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Abstract

Large-area processing of perovskite semiconductor thin-films is complex and
evokes unexplained variance in quality, posing a major hurdle for the commercial-
ization of perovskite photovoltaics. Advances in scalable fabrication processes
are currently limited to gradual and arbitrary trial-and-error procedures. While
the in-situ acquisition of photoluminescence videos has the potential to reveal
important variations in the thin-film formation process, the high dimensionality
of the data quickly surpasses the limits of human analysis. In response, this
study leverages deep learning and explainable artificial intelligence (XAI) to
discover relationships between sensor information acquired during the perovskite
thin-film formation process and the resulting solar cell performance indicators,
while rendering these relationships humanly understandable. Through a diverse
set of XAI methods, we explain not only what characteristics are important
but also why, allowing material scientists to translate findings into actionable
conclusions. Our study demonstrates that XAI methods will play a critical role
in accelerating energy materials science.
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1 Introduction

Perovskite solar cells (PSCs) have been established as one of the most promising candidates
for next-generation photovoltaics. Since the emergence of hybrid perovskite semiconductors,
power conversion efficiencies (PCEs) of PSCs have improved vastly, exceeding 30% PCE in
perovskite/silicon tandem photovoltaics [NREL, 2023]. Despite numerous advantages, [Al-
Ashouri et al., 2020; Hou et al., 2020; Ruiz-Preciado et al., 2022], the technology has not reached
the market yet due to insufficient device stability (degrading PCE over time) and the lack of
cost-effective and reliable large-scale production [Correa-Baena et al., 2017; Howard et al., 2019].
The crystallization process during manufacturing heavily affects the perovskite thin-film formation
process and is the key step in producing high-quality perovskite thin-films. In practice, this
crystallization process is very difficult to control, as it is heavily dependent not only on the layer
stack, deposition, and materials but also on external process parameters such as temperature,
as well as lab-specific equipment. Optimal parameters cannot be easily transferred between
setups and have to be re-determined for each manufacturing site following a trial-and-error
procedure [Gu et al., 2022; Abdollahi Nejand et al., 2020; Mathies et al., 2018]. However, even
when nominally identical process parameters are applied, the PSC quality varies due to deviating
real-world process parameters resulting from small human or technical inconsistencies infeasible
to measure. Consequently, the entire thin-film formation process is hard to optimize for specific
setups, leading to poor reproducibility. Hence, a standardized and quantitative way of determining
optimal production parameters is lacking to reduce the significant volatility in PSC quality.
Machine learning (ML) has recently been applied to specific optimization problems in various
fields, including materials sciences, as it outperforms humans in finding correlations and clues
in highly complex data [Goh et al., 2020; Schmidt et al., 2019; Tang, 2019]. Specifically, in
perovskite research, ML has been used to optimize specific parameters on tabular data, e.g.
material choice [Odabaşı and Yıldırım, 2020], bandgaps [Gladkikh et al., 2020], compositional
ionic radii [Li et al., 2021] or optimizing specific characteristics like the morphology or crystal
structure utilizing scanning electron microscope (SEM) [Ali et al., 2020] and grazing incidence
x-ray diffraction (GIXD) images [Starostin et al., 2022]. However, the current application of ML
in perovskite research is only working with low-dimensional data, looking exclusively at the final
thin-film (ex-situ), but not the perovskite formation process itself (in-situ). We argue, that only
by understanding the full process in a data-driven manner we can discover new insights about
the underlying mechanisms that lead to volatility in PSC quality.
We address this challenge by introducing a data-driven concept for knowledge discovery. This
concept combines deep learning (DL) with multiple explainable artificial intelligence (XAI)
methods. While DL can find patterns in complex data that would be infeasible to find through
traditional analyses, we use XAI methods from the areas of feature importance, counterfactual
examples, and concept testing to render these patterns humanly understandable, which then can
be translated by material scientists into actionable conclusions. To our knowledge, it is the first
time that XAI is used to such an extent on high-dimensional data for knowledge discovery as
well as PSC fabrication.1

2 Predicting the quality of perovskite solar cells

Dataset This study builds on the publicly available dataset published by Laufer et al. [2023]
that contains in-situ photo-luminescence (PL) video data of 1,129 PSCs (Figure 1). The PL
videos were recorded during the vacuum-based quenching of blade-coated perovskite thin-films
distributed over 38 substrates using nominally the exact same process conditions. However, since
small variations in the process parameters resulting from small human or technical inconsistencies
are always present, the data contains a wide range of quality within the PSCs that cannot be
explained by looking at the defined process parameters since they are nominally the same. Four
filters were used to capture the characteristic PL of the underlying processes: a neutral density
filter (RND), measuring the reflectance, two longpass filters, capturing the PL with wavelengths
longer than 725nm (PLLP 725) and 780nm (PLLP 780), respectively, and a 775nm shortpass
capturing short-wave PL (PLSP 775) combined with a longpass to remove the excitation light
[Ternes et al., 2022]. Subsequent to the processing of the perovskite thin-film, the full device
1 Code available at: https://github.com/MIC-DKFZ/perovskite-xai.
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Figure 1: a. The figure shows the four different thin-film formation phases based on the average
PL and reflectance intensity timeseries for each of the four filters. Below, the simultaneous change
of the air pressure in mbar is depicted. b. Model performance is measured in standardized mean
absolute error (sMAE) to compare between labels. c. Examples of the four data representations
used.

stack of the PSC was completed. The PCE of the PSCs as well as the mean thickness (mTh)
of the perovskite thin-film serve as labels for model training, allowing to learn the relationship
between the videos and the quality of a PSC. While a higher PCE always indicates a better solar
cell quality the mTh should not be too thick as it is highly correlated with the thin-film roughness,
and a homogenous layer morphology is critical for a high-quality PSC (see Appendix A for the
relationship between PCE and mTh).
We transform the data into four different representations that are depicted in Figure 1 (c.).
Each representation focuses on different aspects of the videos, allowing to compare several
XAI methods across varying data dimensionalities. While the video representation contains all
available information the two image representations only cover spatial aspects by selecting one
frame from the video. We chose the frame with the highest PL (in-situ) and the last frame
(ex-situ). The timeseries represents each frame as a mean, resulting in one line per PL filter and
only containing temporal information. Figure 1 (a.) depicts a characteristic PL signal in the
timeseries data representation. Characteristics of the PL signal can be attributed to different
phases during the perovskite thin-film formation, which we extend from Howard et al. [2019]: In
Phase I, the evacuation of the vacuum chamber leads to an accelerated drying of the wet-film due
to increased solvent evaporation rates. No PL signal is detected yet as the precursor materials
are still dissolved in the ink and no perovskite semiconductor material is formed. With the
nucleation onset of perovskite crystallites in Phase II, perovskite nuclei and small grains start to
emit a strong PL signal. During crystallization (Phase III) larger grains are formed by coalescing
and ripening of smaller ones. Non-radiative recombination at grain boundaries and a reduced
outcoupling of luminescence photons emitted from the solid perovskite thin-film - due to total
internal reflection - reduce the overall emitted PL signal. Phase IV starts with the venting of the
vacuum chamber creating the final thin-film surface morphology, i.e. surface roughness [Mathies
et al., 2021].
Model Training For each data representation and label we test several architectures and
undergo an extensive hyperparameter tuning on the training set to obtain best possible predictions
(see Appendix B for all hyperparameters). While for the timeseries and image-based representations
ResNet [He et al., 2016] architectures worked best, we used a Slowfast model [Feichtenhofer
et al., 2019] for the videos. Figure 1 (b.) shows the standardized MAE on the test set averaged
over 5 training runs. For both labels the video representation combining temporal and spatial
information yielded the best performance. Models trained on representations containing time
information outperform models trained on spatial information alone. When limiting the data
to only one frame (image representation), thereby neglecting the temporal dimension, choosing
the timestep influences the prediction performance differently for each label. In general, mTh
prediction is more accurate than PCE prediction because PCE can only measured on the complete
PSC requiring additional processing steps not captured in the videos while mTh only depends on
the captured processing step. A parity plot is available in Figure 7. Overall, the trained models
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d.    Local Attribution for Video representation

Figure 2: a. & b. Absolute attribution-map for PCE and mTh averaged over 100 observations. c.
The average absolute attribution of each filter over the whole dataset, to assess the importance
of each filter when predicting PCE or mTh. d. Attribution-map for the video data of label PCE
and filter PLLP 725 (left), and label mTh and filter PLLP 780 (right). Both graphics show four
frames and their attribution-maps, selected based on the aggregated absolute attribution per
timestep to their right.

show a good performance in predicting the general trends and build a reliable foundation for the
following XAI analysis.

3 Feature Importance

To understand which input features and phases are most important to our models, we apply several
attribution methods [Sundararajan et al., 2017; Doshi-Velez and Kim, 2017; Erion et al., 2021]
to compute either local explanations, i.e. explaining a model’s behavior on a single observation,
or global explanations, i.e. explaining patterns that are present in general (see Appendix D
for a detailed methodology and list of the attribution methods). The diversity in attribution
methods enlarges the trustworthiness of the results. Figure 2 (a.&b.) shows the global attribution
computed via Expected Gradients (also called Gradient SHAP) for PCE and mTh averaged over
100 timeseries observations (see Appendix subsection D.1 for all representations and attribution
methods). Our analysis highlights that the model focuses on time periods that coincide with
the defined phases. We observe that models predicting PCE and mTh both show the highest
absolute attribution to Phase II, the onset of the nucleation and crystallization phase. In addition,
models predicting mTh also show attribution to Phase IV. Specifically, there is a small attribution
peak at around t = 510 before the dip in PL intensity, and a large attribution concentration
after the dip. The attributed periods of the vacuum quenching starting at around t = 505 and
the subsequent venting strongly affect the crystallization and the morphology of the perovskite
layer [Schackmar et al., 2023]. For PCE observations, only a smaller attribution spike at t = 510
can be observed. Importantly, these periods are also reflected in the video representation when
aggregating attribution per frame, while the spatial attribution within frames does not show
recognizable patterns (Figure 2 (d.))
To examine the importance of each of the four filters, we show their mean absolute attribution in
Figure 2, discovering that they contribute to different extends to the final prediction. Further,
the importance of each filter differs between PCE and mTh prediction. In case of PCE, the
filtered PL intensities are substantially more important than the reflectance. However, for mTh,
PLLP 780 appears much more important than the other two PL intensities.
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Figure 3: a. & b. Generated CEs of the LP filters yielding either high or low PCE and mTh
prediction. The original predicted PCE or mTh for this observation is shown in the header and
the PCE or mTh predicted based on the artificially computed CEs is presented behind the label.

4 Counterfactual Examples

The derived attribution maps highlight the significance of individual features but do not explain
the underlying behavior responsible for such importance. To answer this question we deploy
counterfactual explanations (CEs) [Wachter et al., 2017; Dandl et al., 2020; Stepin et al., 2022]
and the Testing of Concept Activation Vectors (TCAV) [Kim et al., 2018]. CEs alter the input
observation to receive a specific counterfactual outcome and simulate “what if" -scenarios. To
generate CEs, we use the Genetic Counterfactuals (GeCo) algorithm [Schleich et al., 2021], which
computes plausible (assuring that they could be real) and feasible (assuring they can actually be
computed) CEs in a short time. As our labels are continuous, we leverage the CEs to visualize
how an observation has to be changed to receive either a substantially higher or lower PCE
(> 13.93% and < 9.22%) or mTh (> 1300nm and < 700nm) prediction compared to the ground
truth value.
The CEs for the two most important filters to the models reveal that when moderately increasing
the nucleation onset peak during Phase II the model predicts higher PCE values and vice versa
(Figure 3 (a.), see Appendix E for all filters and representations). Subsequently for mTh, a
decreased PL intensity of the nucleation onset results in higher mTh prediction (Figure 3 (b.)),
and a high PL intensity during Phase IV leads to higher mTh. To predict a lower mTh, however,
no substantial change in the PL intensity is required, suggesting that lower measured mTh values
in the dataset still fall into an optimal range, and only for higher values the PL intensity course
is substantially different.

5 Testing of Concept Activation Vectors (TCAV)

Based on the CE analysis we define the two concept classes of “Early Peak Height” and “Peak
Position” to test the importance of each including concept to specific layers of the model. For
each concept class C, we sample two datasets of examples, C = [c1, c2], that are representative
of each of the two concepts we want to test against each other. We split the whole dataset via
quantiles (Qx) into two subsets for both labels, to not only observe the general importance of
the concepts to the model, but specifically when predicting observation subsets with properties
we are interested in: high PCE (> Q0.9) and low PCE (< Q0.1) observations, and optimal
(Q0.45 < x < Q0.55) and high (> Q0.9) mTh observations (∀Qx : n = 113). We do not use
low mTh observations, as the data shows the highest, thus optimal, PCE around 800nm (see
Appendix A), and the CE analysis revealed that lower mTh values do not necessarily result from
substantially different PL intensity curves. We sample two datasets of examples, C = [c1, c2],
that are representative of each of the two concepts we want to test. Each of the four datasets
is sampled separately for each filter using summary statistics from each timeseries and specific
permutations to avoid out-of-distribution (OOD) examples (see Appendix F for more details).
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a.    Concept Importance for Early Peak Height Concept (n  =200)

b.    Concept Importance for Peak Position Concept (n = 200)

Figure 4: a. & b. For TCAV, we test the last eight layers of the model, as they capture more
semantic information than earlier layers. For each of the eight layers, we observe whether the
layer is more sensitive to the concepts of the concept classes “Early Peak Height” and “Peak
Position”, or whether there is no significant difference (ns, based on proportion z-test with a
significance level (α) of 0.05).

For the concept classes of “Early Peak Height”, Figure 4 (a.) shows that when predicting high
PCE observations the concept of “High Peak" is more important to the model whereas when
predicting low PCE observations the concept of “Low Peak" is more important. Equivalently, in
the case of mTh, the concept of “High Peaks" is more important than “Low Peaks" for the optimal
and high mTh subset (only optimal is shown in Figure 4 (a.), see Appendix subsection F.1 for
high mTh observations). As feature importance and CE analysis determined also the importance
of Phase IV, we compare in “Peak Position” the two concepts “Phase II Peak" and “Phase IV
Peak" to further distinguish between the two most important time periods to the model. While
both concepts are equally important for high PCE observations, “Early Peak" is more important
for low PCE observations (Figure 4 (b.)). The results refine the conclusion that especially for low
PCE values, Phase II is more important than Phase IV. Also for mTh observations, both concepts
are generally important, with “Late Peak" being moderately more important than “Early Peak”,
confirming the importance of Phase IV previously observed in the CE experiments (see Appendix
subsection F.1 for low mTh). Both TCAV findings reconfirm the CE-based conclusions.
In summary, our data-driven approach shows two findings: that a higher peak in Phase II leads
to improved PSC quality and that the perovskite thin-film roughness correlates to the timing of
the venting step. The first finding complements experimental trial-and-error analysis in literature,
where it was shown that changes in the rate of evacuating the vacuum chamber impact not only
the PL onset time and the PL peak height but also the perovskite thin-film quality [Schackmar
et al., 2023]. Subsequently, we would recommend for future processes to increase the evacuation
rate to achieve higher PL peaks, which is indicative of higher solar cell performance. Based on
the second finding, we conclude that residual solvent contained in the thin-film leads to increased
surface roughness, resulting in increased PL outcoupling, i.e. high PL signal during venting. In
contrast, perfectly dry perovskite thin-films exhibit no change in morphology, i.e. no significant
change in PL, during venting. Thus we would recommend optimizing the processing such that
the PL does not increase after the venting, i.e. to prevent the formation of rough and therefore
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thick layers, which can be achieved by extending the evacuation times which dries the thin-film
and eliminates the PL increase during venting.

6 Conclusion & Discussion

In our work, we applied a diverse set of XAI methods in collaboration with material scientists to
answer scientific questions, which would not be possible by traditional human analysis. One critical
aspect is the application of different methods to first detect important features by attribution
methods and second understand why these features are important through CE and TCAV methods.
Although all methods adequately addressed the specified task, we observed certain limitations. For
CEs there are more effective methods available such as Diverse Counterfactuals (DiCE) [Mothilal
et al., 2020] or Diffusion Visual Counterfactual Explanations (DVCEs) [Augustin et al., 2022],
however, their computational complexity is significantly larger. The high speed in the computation
of GeCo is especially important for our task, as it would be otherwise computationally infeasible
to compute CEs for high-dimensional data such as videos. Further, TCAV is only suitable to
discover "new knowledge" to a limited extend, as tested concepts have to be defined in advance,
thereby inheriting a potential bias from prior assumptions.
As XAI methods only explain correlations, leaving final causal inferences to the judgement of the
material scientist, the explanations are limited by the dataset. Naturally, there is a possibility
of unobserved parameters, not captured in our dataset, but still affecting the labels. However,
the information-rich video data captures the result of the interactions among all parameters
influencing the thin-film formation by recording the actual formation itself. Therefore the
possibility of important unobserved parameters and confounders is minimized. Additionally, since
the interpretation of XAI results in relation to underlying causal variables is conducted by human
experts, they also account for potential confounding factors.
Our analysis shows that fluctuation in the quality of PSCs processed with nominally identical
conditions can be understood by investigating the thin-film formation process with DL and XAI.
We are able to infer insights just by analyzing the video dataset and without having to carry out
extensive and costly trial-and-error experiments. Our encouraging insights exemplify the usage of
XAI methods in materials science and PSC research and showcase data-driven approaches as key
tools for the development of upcoming photovoltaic technologies.
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A Relationships of PCE and mTh
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Figure 5: Relationship between mTh and PCE, modeled with a second-degree polynomial regression.

When displaying mTh against PCE in Figure 5 and fitting a second-degree polynomial regression,
we observe that on average the highest PCE is around 800nm mTh. While lower mTh only
leads to a minor decrease in PCE, an increase in mTh leads to lower PCE. From approximately
1,000nm on we observe a negative correlation between PCE and mTh.

The thickness measurements were performed using a profilometer where a stylus is moved over
the thin-film’s surface (see Figure 6). By removing all material (up to the transparent conductive
oxide) at multiple positions and taking them as reference points, the profilometer surface scans
can be used to determine the thickness of the perovskite layer after subtracting the thickness of
all other (evaporated) layers with well-defined thicknesses. Given the same solution and material
volume as perovskite thin-films with a smooth surface, the averaging of the acquired thickness
over the scan length of thin-films with rough surfaces results in an increased thin-film layer
thickness value. Therefore, high layer thicknesses measured using a profilometer with subsequent
averaging over the entire scan correlate with increased surface roughness.
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Figure 6: Schematic representation of the relationship between thickness measurement and thin-film
roughness.
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B Neural Network Hyperparameters & Augmentations

Label Representation Model Optimizer LR Augmentation

Imageex−situ ResNet-18 Madgrad 0.0001

Flip (p = 0.5)
One of:

Motion Blur (p = 0.2)
Median Blur (p = 0.1)
Blur (p = 0.1)

Piecewise Affine (p = 0.5)
z-transformation

ImagemaxP L ResNet-18 Madgrad 0.0001
Random Flip (p = 0.5)
Gaussian Blur (p = 0.5)
z-transformation

Timeseries ResNet-152 Madgrad 0.0001 z-transformation
PCE

Video SlowFast AdamW 0.001

z-transformation
Gamma Transform
Gaussian Blur (p = 0.15)
Random Flip (p = 0.3)
Blank Rectangles

Imageex−situ ResNet-18 Madgrad 0.0001
Random Flip (p = 0.5)
Gaussian Blur (p = 0.5)
z-transformation

ImagemaxP L ResNet-18 Madgrad 0.0001
Random Flip (p = 0.5)
Gaussian Blur (p = 0.5)
z-transformation

Timeseries ResNet-152 Madgrad 0.0001 z-transformationmTh

Video SlowFast AdamW 0.001

z-transformation
Gamma Transform
Gaussian Blur (p = 0.15)
Random Flip (p = 0.3)
Blank Rectangles

Table 1: Used hyperparameters for training the NNs. Augmentations for 2D representations
were all implemented using Albumentations [Buslaev et al., 2020] while 3D augmentations were
implemented with Batchgenerators [Isensee et al., 2020]. All runs were trained for 1,000 epochs
with a batch size of 256 using a cosine annealing learning rate (LR) scheduler.

C Neural Network Performance Evaluation

Local Polynomial Regression (d = 0.9) Perfect Prediction Reference Line

Video Representation

Parity Plot for PCE Testset Predictions (n = 349)a.

Figure 7: Parity plot for the video representation. Local Polynomial Regression to compare error trend
with perfect prediction reference line.

Figure Figure 7 shows a parity plot for the Slowfast model trained on the video data representation
and using PCE as target. We observe that low-PCE cases are consistently overestimated by the
model. This is due to the fact that PCE can only be measured on the complete PSC while the
videos only capture the perovskite layer manufacturing and not its subsequent steps. If errors
occur in these subsequent processing steps the final PCE is lower while the perovskite layer may
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be actually of good quality. Therefore it is expected to overestimate these cases. Besides that,
the model can reliably distinguish between high and low-quality PSCs.

D Attribution Methods

Due to the risk of confirmation bias and unfaithful explanations [Doshi-Velez and Kim, 2017], we
compute each attribution-map for all representations and labels with four different attribution
methods. These include Guided Backpropagation (GBP) [Springenberg et al., 2015], Guided
Gradient-weighted Class Activation Mapping (GGC) [Selvaraju et al., 2017], Integrated Gradients
(IG) [Sundararajan et al., 2017], and Expected Gradients (EG) [Erion et al., 2021]. Local
explanations are computed on test set observations. As there are no significant differences
between train and test set explanations, global explanations are computed on the full dataset to
leverage the substantially larger size compared to the test set.

The most apparent solution to measure the sensitivity of a model’s output to its input is the
respective gradient. However, vanilla gradients are prone to gradient shattering [Balduzzi et al.,
2017] and ignoring global effects in the input space. Thus, they can e.g. be combined with
deconvolutional networks [Zeiler and Fergus, 2014] which aim to invert the data flow of a NN,
to reconstruct the discriminative input space of an activation or output node. While both
approaches are almost equivalent [Simonyan and Zisserman, 2015], they differ in their backwards
pass because, for non-linear functions such as the Rectified Linear Unit (ReLU), deconvolutions
compute “switches" during the forward pass to invert the function. In the case of ReLU for
example, this results in a sign indicator function computed on the higher-layer’s reconstruction
instead of the layer input, which would be the case in backpropagation (for more detailed
information see Section 3.4 in Springenberg et al. [2015]). GBP combines both backwards pass
approaches by masking out the values for which at least one of the approaches is negative, guid-
ing the gradient by an additional signal from the higher layers on top of the usual backpropagation.

We combine GBP with GradCAM, a method leveraging the idea that convolutional neural
networks transform spatial to semantic information by attributing to the semantic information,
which is then back-projected into the input space. The resulting GGC takes the element-wise
product between GBP and the non-negative GradCAM attributions, leveraging both the semantic
information from GradCAM and the more fine-grained spatial information in the input space
from GBP. We back-project from the last block in the ResNet and the multipathway fusion block
in the SlowFast architecture.

IG on the other hand computes a path integral between a baseline value x0 and the true value
xj of each of the j input features (i.e. pixels or timesteps).

IGj(x, x0) = (xj − x0j)
∫ 1

α=0

∂f(x0 + α(x − x0))
∂xj

dα (1)

However, the prior selection of a baseline value in IG is not always clear, and performing multiple
path integrals over several baseline values can be inefficient. Thus, EG avoids the selection
of a baseline value, by leveraging a probabilistic baseline D computed over a sample of observations.

EGj(x) = E
x0∼D, α∼U(0,1)

[
∂f(x0 + α(x − x0))

∂xj
dα

]
(2)

In application, this expectation is approximated via a mini-batch sampling approach for x0 and α.
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D.1 Feature Importance for all Representations, Labels and Attribution Methods

PLLP725RND
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Expected Gradients Integrated Gradients Guided Backprob Guided GradCAM
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PCE
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mTh

Original

Negative AttributionPositive Attribution

PLSP775PLLP780

a.    Global Attribution for Timeseries (n = 100)

b.    Local Attribution for Image

Figure 8: a. Absolute attribution-maps for PCE and mTh for IG, GBP, and GGC averaged over 100
observations. The maps show very similar characteristics across all XAI methods. Only IG on mTh
attributes more to the phase after the nucleation onset compared to GBP GGC and EG (Figure 5). b. As
the features in the image representation are location invariant, we can not produce global explanations by
averaging the absolute attribution-maps. Thus the local explanation in positive and negative attribution
per filter is shown for a single observation for both labels and all four XAI methods.
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Figure 9: EG-based attribution-maps of four selected frames at the timesteps 0, 120, 240, and 600 for
both labels and all filters. The aggregated absolute attribution shows the importance of each frame of
the filter. Also, it shows the same attribution pattern as for the timeseries representation in 8.
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Figure 10: IG-based attribution-maps of four selected frames at the timesteps 0, 120, 240, and 600 for
both labels and all filters. The aggregated absolute attribution shows the importance of each frame of
the filter.

13



 A
ttr

ib
ut

io
n 

   
O

rig
in

al
   

  Timestep: 0      120       240      600    

 A
ttr

ib
ut

io
n 

   
O

rig
in

al
   

  Timestep: 0      120     240      600    

Aggregated Attribution  

 Timesteps

Aggregated Attribution  

 Timesteps

Label: PCE Label: mTh 

 A
ttr

ib
ut

io
n 

   
O

rig
in

al
   

  Timestep: 0      120       240      600    
 A

ttr
ib

ut
io

n 
   

O
rig

in
al

   
  Timestep: 0      120     240      600    

Aggregated Attribution  

 Timesteps

Aggregated Attribution  

 Timesteps

 A
ttr

ib
ut

io
n 

   
O

rig
in

al
   

  Timestep: 0      120       240      600    

 A
ttr

ib
ut

io
n 

   
O

rig
in

al
   

  Timestep: 0      120     240      600    

Aggregated Attribution  

 Timesteps

Aggregated Attribution  

 Timesteps

 A
ttr

ib
ut

io
n 

   
O

rig
in

al
   

  Timestep: 0      120       240      600    

 A
ttr

ib
ut

io
n 

   
O

rig
in

al
   

  Timestep: 0      120     240      600    

Aggregated Attribution  

 Timesteps

Aggregated Attribution  

 Timesteps

Filter: RND

Filter: PLLP725

Filter: PLLP780

Filter: PLSP775

a.    Local Attribution for Video (Guided Backprob)

Figure 11: GBP-based attribution-maps of four selected frames at the timesteps 0, 120, 240, and 600
for both labels and all filters. The aggregated absolute attribution shows the importance of each frame
of the filter.
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Figure 12: GGC-based attribution-maps of four selected frames at the timesteps 0, 120, 240, and 600
for both labels and all filters. The aggregated absolute attribution shows the importance of each frame
of the filter.

15



E Counterfactual Examples
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a.    Counterfactual Examples of LP Filters for PCE (Original PCE: 13.5%) b.    Counterfactual Examples of LP Filters for mTh (Original mTh: 765.48 nm)

Figure 13: a. & b. Artificial generated CEs of a timeseries for substantially higher or lower PCE and
mTh for filters RND and P LSP 775.

RND PLLP725 PLLP780 PLSP775RND PLLP725 PLLP780 PLSP775

Higher PCE (Counterfactual PCE: 14.33%)

Lower PCE (Counterfactual PCE: 0%)

Original

Higher mTh (Counterfactual mTh: 1343.38 nm)

Lower mTh (Counterfactual mTh: 644.93 nm)

Original

a.    Counterfactual Examples per Filter (Image, Original PCE: 12.5%) b.    Counterfactual Examples per Filter (Image, Original mTh: 765.48nm)

Figure 14: a. & b. Artificial generated CEs of the image representation per filter for PCE and mTh.
We observe specific artifacts generated in the images by the genetic algorithm in the RND filter. For all
other filters, mainly the brightness is controlled. Interestingly, in the case of lower PCE, the algorithm
generated a CE that achieves a 0% PCE prediction.
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Figure 15: a. & b. Artificially generated CEs of the video representation for both labels. Each filter
shows four original frames together with the counterfactual frames of the substantially higher or lower
prediction. To get a more high-level perspective of what was altered in the video CEs, we present for
each filter the Euclidean distance (||δ||2) between each counterfactual frame and the original frame to
see which frames were altered the most. As for the timeseries representation, we observe that most
alternations were done during the nucleation onset and surface morphology formation phases.
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F TCAV

We leverage TCAV [Kim et al., 2018] to identify concepts that are most important to the model’s
predictions. The technique uses a Concept Activation Vector (CAV), v, to quantify the importance
of a particular concept to the model’s predictions. A CAV is a high-dimensional vector that is
learned by training a linear model on the activations of a hidden layer l and two datasets of
examples, C = [c1, c2], that are representative of the concepts. The CAV is then the unit length
normal vector to the linear decision boundary of the model, pointing in the direction of c1, while
c2 lies in the opposite direction. We then calculate the sensitivity SC,l of the output into the
direction of the CAV by taking the directional derivative:

SC,l(c1) = ∇hl(fl(c1)) · vl
C (3)

With f() being the part of the model up to the hidden layer l and h() the part of the model from
the hidden layer to the output. We use a sign-test to test if the output for a specific observation
is more sensitive to concepts one or two. If the directional derivative in the direction of the
CAV is positive it is more sensitive to c1 and if negative more sensitive to c2. We compute the
concept importance score by averaging the sign-test result for the respective high/low PCE or
mTh subsets Xq.

Label alpha (α) max iterations tolerance (δ)
PCE 0.02 50,000 1e-7
mTh 0.02 100,000 1e-8

Table 2: Hyperparameters of the Lasso-regression [Tibshirani, 1996] used to linearly divide the
concepts c1 and c2. For each label the hyperparameters are the same for all three concept sets.
The random state was constant during all experiments.

The sampling of each concept class:

EarlyPeakHeight(F)Low,High ∼ N(Q0.15|0.85(X̂), 0.5 ∗ σ(X̂))

X̂ = {max({xt=0, . . . , x360})|x ∈ Xn}n
F

(4)

Early Peak Height Choose n = 100 random locations during Phase II. For each filter F ,
take the 0.85 (high peak) and respectively 0.15 (low peak) quantile value (Q0.15|0.85) of the
maximum values from t = 0 to t = 360 (X̂). For each random location sample a peak from a
normal distribution with the mean of the quantile value and variance of 0.5 ∗ σ(X̂) of all Phase II
maximum values. Resample and interpolate to a fitting curve. Repeat for each filter and combine
filters for each observation.

PeakPosition(F)Early,Late ∼ N(µ̂, 0.25 ∗ |µ̂|)

µ̂ = ¯̂
X − C X̂ = {max({xt=0|505, . . . , x360|719})|x ∈ Xn}n

F

(5)

Peak Position Choose n = 100 random locations during Phase II and Phase IV. For each of
the 200 locations and the four filters F , sample a peak from a normal distribution with the
mean equal to the mean over the maximum values of either of both phases (X̂) and subtract
a regularization constant not to produce OOD observations. The variance is then equal to
0.25 ∗ |µ̂|. Resample and interpolate to a fitting curve. Repeat for each filter and combine filters
for each observation.

F.1 TCAV results for all concepts

18



Optimal mTh Observations (Peak Position)

( , n = 113)Q0.45 < x < Q0.55

High mTh Observations (Early Peak Height)

( , n = 113)> Q0.9

C
on

ce
pt

 Im
po

rta
nc

e 
(p

ro
p.

)
 3.0       3.1      3.2      3.3      4.0      4.1      4.2       4.3        
  3.0       3.1      3.2      3.3      4.0      4.1      4.2       4.3        


Tested NN Layers

Early PeakLate Peak Low PeakHigh Peak

Tested NN Layers

a.    Concept Importance (n  =200)

Figure 16: For the peak position concept, the late peak is moderately more important than the early
peak for both mTh subsets (see Figure 4 (b.) for higher mTh). In the case of the early peak height
concept, the model is always sensitive to high peaks (see Figure 4 (a.) for optimal mTh observations).
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