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Abstract

This work presents FaceComposer, a unified generative model that accomplishes
a variety of facial content creation tasks, including text-conditioned face synthesis,
text-guided face editing, face animation etc. Based on the latent diffusion
framework, FaceComposer follows the paradigm of compositional generation
and employs diverse face-specific conditions, e.g., Identity Feature and Projected
Normalized Coordinate Code, to release the model creativity at all possible. To
support text control and animation, we clean up some existing face image datasets
and collect around 500 hours of talking-face videos, forming a high-quality large-
scale multi-modal face database. A temporal self-attention module is incorporated
into the U-Net structure, which allows learning the denoising process on the
mixture of images and videos. Extensive experiments suggest that our approach
not only achieves comparable or even better performance than state-of-the-arts on
each single task, but also facilitates some combined tasks with one-time forward,
demonstrating its potential in serving as a foundation generative model in face
domain. We further develop an interface such that users can enjoy our one-step
service to create, edit, and animate their own characters. Code, dataset, model, and
interface will be made publicly available.

1 Introduction

Due to the rapid development of generative models, such as diffusion models (DMs) [10, 15, 47],
VAEs [21], GANs [6] and flow models [5] in the computer vision area, automatic content creation has
recently received an increasing amount of attention for its real-world applications. Benefiting from
these generative models, facial content creation as a critical part has recently achieved impressive
progress and simultaneously shows great application potential, e.g., virtual digital human, artistic
creation, and intelligent customer service.

Existing face generative models [20, 23, 39, 61] are usually developed as highly customized systems,
meaning that one model can only handle one task. However, this design poses two significant
challenges: 1) hard to accomplish complex tasks, such as integrating face creating, editing and then
animating the generated face in a single step; 2) redundant consumption of memory and computation.
For example, one needs to train and save a number of models to build a multi-functional system,
and perform complicated inference processes. The challenges could inevitably limit its further
applications and development.

To tackle these problems, we propose compositional FaceComposer in this work, a unified model
that is capable of simultaneously tackling versatile facial tasks, including face generation, face editing,
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face animation, and their combinations. Specifically, we decompose a given face into multi-level
representative factors, e.g., Identity Features, Projected Normalized Coordinate Code (PNCC) [64]
and Text2Face (T2F) Embeddings, and then train a powerful latent diffusion model conditioned on
them to compose the input face. This design provides the model with exceptional controllability
over facial content creation, enabling a seamless process from generating a face to utilizing it. In
particular, we have additionally incorporated temporal self-attention to enable joint learning from
both images and videos simultaneously. To optimize FaceComposer, we finally gather a high-quality
large-scale multi-modal face dataset, including 1.1 million face images from pre-existing datasets
and 500 hours of meticulously cleaned talking face videos.

Extensive quantitative and qualitative results demonstrate that FaceComposer achieves exceptional
performance in various facial content creation tasks. FaceComposer surpasses previous state-of-
the-art methods in face generation, face editing, and audio-driven face animation in terms of the
most widely-used evaluation metrics. Furthermore, we have devised intricate yet imaginative tasks to
showcase the advantages of our diverse condition composition.

2 Related work

Face generation. The goal of face generation [34, 53, 56, 57] is to generate photo-realistic face
images. Among them, StyleGAN series [17–19] boost the generation quality by introducing
controllable and interpretable latent space. After that, some variants [51, 63, 42, 41, 52] are proposed
for further quality improvement. One of them, TediGAN [51], maps text into the StyleGAN latent
space to make the text-guided face generation. Another example is LAFITE [63], which presents
a language-free training framework with a conditional StyleGAN generator. Recently, diffusion
models [10, 32, 33, 38, 37] become more and more popular in image synthesis area due to their
strong generative abilities. We find fine-tuning a pre-trained diffusion model will bring comparable
or even superior performance to the GAN paradigm.

Face editing. Face editing [20, 23, 25, 27, 54] aims to manipulate the face images guided by text
descriptions or masks. Similar to face generation, StyleGAN-based methods [51, 29, 49, 65] show
remarkable performance in face editing. Besides TediGAN, StyleClip [29] combines representation
ability of CLIP [31] and generative power of StyleGAN to optimize the editing direction. In contrast
to the above methods, CollDiff [13] trains the diffusion model with multi-modal conditions (text +
mask), in order to make them complementary. It is noted that TediGAN and CollDiff both support
face generation and editing, which differ from ours in the following aspects: 1) TediGAN is essentially
designed as a bespoke system, i.e., it can only complete one task (generation or editing) in one model
inference. 2) CollDiff uses multiple diffusion models (one model for one condition), leading to
low efficiency in training and inference stage. 3) FaceComposer only use one diffusion model in a
unified framework, and can finish different facial creation combinations in one model inference.

Face animation. Face animation [39, 36, 50, 55, 35, 30, 61, 62, 26, 44] intends to make the target
face move according to a driving video or audio. Video-driven methods [39, 36, 50, 55, 35] focus
on modeling the motion relationships between source and target face. For example, FOMM [39]
decouples appearance and motion and introduces keypoints representation to support complex motions.
PIRenderer [36] employs 3DMM to better control the face motions. Compared with keypoints and
3DMMs, the PNCC we used contains more dense and intuitive facial structure information, making it
easier to be learned by the model. Audio-driven methods [30, 61, 62, 26, 44] pay more attention to
the lip synchronization (lip-sync) between the audio and the mouth of target face. MakeItTalk [62]
disentangles the content and speaker information to control lip motions. By learning from a powerful
lip-sync discriminator, Wav2lip [30] improves lip-sync accuracy. PC-AVS [61] generates pose-
controllable talking faces by modularizing audio-visual representations. However, all of them only
consider intra-frame information for reconstruction, ignoring inter-frame relationship, which is fixed
by adding a temporal attention module in our FaceComposer.

3 FaceComposer

Recent days have witnessed the powerful generative ability of Latent Diffusion Models (LDMs) [37],
which is consequently equipped as the backbone of our FaceComposer. We model various facial
content creations as a multiple-condition-driven denoising process. Fig. 1 shows the overview of
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Figure 1: The framework of FaceComposer, which takes f frames and five face-related conditions as
input, uses LDMs to predict the noise added in the latent space. We can combine diverse conditions to
finish face generation/editing/animation or their combinations. For example, the green △ conditions
are for face generation, yellow □ for face editing, and red ✩ for face animation.

FaceComposer. In the unified framework, the inputs of different tasks are expressed as diverse
conditions, including Mask, PNCC, Sketch, Identity Feature and T2F Embedding. We achieve
versatile facial content creations through condition combinations (Sec. 3.2). Different from the
standard LDMs that is only designed for image generation, FaceComposer supports both static and
dynamic content creations, i.e. our dataset contains both images and videos. So we introduce a
temporary attention module into LDMs for the two modalities joint training (Sec. 3.3 and Sec. 3.4).

3.1 Preliminaries

We denote the input f frames as x0 ∈ Rf×3×H×W , where H and W are height and width of input
frames (we set H = W = 256 in experiments).

Latent diffusion model. To save the computational resources of DMs, we follow LDMs to encode
frames into latent space: z0 = E(x0) ∈ Rf×Clatent×h×w with a pre-trained image encoder E,
where Clatent means the dimension of latent space, h and w are set to 32 in practice. And in
the end of denoised process, the final z̃0 will be mapped into pixel space with image decoder D :
x̃0 = D(z̃0) ∈ Rf×3×H×W . In the latent space, the diffusion model zθ can be parameterized to
predict the added noise:

Lsimple = Ez,ϵ,t,C

[
∥ϵ− zθ(atz0 + σtϵ,C)∥22

]
, (1)

where C denotes the condition, t ∈ {1, ..., T}, ϵ ∈ N (0, 1) is the random Gaussian noise, at and σt

are two scalars related to t. We freeze E and D, and start from a pre-trained LDMs.

Compositional generation pipeline. As a pioneering work of compositional generation,
Composer [12] decomposes an image into eight conditions to improve the controllability of
image synthesis, inspiring us to treat the inputs of different facial content creations as multiple
conditions, i.e., C in Eq.1 is a condition set. And we adopt the same guidance directions as [12]:
ẑθ(zt,C) = ωzθ(zt, c2) + (1− ω)zθ(zt, c1), where ω is the guidance weight, c1 and c2 are two
subsets of C, respectively.

3.2 Diverse face-specific conditions

Condition decomposition We convert different inputs into the following five face-specific conditions.

Mask: Mask is used to force FaceComposer to generate or edit a face in a certain region. Based on
the nine parsing areas of face [22], we randomly mask one or all of them. When f > 1, different
frames mask the same region. Before taken as a condition, masks are also mapped into latent space
through E.
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Table 1: Versatile creations based on condition compositions. M, S, PNCCs, ID and T2F are short for
Mask, Sketch, PNCC sequence, Identity Feature, and T2F Embedding, respectively.

Single Creation Versatile Creations

Task Conditions Task Conditions

face generation
① T2F

face generation+animation
① PNCCs+T2F

② S ② PNCCs+ID
③ ... ③ ...

face editing
① M+T2F

face generation+editing
① ID+M

② M+S ② ID+T2F
③ ... ③ ...

face animation ① M+T2F+PNCCs face generation+editing+animation ① ID+T2F+PNCCs
② ... ② ...

PNCC: PNCC [64] represents the geometric information of the face, a pre-defined PNCC sequence
can effectively guide facial animation generation. We use FLAME Fitting [24] to extract the PNCC of
all frames. Different from the mask, the distribution of PNCC differs significantly from the original
frame, so we add a trainable module Ep to encode the PNCC.

Sketch: Sketch describes the contours of different parts of the face (e.g., face shape, eye size, mouth
location), it contains local details with low semantics. We adopt the same method as [12] to extract
the sketches. Similar to PNCC, we input sketch information into a trainable Es module to obtain the
condition.

Identity Feature: Identity Feature indicates the identity attribute, excluding trivial information (such
as hair color, texture, expression). It can direct the model to generate a face with the specified ID. We
use ArcFace [3] to get the Identity Feature.

T2F Embedding: Text2Face (T2F) Embedding has two functions: 1) complementing Identity
Feature with detailed information; 2) enabling text control. Specifically, during the training stage,
T2F Embedding is extracted from reference image with Face Clip [60] to feed facial details into
FaceComposer. In the denoising process, besides the reference image, we can also obtain T2F
Embedding from text prompt with an extra prior model (similar to DALL-E 2 [33]).

Conditioning mechanisms Considering Mask, PNCC and Sketch represent the spatial local
information of frames, they are all extracted from x0 and concatenated with zt in the channel
dimension. In contrast, Identity Feature and T2F Embedding define the global semantic information,
hence we get them from the reference image, and add the projected Identity Feature into time
embedding, serve T2F Embedding as key and value for cross attention module of zθ (corresponding
to Spatial Att in Fig. 1). Note that, except for PNCC, which needs to be fitted in advance, all left
conditions are extracted on-the-fly. We adopt a similar condition training strategy to Composer:
setting 0.5 dropout probability for each condition, 0.1 to drop all conditions, and 0.1 to reserve them
all.

Condition composition As we mentioned above, we can support versatile tasks: face generation,
face editing, face animation and their combinations by combining our diverse conditions.

We list some representative creations in Tab. 1. Taking face animation as an example, we use the
PNCC sequence (predicted by audio), Mask (masking the mouth region of the target face), and
T2F Embedding (providing texture information from reference image) to generate Talking Head.
It is worth mentioning that FaceComposer can finish face generation + editing + animation with a
one-time forward by conditioning on Identity Feature (guiding face generation), T2F Embedding
(extracted from editing prompt) and PNCC sequence (obtained from reference video). More details
are shown in Sec. 4.3.

3.3 Temporal self-attention module

In order to create static and dynamic contents simultaneously, we prepare a multi-modal database,
consisting of both images and videos. And we argue that joint image-video training is important
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Figure 2: The qualitative results of face generation.

for our FaceComposer, considering face image will align facial content and text description, while
video will link spatial and temporal information of face sequences.

Inspired by [40, 11], we introduce a temporary self-attention (TSA) layer into LDMs (corresponding
to Temporal Att in Fig. 1), and select half batch samples from images (i.e. f = 1 for 0.5B) and the
other half from videos (i.e. f = 5 for left 0.5B) to make the joint strategy fully benefit each other
within each batch (see ablation study in Sec. 4.4), where B is the total batch size. Assuming the input
of TSA is in the shape of B×f ×Cinter×h′×w′, it will be arranged to {B×h′×w′}×f ×Cinter

before entered into TSA, where Cinter, h
′, w′ are the intermediate channel dimension and feature

map size. When f = 1, TSA degrades to an identity transformation.

3.4 Multi-modal face database

To empower FaceComposer with image and video generation capabilities, we construct a high-quality
large-scale multi-modal face database comprising 1.1 million face images with text annotations and
approximately 500 hours-long talking face videos.

Image data. To construct the image part of our database, we carefully clean up LAION-Face [60] and
merge the cleaned dataset with CelebA-HQ [16] and FFHQ [17]. We clean up LAION-Face using
two approaches. Firstly, We use CLIP [31] to filter out the image-text pairs whose text descriptions
do not match the images. Specifically, for each image-text pair, we compute the cosine similarity
between CLIP features extracted from the image and the text and filter out the pair if the similarity is
lower than a predefined threshold. Secondly, we use an off-the-shelf face detector [4] to detect faces
in images and filter out images with no faces detected. Finally, we obtain the cleaned LAION-Face
dataset. It contains 1 million face images with corresponding text captions.

Video data. To construct the video part of our database, we collect talking face videos from Youtube,
BBC television, and some other web data. We manually clean collected videos to ensure high video
quality and audio-visual coherence. Our collected talking face dataset includes more than 500 hours
720P∼1080P videos with the audio track. We will release the dataset when the paper is made public.
For more details, please refer to Supplementary Material.

4 Experiments

4.1 Experimental setup

Implementation details. During the training, our model starts from a pre-trained LDMs*, and is
further trained on our multi-modal face database through a joint training mechanism. To enable text

*https://github.com/Stability-AI/stablediffusion
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Figure 3: The qualitative results of face editing. (a) The source images. (b) The images whose
attributes are edited through text descriptions by different methods. (c) The stylized results generated
by FaceComposer. FaceComposer is able to edit the style of images using text (the left column) or
a style reference image (the right column).

control, we trained a 1B parameter prior model for projecting captions to T2F Embeddings. For the
LDMs, we pretrain it with 1M steps on the full multi-modal dataset using only T2F Embeddings
as the condition, and then finetune the model for 200K steps with all conditions enabled. The prior
model is trained for 1M steps on the image dataset.

Evaluation tasks. We evaluate FaceComposer on face generation, face animation and face editing
tasks, which respectively using the Multi-Modal CelebA-HQ [51], HDTF [59] + MEAD-Neutral
(a subset of MEAD [45] that only contains the neutral facial expression videos), and the randomly
selected images from both CelebA and Non-CelebA datasets with randomly chosen descriptions.

Evaluation metrics. For face generation task, we adopt Fréchet inception distance (FID) [9]
to measure the image quality. Since FID cannot reflect whether the generated images are well
conditioned on the given captions, we choose to adopt R-precision [53] as another evaluation metric.
For face editing task, we compute the identity similarities (IDS) between the input faces and the
edited faces to measure the identity consistency. For face animation task, we adopt the Landmark
Distance around mouths (M-LMD) [1], the Landmark Distance on the whole face (F-LMD), the
structural similarity (SSIM) [48], the Cumulative Probability of Blur Detection (CPBD) [28], and
the confidence scores of SyncNet [2] (Syncconf) as evaluation metrics. To facilitate a more equitable
comparison between methods generating only the mouth region (visual dubbing methods) and those
generating the entire face (one shot methods), we computed the SSIM and CPBD for the mouth
region, denoted as SSIM-M and CPBD-M, respectively. For more details about the experimental
settings, please refer to Supplementary Material.

4.2 Comparisons on single task

In this subsection, we demonstrate the performance of FaceComposer on different tasks, including
static content creation, e.g., face generation and editing, and dynamic content creation task, e.g., face
animation. Note that for the face animation task, we use audio to drive face motions. We train an
Audio2PNCC model to generate PNCCs with lip motions controlled by input audio.

Face generation. We compare our method with TediGAN [51], LAFITE [63] and CollDiff [13]. We
generate 30, 000 images for each method using randomly selected unseen text descriptions. Tab. 2
shows that our method achieves the best results in terms of both FID and R-precision. Such results
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Figure 4: Qualitative results of face animation. It can be seen that FaceComposer not only achieves
accurate lip-sync but also produces high-fidelity results in the mouth area.

Table 2: Results of face generation.

Method FID↓ R-precision(%)↑ Accuracy↑ Realism↑
TediGAN [51] 107.14 44.96 2.80 3.55
CollDiff [13] 98.76 67.41 3.43 2.96
LAFITE [63] 12.54 81.94 4.07 3.88

Ours 11.34 86.63 4.86 4.67

Table 3: Results of face editing.

Method IDS↑ Accuracy↑ Realism↑
TediGAN [51] 0.62 2.92 2.09
StyleClip [29] 0.75 4.27 2.87

Ours 0.94 4.58 4.47

demonstrate the effectiveness of massive training data. The qualitative comparison is shown in Fig. 2.
We can observe that other methods can generate text-relevant results. However, their results lack
some attributes contained in the input captions. On the other hand, our results achieve higher fidelity
while maintaining text-visual coherence.

We also evaluate the Accuracy and Realism through a user study, in which the users are asked
to judge which image is more realistic, and more coherent with the given captions. We randomly
sampling 30 images with the same text conditions and collect more than 20 surveys from different
people with various backgrounds. Compared with the state-of-the-arts, FaceComposer achieves
better accuracy and realism values as shown in Tab. 2, which proves that our methods can generate
images with the highest quality and text-relevance.

Face editing. To evaluate the face editing performance of FaceComposer, we compare our method
with TediGAN [51] and StyleClip [29]. Results are shown in Tab. 3, and we can see that our method
achieves better results in all metrics (accuracy and realism come from user study, following the same
scheme in Tab. 2), which proves that our methods can generate images with the highest quality and
text-relevance. We show some visual results in Fig. 3. As we can see, our methods can perform face
editing more precisely, and the achieved results are the most photorealistic and most coherent with
the given texts.

Face animation. We compare our method with state-of-the-art methods including MakeItTalk [62],
Wav2Lip [30], PC-AVS [61], AVCT [46], EAMM [14], StyleTalk [26], SadTalker [58], and
StyleSync [7]. The samples of the compared methods are generated either with their released codes
or with the help of their authors. As shown in Tab. 4, FaceComposer achieves the best performance
in most metrics. The strong performance in SSIM, SSIM-M, CPBD, and CPBD-M metrics indicates
the high quality of videos generated by FaceComposer. Given that Wav2Lip employs SyncNet as
a discriminator during its training phase, it reasonably attains the highest confidence score from
SyncNet, surpassing even the ground truth. Numerous prior arts [7, 58, 26, 8, 43] have reported that
Wav2Lip, despite attaining high SyncNet scores, does not fare well in qualitative evaluations (e.g.,
user studies) of lip-sync, attributed to the production of blurry results and, occasionally, exaggerated
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Table 4: Results of face animation on HDTF and MEAD-Neutral.

Methods HDTF / MEAD-Neutral
SSIM↑ CPBD↑ F-LMD↓ M-LMD↓ Syncconf↑ SSIM-M↑ CPBD-M↑

MakeItTalk [62] 0.63/0.74 0.19/0.10 4.10/3.88 4.22/5.41 3.07/2.02 0.62/0.69 0.15/0.06
Wav2Lip [30] 0.75/0.79 0.18/0.12 2.01/2.38 2.54/2.95 5.27/3.99 0.68/0.78 0.08/0.03
PC-AVS [61] 0.51/0.51 0.23/0.07 3.64/4.76 3.52/3.91 4.16/3.09 0.60/0.67 0.10/0.05
AVCT [46] 0.73/0.77 0.17/0.10 2.85/2.68 3.53/4.46 3.81/2.56 0.70/0.73 0.16/0.08
EAMM [14] 0.59/0.41 0.08/0.08 4.16/7.39 4.19/5.03 2.30/1.40 0.60/0.71 0.13/0.05
StyleTalk [26] 0.78/0.79 0.23/0.12 2.10/2.35 2.40/2.80 4.17/3.05 0.76/0.80 0.16/0.09
SadTalker [58] 0.61/0.73 0.21/0.12 3.98/3.67 3.46/4.09 4.05/2.62 0.61/0.69 0.15/0.10
StyleSync [7] 0.77/0.80 0.21/0.12 1.93/2.22 2.36/2.76 4.21/3.10 0.76/0.80 0.17/0.10
Ground Truth 1/1 0.23/0.20 0/0 0/0 4.52/3.57 1/1 0.21/0.12
FaceComposer 0.78/0.84 0.27/0.14 1.84/2.16 2.25/2.70 4.27/3.12 0.78/0.83 0.18/0.10

Table 5: User study results of different methods on HDTF and MEAD-Neutral for the face animation.
LS, VQ, OR stand for user study metrics LipSync, VideoQuality and OverallRealness, respectively.

Methods HDTF / MEAD-Neutral
LS↑ VQ↑ OR↑

MakeItTalk 1.71/2.20 1.87/2.38 1.44/1.74
Wav2Lip 2.93/3.33 1.02/1.10 1.10/1.12
PC-AVS 2.88/3.20 1.97/2.46 1.73/1.98
AVCT 2.04/2.76 2.60/2.66 2.46/2.62
EAMM 1.90/2.58 1.30/1.78 1.62/1.94
StyleTalk 3.10/3.60 3.08/3.00 2.44/2.82
SadTalker 3.22/3.68 2.82/2.92 1.97/2.42
Ground Truth 4.34/4.56 4.06/4.26 4.22/4.40
FaceComposer 3.53/3.96 3.38/3.50 2.93/3.73

lip motions. Our method’s confidence score aligns most closely with the ground truth, and our
method’s M-LMD scores are the best. This indicates that FaceComposer achieves precise lip-sync.
We provide more analysis regarding quantitative evaluation in the Supplementary Material.

Fig. 4 shows the qualitative results. It can be seen that MakeItTalk, AVCT, and EAMM fail to produce
accurate mouth movements, while FaceComposer achieves accurate lip-sync. Although PC-AVS
and Wav2Lip are competitive with FaceComposer in terms of lip-sync, they can only generate blurry
results. FaceComposer produces high-fidelity results in the mouth area. StyleTalk often produces
overly smooth lip movements. The lip-sync of SadTalker is slightly inferior to our method. StyleSync
occasionally yields jittery and exaggerated motions.

We conduct a user study involving 20 participants. Each participant is requested to assign scores
to five videos sampled from the test dataset for each method, evaluating them on three aspects: (1)
Lip sync accuracy; (2) Video quality; (3) Overall Realness. The scoring employs the Mean Opinion
Scores (MOS) rating protocol (scoring from 1 to 5, larger is better). Tab. 5 shows the results. Our
method achieves the best in all aspects, which demonstrates the effectiveness of our method.

4.3 Advantage of unified framework

In this subsection, we demonstrate the compositional generation capabilities, which are depicted in
Tab. 1, of FaceComposer with one-time forward. Here we provide two examples of versatile creations.
In practical application, one can customize different conditions to meet specific requirements. More
results will be provided in Supplementary Material.

Face generation+animation. FaceComposer has the ability of generating a desired face with a
random T2F Embedding and animating it with a one-time forward. We show six examples in Fig. 5 to
demonstrate such an ability. As we can see, the generated results in each row share almost the same
mouth shape as that of the driving PNCCs. Meanwhile, each generated result consistently adheres to
the given T2F Embeddings.
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Figure 5: Face generation and animation results. FaceComposer supports generating desired faces
with T2F Embedding and animating faces with PNCCs simultaneously in a one-time forward.

Face generation+editing+animation. Besides, FaceComposer can incorporate additional identity
conditions to animate a given face in a prescribed style. Some results are shown in Fig. 7. It is clear
that each animated frame has the same mouth shape and expression as that of the corresponding
PNCCs, while maintaining its original identity and face shape.

4.4 Ablation study

To isolate the contributions of our designs, we conduct the ablation studies from three aspects. Note
that the Audio2PNCC model is identical in all variants and we only compare the ability of these
variants to convert PNCCs to videos.

Image/Video dataset impact. We compare the following three variants: (1) only
train FaceComposer using videos (w/o Image), (2) only train FaceComposer using im-
ages (w/o Video), (3) our full model (Full), for face animation on HDTF dataset

Table 6: Ablation results of face animation on
HDTF

Method SSIM↑ CPBD↑ F-LMD↓ M-LMD↓
w/o Image 0.78 0.27 1.88 2.46
w/o Video 0.77 0.29 1.94 2.40

Full 0.78 0.27 1.84 2.25

in Tab. 6. Full achieves the best performance in
most metrics, which demonstrates the effective-
ness of joint training on image and video data.
We observe that w/o Video attains the highest
score in CPBD metric. This may be due to two
reasons. First, high-fidelity face images from
CelebHQ and FFHQ are incorporated into our
image data. Second, although our video dataset
is in high definition, the motion in the videos
may blur certain frames, which may lower the
model’s score in the CPBD metric.

w/o Image Fullw/o VideoGround Truth

Figure 6: Qualitative ablation results.

Fig. 6 shows the qualitative ablation results.
w/o Image fails to generate realistic texture in
the mouth area, i.e. the teeth and the tongue.
This may imply that high-resolution image data
are crucial to learning to generate high-quality
textures. w/o Video fails to generate mouth
shapes corresponding to input PNCCs. This
may stem from the fact that the image data only contains images with a limited number of mouth
shapes. On the other hand, Full generates high-fidelity results in the mouth area, produces accurate
mouth shape, and attains satisfactory frame consistency. This indicates the necessity of constructing
and learning from a multi-modal face database.

Condition numbers. We investigate the effect of different numbers of conditions on FaceComposer
in Tab. 7. Considering face generation/editing/animation are the fundamental tasks, we take T2F,
Mask and PNCC as three basic conditions (i.e., FaceComposer w/o (ID+S)), add Sketch condition
in FaceComposer w/o ID, and keeps all five conditions in FaceComposer. It can be seen that
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Figure 7: Face generation+editing+animation results. FaceComposer is able to generate face images
with specified identities, edit the image styles, and animate face images simultaneously in a one-time
forward.

Table 7: Ablation results with different conditions or data scales for face generation, editing, and
animation.

Variants Face Generation Face Editing Face Animation
FID↓ R-precision(%)↑ IDS↑ SSIM↑ CPBD↑ F-LMD↓ M-LMD↓

FaceComposer 11.34 86.63 0.94 0.78 0.27 1.84 2.25

FaceComposer w/o ID 11.40 86.28 0.94 0.78 0.26 1.89 2.28
FaceComposer w/o (ID+S) 11.27 86.91 0.93 0.78 0.26 1.88 2.28
FaceComposer- 11.60 86.85 0.93 0.78 0.26 1.91 2.37

FaceComposers with different number of conditions keep stable performance, no matter in face
generation, editing or animation task. This is reasonable, bacause the training dataset is fixed, when
the number of conditions increases, no additional information is introduced for a specific task.

Dataset scale. To demonstrate the impact of dataset scale on generation quality, we show an
ablation study in Tab. 7. Considering the state-of-the-art methods generally have dozens of hours of
training data, we reduce the training data of FaceComposer to the similar scale for a fair comparison.
Specifically, we randomly sampled 10 hours of video and 4.5W images from our original dataset
to train a FaceComposer (denoted as FaceComposer-). From Tab. 7, it can be observed that
FaceComposer- is inferior to FaceComposer due to the decrease of data information, but it is
still better than other state-of-the-arts in Tabs. 2 to 4.

5 Conclusion

This paper introduces a unified framework (named as FaceComposer) for versatile facial content
creation, i.e., 1) generating faces from scratch, 2) adjusting portion of the generated ones, and 3)
making the generated target move. It demonstrates a complete creative process from static (image)
to dynamic (video) content. FaceComposer employs a LDM with multiple conditions to handle all
above facial creation tasks. We evaluate its performance in various tasks and demonstrate our versatile
creative ability in different combined tasks. Demo interface, Social impact and Ethic statement will
be moved to Supplementary Material due to limited space.
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