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Abstract

In daily life, people often move through spaces to find objects that meet their needs,
posing a key challenge in embodied AI. Traditional Demand-Driven Navigation
(DDN) handles one need at a time but does not reflect the complexity of real-
world tasks involving multiple needs and personal choices. To bridge this gap, we
introduce Task-Preferenced Multi-Demand-Driven Navigation (TP-MDDN),
a new benchmark for long-horizon navigation involving multiple sub-demands
with explicit task preferences. To solve TP-MDDN, we propose AWMSystem,
an autonomous decision-making system composed of three key modules: Break-
LLM (instruction decomposition), LocateLLM (goal selection), and StatusMLLM
(task monitoring). For spatial memory, we design MASMap, which combines 3D
point cloud accumulation with 2D semantic mapping for accurate and efficient
environmental understanding. Our Dual-Tempo action generation framework inte-
grates zero-shot planning with policy-based fine control, and is further supported
by an Adaptive Error Corrector that handles failure cases in real time. Experi-
ments demonstrate that our approach outperforms state-of-the-art baselines in both
perception accuracy and navigation robustness.

1 Introduction

In daily life, people often identify a need and look for something in their environment to meet it [3, 4].
Demand-Driven Navigation (DDN) [1] is a task where an agent receives a natural language instruction
(e.g., “I am tired”) and must find an object that fulfills that need (e.g., a bed or chair). This is a
variation of the ObjectNav task. However, a single need can often be met in different ways, depending
on personal preferences. For example, “organize the living space” could mean finding cleaning tools,
decorative items, or storage boxes. To guide the agent effectively, it is important to clarify the user’s
specific preference, like focusing on decoration, so the instruction becomes actionable. People also
tend to have a series of needs, such as cleaning, then resting, then eating. Efficiently handling multiple
needs and evaluating the success of these actions is still a major challenge. This paper explores how
to enhance long-horizon DDN tasks by making user preferences more explicit.

Recent work like MO-DDN [5] addresses navigation instructions through Multi-object Demand-
driven Navigation with human preferences. For example, given an instruction like “I need to
display my photography collection, preferably with good lighting”, the demand may involve multiple
objects such as picture frames, bookshelves, and ceiling lamps. However, it still focuses on single-
demand navigation. Some works have explored long-range instruction navigation by constructing
Landmark Semantic Memory for decision-making planning [6] or adopting Autonomous Evolution
mechanisms [7, 8], but they primarily target object-driven navigation.
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Figure 1: This figure presents our autonomous decision-making process and its performance benefits.
(a) Overview: The pink area shows subtask selection using landmark semantic memory; the yellow
area explains Dual-Tempo action generation via generalist and specialist policies; the green area
details dynamic subtask completion checks. (b) Performance: Our method achieves a 16% higher
success rate than DDN [1] and InstructNav [2] under the TP-MDDN benchmark, with superior
efficiency and individual success rates, highlighting its effectiveness and reliability.

We introduce a new benchmark called Task-Preferenced Multi-Demand-Driven Navigation (TP-
MDDN) to handle scenarios with multiple needs, where each need includes a clear preference
for a specific task-related object category. In a simulated multi-room home environment, we use
DeepSeekV3 [9] and GPT-4o [10] to generate long-horizon instructions and object pairs across
different scenes. These pairs are manually checked to ensure accuracy.

To efficiently manage memory in long-term navigation, we introduce a novel Multidimensional
Accumulated Semantic Map (MASMap) that achieves a balance between accuracy and efficiency
without requiring additional training. MASMap integrates local 3D point cloud accumulation with
a global 2D semantic map to build and maintain spatial memory over time. A core challenge of
merging semantically similar objects viewed from different perspectives is addressed using IoU-based
fusion and Ram-Grounded-SAM for accurate segmentation and labeling. To reduce storage overhead,
we implement an efficient update-and-prune strategy that preserves critical small objects. Our global
map structure further minimizes redundancy while ensuring consistent and reliable semantic memory
across extended navigation trajectories.

To address long-horizon visual navigation tasks, we further propose the Autonomous Decision-
Making World Model System (AWMSystem), inspired by WMNav [11]. AWMSystem breaks
down complex instructions into sub-demands using BreakLLM, dynamically selects goals through
LocateLLM based on object memory and execution status, and tracks task progress via StatusMLLM
using real-time observations. For lightweight deployment, we employ a dual-tempo action generation
strategy: zero-shot planning using A* algorithm with obstacle maps and affordance estimation (as in
InstructNav [2]), and fine-grained policy-based control near targets, following DDN [1]. A major
challenge in simulation environments, i.e., handling logical loops, boundary violations, and unseen
obstacles, is addressed with an Adaptive Error Corrector, which adjusts actions in real time based
on environmental feedback, greatly enhancing robustness. This modular design supports efficient,
reliable long-term navigation without requiring additional end-to-end retraining.

We summarize our main contributions as follows: (1) We introduce TP-MDDN, a new long-horizon
navigation benchmark with multi-sub-demand tasks and explicit task preferences, featuring high
semantic richness and scene diversity through the use of DeepSeekV3 and GPT-4o. (2) We propose
AWMSystem, an autonomous decision-making world model system composed of BreakLLM,
LocateLLM, and StatusMLLM, enabling efficient instruction decomposition, dynamic goal selection,
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and real-time execution monitoring without requiring end-to-end training. (3) We design a lightweight
MASMap, which fuses 3D object detection and 2D semantic mapping to achieve both accurate
perception and computationally efficient navigation. (4) Extensive experiments demonstrate that
our method significantly outperforms state-of-the-art baselines, with ablation studies confirming
the effectiveness of each component. Our system achieves strong robustness and environmental
adaptability while maintaining low computational overhead, showcasing a practical balance between
performance and efficiency that has not been addressed by previous works.

2 Related Works

Vision-Language Navigation. Visual-Language Navigation (VLN) involves guiding an agent to
a goal based on language instructions and visual observations. Early methods focused on progress
estimation [12, 13], backtracking [14], reinforcement learning [15, 16], and policy learning [1,
5, 17, 18, 19, 20, 21]. Some works extracted object and action types from instructions [22, 23,
24, 25, 26], while others leveraged transformers for history encoding [27, 21, 22, 23, 28], built
topological maps [29, 20, 30], or predicted future events [31]. Pre-training [32, 33, 34, 35, 36] and
data enhancement [37, 38, 39, 35, 40, 41] have also been explored. However, these approaches
struggle with long-horizon continuous navigation. In contrast, our method adapts zero-shot scene
layout understanding to achieve strong performance in such challenging tasks.

Continuous VLN with Foundation Models. Foundation models, like LLMs, VLMs, and LVLMs,
have advanced visual navigation [42, 43] by enabling strong reasoning, high-level planning, and
end-to-end action generation abilities. Recent zero-shot approaches use these models for collab-
oration [44], memory-based reasoning [45, 46], or instruction tuning [47]. However, most work
focuses on discrete actions, while continuous navigation, more suited for real-world use, remains
difficult [48, 1]. Earlier methods used GRU or LSTM [49, 50], while recent ones address object-
targeted [51, 52, 53, 54] and instruction-following tasks [55, 56, 57]. Some predict progress [55],
use value maps [58], or plan trajectories [59, 60, 61]. Yet, long-horizon tasks suffer from the high
cost of frequent LLM calls. To solve this, we introduce a Dual-Tempo action generator, inspired by
dual-system robotics [62, 63, 5], which boosts efficiency without losing performance.

Long-Horizon Navigation. Long-horizon navigation is essential for building agents that can learn
and act over time. While benchmarks like LH-VLN [64] have made progress, success rates remain
low due to limited memory encoding. Recent work has explored memory-based methods—like
WMNav [11] for relation prediction and Mem2Ego [6] for using landmarks to guide decisions—but
they focus on object goal navigation. Real-world systems like ReMEmbR [65] support long-range
navigation but lack continuous control. Minecraft agents show promise through skill reuse [8, 7],
but they rely on explicit object prompts. In contrast, demand-driven navigation, where agents meet
high-level needs like “find an office tool”, better reflects real scenarios. Yet, handling multi-step goals
without object-specific instructions remains difficult. To tackle this, we combine obstacle avoidance,
error correction, status tracking, and large foundation models to boost navigation performance in
complex environments.

3 Tasked-Preferenced Multi-Demand-Driven Navigation

In a Task-Preferenced Multi-Demand-Driven Navigation task, the agent is given a natural language
long-horizon instruction (e.g., “Organize the living space by arranging decorative items, set up a
cozy entertainment corner with seating and media devices”), comprising multiple subtasks. Each
subtask combines a basic requirement and a task preference; for example, the basic requirement is

“set up a cozy entertainment corner”, and the task preference is “with seating and media devices”.

Formally, let S denote the set of environments and D denote the set of long-horizon instructions.
For a given instruction d “ xd1, d2, . . . , dLy P D, where L is the number of subtasks and di is the
i-th subtask, the goal is to determine whether the agent successfully finds objects satisfying each
subtask. Specifically, in each episode: (1) A random environment s P S is selected. (2) The agent is
initialized at a random position and orientation within s. (3) A random instruction d is chosen. (4)
Let O be the set of objects in the environment. We define a function G : D ˆ O Ñ t0, 1uL, mapping
instructions and environment objects to a binary vector indicating whether each subtask is satisfied.
To complete the instruction, the agent must find at least one object for each subtask. Each subtask is
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Figure 2: Overview. This diagram illustrates the dual-tempo action generation process in our system.
The BreakLLM module decomposes the instruction. Then, depth images are converted into 2D
semantic points. The fast-tempo branch uses a pretrained policy to generate primitive actions, while
the slow-tempo branch employs LocateLLM for high-level navigation reasoning, determining target
objects and positions. StatusMLLM tracks task progress and updates memory. The Navigation
Network performs affordance map computation, adaptive error correction, and waypoint prediction.

strictly binary, defined as either success or failure. To reduce the difficulty of the TP-MDDN task, if
the 2D Euclidean distance between the agent and the object is within a threshold ϵdis, the object is
considered found. This differs from DDN [1], which requires finding the target object within the field
of vision.

At each step, the agent can generate actions using either the Generalist Policy or the Specialist
Policy. The Generalist Policy drives the agent toward a target pose selected by the large model,
while the Specialist Policy uses a pretrained network to execute one of six actions: MoveAhead,
RotateRight, RotateLeft, LookUp, LookDown, and Done. The system invokes the Generalist
Policy at regular intervals to explore potentially relevant regions, after which the pretrained policy [1]
is used to search for objects matching the task requirements. The agent terminates the navigation task
when the number of steps reaches the maximum length Lenmax, or when all subtasks are completed.
From the test set of ProcTHOR [66], we generated 200 long-horizon instructions, each containing
three subtasks, spanning 68 rooms.

3.1 Autonomous Decision-Making World Model System

AWMSystem Overview. Figure 2 illustrates our Autonomous Decision-Making World Model
System, which models the environment and predicts actions based on observations. It constructs
a real-time 2D semantic map with efficient memory storage and uses past trajectories and layout
information to select the next target. The Dual-Tempo action generator plans actions, while an
Adaptive Error Corrector adjusts strategies based on feedback.

3.1.1 Construction of Long-Range Memory Banks

Raw Data Processing. Building the memory bank consists of three components: input data pro-
cessing, real-time accumulation, and recording of different types of historical data. For raw data
processing, we perform object detection and segmentation on RGB images and extract 3D point
clouds of detected objects from depth maps. These 3D points are then fused and compressed into
a 2D semantic map. Specifically, at regular intervals, the agent performs environmental sensing.
Suppose the current step is t; the agent captures n RGB images It1, . . . , I

t
n and corresponding depth
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images Deptht
1, . . . ,Deptht

n. For each image Iti , we use the Ram-Grounded-SAM model [67, 68] to
obtain object labels, bounding boxes, and segmentation masks. Next, we compute the real-world
3D point cloud PCcur from each depth image using the camera’s intrinsic parameters and rotation
matrix.

Real-time Accumulation. In the real-time accumulation design, since object point clouds obtained
from different viewpoints at the current location may correspond to the same physical object, we
design a point cloud update strategy. Let r be an object point cloud in the recorded set PCR, rcur be
an object point cloud in PCcur and let rfinalcur denote the residual point cloud obtained by removing
regions of rcur that overlap with any object in PCR. During this process, for each candidate r P PCR,
we compute two overlap metrics based on the intermediate point cloud r˚

cur at a given stage:

os˚ “
overlap_scorepr˚

cur, rq

|r˚
cur.pcd|

, ros˚ “
overlap_scorepr˚

cur, rq

|r.pcd|
,

where the overlap score is computed using element-wise Euclidean distance between point clouds
and | ¨ | denotes the number of points. Let Updateprcur, PCRq denote the operation that updates the
reference set PCR based on rcur. We define it as follows:

Updateprcur, PCRq “

$

’

’

’

&

’

’

’

%

PCR Y trcuru if maxrPPCR
os˚ ă 0.25

r˚.pcd Ð Mergepr.pcd, rfinalcur .pcdq

r˚.class Ð rcur.class

PCRrrs Ð r˚

if os˚ ą 0.8 ^ ros˚ ą 0.8

If the maximum os˚ over all r P PCR is less than 0.25, rcur has negligible overlap with any existing
object, so it is treated as a new object and added to PCR. If both os˚ ą 0.8 and ros˚ ą 0.8 for a
specific r, this indicates strong overlap, suggesting that rcur and r represent the same object. In this
case, their point clouds are merged, and the class label of r is updated to that of rcur.

Fusion of Global Semantic Map. After recording the center coordinates of object point clouds, all
3D point cloud data is cleared to save memory. Let OMt denote the object memory bank storing infor-
mation about previously detected objects up to time step t. Each object’s 2D information is recorded
as tclass : cobj P C, center : pobj “ pxcenter

obj , ycenterobj q, bbox : rxmin
obj , x

max
obj , ymin

obj , y
max
obj su, where

C is the set of possible object classes. We compute the 2D IoU between current and historical objects
and apply the Hungarian algorithm to find the most similar historical object. If a match exists,
we update the corresponding entry in the 2D semantic map and object memory bank; otherwise,
we add the new object. Under a task, we continuously accumulate the names and locations of
explored objects to form a target memory. The data in the target memory bank is formatted as
xTarget Object, px, yq, Feedback Typey, where px, yq denotes the target location on the map, and
Feedback Type includes: Success, Obstructed, Out-of-Bounds, and other failure descriptions.

Explanation of Memory Bank. As illustrated in Figure 2, the memory bank contains two components.
Global Records serve as Long-Term Memory by storing visited information, including a cumulative
map of detected objects with their 2D poses and a history of planned targets with execution outcomes,
enabling continuous progress tracking. In contrast, Local Updates function as Short-Term Memory
by maintaining transient data for immediate decision-making. This includes local 3D point clouds
extracted from the current panoramic view, additional information derived from past execution
failures to address recurring issues, and the current status of the ongoing subtask.

3.1.2 Summary of Foundation Model Usage

BreakLLM. We employ a Large Language Model (LLM) to automatically decompose long-horizon
instructions into a subtask list dsub, and initialize a corresponding subtask execution status list
SubStatus, which is maintained throughout the task. The instruction decomposition is formalized as
pdsub, SubStatusq “ BreakLLMpdq, where all entries in SubStatus are initially set to False.

LocateLLM. At time step t, we maintain a memory of detected objects and their 2D coordinates,
denoted as OMt (Object Memory). The primary inputs to the decision-making module include:
the overall instruction d, the subtask list dsub, the current subtask status SubStatus, the target
memory Tt, and the object memory OMt. Large models may struggle to fully comprehend long
sequences of historical trajectories, potentially leading to repeated failures on the same object.
To mitigate this, we introduce auxiliary feedback to help the model detect and avoid execution
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Figure 3: Foundation Model Usage. BreakLLM decomposes the instruction. The agent uses
Ram-Grounded-Sam [67, 68] to segment panoramic RGB-D images and ultimately map them onto
2D semantic maps to form object memory. LocateLLM receives multiple types of data and outputs
the next target object and position. StatusMLLM determines whether a subtask has been completed
based on the current observed image. Adaptive error corrector re-plans the failed trajectory.

loops. Specifically, we track the number of consecutive failed attempts nCFE on the target ob-
ject TargetObjt´1. If nCFE ě ntolerance, we generate an auxiliary prompt Extrainfo in the form:
"Do not select <object> or <position> in the next step". This prompt is passed to the planner to
discourage revisiting failed targets. The next target object is determined by:

TargetObjt “ LocateLLM pTt,OMt, SubStatus, d, dsub, I pnCFE ě ntoleranceq ¨ Extrainfoq (1)

StatusMLLM. Iterative updating of subtask completion status is crucial for long-horizon task
navigation. We introduce a multimodal LLM, StatusMLLM, to update SubStatus when the policy
network outputs a Done action. This design is motivated by the observation that prior methods
often trigger Done upon detecting an object that matches the instruction [21, 1]. We leverage this
behavior to infer subtask completion. Specifically, we input the overall instruction d, the previous
subtask status Subt´1

Status, the target memory Tt, and the current image It1 into StatusMLLM. The
model outputs inference on which subtask might have just been completed Subcur, explanation for
its judgment Reason, updated subtask completion status list Subtstatus. This process is formalized
as:

pSubcur, Reason, SubtStatusq “ StatusMLLM
`

d, Subt´1
Status, Tt, I

t
1

˘

¨ I pApolicy “ Doneq (2)

3.1.3 Dual-Tempo Action Generator

Inspired by prior work on two-stage navigation strategies [52, 11, 62, 63, 5] and considering that
frequent invocation of large models at every step incurs significant computational overhead, we
propose the Dual-Tempo Action Generator, as illustrated in Figure 2. This architecture decouples
planning into a slow-tempo phase and a fast-tempo phase to balance reasoning depth with efficiency.

In the slow-tempo execution phase, we follow these steps: (1) Extract the current object point cloud
PCcur from the panoramic observation and fuse it into the object memory OMt. (2) Feed historical
context and execution feedback into LocateLLM to determine the next target object and its 2D location.
(3) Compute affordance value maps that encodes navigational feasibility and semantic relevance. (4)
Apply the A* algorithm on the affordance map to generate a globally feasible navigation path. (5)
Decompose the path into a sequence of intermediate waypoints, convert each segment into discrete
actions, and execute them sequentially. (6) Invoke the Adaptive Error Corrector to detect and
rectify trajectory failures.

In the fast-tempo execution phase, we directly employ the pretrained policy from prior work [1],
which outputs low-level actions based on the current RGB image and the high-level instruction.
When the policy outputs Done, the StatusMLLM module is triggered to evaluate whether a subtask
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has been completed. Next, we detail the computation of the affordance value map and the operational
mechanism of the Adaptive Error Corrector.

Calculation of Affordance Map. At step t, we sequentially read an RGB image Iti and a depth
image Depthti from the panoramic views. For each depth image, we obtain its real-world 3D point
cloud PCcur. Based on the height of the points, we classify them into navigable points N t,i

navi and
obstacle points Ot,i. Then, we project N t,i

navi and Ot,i onto a 2D grid map to form N t,i
grid and Ot,i

grid, and
perform dilation on the obstacle regions Ot,i

grid.

Next, we construct the 2D affordance map by computing the obstacle avoidance affordance and
semantic affordance. Following similar practices [2], we calculate the Euclidean distances from
navigable points N t,i

navi to category-specific point sets. For any navigable point ni P N t,i
navi, if its

distance to the 2D obstacle point cloud satisfies dobspniq ă τobs, the obstacle avoidance affordance
value aobspniq is set to 0; otherwise, it is normalized as aobspniq “ pdobspniq ´ dminq{pdmax ´ dminq.
From the target 2D coordinates obtained in Section 3.1.2, we define the semantic affordance value
atgtpniq as the inverse of the normalized distance to the target point cloud: atgtpniq “ 1 ´ pdtgtpniq ´

d1
minq{pd1

max ´ d1
minq, where dtgtpniq represents the distance from ni to the target point. This means

that positions closer to the target receive higher semantic affordance values. Here, dmin and dmax

denote the minimum and maximum distances to the obstacle point cloud, respectively; d1
min and

d1
max are the corresponding minimum and maximum distances to the target point cloud. Finally, we

compute the final affordance value afinalpniq: if aobspniq “ 0, then afinalpniq is set to 0; otherwise, it
is set to the clipped value of atgtpniq between 0.1 and 1. The formula is as follows:

afinalpniq “

"

0, aobspniq “ 0

clip patgtpniq, 0.1, 1q , otherwise
(3)

Adaptive Error Corrector. Our Adaptive Error Corrector uses environmental feedback to correct
navigation errors. When the agent detects that a MoveAhead action may lead to a collision (e.g.,
with doors, walls, or furniture), it re-plans a new path from the current position and updates the
waypoint sampling strategy. Under normal operation, the agent navigates by sampling a waypoint
every nwaypoint steps, using a discrete action space defined by forward translations of 0.25 meters
and rotational increments of 30 degrees. When re-planning is triggered due to execution failure,
the agent continues to operate within the same action space. The affordance map is recomputed
based on the current state, allowing the planner to generate a revised trajectory that avoids obstacles
and resumes progress toward the target object. To improve navigation precision, the trajectory is
divided into two segments: an initial segment and a subsequent segment. In the initial segment, a
finer sampling interval nblock is applied to support detailed spatial reasoning near obstacles. In the
subsequent segment, the sampling frequency reverts to the standard rate nwaypoint, consistent with the
regular navigation strategy.

4 Experiments

4.1 Experimental Setups

Experiments. We use AI2-THOR [69] as our simulator and ProcThor as our scene dataset [66]. We
used each of DeepSeek-V3 [9] and GPT-4o [10] to generate 100 task-preferenced, multi-demand-
driven unseen instructions in test scenarios (totaling 200 commands). In all experimental settings,
the success distance threshold ϵdis is 1.5 meters, the maximum step count Lenmax is 50, and the
tolerance for repeated failed attempts on the same object ntolerance within Extrainfo is 2. The obstacle
avoidance distance τobs used during affordance map computation is 0.25 meters. When processing
input data, we set the camera resolution to 300ˆ300 and the horizontal field of view (HFoV) to
90˝for the agent. The agent operates in a closed-loop fashion, perceiving environmental feedback
(e.g., success, collision, or boundary detection) immediately after executing each discrete action. All
experiments can be run on a single NVIDIA H100 80GB GPU.

Evaluation Metrics. In line with prior works [1, 5, 64], we adopt the following evaluation metrics:
(1) Success Rate (SR): The proportion of tasks in which the agent successfully reaches the target
object associated with each subtask. (2) Independent Success weighted by Path Length (ISPL): For
each task, the success of each subtask is weighted by the ratio of the shortest path length to the
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Figure 4: Visualization Results. The intelligent agent receives a Task-Preferenced Multi-Demand-
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actual path length, then averaged across all subtasks. (3) Successful Trajectory Length (STL): The
average number of steps taken in successful navigation trials. (4) Independent Success Rate (ISR):
The success rate for each subtask evaluated individually. We evaluate the above metrics over 50 tasks
for each method, averaging three runs due to the randomness in large model outputs.

Baselines. DDN is an end-to-end, single-demand-driven navigation method [1]. MO-DDN is an
attribute-based exploration modular agent designed for multi-object, demand-driven navigation [5].
InstructNav uses dynamic chain-of-navigation and multi-sourced value maps to generate robot-
actionable trajectories [2]. These three methods are the most relevant and state-of-the-art in the field
of demand-driven navigation.

4.2 Main Results

The experimental results with baselines are shown in Table 1. Our AWM-Nav achieves the highest
scores across all metrics, demonstrating its superior performance in long-horizon navigation tasks. In
contrast, all baseline methods achieve significantly lower results than ours, which can be attributed
to the fact that long-horizon instruction navigation typically requires stronger active exploration
capabilities and the ability to execute multiple subtasks, while these baselines are designed for
single-task navigation and lack such capabilities. InstructNav [2] combines zero-shot reasoning using
large models with explicit memory mechanisms. However, its planned paths often result in collisions
within the environment. Although InstructNav employs dynamic chain-of-thought reasoning over
actions, the LLM struggles to infer the completion status of subtasks from raw action sequences due
to limited contextual understanding. MO-DDN [5] adopts a two-stage navigation process consisting
of coarse search followed by fine-grained localization. As the full implementation of MO-DDN
has not been publicly released, we instead integrate its policy network with our own MASMap for
the coarse exploration stage, achieving the lowest success rate. Despite showing some capability
in multimodal alignment, MO-DDN still falls short when coping with the challenges posed by our
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Table 1: Comparison with state-of-the-art methods on the TP-MDDN benchmark. In the Large-model
Inference column, ✓ indicates the LLM is used for reasoning. "Explicit History" refers to methods
that record object names and positions in the scene.

Method Zero-shot Large-model Inference Explicit History STLÒ ISRÒ SRÒ ISPLÒ

DDN [1] ✗ ✗ ✗ 15.50 44.67 16.00 40.66
MO-DDN [5] ✗ ✓ ✓ 12.11 39.78 13.33 36.25
InstructNav [2] ✓ ✓ ✓ 9.50 42.44 16.00 39.41
AWM-Nav ✗ ✓ ✓ 20.11 62.89 32.00 44.19

Table 2: Ablation results for object segmenters, reasoning large models, Adaptive Error Corrector,
and StatusMLLM. - means no information in this line, ✓ means using the method, and ✗ means not
using the method.

1. The effect of different object segmenters 2. Different reasoning large models
Method STLÒ ISRÒ SRÒ ISPLÒ Method STLÒ ISRÒ SRÒ ISPLÒ

GLEE [70] 14.94 51.11 21.33 41.05 Qwen2.5-VL-7B 10.97 47.78 19.33 36.45
YOLO 15.56 58.00 29.33 43.69 GPT-4o 17.51 56.44 28.67 39.95

RAM-Grounded-SAM [67, 68] 20.11 62.89 32.00 44.19 Qwen2-5-VL-72B 20.11 62.89 32.00 44.19
3. Influence of Adaptive Error Corrector 4. The effect of StatusMLLM

BlockCorret BeyondCorret STLÒ ISRÒ SRÒ ISPLÒ With/Without STLÒ ISRÒ SRÒ ISPLÒ

✗ ✓ 13.49 59.33 27.33 43.25 - - - - -
✓ ✗ 16.86 60.44 28.00 42.20 ✗ 15.94 60.67 27.33 42.46
✓ ✓ 20.11 62.89 32.00 44.19 ✓ 20.11 62.89 32.00 44.19

task-preferenced, multi-demand navigation scenarios. Note that STL refers to the average length of
successful trajectories, and our higher score is due to solving some long-distance tasks that require
crossing rooms, which increases the average trajectory length.

Besides the metrics in this table, we also pay particular attention to the average execution time,
shown in Figure 1. In continuous-action navigation, using LLM inference at every step can be very
time-consuming, as demonstrated by InstructNav’s performance in (b). The average execution time
per long-horizon instruction is 6.82 minutes for AWM-Nav, 1.74 minutes for DDN [1], 6.79 minutes
for MO-DDN [5], and 88.90 minutes for InstructNav [2]. In the detailed time breakdown, slow-paced
actions account for approximately 22 times the duration allocated to fast-paced actions in our method.
In summary, our method adopts a dual-tempo action generator to save time and uses an automatic
decision-making system built with large models to enhance the agent’s reasoning capability.

Ablation Studies. As shown in Table 2, regarding the effect of different object segmenters, the
RAM-Grounded-SAM-based [67, 68] model achieves the best performance, while GLEE [70] lacks
precision and YOLO (Ultralytics YOLOv11) performs suboptimally. For different reasoning large
models, the well-known GPT-4o does not lead to significant improvements, possibly due to the
strong context understanding and state switching awareness required in long-horizon navigation
tasks. The open-source Qwen2-5-VL-72B [71, 72] achieves the best metrics. After examining the
execution behavior of the agent, it was found that the number of parameters in the large model
affects the performance of intelligent planning. In evaluating the influence of the Adaptive Error
Corrector, replanning affordance maps proves effective, and unexpected situations remain important
to monitor and avoid, even with strong large model reasoning capabilities. With regard to the effect
of StatusMLLM, task status tracking is crucial for long-horizon instructions, as misjudgment or
absence of status reasoning can severely impact the success of the entire trajectory.

5 Conclusion and Discussion

This paper introduces a new benchmark, TP-MDDN, to address navigation tasks involving multiple
sub-demands and explicit task preferences. Meanwhile, it proposes the AWMSystem decision-
making system, MASMap spatial memory scheme, Dual-Tempo action generation framework, and an
adaptive error corrector, which effectively tackle the challenges in TP-MDDN. Experiments show that
the method achieves higher navigation accuracy than existing baselines and offers faster inference
speed. However, the method has issues such as involuntary mode switching in the dual-tempo action
generation framework and navigation decision errors caused by instruction misjudgment due to over-
reliance on pre-trained large language models. Future work includes optimizing the mode switching
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of the action generation framework through reinforcement learning and training domain-specific
language models to reduce dependence on pre-trained models.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explain the task domain of Task Preferred Multi
Demand Driven Navigation, and also clarify the contribution of proposing an autonomous
decision-making system.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 discusses the limitations of involuntary mode switching in the
dual-tempo action generation framework.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: There is no theoretical proof in this article, it is an innovation in other aspects.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This article describes the experimental setup, dataset, and evaluation metrics
in the fourth section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code declaration will be open source.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The model to be used, the specific method, and how to test it have all been
explained clearly in the article.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: My experiment set the number of seeds and did not involve significance
analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the fourth section, it was explained that all experiments can be run on a
single NVIDIA H100 80GB.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This study involves algorithm development and evaluation based on standard
optimization benchmarks. It does not involve human subjects or applications that are clearly
ethically sensitive, and we assume it complies with NeurIPS ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This article focuses on technological contributions and does not specifically
discuss broader positive or negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This article proposes a new optimization algorithm/framework, and the model
and standard benchmark data used have not been found to have a high risk of abuse

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]

Justification: This article correctly cites the sources of existing assets, such as baseline
methods and data sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The main new asset is the source code of the proposed method, which will be
open-source.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA]

Justification: This study does not involve crowdsourcing experiments or research with
humans as subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study does not involve human subjects, therefore IRB approval is not
applicable.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The usage of the large model has been clearly explained in the third section.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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