out_dtype=t1.
1070^{188}
1071
                     ) # [BLOCK_SIZE_KV, HEAD_DIM]
1072<sub>190</sub>
1073191
                     dpT = tl.dot(
                          v1v2, tl.trans(d0_tile.to(gemm_dtype)), out_dtype=tl.
1074192
                               float32
1075
                     ) # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]
1076<sup>193</sup>
                     dsT = pT * (dpT - d_tile) # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]
   194
1077<sub>195</sub>
                     dsT = tl.where(local_mask, dsT, 0.0)
1078<sub>196</sub>
                     dsT = dsT.to(gemm_dtype)
1079197
                     dk1 += (
   198
```

```
1080
.199
                         t1.dot(dsT, t1.trans(qt_tile), out_dtype=t1.float32)
1081,200
                         * k2_tile.to(t1.float32)
1082201
                         * softmax_scale
1083202
                     if COMPUTE DO:
1084<sup>203</sup>
                         \# dq[q, d] = dsT.T[q, kv1] @ k1k2[kv1, d]
1085 204
                         dq += (
1086 206
                             t1.dot(t1.trans(dsT), k1k2, out_dtype=t1.float32) *
1087
                                 softmax_scale
1088207
                         ) # [BLOCK_SIZE_Q, HEAD_DIM]
1089208
                         dq_offs = (
                             q_offs_s[:, None] * dq_stride_s + qkv_offs_h[None, :]
1090209
                                   * dq_stride_h
1091210
109211
                         tl.atomic_add(
1093212
                              dQ_ptr + dq_offs, dq, mask=q_mask_s[:, None] &
                                  qkv_mask_h[None, :]
1094
1095<sup>213</sup>
1096
            dv1_offs = kv1_offs_s[:, None] * dv1_stride_s + qkv_offs_h[None, :] *
                 dv1 stride h
1097215
            dk1_offs = kv1_offs_s[:, None] * dk1_stride_s + qkv_offs_h[None, :] *
1098
                 dk1_stride_h
            tl.store(dV1_ptr + dv1_offs, dv1.to(data_dtype), mask=kv1_mask)
1099216
            t1.store(dK1_ptr + dk1_offs, dk1.to(data_dtype), mask=kv1_mask)
1100<sup>217</sup>
```

Listing 2: Backward pass for 2-simplicial attention.

```
1102
1103 1
         @triton.autotune(
              configs=[
1104 2
                   Config(
1105 <sup>3</sup>
                         {
1106 <sub>5</sub>
                              "BLOCK_SIZE_Q": 32,
1107 <sub>6</sub>
                              "BLOCK_SIZE_KV2": 64,
1108 7
                              "num_stages": 1,
                         },
1109 8
                         num_warps=4,
1110 9
1111 11
1112<sub>12</sub>
              key=["HEAD_DIM"],
1113 13
1114 <sup>14</sup>
        @triton.jit
1115 15
        def two_simplicial_attn_bwd_kv2q_kernel(
1116 16 17
              Q_ptr, # [b, s, k, h]
              K1_ptr, # [b, s, k, h]
1117<sub>18</sub>
              K2_ptr,
                         # [b, s, k, h]
1118 19
                         # [b, s, k, h]
              V1_ptr,
1119<sup>20</sup>
              V2_ptr,
                          # [b, s, k, h]
1120 <sup>21</sup>
              dO_ptr, # [b, s, k, h]
              M_ptr, # [b, k, s]
1121 22
1121 23
              D_ptr, # [b, k, s]
1122<sub>24</sub>
              dQ_ptr, # [b, s, k, h]
              dK2_ptr, # [b, s, k, h]
1123 25
              dV2_ptr, # [b, s, k, h]
1124 <sup>26</sup>
1125 <sup>27</sup>
              bs,
1126 28
1126 29
              seq_len,
              num_heads,
1127<sub>30</sub>
              head_dim,
              w1, # Q[i]: KV1(i-w1,i]
1128 31
              w2, # Q[i]: KV2(i-w2,i]
1129 32
              q_stride_b,
1130<sup>33</sup>
1131 34
1131 35
              q_stride_s,
              q_stride_k,
1132<sub>36</sub>
              q_stride_h,
1133 37
              k1_stride_b,
              k1_stride_s,
```

```
1134 39
             k1_stride_k,
1135 40
             k1_stride_h,
1136 41
             k2_stride_b,
1137 42
             k2 stride s.
             k2_stride_k,
1138 <sup>43</sup>
1139 44
             k2_stride_h,
             v1_stride_b,
1140 46
             v1_stride_s,
1141_{\,47}
             v1_stride_k,
1142 48
             v1_stride_h,
             v2_stride_b,
1143<sup>49</sup>
             v2_stride_s,
1144 50
             v2_stride_k,
1145 52
             v2_stride_h,
1146 <sub>53</sub>
             d0_stride_b,
             d0_stride_s,
1147 54
             d0_stride_k,
1148 55
             dO_stride_h,
1149 56
1150 <sub>58</sub>
             m_stride_b,
             m_stride_k,
1151 59
             m_stride_s,
115260
             d_stride_b,
             d_stride_k,
1153 61
             d_stride_s,
1154 62
             dq_stride_b,
    63
1155 <sub>64</sub>
             dq_stride_s,
1156<sub>65</sub>
             dq_stride_k,
115766
             dq_stride_h,
             dk2_stride_b,
1158<sup>67</sup>
1159 <sup>68</sup>
             dk2_stride_s,
             dk2_stride_k,
1160<sub>70</sub>
             dk2_stride_h,
1161<sub>71</sub>
             dv2_stride_b,
             dv2_stride_s,
116272
             dv2_stride_k,
1163 <sup>73</sup>
1164 74
             dv2_stride_h,
             BLOCK_SIZE_Q: tl.constexpr,
1165 76
             BLOCK_SIZE_KV2: tl.constexpr,
1166 77
             HEAD_DIM: tl.constexpr,
             SM_SCALE: tl.constexpr,
116778
             K2_BIAS: tl.constexpr,
1168 <sup>79</sup>
             V2_BIAS: tl.constexpr,
1169<sup>80</sup>
             num_stages: tl.constexpr,
1170 82
             IS_SECOND_PASS: tl.constexpr,
1171<sub>83</sub>
        ):
             assert BLOCK_SIZE_KV2 == BLOCK_SIZE_Q + w2
117284
             data_dtype = tl.bfloat16
1173 85
1174 86 87
             compute_dtype = t1.float32
             gemm_dtype = tl.bfloat16
1175 88
1176 89
             # First pass does even tiles, second pass does odd tiles.
1177 90
             q_start = tl.program_id(0) * BLOCK_SIZE_KV2
             if IS_SECOND_PASS:
1178 91
1179 92
                  q_start += BLOCK_SIZE_Q
             q_end = q_start + BLOCK_SIZE_Q
1180 94
             kv2\_start = q\_start - w2
1181<sub>95</sub>
             bk = tl.program_id(1)
118296
1183 97
             offs_b = bk // num_heads
1184 <sup>98</sup> <sub>99</sub>
             offs_k = bk % num_heads
1185
             qkv_offs_bk = offs_b * q_stride_b + offs_k * q_stride_k
1186<sub>101</sub>
             Q_ptr += qkv_offs_bk
             K1_ptr += qkv_offs_bk
1187102
             K2_ptr += qkv_offs_bk
   103
```

```
1188
104
            V1_ptr += qkv_offs_bk
1189<sub>105</sub>
            V2_ptr += qkv_offs_bk
1190106
119107
            d0_ptr += offs_b * d0_stride_b + offs_k * d0_stride_k
1192<sup>108</sup>
            M_ptr += offs_b * m_stride_b + offs_k * m_stride_k
            D_ptr += offs_b * d_stride_b + offs_k * d_stride_k
1193109
            \label{eq:dQptr} \mbox{dQ\_ptr} \ += \ \mbox{offs\_b} \ * \ \mbox{dq\_stride\_b} \ + \ \mbox{offs\_k} \ * \ \mbox{dq\_stride\_k}
1194
            \label{eq:dk2_ptr} d\texttt{K2\_ptr} ~+=~ \texttt{offs\_b} ~\star~ d\texttt{k2\_stride\_b} ~+~ \texttt{offs\_k} ~\star~ d\texttt{k2\_stride\_k}
1195<sub>112</sub>
            dV2_ptr += offs_b * dv2_stride_b + offs_k * dv2_stride_k
119613
             softmax_scale = tl.cast(SM_SCALE, gemm_dtype)
1197114
1198<sup>115</sup>
            qkv_offs_h = tl.arange(0, HEAD_DIM)
            qkv_{mask_h} = qkv_{offs_h} < head_dim
1199
1200,18
            q_offs_s = q_start + tl.arange(0, BLOCK_SIZE_Q)
1201119
            kv2_offs_s = kv2_start + tl.arange(0, BLOCK_SIZE_KV2)
            q_offs = q_offs_s[:, None] * q_stride_s + qkv_offs_h[None, :] *
1202<sup>120</sup>
                 q_stride_h
1203
             kv2_offs = kv2_offs_s[:, None] * k2_stride_s + qkv_offs_h[None, :] *
1204
                 k2_stride_h
1205<sub>122</sub>
            m_offs = q_offs_s * m_stride_s
120623
             d_offs = q_offs_s * d_stride_s
             dO_offs = q_offs_s[:, None] * dO_stride_s + qkv_offs_h[None, :] *
1207124
                 d0_stride_h
1208
            q_mask_s = q_offs_s < seq_len
1209
            q_mask = q_mask_s[:, None] & qkv_mask_h[None, :]
1210<sub>127</sub>
             kv2_mask_s = 0 <= kv2_offs_s and kv2_offs_s < seq_len</pre>
1211128
            kv2_mask = kv2_mask_s[:, None] & qkv_mask_h[None, :]
1212129
1213<sup>130</sup>
            q_tile = tl.load(Q_ptr + q_offs, mask=q_mask).to(
1214<sub>132</sub>
                 compute_dtype
1215<sub>133</sub>
               # [BLOCK_SIZE_Q, HEAD_DIM]
            k2_tile = t1.load(K2_ptr + kv2_offs, mask=kv2_mask).to(gemm_dtype) #
121634
                 [KV2, HEAD_DIM]
1217
             v2_tile = t1.load(V2_ptr + kv2_offs, mask=kv2_mask).to(gemm_dtype) #
1218<sup>135</sup>
                 [KV2, HEAD_DIM]
1219<sub>136</sub>
            m_tile = tl.load(M_ptr + m_offs, mask=q_mask_s).to(compute_dtype) # [
1220
                 BLOCK_SIZE_Q1
1221137
             d_tile = tl.load(D_ptr + d_offs, mask=q_mask_s).to(compute_dtype) # [
                 BLOCK_SIZE_Q]
1222
1223<sup>138</sup>
             dO_tile = tl.load(dO_ptr + dO_offs, mask=q_mask).to(
    139
                 gemm_dtype
1224
             # [BLOCK_SIZE_Q, HEAD_DIM]
1225,41
             # Apply KV2 norm.
122642
            k2_tile += K2_BIAS
1227<sup>143</sup>
            v2_tile += V2_BIAS
1228<sup>144</sup>
            k2_tile = k2_tile.to(gemm_dtype)
1229<sub>146</sub>
            v2_tile = v2_tile.to(gemm_dtype)
1230,47
            dq = tl.zeros((BLOCK_SIZE_Q, HEAD_DIM), tl.float32)
1231148
            dk2 = tl.zeros((BLOCK_SIZE_KV2, HEAD_DIM), tl.float32)
1232<sup>149</sup>
1233<sup>150</sup>
            dv2 = tl.zeros((BLOCK_SIZE_KV2, HEAD_DIM), tl.float32)
1234
            kv1_start = tl.maximum(0, q_start - w1)
1235<sub>153</sub>
            kv1_end = tl.minimum(seq_len, q_end)
             for kv1_idx in tl.range(kv1_start, kv1_end, num_stages=num_stages):
123654
1237<sup>155</sup>
                 kl_offs = kvl_idx * kl_stride_s + qkv_offs_h * kl_stride_h
1238<sup>156</sup>
                 v1_offs = kv1_idx * v1_stride_s + qkv_offs_h * v1_stride_h
                 k1_tile = tl.load(K1_ptr + k1_offs, mask=qkv_mask_h).to(
1239<sub>158</sub>
                      compute_dtype
1240,59
                   # [HEAD_DIM]
1241160
                 v1_tile = t1.load(V1_ptr + v1_offs, mask=qkv_mask_h).to(
   161
```

```
1242
                        compute_dtype
1243<sub>163</sub>
                  ) # [HEAD_DIM]
124464
                  qk1_s = q_{tile} * (k1_{tile}[None, :] * softmax_scale) # [Q, D]
1245 65
                  qk1_s = qk1_s.to(qemm_dtype)
1246<sup>166</sup>
1247.
                  \# k2[KV, Q] @ qk1_s.T[Q, D] => [KV2, Q]
                  qkkT = tl.dot(k2_tile, qk1_s.T, out_dtype=tl.float32) # [KV2, Q]
1248 69
1249 70
                  qkT_mask = kv2_mask_s[:, None] & q_mask_s[None, :]
125071
                  kv1\_local\_mask = ((q\_offs\_s[None, :] - w1) < kv1\_idx) & (
1251<sup>172</sup>
                       kv1_idx <= q_offs_s[None, :]</pre>
                    # [KV2, Q]
1252<sup>173</sup>
                  kv2_local_mask = ((q_offs_s[None, :] - w2) < kv2_offs_s[:, None])</pre>
1253
1254<sub>175</sub>
                       kv2_offs_s[:, None] <= q_offs_s[None, :]</pre>
                  ) # [KV2, Q]
125576
                  local_mask = (
1256<sup>177</sup>
1257<sup>178</sup><sub>179</sub>
                       kv1_local_mask & kv2_local_mask
                  ) # [BLOCK_SIZE_KV, BLOCK_SIZE_Q]
1258<sub>180</sub>
                  qkT_mask &= kv1_local_mask & kv2_local_mask
1259<sub>81</sub>
                  pT = tl.exp(qkkT - m_tile[None, :]) # [KV2, Q]
126082
                  pT = tl.where(qkT_mask, pT, 0.0)
1261<sup>183</sup>
1262<sup>184</sup><sub>185</sub>
                  qkkT = tl.where(local_mask, qkkT, -1.0e38)
1263
1264<sub>87</sub>
                  dOv1 = dO\_tile * v1\_tile[None, :] # [Q, D]
126588
                  dOv1 = dOv1.to(gemm_dtype)
                  # pT[KV2, Q] @ dOv1[Q, D] => [KV2, D]
1266<sup>189</sup>
                  dv2 += tl.dot(pT.to(gemm_dtype), dOv1, out_dtype=tl.float32)
1267<sub>191</sub>
1268<sub>192</sub>
                  \# v2[KV2, D] @ dOv1.T[D, Q] \Rightarrow dpT[KV2, Q]
1269<sub>93</sub>
                  dpT = t1.dot(v2_tile, d0v1.T, out_dtype=t1.float32)
                  dsT = pT * (dpT - d\_tile[None, :]) # [KV2, Q]
1270194
                  dsT = tl.where(qkT_mask, dsT, 0.0)
1271<sup>195</sup>
1272<sup>196</sup><sub>197</sub>
                  dsT = dsT.to(gemm_dtype) # [KV2, Q]
1273<sub>198</sub>
                  \# dsT[KV2, Q] @ qk1[Q, D] => dk2[KV2, D]
1274199
                  dk2 += tl.dot(dsT, qk1_s, out_dtype=tl.float32)
1275200
                  k1k2 = k1\_tile[None, :] * k2\_tile # [KV2, D]
1276<sup>201</sup>
1277
202
203
                  k1k2 = k1k2.to(gemm_dtype)
1278<sub>204</sub>
                  dq += tl.dot(dsT.T, k1k2) # * softmax scale at the end.
1279<sub>05</sub>
             # End. update derivatives.
1280206
             if IS_SECOND_PASS:
1281<sup>207</sup>
1282<sup>208</sup><sub>209</sub>
                  #load, add.
                  prev_dk2 = tl.load(dK2_ptr + kv2_offs, kv2_mask)
1283<sub>210</sub>
                  prev_dv2 = tl.load(dV2_ptr + kv2_offs, kv2_mask)
1284<sub>211</sub>
                  dk2 += prev_dk2
                  dv2 += prev_dv2
128512
1286<sup>213</sup>
1287
214
215
             dq *= softmax_scale
             tl.store(dK2_ptr + kv2_offs, dk2, kv2_mask)
1288<sub>216</sub>
             tl.store(dV2_ptr + kv2_offs, dv2, kv2_mask)
1289217
             tl.store(dQ_ptr + q_offs, dq, q_mask)
1290
```

Listing 3: Backward pass for 2-simplicial attention optimized for small w_2 avoiding atomic adds.

Figure 4: Scheduling Flow of TLX Kernel-3

TLX (TRITON LOW-LEVEL LANGUAGE EXTENSIONS): FORWARD PASS FOR 2-SIMPLICIAL ATTENTION

Despite implementing all the kernel optimizations mentioned above, our Triton kernel implementation remained significantly below state-of-the-art performance. Our best forward attention kernel achieved only 336 Tensor Core TFLOPS with 34% Tensor Core utilization.

Analysis of the generated PTX code revealed that several important GPU optimization passes failed to work with the kernel, including software pipelining and warp specialization.

To rapidly integrate modern attention optimization techniques on Hopper, we rewrote the kernel using TLX (Triton Low-level Language Extensions), described in Figure 4. We developed three distinct versions:

- **Kernel-1**: Forward + Warp Specialization, described in Algorithm 3
- **Kernel-2**: Forward + Warp Specialization + Computation Pipelining
- **Kernel-3**: Forward + Warp Specialization + Pingpong Scheduling

The benchmark results show that the TLX kernel can achieve up to 588 TFLOPS peak performance with BFloat16 for the forward pass, with approximately 60% BFloat16 Tensor Core utilization, which is approximately $1.75 \times$ that of the Triton forward pass.

```
1351
1352
          Algorithm 3 Fast 2-Simplicial Attention Forward Pass with Warp Specialization
1353
1354
          Require: Tensors Q_i \in \mathbb{R}^{B_r \times d} and K_1, K_2, V_1, V_2 \in \mathbb{R}^{N \times d}
          Require: Output O_i \in \mathbb{R}^{B_r \times d}
1355
1356
          Require: Sliding window size for K_1, V_1 is w_1 and for K_2, V_2 is w_2
1357
          Require: Number of circular K_2, V_2 SMEM buffers is num_buffers
1358
           1: procedure FAST2SIMPLICIALATTENTION(Q_i, K_1, K_2, V_1, V_2)
                    Initialize O_i \leftarrow \mathbf{0} \in \mathbb{R}^{B_r \times d}, \ell_i \leftarrow \mathbf{0} \in \mathbb{R}^{B_r}, m_i \leftarrow (-\infty) \in \mathbb{R}^{B_r}
           2:
1359
           3:
                    For each CTA:
1360
           4:
                    if in producer warpgroup then
1361
           5:
                        Deallocate number of registers
1362
                        Load Q_i tile from GMEM to SMEM \in \mathbb{R}^{B_r \times d}
           6:
1363
                        Load K_{1,i} tile and V_{1,i} tile from GMEM to SMEM \in \mathbb{R}^{w_1 \times d}
           7:
1364
           8:
                         Set acc\_cnt = 0
1365
           9:
                         for j \in \text{range}(w_1) do
          10:
                             for k \in (i - w_2 + 1, i] with step B_c do
1367
                                  Wait for buffer_id = acc_cnt mod num_buffers to be released
          11:
          12:
                                  Issue the load of K_{2,k}, V_{2,k} from HBM to SMEM
1369
          13:
                                  Notify consumers of the load complete of K_{2,k} and V_{2,k}
          14:
1370
                                  acc\_cnt = acc\_cnt + 1
          15:
                             end for
1371
          16:
                        end for
1372

    in consumer warpgroup

          17:
                    else
1373
                         Reallocate the number of registers
          18:
1374
          19:
                         Wait for Q_i tile to be loaded in SMEM
1375
          20:
                        Load Q_i from SMEM to RMEM
1376
          21:
                         Wait for K_{1,i}, V_{1,i} tiles to be loaded in SMEM
1377
          22:
                         acc_cnt = 0
1378
          23:
                        for j \in (i - w_1 + 1, i] do
1379
                             Load K_{1,j}, V_{1,j} from SMEM to RMEM \in \mathbb{R}^{1 \times d}
          24:
1380
                             Compute QK_{1,ij} = Q_i \odot K_{1,j} \in \mathbb{R}^{B_r \times d}
          25:
1381
          26:
                             for k \in (i - w_2 + 1, i] with step B_c do
                                  Wait for K_{2,k} to be loaded in SMEM \in \mathbb{R}^{B_c \times d}
1382
          27:
                                  Compute S_{ijk} = QK_{1,ij}K_{2,k}^T \in \mathbb{R}^{B_r \times B_c}
1383
                                                                                                                    ⊳ RS-GEMM
          28:
1384
                                  Store m_i^{\text{old}} = m_i
          29:
1385
                                  Compute m_i = \max(m_i^{\text{old}}, \text{rowmax}(S_{ijk}))
          30:
                                  Compute P_{ijk} = \exp(S_{ijk} - m_i) \in \mathbb{R}^{B_r \times B_c}
1386
          31:
                                  Compute \ell_i^{\text{new}} = \exp(m_i^{\text{old}} - m_i)\ell_i + \text{rowsum}(P_{ijk})
1387
          32:
1388
                                  Wait for V_{2,k} to be loaded in SMEM \in \mathbb{R}^{B_c \times d}
          33:
1389
                                  Compute PV_{2,ijk} = P_{ijk}V_{2,k} \in \mathbb{R}^{B_r \times d}
          34:
                                                                                                                    ⊳ RS-GEMM
1390
                                  Compute PV_{12,ijk} = PV_{2,ijk} \odot V_{1,j} \in \mathbb{R}^{B_r \times d}
          35:
1391
                                  Update O_i = \exp(m_i^{\text{old}} - m_i)O_i + P_{ijk}V_{12,ik}
          36:
1392
                                  buffer_id = acc\_cnt \mod num\_buffers
          37:
1393
                                  Release buffer_id for K_{2,k} and V_{2,k}
          38:
                                  Update \ell_i = \ell_i^{\text{new}}, \text{acc\_cnt} = \text{acc\_cnt} + 1
1394
          39:
1395
                             end for
          40:
          41:
                        end for
1396
                         Compute O_i = O_i/\ell_i, L_i = m_i + \log(\ell_i)
          42:
1397
                         Write O_i and L_i to HBM
          43:
1398
          44:
                    end if
1399
          45:
                    return O_i
1400
          46: end procedure
1401
```