
Under review as a conference paper at ICLR 2021

DOMAIN-FREE ADVERSARIAL SPLITTING FOR
DOMAIN GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Domain generalization is an approach that utilizes several source domains to train
the learner to be generalizable to unseen target domain to tackle domain shift issue.
It has drawn much attention in machine learning community. This paper aims to
learn to generalize well to unseen target domain without relying on the knowl-
edge of the number of source domains and domain labels. We unify adversarial
training and meta-learning in a novel proposed Domain-Free Adversarial Splitting
(DFAS) framework. In this framework, we model the domain generalization as
a learning problem that enforces the learner to be able to generalize well for any
train/val subsets splitting of the training dataset. To achieve this goal, we propose
a min-max optimization problem which can be solved by an iterative adversarial
training process. In each iteration, it adversarially splits the training dataset into
train/val subsets to maximize domain shift between them using current learner,
and then updates the learner on this splitting to be able to generalize well from
train-subset to val-subset using meta-learning approach. Extensive experiments on
three benchmark datasets under three different settings on the source and target
domains show that our method achieves state-of-the-art results and confirm the
effectiveness of our method by ablation study. We also derive a generalization error
bound for theoretical understanding of our method.

1 INTRODUCTION

Deep learning approach has achieved great success in image recognition (He et al., 2016; Krizhevsky
et al., 2012; Simonyan & Zisserman, 2014). However, deep learning methods mostly succeed in the
case that the training and test data are sampled from the same distribution (i.e., the i.i.d. assumption).
However, this assumption is often violated in real-world applications since the equipments/environ-
ments that generate data are often different in training and test datasets. When there exists distribution
difference (domain shift (Torralba & Efros, 2011)) between training and test datasets, the performance
of trained model, i.e., learner, will significantly degrade.

To tackle the domain shift issue, domain adaptation approach (Pan & Yang, 2010; Daume III &
Marcu, 2006; Huang et al., 2007) learns a transferable learner from source domain to target domain.
Domain adaptation methods align distributions of different domains either in feature space (Long
et al., 2015; Ganin et al., 2016) or in raw pixel space (Hoffman et al., 2018), which relies on unlabeled
data from target domain at training time. However, in many applications, it is unrealistic to access the
unlabeled target data, therefore this prevents us to use domain adaptation approach in this setting, and
motivates the research on the learning problem of domain generalization.

Domain generalization (DG) approach (Blanchard et al., 2011; Muandet et al., 2013) commonly
uses several source domains to train a learner that can generalize to an unseen target domain. The
underlying assumption is that there exists a latent domain invariant feature space across source
domains and unseen target domain. To learn the domain invariant features, (Muandet et al., 2013;
Ghifary et al., 2015; Li et al., 2018b) explicitly align distributions of different source domains in
feature space. (Balaji et al., 2018; Li et al., 2019b; 2018a; Dou et al., 2019) split source domains
into meta-train and meta-test to simulate domain shift and train learner in a meta-learning approach.
(Shankar et al., 2018; Carlucci et al., 2019; Zhou et al., 2020; Ryu et al., 2020) augment images or
features to train learner to enhance generalization capability.

1

Under review as a conference paper at ICLR 2021

Conventional domain generalization methods assume that the domain labels are available. But in
a more realistic scenario, the domain labels may be unknown (Wang et al., 2019). To handle this
domain-free setting, Carlucci et al. (2019) combines supervised learning and self-supervised learning
to solve jigsaw puzzles of the training images. Matsuura & Harada (2020) divides samples into
several latent domains via clustering and trains a domain invariant feature extractor via adversarial
training. Huang et al. (2020) discards the dominant activated features, forcing the learner to activate
remaining features that correlate with labels. Another line of works (Volpi et al., 2018; Qiao et al.,
2020) tackle the single source setting that the training set comprises a single domain, and the train
and test data are from different domains.

In this work, we focus on a general learning scenario of domain generalization as follows. First, we
do not know the domain label of each data and do not assume that there are several domains in the
training dataset. Second, we do not assume that the training and test data are from different domains
(e.g., styles). However, the previous domain-free DG methods (Matsuura & Harada, 2020) commonly
evaluate on the datasets (e.g., PACS) composed of several domains though they do not use domain
labels in training.

In our domain-free setting, we do not assume and know the domains in the training dataset, we
therefore model domain generalization as a learning problem that the learner should be able to
generalize well for any splitting of train/val subsets, i.e., synthetic source/target domains, over the
training dataset. This explicitly enforces that the trained learner should be generalizable for any
possible domain shifts within the training dataset.

To achieve this goal, we propose an adversarial splitting model that is a min-max optimization
problem, due to the difficulty of enumerating all splittings. In this min-max problem, we adversarially
split training dataset to train/val subsets by maximizing the domain shift between them based on
the given learner, and then update learner by minimizing the prediction error on val-subset using
meta-learning approach given the splitting. By optimizing this min-max problem, we enforce the
learner to generalize well even in the worst-case splitting. We also investigate L2-normalization of
features in our domain generalization method. It is surprisingly found that L2-normalization can
improve performance of learner and mitigate gradient explosion in the meta-learning process of DG.
We further theorectically analyze the underlying reasons for this finding. This proposed domain
generalization approach is dubbed Domain-Free Adversarial Splitting, i.e., DFAS.

To verify the effectiveness of our method, we conduct extensive experiments on benchmark datasets
of PACS, Office-Home and CIFAR-10 under different settings with multiple/single source domains.
In experiments that the training data are from several source domains, our method achieves state-of-
the-art results on both PACS and Office-Home datasets. We also find that our method significantly
outperforms baselines in experiments that the training data are from a single source domain on PACS
and CIFAR-10. We also confirm the effectiveness of our method by ablation study.

Based on domain adaptation theory, we also derive an upper bound of the generalization error on
unseen target domain. We analyze that the terms in this upper bound are implicitly minimized by our
method. This theoretical analysis partially explains the success of our method.

2 RELATED WORKS

We summarize and compare with related domain generalization (DG) methods in two perspectives,
i.e., DG with domain labels and DG without domain labels.

DG with domain labels. When the domain labels are available, there are three categories of methods
for DG. First, (Muandet et al., 2013; Ghifary et al., 2015; Li et al., 2018b; Piratla et al., 2020)
learn domain invariant features by aligning feature distributions or by common/specific feature
decomposition. Second, (Li et al., 2019a; Balaji et al., 2018; Li et al., 2019b; 2018a; Dou et al.,
2019; Du et al., 2020a;b) are based on meta-learning approach that splits given source domains into
meta-train and meta-test domains and trains learner in an episodic training paradigm. Third, (Shankar
et al., 2018; Carlucci et al., 2019; Zhou et al., 2020; Wang et al., 2020) augment fake domain data
to train learner for enhancing generalization capability of learner. Our method may mostly relate to
the above second category of methods. But differently, we consider the DG problem in domain-free
setting and adversarially split training dataset to synthesize domain shift in a principled min-max
optimization method, instead of using leave-one-domain-out splitting in these methods.

2

Under review as a conference paper at ICLR 2021

DG without domain labels. When the domain label is unavailable, to enhance generalization ability
of learner, Wang et al. (2019) extracts robust feature representation by projecting out superficial
patterns like color and texture. Carlucci et al. (2019) proposes to solve jigsaw puzzles of the training
images. Matsuura & Harada (2020) divides samples into several latent domains via clustering and
learns domain invariant features via adversarial training of feature extractor and domain discrimi-
nator. Huang et al. (2020) discards the dominant activated features, forcing the learner to activate
remaining features that correlate with labels. Volpi et al. (2018) and Qiao et al. (2020) propose
adversarial data augmentation to tackle the setting that the training set comprises a single domain.
In methodology, these methods either explicitly force the learner to extract robust features (Wang
et al., 2019; Matsuura & Harada, 2020; Huang et al., 2020) or augment new data to increase training
data (Carlucci et al., 2019; Qiao et al., 2020; Volpi et al., 2018). While our method is a novel
meta-learning approach for DG by introducing adversarial splitting of training dataset during training,
without relying on data/domain augmentation.

3 METHOD

In our setting, since we do not assume and know the domains in the training dataset, the training data
could be independently sampled from several underlying source domains or just from a single source
domain. We denote S = {(xi, yi)}Ni=1 as the training dataset. Our goal is to train the learner with S
that can generalize well on an unseen target domain.

In the following sections, we introduce details of our proposed model in Sect. 3.1, followed by its
optimization method in Sect. 3.2. We also investigate L2-normalization for domain generalization
in Sect. 3.3. Theoretical analysis for our method is presented in Sect. 4. Experimental results are
reported in Sect. 5. Sect. 6 concludes this paper.

3.1 DOMAIN-FREE ADVERSARIAL SPLITTING MODEL

As mentioned in Sect. 1, we model DG as a learning problem that enforces the learner to be able
to generalize well for any train/val subsets splitting of the training dataset. The learner is trained
using meta-learning approach (Finn et al., 2017). To formulate our idea mathematically, we first
introduce some notations. We denote f as a function/learner (f could be a deep neural network, e.g.,
ResNet (He et al., 2016)) that outputs classification score of the input image, l as the loss such as
cross-entropy, St and Sv as the train-subset and val-subset respectively such that S = St ∪ Sv and
St ∩ Sv = ∅. The formulated optimization problem for domain generalization is

min
w

1

|Γξ|
∑
Sv∈Γξ

L(θ(w);Sv) +R(w)

s.t. θ(w) = arg min
θ
L(θ;St, w), St = S − Sv.

(1)

In Eq. (1), Γξ = {Sv : Sv ⊂ S, |Sv| = ξ} is the set of all possible val-subsets of S with length of
ξ, St = S − Sv is train-subset paired with each Sv , L(θ(w);Sv) = 1

|Sv|
∑

(x,y)∈Sv l(fθ(w)(x), y) is
the loss on Sv, where θ(w) is the parameters of f , L(θ;St, w) is L(θ;St) with θ initialized by w
andR(w) is regularization term. In the optimization model of Eq. (1), the parameter θ(w) of learner
trained on St is treated as a function of the initial parameter w. To force the learner trained on St to
generalize well on Sv, we directly minimize the loss L(θ(w);Sv), dubbed generalization loss, on
val-subset Sv, w.r.t. the parameter θ(w) trained on St. Solving Eq. (1) will force the learner to be
able to generalize well from any train-subset to corresponding val-subset.

Since |Γξ| may be extremely large, it is infeasible to enumerate all possible train/val splittings. Thus,
we propose the following adversarial splitting model instead,

min
w

max
Sv∈Γξ

L(θ(w);Sv) +R(w)

s.t. θ(w) = arg min
θ
L(θ;St, w), St = S − Sv.

(2)

In the min-max problem of Eq. (2), the train/val (St/Sv) splitting is optimized to maximize the
generalization loss to increase the domain shift between train and val subsets by finding the hardest
splitting to the learner. While w is optimized by minimizing the generalization loss of learner over

3

Under review as a conference paper at ICLR 2021

the splitting. Solving this adversarial splitting optimization model in Eq. (2) enforces the learner
to be generalizable even for the worst-case splitting. We therefore expect that the trained learner is
robust to the domain shifts within the training dataset. For the regularization termR(w), we set it
to be the training loss on St (i.e.,R(w) = L(w;St)), which additionally constrains that the learner
with parameter w should be effective on St (Li et al., 2018a). The effect of the hyper-parameter ξ
will be discussed in Appendix A.2.

In conventional adversarial machine learning, adversarial training is imposed on adversarial samples
and learner to increase robustness of the learner to adversarial corruption (Goodfellow et al., 2015).
While in our optimization model of Eq. (2), adversarial training is conducted on data splitting and
learner to force the learner to be robust to domain shift between train/val subsets. Our model bridges
adversarial training and meta-learning. It is a general learning framework for domain generalization
and is a complement to adversarial machine learning.

3.2 OPTIMIZATION

This section focuses on the optimization of Eq. (2). Since Eq. (2) is a min-max optimization problem,
we alternately update Sv and w by fixing the other one as known. We should also consider the inner
loop for optimization of θ(w) in the bi-layer optimization problem of Eq. (2). We next discuss these
updating steps in details. The convergence and computational cost of this algorithm will be also
discussed in Appendix A.3 and A.4 respectively.

Inner loop for optimization of θ(w). We adopt finite steps of gradient descent to approximate the
minimizer θ(w) of the inner objective L(θ;St) with initial value w. This approximation technique
has been introduced in machine learning community several years ago (Sun & Tappen, 2011; Finn
et al., 2017; Fan et al., 2018). For convenience of computation, following (Li et al., 2018a; Dou et al.,
2019), we only conduct gradient descent by one step as

θ(w) = w − α∇θL(θ;St)|θ=w, (3)

where α is the step size of inner optimization and its effect will be discussed in Appendix A.2.

Optimizingw with fixed Sv . For convenience, we denote gtw = ∇θL(θ;St)|θ=w. Fixing Sv (St is
then fixed), w can also be updated by gradient descent, i.e.,

w = w − η∇w
(
L(w − αgtw;Sv) +R(w)

)
, (4)

where η is the step size of outer optimization.

Finding the hardest splitting Sv with fixed w. Fixing w, to find Sv ∈ Γξ to maximize L(w −
αgtw;Sv), we do first order Taylor expansion for L(w−αgtw;Sv) by L(w−αgtw;Sv) ≈ L(w;Sv)−
α 〈gtw, gvw〉, where gvw = ∇θL(θ;Sv)|θ=w and 〈·, ·〉 denotes the inner product. From the definition
of L, gtw and gvw, the optimization problem of maxSv∈Γξ{L(w;Sv) − α 〈gtw, gvw〉} can be written
as maxSv∈Γξ{ 1

|Sv|
∑

(x,y)∈Sv l (fw(x), y)− α 〈∇wl(fw(x), y), gtw〉}. This problem is equivalent to
the following splitting formulation:

max
Sv,A

∑
(x,y)∈Sv

l (fw(x), y)− α 〈∇wl(fw(x), y), A〉 s.t. A = gtw, Sv ∈ Γξ, (5)

where we introduced an auxiliary variable A. Eq. (5) can be solved by alternatively updating Sv
and A. Given A, we compute and rank the values of l (fw(x), y) − α 〈∇wl(fw(x), y), A〉 for all
(x, y) ∈ S and select the largest ξ samples to constitute the Sv. Given Sv (St is then given), we
update A by A = gtw = 1

|St|
∑

(x,y)∈St ∇wl(fw(x), y). We also discuss details and convergence of
this alternative iteration in Appendix C. Since computing gradient w.r.t. all parameters is time and
memory consuming, we only compute gradient w.r.t. parameters of the final layer of learner f .

3.3 L2-NORMALIZATION FOR EXTRACTED FEATURE

L2-normalization has been used in face recognition (Liu et al., 2017; Wang et al., 2018) and domain
adaptation (Saito et al., 2019; Gu et al., 2020), but is rarely investigated in domain generalization.
We investigate L2-normalization in domain generalization in this paper. It is found surprisingly in
experiments that L2-normalization not only improves the performance of learner (see Sect. 5.4), but

4

Under review as a conference paper at ICLR 2021

also mitigates gradient explosion (see Sect. 5.5) that occurs frequently during the training of meta-
learning for DG (Finn et al., 2017; Dou et al., 2019). We next discuss details of L2-normalization in
our method and analyze why L2-normalization mitigates gradient explosion.

Feature L2-normalization. The L2-normalization is used as a component of our learner f . Specif-
ically, we decompose f into feature extractor fe (e.g., the convolutional layers of ResNet), the
transform fn representing L2-normalization and classifier f c, i.e., f = f c ◦ fn ◦ fe. The feature of
input image x extracted by fe is fed to fn to output an unit vector z, i.e., z = fn(fe(x)) = fe(x)

‖fe(x)‖ .
The classifier f c consists of unit weight vectors W = [w1, w2, · · · , wK], where K is the number
of classes and ‖wk‖ = 1,∀k. f c takes z as an input and outputs the classification score vector
σm,s(W

T z). σm,s(·) is the marginal softmax function defined by

[σm,s(W
T z)]k =

exp(s(wTk z −mI{k=y}))∑K
k′=1 exp(s(wTk′z −mI{k′=y}))

, k = 1, 2, · · · ,K, (6)

where y is the label of x, [·]k indicates the k-th element, I{a} is the indicator function that returns 1 if
a is true, 0 otherwise, m and s are hyper-parameters indicating margin and radius respectively.

Analysis of mitigating gradient explosion. We find that L2-normalization mitigates gradient explo-
sion in the training of meta-learning for domain generalization. For the sake of simplicity, we analyze
gradient norm of loss w.r.t. parameters of f c in the meta-learning process of domain generalization,
with fe as fixed function. Without loss of generality, we consider the case that K = 2 (i.e., binary
classification), s = 1 and m = 0. In this case, we have the following proposition.
Proposition 1. Under the above setting, if the input feature of f c is L2-normalized, the gradient
norm of loss w.r.t. parameters of f c in the meta-learning process of DG is bounded.

Sketch of proof. Given feature z, the loss of binary classification is L(w; z) = −y log(σ(wT z))−
(1 − y) log(1 − σ(wT z)), where σ is the sigmoid function. Let w′ = w − α∇wL(w; z),
then ∇wL(w′; z) = (I − αH)∇w′L(w′; z), where H is the Hessian matrix. The gradient
norm ‖∇wL(w′; z)‖ ≤ ‖I − αH‖ ‖∇w′L(w′; z)‖ ≤ (1 + |α| ‖H‖) ‖∇w′L(w′; z)‖. Since
∇w′L(w′; z) = (p− y)z and H = p(1− p)zzT where p = σ(wT z), ‖H‖ = supu:‖u‖=1 ‖Hu‖ ≤
supu:‖u‖=1

∥∥zzTu∥∥ ≤ ‖z‖2 and ‖∇w′L(w′; z)‖ ≤ ‖z‖. If ‖z‖ = 1, we have ‖∇wL(w′; z)‖ ≤
1 + |α|.
According to Proposition 1, L2-normalization can mitigate gradient explosion under the above setting.
The analysis of gradient norm of loss w.r.t. parameters of both f c and fe in the meta-learning process
is much more complex, left for our future work.

4 THEORETICAL ANALYSIS

This section presents theoretical understanding of our method. We first derive a generalization error
bound on target domain in theorem 1 for the general setting of meta-learning for DG. Then, based on
theorem 1, we theoretically explain the reason on the success of our method.

Without loss of generality, we consider binary classification problem. We denoteH as the set of all
possible f , i.e., H = {fw : w ∈ RM}, where M is the number of parameters. For any Sv ∈ Γξ
and St = S − Sv, we let HSt = {fθ(w) : θ(w) = arg minθ L(θ;St, w), w ∈ RM}. The meta-
learning approach for DG is to find a function in HSt to minimize classification loss on Sv. Note
that, although the training samples in S may be sampled from several distributions, they can still
be seen as being i.i.d. sampled from a mixture of these distributions. We next respectively denote
P =

∑D
d=1 βdPd as the mixture distribution with βd representing the sampling ratio of the d-th

source domain, εΨQ(f) = E(x,y)∼Q[I{Ψ(f(x))6=y}] as the generalization error on distribution Q of
unseen target domain, ε̂ΨSv (f) = 1

|Sv|
∑

(x,y)∈Sv I{Ψ(f(x)) 6=y} as the empirical error on Sv, V C(H)

as the VC-dimension of H, and Ψ(·) as the prediction rule such as the Bayes Optimal Predictor.
Based on the domain adaptation theory (Ben-David et al., 2007; 2010) and inspired by the analysis
in (Saito et al., 2019), we have the following theorem.
Theorem 1. Let γ be a constant, assume EQ[I{l(f(x),y)>γ}] ≥ EP [I{l(f(x),y)>γ}], then given any
Sv ∈ Γξ and St = S−Sv and for any δ ∈ (0, 1), with probability at least 1−2δ, we have ∀f ∈ HSt ,

5

Under review as a conference paper at ICLR 2021

Table 1: Results of MSDS experiment on PACS based on ResNet18 and ResNet50.

Backbone Target D-SAM JiGen MASF MMLD MetaReg RSC Base-
line

DFAS
(ours)

ResNet18

A 77.3 79.4 80.3 81.3 83.7 83.4 80.2±0.4 84.2±0.1

C 72.4 75.3 77.2 77.2 77.2 80.3 75.5±0.5 79.5±0.3

P 95.3 96.0 95.0 96.1 95.5 96.0 95.9±0.1 95.8±0.1

S 77.8 71.4 71.7 72.3 70.3 80.9 70.1±0.9 82.1±0.4

Avg 80.7 80.5 81.0 81.8 81.7 85.1 80.4 85.4

ResNet50

A - - 82.9 - 87.2 87.9 86.1±0.2 89.1±0.1

C - - 80.5 - 79.2 82.2 79.2±0.4 84.6±0.2

P - - 95.0 - 97.6 97.9 97.6±0.1 96.8±0.2

S - - 72.3 - 70.3 83.5 70.3±0.7 85.6±0.3

Avg - - 82.7 - 83.6 87.8 83.3 89.0

εΨlQ (f) ≤ ε̂ΨlSv (f) +B(Sv) + 2

√
8

ξ

(
C2 +

4

δ

)
+ C3, (7)

where
B(Sv) = C1 − inf

f ′∈HSt

1

|Sv|
∑

(x,y)∈Sv

I{l(f ′(x),y)>γ}, (8)

C1 = supS′v∈Γξ
supf ′∈HS−S′v

EQ[I{l(f ′(x),y)>γ}], C2 = supS′v∈Γξ
V C(HΨl

S−S′v
) log 2eξ

V C(HΨl
S−S′v

)
,

C3 ≥ supS′v∈Γξ
inff ′∈HS−S′v

{εΨlP (f ′) + εΨlQ (f ′)}, HΨl
S−St = {Ψl ◦ f : f ∈ HS−St}, Ψl is a

loss-related indicator defined by

Ψl(f(x)) =

{
1 if l(f(x), y) > γ.

0 otherwise .
(9)

Proof is given in Appendix D. The assumption of EQ[I{l(f(x),y)>γ}] ≥ EP [I{l(f(x),y)>γ}] in theo-
rem 1 is realistic because the data of Q is not accessed at training time, and the learner trained on
data of P should have smaller classification loss on P thanQ. In theorem 1, C1, C2, C3 are constants
to f . In Eq. (7), the generalization error εΨlQ (f) on Q can be bounded by the empirical error ε̂ΨlSv (f)
on Sv, the term B(Sv) that measures the discrepancy between P and Q, and the last two constant
terms in Eq. (7).

To obtain lower εΨlQ (f), we need to minimize ε̂ΨlSv (f) and B(Sv). Minimizing B(Sv) w.r.t. Sv is
equivalent to

max
Sv∈Γξ

inf
f∈HSt

1

|Sv|
∑

(x,y)∈Sv

I{l(f(x),y)>γ}. (10)

Intuitively, Eq. (10) means to find a Sv ∈ Γξ such that the infimum ratio of examples in Sv having loss
greater than γ is maximized. This min-max problem of Eq. (10) for computing the error bound bears
the similar idea as our min-max problem. Our adversarial splitting model in Eq. (2) can implicitly
realize the goal of Eq. (10) and meanwhile ensure lower ε̂ΨlSv (f) for any Sv .

The maximization in Eq. (10) corresponds to our adversarial splitting that finds the hardest val-subset
Sv for the learner in Eq. (2). The infimum in Eq. (10) corresponds to the minimization of the loss
in Eq. (2) on Sv w.r.t. the learner parameterized by θ(w). Instead of using indicator function I in
Eq. (10), in our model of Eq. (2), we choose differentiable classification loss for easier optimization.

5 EXPERIMENTS

We verify the effectiveness of our method in three types of experimental settings: Multi Source with
Domain Shift (MSDS) that the training data are from several source domains and there exists domain

6

Under review as a conference paper at ICLR 2021

Table 2: Results of MSDS experiment on Office-Home based on ResNet18 and ResNet50.

Backbone Target D-SAM JiGen RSC Base-
line

DFAS
(ours) Backbone Target Base-

line
DFAS
(ours)

ResNet18

Ar 58.0 53.0 58.4 56.7±0.3 62.0±0.2

ResNet50

Ar 64.9±0.4 70.2±0.2

Cl 44.4 47.5 47.9 47.6±0.2 48.6±0.3 Cl 51.8±0.2 53.5±0.4

Pr 69.2 71.5 71.6 71.4±0.1 71.4±0.1 Pr 76.5±0.2 77.4±0.1

Rw 71.5 72.8 74.5 72.9±0.3 75.2±0.1 Rw 79.4±0.3 80.2±0.2

Avg 60.8 61.2 63.1 62.2 64.3 Avg 68.2 70.3

Table 3: Results of SSDS experiment on PACS based on ResNet18.
Method A→C A→P A→S C→A C→P C→S P→A P→C P→S S→A S→C S→P Avg
JiGen 57.0 96.1 50.0 65.3 85.5 65.9 62.4 27.2 35.5 26.6 41.1 42.8 54.6
SagNet 67.1 95.7 56.8 72.1 85.7 69.2 69.8 35.1 40.7 41.1 62.9 46.2 61.9
BaseLine 63.7±.3 95.6±.1 63.5±.4 72.0±.3 86.5±.1 73.3±.2 68.4±.4 32.7±.5 42.2±.4 41.6±.5 60.3±.2 49.3±.3 62.4
DFAS (ours) 67.5±.2 94.5±.1 67.1±.3 69.0±.2 86.5±.1 73.8±.3 70.2±.2 36.1±.4 52.1±.2 56.7±.2 67.9±.3 57.4±.1 66.6

shift between training and test data, Single Source with Domain Shift (SSDS) that the training data are
from a single source domain and there exists domain shift between training and test data, and Same
Source and Target Domain (SSTD) that the training and test data are from a same single domain. The
source codes will be released online.

We conduct experiments on three benchmark datasets. PACS (Li et al., 2017) contains four do-
mains, including art painting (A), cartoon (C), photo (P), sketch (S), sharing seven classes. Office-
Home (Volpi et al., 2018), a dataset widely used in domain adaptation and recently utilized in domain
generalization, consists of four domains: Art (Ar), Clipart (Cl), Product (Pr), Real World (Rw),
sharing 65 classes. Both of these two datasets are utilized to conduct experiments in settings of MSDS
and SSDS. CIFAR-10 (Krizhevsky et al., 2009) is taken for the experimental setting of SSTD.

5.1 TYPE I: MULTI SOURCE WITH DOMAIN SHIFT (MSDS)

In the setting of MSDS, following (Carlucci et al., 2019), we use leave-one-domain-out cross-
validation, i.e., training on three domains and testing on the remaining unseen domain, on PACS and
Office-Home. Note that the domain labels are not used during training. We adopt ResNet18 and
ResNet50 (He et al., 2016) pre-trained on ImageNet (Russakovsky et al., 2015). For each of them,
the last fully-connected layer is replaced by a bottleneck layer, then the corresponding network is
taken as feature extractor fe. Full implementation details are reported in Appendix B.

We compare our method with several state-of-the-art methods, including D-SAM (D’Innocente &
Caputo, 2018), JiGen (Carlucci et al., 2019), MASF (Dou et al., 2019), MMLD (Matsuura & Harada,
2020), MetaReg (Balaji et al., 2018), RSC (Huang et al., 2020). The results on PACS and Office-Home
are reported in Table 1 and Table 2 respectively. Our DFAS achieves state-of-the-art results based
on both ResNet18 and ResNet50 on both PACS (85.4%, 89.0%) and Office-Home (64.3%, 70.3%),
outperforming RSC by 0.3% and 1.2% on PACS based on ResNet18 and ResNet50 respectively,
and by 1.2% on Office-Home based on ResNet18 (these methods do not conduct experiment on
Office-Home using ResNet50). Compared with Baseline that directly aggregates three source domains
to train learner with standard fully-connected layer as classifier f c, our method of DFAS improves
its performance by 5.0% and 5.7% on PACS based on ResNet18 and ResNet50 respectively, and by
2.1% and 2.1% on Office-Home based on ResNet18 and ResNet50 respectively. In Table 1, on PACS,
DFAS significantly outperforms Baseline in almost all tasks except when P is taken as target domain.
Note that, in the task that domain S, of which the style is extremely different from rest three domains,
is target domain, our DFAS boosts the accuracy of Baseline by 12.0% and 15.3% based on ResNet18
and ResNet50 respectively. This indicates that our method can generalize well when domain shift is
large. Office-Home is challenging for DG since the number of classes is larger than other datasets. As
shown in Table 2, our DFAS outperforms Baseline stably in almost all tasks on Office-Home. These
performance improvements demonstrate the effectiveness of our method in the case that training data
are from multi-source domains and the unseen target domain is different from source domains.

7

Under review as a conference paper at ICLR 2021

5.2 TYPE II: SINGLE SOURCE WITH DOMAIN SHIFT (SSDS)

We conduct this type of experiment on PACS based on ResNet18. In this experiment, we train learner
on one domain and test on each of the rest three domains, resulting in total 12 tasks. Implementation
details are shown in Appendix B. Our method is compared with related methods, including Baseline
that directly trains learner with standard fully-connected layer as classifier f c on the source domain,
Jien (Carlucci et al., 2019) and SagNet (Nam et al., 2019). Results are reported in Table 3. Our
method of DFAS outperforms Baseline and SagNet by 4.2% and 4.7% respectively. We observe that
our method outperforms Baseline in 10 tasks among all 12 tasks. The performance boosts are large
in tasks when domain S is set to be source domain. These performance improvements demonstrate
the effectiveness of our method in the case that training data are from single source domain and the
unseen target domain is different from source domain.

Table 4: Results of SSTD experiment on CIFAR-10 based on ResNet18.
Training Size 100 600 1000 3000 5000 10000 Total Avg
JiGen 38.5 62.9 66.1 76.5 79.2 83.9 91.2 71.2
MMLD 40.5 59.8 65.1 75.8 78.8 82.5 90.7 70.5
Baseline 39.3±.4 62.3±.3 66.4±.6 76.3±.3 82.0±.4 85.8±.5 94.9±.1 72.4
DFAS (ours) 43.9±.5 64.3±.2 69.4±.3 80.0±.4 83.9±.4 87.2±.3 95.1±.0 74.8

5.3 TYPE III: SAME SOURCE AND TARGET DOMAIN (SSTD)

We also apply our DG method to the common recognition task that the training and test data are from
a same domain, i.e., SSTD, on CIFAR-10 dataset. To investigate the effect of training size, we sample
different sizes of training data from the provided training set (i.e., source domain). Implementation
details are in Appendix B. As shown in Table 4, our DFAS outperforms Baseline, JiGen and MMLD
by 2.4%, 3.6% and 4.3% respectively on average. The results of JiGen and MMLD are obtained
by running their codes on CIFAR-10. We observe that DFAS outperforms Baseline and compared
methods in all different numbers of training data. In general, the performance boost is larger when the
number of training data is smaller. This may be because the learner is more possible to be overfitting
when the training size is smaller and our DFAS is designed to extract better generalizable features.

5.4 ABLATION STUDY

To further verify the effectiveness of each component of our method, we conduct additional ablation
experiments on PACS dataset based on ResNet18 in both MSDS and SSDS setting. The results are
reported in Table 5 and Table 6.

Table 5: Additional ablation results on PACS in MSDS setting.
L2-norm Rand-split Adv-split A C P S Avg
× × × 80.2 75.5 95.9 70.1 80.4
X × × 82.5 77.5 95.2 75.6 82.7
× X × 80.6 76.8 95.6 78.1 82.8
× × X 83.1 77.0 94.8 79.3 83.6
X X × 83.2 78.6 95.8 79.5 84.3
X × X 84.2 79.5 95.8 82.1 85.4

In Table 5 and 6, L2-norm denotes feature L2-normalization defined in Sect.3.3. Rand-split means
the random splitting strategy that we randomly split the train/val subsets at each step of updating the
parameters of learner. Adv-split denotes the adversarial splitting model that we update the worst-case
splitting by solving the maximization problem in Eq. (5) per epoch in training process.

Effectiveness of L2-normalization. In Table 5, L2-norm (82.7%) outperforms Baseline (80.4%)
by 2.3% and L2-norm + Adv-split (i.e., DFAS) (85.4%) outperforms Adv-split (83.6%) by 1.8%
in MSDS setting. In Table 6, L2-norm (63.1%) outperforms Baseline (62.4%) by 0.7% and L2-
norm + Adv-split (i.e., DFAS) (66.6%) outperforms Adv-split (65.1%) by 1.5% in SSDS setting.

8

Under review as a conference paper at ICLR 2021

Table 6: Additional ablation results on PACS in SSDS setting.
L2-norm Rand-split Adv-split A→C A→P A→S C→A C→P C→S P→A
× × × 63.7 95.6 63.5 72.0 86.5 73.3 68.4
X × × 64.5 95.4 67.2 69.8 87.2 73.3 67.2
× X × 65.8 94.8 64.4 71.2 85.2 74.2 68.7
× × X 67.6 95.2 66.2 76.9 88.4 73.5 70.4
X X × 67.2 95.3 63.7 70.8 85.3 75.5 70.0
X × X 67.5 94.5 67.1 69.0 86.5 73.8 70.2

L2-norm Rand-split Adv-split P→C P→S S→A S→C S→P Avg
× × × 32.7 42.2 41.6 60.3 49.3 62.4
X × × 31.7 38.5 44.3 67.9 49.8 63.1
× X × 32.2 39.5 52.4 64.6 56.6 64.1
× × X 30.5 35.3 52.7 67.7 57.3 65.1
X X × 37.2 45.9 53.5 64.5 55.8 65.4
X × X 36.1 52.1 56.7 67.9 57.4 66.6

These performance improvements demonstrate that the feature L2-normalization is useful in domain
generalization.

Effectiveness of adversarial splitting model. In Table 5, Adv-split (83.6%) outperforms Baseline
(80.4%) by 3.2% and L2-norm + Adv-split (i.e., DFAS) (85.4%) outperforms L2-norm (82.7%) by
2.7% in MSDS setting. In Table 6, Adv-split (65.1%) outperforms Baseline (62.4%) by 2.7% and
L2-norm + Adv-split (i.e., DFAS) (66.6%) outperforms L2-norm (63.1%) by 3.5% in SSDS setting.
These results indicating that our proposed adversarial splitting model is effective.

Effectiveness of adversarial splitting over random splitting. In Table 5, L2-norm + Adv-split
(85.4%) outperforms L2-norm + Rand-split (84.3%) by 1.1% and Adv-split (83.6%) outperforms
Rand-split (82.8%) by 0.8% in MSDS setting. In Table 5, L2-norm + Adv-split (66.6%) outperforms
L2-norm + Rand-split (65.4%) by 1.2% and Adv-split (65.1%) outperforms Rand-split (64.1%) by
1.0% in SSDS setting. These results demonstrate that the adversarial splitting model outperforms the
random splitting strategy in different experimental settings.

Due to space limit, we add more ablation experiments in Appendix A.1 to further compare different
splittings, including adversarial splitting, domain-label-based splitting and random splitting.

5.5 MITIGATING GRADIENT EXPLOSION BY L2-NORMALIZATION.

To show that L2-normalization can mitigate gradient explosion, we conduct the same experiments
independently for 50 times respectively with L2-normalization and without L2-normalization. Then
we count the numbers of occurrences of gradient explosion that are reported in Table 7. From Table 7,
we can observe that L2-normalization can mitigate gradient explosion.

Table 7: The number of occurrences of gradient explosion.
w/o L2-normalization w/ L2-normalization

Times 12/50 0/50

6 CONCLUSION

In this paper, we unify adversarial training and meta-learning in a novel proposed Domain-Free Ad-
versarial Splitting (DFAS) framework to tackle the general domain generalization problem. Extensive
experiments show the effectiveness of the proposed method. We are interested in deeper theoretical
understanding and more applications of our method in the future work.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data, volume 4.
AMLBook New York, NY, USA:, 2012.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain general-
ization using meta-regularization. In NeurIPS, 2018.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for
domain adaptation. In NeurIPS, 2007.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. ML, 79(1-2):151–175, 2010.

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification
tasks to a new unlabeled sample. In NeurIPS. 2011.

Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi. Domain
generalization by solving jigsaw puzzles. In CVPR, 2019.

Hal Daume III and Daniel Marcu. Domain adaptation for statistical classifiers. JAIR, 26(1):101–126,
2006.

Antonio D’Innocente and Barbara Caputo. Domain generalization with domain-specific aggregation
modules. In GCPR, 2018.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization
via model-agnostic learning of semantic features. In NeurIPS, 2019.

Yingjun Du, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees GM Snoek, and Ling Shao.
Learning to optimize domain specific normalization for domain generalization. In ECCV, 2020a.

Yingjun Du, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees GM Snoek, and Ling Shao.
Learning to learn with variational information bottleneck for domain generalization. In ECCV,
2020b.

Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
JMLR, 17(1):2096–2030, 2016.

Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain generalization
for object recognition with multi-task autoencoders. In ICCV, 2015.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Xiang Gu, Jian Sun, and Zongben Xu. Spherical space domain adaptation with robust pseudo-label
loss. In CVPR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and
Trevor Darrell. CyCADA: Cycle-consistent adversarial domain adaptation. In ICML, 2018.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex J. Smola. Cor-
recting sample selection bias by unlabeled data. In NeurIPS. 2007.

Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging improves cross-domain
generalization. In ECCV, 2020.

10

Under review as a conference paper at ICLR 2021

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In NeurIPS, 2012.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In ICCV, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
for domain generalization. In AAAI, 2018a.

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M Hospedales. Episodic
training for domain generalization. In ICCV, 2019a.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adversarial
feature learning. In CVPR, 2018b.

Yiying Li, Yongxin Yang, Wei Zhou, and Timothy M Hospedales. Feature-critic networks for
heterogeneous domain generalization. In ICML, 2019b.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In CVPR, 2017.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In ICML, 2015.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 9(Nov):2579–2605,
2008.

Toshihiko Matsuura and Tatsuya Harada. Domain generalization using a mixture of multiple latent
domains. In AAAI, 2020.

Krikamol Muandet, David Balduzzi, and Bernhard Schlkopf. Domain generalization via invariant
feature representation. In NeurIPS, 2013.

Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing domain
gap via style-agnostic networks. arXiv preprint arXiv:1910.11645, 2019.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE TKDE, 22(10):1345–1359,
2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019.

Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Efficient domain generalization via common-
specific low-rank decomposition. In ICML, 2020.

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In CVPR,
2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. IJCV, 115(3):211–252, 2015.

Jongbin Ryu, Gitaek Kwon, Ming-Hsuan Yang, and Jongwoo Lim. Generalized convolutional forest
networks for domain generalization and visual recognition. In ICLR, 2020.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised
domain adaptation via minimax entropy. In ICCV, 2019.

Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and Sunita
Sarawagi. Generalizing across domains via cross-gradient training. 2018.

11

Under review as a conference paper at ICLR 2021

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556, 2014.

Jian Sun and Marshall F Tappen. Learning non-local range markov random field for image restoration.
In CVPR, 2011.

A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR, 2011.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. In NeurIPS, 2018.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In CVPR, 2018.

Haohan Wang, Zexue He, Zachary C Lipton, and Eric P Xing. Learning robust representations by
projecting superficial statistics out. In ICLR, 2019.

Shujun Wang, Lequan Yu, Caizi Li, Chi-Wing Fu, and Pheng-Ann Heng. Learning from extrinsic
and intrinsic supervisions for domain generalization. In ECCV, 2020.

Kaiyang Zhou, Yongxin Yang, Timothy M Hospedales, and Tao Xiang. Deep domain-adversarial
image generation for domain generalisation. In AAAI, 2020.

A ANALYSIS

A.1 COMPARISON OF ADVERSARIAL SPLITTING AND DOMAIN-LABEL-BASED SPLITTING

In the section, we compare our adversarial splitting with domain-label-based splitting that is com-
monly used in meta-learning-based DG methods. Due to variations of style, poses, sub-classes,
etc., the internal inconsistency within dataset is complicated. Domain-label partially capture the
inconsistency, while cannot cover all possible internal inconsistency. Our adversarial splitting method
does not rely on the domain label. It iteratively finds the hardest train/val splitting to the learner to
maximize the inconsistency and train the learner to generalize well for the hardest splitting, in an
adversarial training way. This strategy more flexibly investigates the possible inconsistency within
training dataset, adaptively to the learner, and can potentially enhance the generalization ability of
learner.

Table 8: Values of objective function in Eq. (5) of Adv-split and Label-split.
Learner w1 w2 w3 w4

Adv-split 4.15 4.28 2.61 1.28
Label-split 3.72 2.82 1.29 0.21

We first empirically show that the domain-label-based splitting (denoted as Label-split) is not as hard
as our adversarial splitting (Adv-split) to the learner in Table 8. In Table 8, we report the values of
objective function in Eq. (5) of Adv-split and Label-split by fixing the learner with different network
parameters wi at different epoch (1th, 2th, 5th and 10th) in the training process. Larger value in the
table indicates that the splitting is harder to the learner (i.e., network). It can be observed that the
domain-label-based splitting (Label-split) is not as hard as Adv-split to learner.

We also conduct experiments on PACS in MSDS setting to fairly compare different splittings,
including adversarial splitting (Adv-split), domain-label-based splitting (Label-split) and random
splitting (Rand-split). The results are reported in Table 9. Table 9 shows that adversarial splitting
outperforms random splitting and domain-label-based splitting when training data is from multiple
domains.

When the training data are from only a single domain, our adversarial splitting also performs well (as
in Table 3). However, domain-label-based splitting cannot be used in this setting, since there is no
domain label available.

12

Under review as a conference paper at ICLR 2021

Table 9: Results of different splittings.
Target A C P S Avg
Rand-split 80.6 76.8 95.6 78.1 82.8
Label-split 81.2 75.9 94.7 80.1 83.0
Adv-split 83.1 77.0 94.8 79.3 83.6

𝝃/|𝑺|

AC
C

(a) Effect of ξ

𝜶
AC
C

(b) Effect of α

𝒎

AC
C

(c) Effect of m

Figure 1: Effect of hyper-parameters of ξ, α and m. We use ResNet18, and domain A is taken as
target domain on PACS dataset in the setting of MSDS.

A.2 EFFECT OF HYPER-PARAMETERS

Effect of hyper-parameter ξ. In Fig. 1(a), we show the performance of our method when varying
the hyper-parameter ξ, i.e., length of the val-subset Sv in adversarial splitting of training dataset. The
best result is obtained when ξ = |S|

2 , and the results are similar when ξ
|S| ranges from 0.3 to 0.7.

Effect of hyper-parameter α. We evaluate the effect of α in MSDS setting on PACS dataset in
Fig. 1(b). From Fig. 1(b), the ACC is stable to the values of α in large range of 1e-6 to 1e-4.
Small α results in small step-size for parameter updating in meta-learning framework, and limits the
benefits from meta-learning and adversarial splitting. Larger α results in larger step-size for gradient
descent based network updating, which may fail to decrease the training loss from the optimization
perspective.

Effect of hyper-parameter m. The effect of m is evaluated in MSDS setting on PACS dataset in
Fig. 1(c). Fig. 1(c) shows that the result is not sensitive to the value of m.

A.3 CONVERGENCE

We testify the convergence of DFAS with errors and losses in different tasks in Fig. 2. In Fig. 2(a)
and Fig. 2(b) , we show the classification error curves on target domains (A and Ar respectively)
in the setting of MSDS. In Fig. 2(c), we show the training loss of DFAS in task A in MSDS setting.
These training curves indicates that DFAS converges in the training process. We also observe that
DFAS has better stability than Baseline, in Fig. 2(a) and Fig. 2(b).

A.4 COMPUTATIONAL COST OF ADVERSARIAL SPLITTING AND RANDOM SPLITTING

We compare the computational cost of adversarial splitting and random splitting in this section. Since
we only update the worst-case splitting per epoch, instead of at each step of updating parameters, the
computational cost is only slightly higher than that of random splitting. To show this, we compare
the total training times of the adversarial splitting and random spitting in the same number of steps
(20000), as in Table 10.

From Table 10, the training time of Adv-split is only 5.6% (0.33/5.90) higher than Rand-split.

13

Under review as a conference paper at ICLR 2021

STEP

x 400

ER
R
O
R

(a) Target error of task A

STEP

x 400

ER
R
O
R

(b) Target error of task Ar

STEP
x 1k

LO
SS

(c) Loss of task A

Figure 2: Curves of target errors and losses of task A (PACS) and Ar (Office-Home) during training
based on ResNet50 in the setting of MSDS.

Table 10: Total training time (hour) of the adversarial splitting (Adv-split) and random spitting
(Rand-split).

Adv-split Rand-split
Time 6.23h 5.90h

A.5 VISUALIZATION OF FEATURE SPACE

We visualize the feature space learned by our method of DFAS and Baseline (shown in Fig. 3), by
t-SNE (Maaten & Hinton, 2008). It appears that DFAS yields better separation of classes and better
alignment of distributions of source and unseen target domains, which possibly explains the accuracy
improvements achieved by our DFAS.

B IMPLEMENTATION DETAILS

For the setting of MSDS, we use ResNet18 and ResNet50 (He et al., 2016) pre-trained on Ima-
geNet (Russakovsky et al., 2015). For each of them, the last fully-connected layer is replaced by a
bottleneck layer, then the corresponding network is taken as feature extractor fe. The dimension
of the bottleneck layer is set to be 512 when the backbone is ResNet18 as in (Saito et al., 2019),
and 256 when the backbone is ResNet50 as in (Gu et al., 2020). Following (Gu et al., 2020), s is
set to 7.5 for PACS and 10.0 for Office-Home. m is set to 0.2 for PACS and 0.1 for Office-Home. ξ
is set to |S|2 . SGD with momentum of 0.9 is utilized to update parameters of learner. The learning
rate of classifier and bottleneck layer is 10 times of convolutional layers, which is widely adopted
in domain adaptation (Long et al., 2015; Ganin et al., 2016). Following (Ganin et al., 2016), the
learning rate of convolutional layer is adjusted by η = 0.001

(1+10p)0.75 , where p is the optimizing progress
linearly changing from 0 to 1. The learning rate α of inner loop optimization is set to 10−5. The
parameters are updated for 20000 steps and the hardest val-subset is updated per 200 steps. The
batchsize is set to 64. The running mean and running variance of Batch Normalization (BN) layers
are fixed as the pre-trained values on ImageNet during training, which is discussed in (Du et al.,
2020a). Due to memory limit, when implementing experiments based on ResNet50, we adopt the first
order approximation (Finn et al., 2017) that stops the gradient of gtw in Eq. (4) for reducing memory
and computational cost.

For the setting of SSDS, we conduct experiment based on ResNet18 on PACS. The implementation
details are same as MSDS. For the setting of SSTD, we conduct experiment based on ResNet18 on
CIFAR-10. The hyper-parameters of s andm are set to 8.0 and 0.2 respectively. Other implementation
details are same as MSDS except that, in BN layers, the running mean and running variance are
updated.

We implement experiments using Pytorch (Paszke et al., 2019) on a single NVIDIA Tesla P100 GPU.

14

Under review as a conference paper at ICLR 2021

A (target)
C (source)
P (source)
S (source)

(a) Baseline (domain)

dog
elephant
giraffe
guitar
horse
house
person

(b) Baseline (class)

A (target)
C (source)
P (source)
S (source)

(c) DFAS (domain)

dog
elephant
giraffe
guitar
horse
house
person

(d) DFAS (class)

Figure 3: The t-SNE visualization of extracted features, using our proposed DFAS (a-b) and Baseline
(c-d) on PACS dataset in MSDS setting. In (a) and (c), the different colors indicate different domains.
In (b) and (d), the different colors indicate different classes.

C OPTIMIZATION ALGORITHM FOR FINDING THE HARDEST Sv

C.1 OPTIMIZATION ALGORITHM

To solve the problem of

max
Sv,A

∑
(x,y)∈Sv

l (fw(x), y)− α 〈∇wl(fw(x), y), A〉 s.t. A = gtw, Sv ∈ Γξ, (11)

we design an alternative iteration algorithm in Sect. 3.2. Specifically, we initialize A with gradient of
a sample randomly selected from S. Then we alternatively update Sv and A.

Given A, Sv is updated by solving

max
Sv

∑
(x,y)∈Sv

l (fw(x), y)− α 〈∇wl(fw(x), y), A〉

s.t. Sv ⊂ S, |Sv| = ξ,

(12)

where the constraints are derived from the definition of Γξ. Equation (12) indicates that the optimal
Sv consists of ξ samples that have the largest values of l (fw(x), y)− α 〈∇wl(fw(x), y), A〉. Thus
we compute and rank the values of l (fw(x), y)− α 〈∇wl(fw(x), y), A〉 for all (x, y) ∈ S and select
the largest ξ samples to constitute the Sv .

15

Under review as a conference paper at ICLR 2021

Given Sv (St is then given), we update A to satisfy the constraint A = gtw in Eq. (11), then A is

A = gtw =
1

|St|
∑

(x,y)∈St

∇wl(fw(x), y). (13)

C.2 CONVERGENCE IN EXPERIMENTS

We show empirically the convergence of this alternative iteration algorithm in Fig. 4, with the values
of objective function in Eq. (11). Figure 4 shows that the values of objective function converges after
only a few iterations.

0 3 6 9
Iteration

3.5

3.6

3.7

3.8

Ob
je

ct
iv

e
Fu

nc
tio

n

(a) Run 1

0 3 6 9
Iteration

3.5

3.6

3.7

3.8

Ob
je

ct
iv

e
Fu

nc
tio

n

(b) Run 2

Figure 4: Convergence of the alternative iterations for finding the hardest Sv . (a) and (b) respectively
show the values of objective function in Eq. (11) in two different runs with different initializations.

We also check if the splitting changes when the value of objective function converges. To do this, we
count the ratio of changed sample indexes in Sv at each iteration, as in Table 11. Table 11 shows that
the splitting is not changed when the value of objective function converges.

Table 11: Ratio of changed sample indexes in Sv at each iteration.
Iteration 1 2 3 4 5 6
Ratio (%) 44.0 4.5 0.0 0.0 0.0 0.0

C.3 TOY EXAMPLE.

We present a toy example in this section to check if this algorithm can find the optimal solution. The
toy example is an 2-dimensional classification problem, as shown in Fig. 5. Different colors indicate
different classes. A fully-connected layer without bias is used as the network (learner). We split the
data of the first class (blue points) with our algorithm. The candidate solutions with corresponding
objective function values are given in Table 12.

Table 12: Candidate solutions (sample indexes) with objective function values of the toy example.
Candidate Sv (0,1,2) (0,1,3) (0,1,4) (0,1,5) (0,2,3) (0,2,4) (0,2,5)
Objective function 6.71 7.65 7.88 6.41 5.60 6.83 5.36
Candidate Sv (0,3,4) (0,3,5) (0,4,5) (1,2,3) (1,2,4) (1,2,5) (1,3,4)
Objective function 7.77 6.30 6.52 7.27 7.50 6.03 8.45
Candidate Sv (1,3,5) (1,4,5) (2,3,4) (2,3,5) (2,4,5) (3,4,5)
Objective function 6.98 7.20 7.39 5.93 6.15 7.10

The solutions in the iteration process of our algorithm are reported in Table 13. The solutions converge
to (1,3,4), which is the optimal solution in Table 12. This indicates that our algorithm can find the

16

Under review as a conference paper at ICLR 2021

10 8 6 4 2 0

4

2

0

2

4
0 1

2

3 4

5

Figure 5: Toy data.

Table 13: Solutions of the iteration process.
Iterations 0 1 2 3 4
Solution (0,2,5) (1.3,4) (1,3,4) (1,3,4) (1,3,4)
Objective function 6.89 8.43 8.45 8.45 8.45

optimal splitting for the toy example. We also give the code of this toy example as below, and the
reader may rerun it to verify the results.

Code the toy example:

import torch
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

#####
np.random.seed(1)
data = make_blobs(n_samples=12,centers=2)
x1 = data[0][data[1]==0]
x2 = data[0][data[1]==1]

plt.plot(x1[:,0],x1[:,1],’*’)
plt.plot(x2[:,0],x2[:,1],’*’)
t = 0
for x in x1:

plt.text(x[0],x[1],str(t))
t+=1

plt.savefig(’samples.pdf’)

###
model = torch.nn.Linear(2,2,bias=False).cuda()
torch.nn.init.xavier_uniform_(model.weight)
log = open(’log.txt’,’w’)
log.write(’weight:’+ str(model.weight.cpu().data.numpy())+’\n’)

feat = torch.Tensor(data[0]).cuda()
label = torch.LongTensor(data[1]).cuda()
loss_fun = torch.nn.CrossEntropyLoss()

Grads = []
Loss = []
for i in range(len(feat)):

out =
torch.nn.functional.linear(feat[i].view(1,-1),weight=model.weight,bias=None)

loss_x = loss_fun(out,label[i].view(-1,))

17

Under review as a conference paper at ICLR 2021

grad = torch.autograd.grad(loss_x,model.weight)[0]
Loss.append(loss_x.cpu().data.numpy())
Grads.append(grad.cpu().data.numpy())

##we split the data of the first class
Loss = np.array(Loss)[data[1] == 0]
Grads = np.array(Grads)[data[1] == 0]
#
np.save(’toy_Grads.npy’,Grads)
np.save(’toy_Loss.npy’,Loss)

Loss = np.load(’toy_Loss.npy’)[data[1] == 0]
Grads = np.load(’toy_Grads.npy’)[data[1] == 0]
alpha = 0.001

def adv_loss(val_index=[0,1,2]):
train_index = np.delete(np.arange(len(Loss)),val_index)
loss = np.mean(Loss[val_index])
grad_val = np.mean(Grads[val_index],axis=0)
grad_train = np.mean(Grads[train_index],axis=0)

return loss - alpha*np.sum(grad_val*grad_train)

#####brute force searching
Solutions = []
Values = []
#generate solutions
for i in range(len(Loss)-2):

for j in range(i+1,len(Loss)-1):
for k in range(j+1,len(Loss)):

Solutions.append([i,j,k])
for val_idex in Solutions:

Values.append(adv_loss(val_idex))

optimal_idx = np.array(Values).argmax()
optimal_solution = Solutions[optimal_idx]
optimal_value = max(Values)

print("all possible solutions:",Solutions)
print("objective function values of possible solutions:",Values)
print("optimal solution:",optimal_solution,"\nobjective function value

of optimal solution:",optimal_value)

log.write(str({"all possible solutions":Solutions,
"objective function values of possible solutions":Values,
"optimal solution":optimal_solution,
"objective function value of optimal solution":optimal_value}))

our algorithm
A = Grads[np.random.randint(len(Loss))]
values_tmp = []
solutions_tmp = []
mtr_index =

np.random.choice(np.arange(len(Loss)),size=len(Loss)//2,replace=False)
l = np.mean(Loss- alpha*np.sum(Grads*A.reshape((1,2,2)),axis=(1,2)))
values_tmp.append(l)
solutions_tmp.append(np.delete(np.arange(len(Loss)),mtr_index))
for i in range(5):

D = np.sum(Grads*A,axis=(1,2))
Loss_ = Loss-alpha*D
idx_sort = np.argsort(Loss_)

mtr_index = idx_sort[:len(Loss) // 2]
mte_index = idx_sort[len(Loss) // 2 :]

18

Under review as a conference paper at ICLR 2021

values_tmp.append(Loss_[mte_index].mean())
solutions_tmp.append(mte_index)
A = np.mean(Grads[mtr_index],axis=0)

print("our optimal solution:",solutions_tmp[-1],"\nobjective function
value of our optimal solution:",values_tmp[-1])

log.write(str({"our optimal solution":solutions_tmp[-1],
"objective function value of our optimal solution":values_tmp[-1]}))
print(solutions_tmp,values_tmp)

D PROOF OF THEOREM 1

We first introduce VC-dimension based generalization bound and domain adaptation theory in
Appendix D.1, then present two lemmas in Appendix D.2, and finally give the proof of Theorem 1 in
Appendix D.3.

D.1 PRELIMINARY

VC-dimension based generalization bound.
Theorem A-1. (Abu-Mostafa et al., 2012) Let S be the set of training data i.i.d. sampled for
distribution P . For any δ ∈ (0, 1), with probability at least 1− δ, we have ∀h (h : X → {0, 1}) in
hypothesis spaceH,

|εP(h)− ε̂S(h)| ≤

√
8

|S|

(
V C(H) log

2e |S|
V C(H)

+
4

δ

)
. (14)

where εP(h) = E(x,y)∼P [I{(h(x)) 6=y}] and ε̂S(h) = 1
|S|
∑

(x,y)∈S I{(h(x))6=y}.

Domain adaptation theory.
Theorem A-2. (Ben-David et al., 2007; 2010) For any h in hypothesis spaceH, we have

εQ(h) ≤ εP(h) +
1

2
dH(P,Q) + λ∗, (15)

where λ∗ ≥ infh′∈H{εP(h′) + εQ(h′)} and

dH(P,Q) = 2 sup
h∈H
|EP [h = 1]− EQ[h = 1]| (16)

isH-divergence.

D.2 LEMMAS

Lemma A-1. For any Sv ∈ Γξ and St = S − Sv, ∀δ ∈ (0, 1), with probability at least 1 − δ, we
have ∀f ∈ HSt ,

|εΨP(f)− ε̂ΨSv (f)| ≤

√√√√ 8

|Sv|

(
V C(HΨ

St
) log

2e |Sv|
V C(HΨ

St
)

+
4

δ

)
, (17)

where εΨP(f) = E(x,y)∼P [I{Ψ(f(x)) 6=y}] is generalization error on distribution P , ε̂ΨSv (f) =
1
|Sv|

∑
(x,y)∈Sv I{Ψ(f(x)) 6=y} is empirical error, HΨ

St
= {Ψ ◦ f : f ∈ HSt}, V C(HΨ

St
) is the

VC-dimension of HΨ
St

, and Ψ(·) is the prediction rule such as the Bayes Optimal Predictor, i.e.,
Ψ(f(x)) = I{f(x)≥ 1

2}
.

Proof:

19

Under review as a conference paper at ICLR 2021

From the definition of HΨ
St

, for any f ∈ HSt , there exists a hf ∈ HΨ
St

such that hf = Ψ ◦ f .
Applying Theorem A-1, with probability at least 1− δ, we have ∀f ∈ HSt ,

|εΨP(f)− ε̂ΨSv (f)| =|εP(hf)− ε̂Sv (hf)|

≤

√√√√ 8

|Sv|

(
V C(HΨ

St
) log

2e |Sv|
V C(HΨ

St
)

+
4

δ

)
.

(18)

Lemma A-2. For any Sv ∈ Γξ and St = S − Sv, let εΨP(g) = inff∈HSt ε
Ψ
P(f) and ε̂ΨSv (h) =

inff∈HSt ε̂
Ψ
Sv

(f), then ∀δ ∈ (0, 1), with probability at least 1− δ, we have

εΨP(g) ≥ ε̂ΨSv (h)−

√√√√ 8

|Sv|

(
V C(HΨ

St
) log

2e |Sv|
V C(HΨ

St
)

+
4

δ

)
. (19)

Proof:

From the definition of g and h, we have ε̂ΨSv (g) ≥ ε̂ΨSv (h). ∀δ ∈ (0, 1), with probability at least 1− δ,
we have

εΨP(g)− ε̂ΨSv (h) =εΨP(g)− ε̂ΨSv (g) + ε̂ΨSv (g)− ε̂ΨSv (h)

≥εΨP(g)− ε̂ΨSv (g)

≥−

√√√√ 8

|Sv|

(
V C(HΨ

St
) log

2e |Sv|
V C(HΨ

St
)

+
4

δ

)
.

(20)

Thus, Eq. (19) holds.

D.3 PROOF OF THEOREM 1

Proof:

We denote byHΨl the hypothesis space such that ∀h ∈ HΨl ,

h(x) = Ψl(f(x)) =

{
1 if l(f(x), y) > γ,

0 otherwise ,
(21)

for f ∈ H. Then

dHΨl (P,Q) = 2 sup
h∈HΨl

∣∣EP [h = 1]− EQ[h = 1]
∣∣

= 2 sup
f∈H

∣∣EP [Ψl(f(x)) = 1]− EQ[Ψl(f(x)) = 1]
∣∣

= 2 sup
f∈H

∣∣∣EP [I{l(f(x),y)>γ}]− EQ[I{l(f(x),y)>γ}]
∣∣∣

= 2 sup
f∈H

{
EQ[I{l(f(x),y)>γ}]− EP [I{l(f(x),y)>γ}]

}
≤ 2 sup

f∈H
EQ[I{l(f(x),y)>γ}]− 2 inf

f∈H
EP [I{l(f(x),y)>γ}].

(22)

In the fourth equation, we utilize the assumption that EQ[I{l(f(x),y)>γ}] ≥ EP [I{l(f(x),y)>γ}]. Given
any Sv ∈ Γξ and St = S − Sv , we replaceH byHSt , then

dHΨl
St

(P,Q) ≤2 sup
f∈HSt

EQ[I{l(f(x),y)>γ}]− 2 inf
f∈HSt

EP [I{l(f(x),y)>γ}]

≤2C1 − 2 inf
f∈HSt

EP [I{l(f(x),y)>γ}]
(23)

20

Under review as a conference paper at ICLR 2021

where C1 = supS′v∈Γξ
supf∈HS−S′v

EQ[I{l(f(x),y)>γ}]. Applying Theorem A-2, for any f ∈ HSt ,
we have

εΨlQ (f) ≤ εΨlP (f) + C1 − inf
f ′∈HSt

EP [I{l(f ′(x),y)>γ}] + λ∗(Sv), (24)

where λ∗(Sv) ≥ inff ′∈HS−Sv {ε
Ψl
P (f ′) + εΨlQ (f ′)}. Let C3 = supS′v∈Γξ

λ∗(S′v) ≥
supS′v∈Γξ

inff ′∈HS−S′v
{εΨlP (f ′) + εΨlQ (f ′)}, we have

εΨlQ (f) ≤ εΨlP (f) + C1 − inf
f ′∈HSt

EP [I{l(f ′(x),y)>γ}] + C3. (25)

Applying Lemma A-1 to the first term of right side in Eq. (25), ∀δ ∈ (0, 1), with probability at least
1− δ, we have ∀f ∈ HSt ,

εΨlP (f) ≤ ε̂ΨlSv (f) +

√√√√ 8

|Sv|

(
V C(HΨl

St
) log

2e |Sv|
V C(HΨl

St
)

+
4

δ

)
. (26)

Applying Lemma A-2 to the third term of right side in Eq. (25), ∀δ ∈ (0, 1), with probability at least
1− δ, we have

inf
f ′∈HSt

EP [I{l(f ′(x),y)>γ}] ≥ inf
f ′∈HSt

1

|Sv|
∑

(x,y)∈Sv

I{l(f ′(x),y)>γ}

−

√√√√ 8

|Sv|

(
V C(HΨl

St
) log

2e |Sv|
V C(HΨl

St
)

+
4

δ

)
.

(27)

Combining Eq. (25), (26), (27) and thanks to the union bound, for any δ ∈ (0, 1), with probability at
least 1− 2δ, we have ∀f ∈ HSt ,

εΨlQ (f) ≤ ε̂ΨlSv (f) +B(Sv) + 2

√√√√ 8

|Sv|

(
V C(HΨl

St
) log

2e |Sv|
V C(HΨl

St
)

+
4

δ

)
+ C3, (28)

where B(Sv) = C1 − inff ′∈HSt
1
|Sv|

∑
(x,y)∈Sv I{l(f ′(x),y)>γ}. Using the fact that |Sv| = ξ and let

C2 = supS′v∈Γξ
V C(HΨl

S−S′v
) log 2eξ

V C(HΨl
S−S′v

)
, we have

εΨlQ (f) ≤ ε̂ΨlSv (f) +B(Sv) + 2

√
8

|Sv|

(
C2 +

4

δ

)
+ C3. (29)

21

	Introduction
	Related Works
	Method
	Domain-Free Adversarial Splitting Model
	Optimization
	L2-Normalization for Extracted Feature

	Theoretical Analysis
	Experiments
	Type i: Multi Source with Domain Shift (MSDS)
	Type ii: Single Source with Domain Shift (SSDS)
	Type iii: Same Source and Target Domain (SSTD)
	Ablation study
	Mitigating Gradient Explosion by L2-normalization.

	Conclusion
	Analysis
	Comparison of Adversarial Splitting and Domain-label-based Splitting
	Effect of Hyper-parameters
	Convergence
	Computational Cost of Adversarial Splitting and Random Splitting
	Visualization of Feature Space

	Implementation Details
	Optimization Algorithm for Finding the Hardest Sv
	Optimization Algorithm
	Convergence in Experiments
	Toy Example.

	Proof of Theorem 1
	Preliminary
	Lemmas
	Proof of Theorem 1

