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Abstract

Training a machine learning model with adver-
sarial examples (AEs) improves its robustness
against adversarial attacks. Hence, it is crucial
to develop effective generative models to pro-
duce high-quality AEs. Developing such mod-
els has been much slower in natural language
processing (NLP). The current state-of-the-art
in NLP generates AEs that are somehow hu-
man detectable and/or include semantic and lin-
guistic defects. This paper introduces a novel,
practical, and efficient adversarial attack model
called SSCAE for Semantic, Syntactic, and
Context-aware natural language Adversarial
Examples generator. SSCAE generates hu-
manly imperceptible context-aware AEs that
preserve semantic consistency and source lan-
guage’s syntactical and grammatical require-
ments. The effectiveness and superiority of
the proposed SSCAE model are illustrated over
eleven comparative experiments, extensive ab-
lation studies, and human evaluations.

1 Introduction

Machine learning vulnerability to Adversarial
Examples (AEs), i.e., maliciously crafted perturba-
tions, remains an open area of research (Goodfel-
low et al., 2015; Kurakin et al., 2016; Zhang et al.,
2020). These humanly imperceptible perturbations
force a fine-tuned machine learning model (dubbed
as a target model) to produce wrong decisions that
align with attackers’ intentions. Recent research
shows that introducing AEs to a target model dur-
ing the training, referred to as adversarial training,
improves the robustness and stability of that model
against adversarial attacks (Shafahi et al., 2020;
Wang et al., 2021; Xu et al., 2020). While adversar-
ial attack/defense studies have largely contributed
to machine vision (Chakraborty et al., 2021; Good-
fellow et al., 2015; Papernot et al., 2017), the
progress of such studies in natural language pro-
cessing (NLP) has been at a slower pace. Designing
practical adversarial attack/defense techniques in

NLP is more challenging due to the discrete nature
of the text (Jin et al., 2020).

A well-crafted AE fools the target model while
establishing three essential principles: (1) compat-
ibility with the human decision (Jin et al., 2020;
Li et al., 2020), (2) preserving the semantic consis-
tency of the original text (Jin et al., 2020; Song
et al.,, 2021), and (3) following the source lan-
guage’s syntactic and grammatical rules (Jin et al.,
2020; Song et al., 2021). TextFooler (Jin et al.,
2020), as a baseline adversarial attack model in
NLP, first employs a word embeddings technique
to explore potential synonyms for each important
word. Next, it applies grammatical and seman-
tic checks to narrow down the synonyms and find
proper substitutions to serve as perturbations. How-
ever, it produces complicated out-of-context re-
placements (Garg and Ramakrishnan, 2020; Li
et al., 2020). To address this problem, two re-
cent adversarial attack models, BERT-Attack (Li
etal., 2020) and BERT-based AEs (BAE) (Garg and
Ramakrishnan, 2020), were proposed to generate
contextual perturbations by masking and replac-
ing important words with substitutions produced
by BERT Masked Language Model (BERT MLM)
(Devlin et al., 2019). Although the generated per-
turbations look context-aware, the original text’s
semantic and syntactic characteristics are some-
times lost (Li et al., 2020). There is a need for a
comprehensive model that simultaneously consid-
ers all principles mentioned above for well-crafted
perturbations.

This paper introduces a novel, practical, and ef-
ficient adversarial attack model referred to as SS-
CAE for Semantic (principle 2), Syntactic (prin-
ciple 3), and Context-aware (principle 1) natural
language AEs generator. SSCAE generates hu-
manly imperceptible context-aware AEs that pre-
serve semantic consistency and source language’s
syntactical and grammatical requirements. It first
employs the BERT MLM to generate an initial set



of substitution candidates. Next, it applies two lan-
guage models, Universal Sentence Encoder (USE)
(Cer et al., 2018) and Generative Pre-trained Trans-
former 2 (GPT-2) (Radford et al., 2019) to evaluate
the initial set in terms of semantic and syntactic
characteristics, respectively (more details are avail-
able in Appendix A ). To do so, dynamic thresholds
are utilized to capture more efficient perturbations
than static thresholding, the focus of similar litera-
ture (Jin et al., 2020; Kuleshov et al., 2018; Li et al.,
2018). Eleven computational experiments were de-
signed employing frequently used text classifica-
tion and natural language inference (NLI) datasets
to (1) illustrate SSCAE performance as compared
with TextFooler, BERT-Attack, and BAE using the
BERT target model (seven experiments), and (2)
illustrate SSCAE effectiveness on other target mod-
els (four experiments). SSCAE outperforms the
other methods in all experiments while maintain-
ing a higher semantic consistency with a lower
query number and a comparable perturbation rate.
Moreover, a human evaluation study verifies the
automatic adversarial attack experiments in gener-
ating high-quality and fluent perturbations.

2 Related Work

This section categorizes adversarial attacks on
textual data into two white-box and black-box
groups:

In a black-box setting, the proposed approaches
range from character-level to sentence-level tech-
niques where the word-level methods demonstrate
their superiority compared to other approaches (Jia
and Liang, 2017; Li et al., 2018; Zhang et al.,
2020). Jia and Liang (Jia and Liang, 2017) pro-
posed concatenative adversaries to append distract-
ing sentences at the end of a paragraph to attack the
Stanford Question Answering reading comprehen-
sion system. Belinkov et al. (Belinkov and Bisk,
2018) applied two types of synthetic (character or-
der changes) and natural (typos and misspellings)
noises to the input of the Neural Machine Trans-
lation (NMT) models to produce AEs for NMT
systems. Jin et al. (Jin et al., 2020) introduced
TextFooler, identifying the important words, gath-
ering a candidate set of possible synonyms, and re-
placing each important word with the most seman-
tically similar and grammatically correct synonym.
Lietal.(Lietal., 2020) proposed The BERT-Attack,
consists of two steps: (1) searching for the vulnera-
ble tokens (word/sub-words) (2) employing BERT

MLM to generate semantic-preserving substitutes
for the vulnerable tokens. Maheshwary et al. (Ma-
heshwary et al., 2021) proposed a decision-based
attack strategy to discover word replacements that
maximize the semantic similarity between original
and adversarial text. He et al. (He et al., 2021)
explored publicly available BERT-based classifica-
tion APIs vulnerabilities through a two-step attack:
(1) utilizing a model extraction attack to steal a
copy of the target model, and (2) employing the
extracted model to perform transferable adversarial
attacks.

In contrast to the black-box setting, the white-
box setting provides access to the target model
architecture, its parameters and the training dataset.
Ebrahimi et al. (Ebrahimi et al., 2018) developed
HotFlip that benefits from an atomic flip operation
to select the best character-level change (from the
insert, delete, and swap operations) to produce AEs.
Lietal. (Lietal., 2018) proposed TEXTBUGGER
framework, identifying important words by the Ja-
cobian matrix of the target model, and selecting an
optimal perturbation from five types of generated
perturbations. Song et al. (Song et al., 2021) pro-
posed Natural Universal Trigger Search (NUTS).
It employs a regularized autoencoder (Zhao et al.,
2018) to generate adversarial attack triggers. Then
a gradient-based search is developed to identify
triggers with a good attack performance. Guo et
al. (Guo et al., 2021) proposed Gradient-based
Distributional Attack (GBDA), including two key
components: first, AEs are instantiated with the
Gumbelsoftmax distribution (Jang et al., 2016), sec-
ond, perceptibility and fluency characteristics are
enforced using BERTScore (Zhang et al., 2019) and
a causal language model perplexity, respectively.

3 Proposed SSCAE Computational Model

Figure 1 presents the flowchart of the SSCAE
model. It includes five steps to be explained in this
section.

Step 1: Select an Input Sample and Identify
its Important Words: A textual input sample is
randomly selected from an available dataset and
inputted into the SSCAE model. Then, a greedy
search method (Gao et al., 2018) is employed to
identify the input sample’s important words. To do
so, the greedy search masks a word in the input sam-
ple at a time. Next, the target model evaluates the
masked input sample and estimates a confidence
score for the truth label. The difference between the



Step 1. Randomly select an input sample
and identify the sample’s important words
using greedy search method.

Step 2. Select the most/next most influential
word and apply BERT MLM to retrieve an
initial set of context-aware substitutions for |

the selected word.

]

Step 3. Utilize USE and GPT-2 models to assign a
semantic similarity and a syntactic correctness score for
each substitution, respectively, use a dynamic threshold

to refine the set of substitutions, and perform an extra
refinement by matching the POS tag of each
substitution with selected significant word’s tag.

]

Step 4. Generate new adversarial samples by
replacing each refined substitution with the selected
significant word in the input data and Estimate each

adversarial sample using the target model.

Step 5. Select the
adversarial sample
with the lowest
probability of truth
label as the new
input text sample.

[s the target
model fooled
at least by one
adversarial
sample?

Reserve the adversarial samples
that fooled the model

Figure 1: General architecture of our approach

confidence score before and after masking, denoted
as ¢, is recorded for that particular word. The value
of § is computed for most of the words in the input
sample. Ultimately, the words are sorted based on
the magnitude of ¢; the larger the § magnitude, the
more influential (important) is the corresponding
word in the input sample.

Step 2: Select an Influential Word and Iden-
tify Context-Aware Substitutions: The word with
the largest ¢ (i.e., most influential) is selected for
possible substitution. Considering a fixed-size
word window, BERT MLM is applied on each se-
lected word’s neighbor words to retrieve a set of
top K context-aware substitutions; hence, sets of
top K such substitutions are retrieved and com-
bined. Then, the combined set serves as an initial
set of context-aware substitutions for the selected
influential word. It should be noted that the initial
set is not relatively larger than K'; many substitu-
tions are identical across top K context-aware sets.
This helps retrieve both identical and non-identical
substitutions to improve the chance of fooling the
target model.

Step 3: Semantic, Syntactic, and Grammat-
ical Refinement: Although BERT-based models
demonstrate their superiority in various NLP tasks
(Devlin et al., 2019; Lan et al., 2020; Liu et al.,
2019), unfortunately, most top K-generated sub-
stitutions do not eventually lead to valid AEs in
terms of language fluency, semantic consistency,
and imperceptibility. It is necessary to scrutinize
the substitutions to ensure the validity of produced
perturbations and comply with linguistic require-
ments. In other words, each substitution has to
preserve the input sample’s meaning and follow
the source language’s syntactic and grammatical
structures. SSCAE employs refinement strategies
to identify substitutions with a higher chance of
preserving semantic, syntactic, and grammatical
linguistic characteristics.

As a semantic embedding model, USE and GPT-
2, as a transformer-based language model, assign
a semantic similarity and a syntactic correctness
score for each substitution, respectively. The se-
mantic similarity score represents to what extent
a substitution preserves the meaning of the input
sample. The syntactic score represents to what ex-
tent a substitution preserves the source language
syntax principles. Recent studies employ a con-
stant threshold to refine the substitutions of ev-
ery important word (Jin et al., 2020; Kuleshov
et al., 2018; Li et al., 2018). However, for ex-
ample, a threshold of magnitude 0.8 (Jin et al.,
2020) might be sufficient to retrieve substitutions
with higher semantic/syntactic quality for one im-
portant word, while it might not be enough to
filter out less qualified substitutions for another
word. Instead of a predefined constant thresh-
old, this paper investigates four different potential
heuristics to compute dynamic thresholds to refine
high-quality substitutions: (1) Average_threshold,
(2) Median_threshold, (3) TopN_threshold, and
(4) Top_maxes_distance. Average_threshold (Me-
dian_threshold) computes the average (median)
of substitutions’ scores. TopN_threshold picks
the score of the N'" substitution after being
descending-sorted where N is a minor hyper-
parameter. Top_maxes_distance computes the spe-
cific threshold as Sy — M ASy where Sy is the
score corresponding to the N** substitution after
being descending-sorted, M is a minor hyperpa-
rameter, and ASy is the difference between the
highest score amongst substitutions and S;. Over-
all, such dynamic thresholds lead to substitutions



with higher semantic consistency, significantly im-
proving generated AEs’ quality. By extensive trial
and error experiments on various datasets, a lower
bound of 0.7 was optimal for the dynamic threshold
to assure the validity of the substitutions.

The substitutions’ part-of-speech (POS) tag must
match that of the selected word to preserve the
grammatical linguistic characteristic. Otherwise,
the substitution is filtered out. One exception is
when the substitution is singular (plural), while the
selected word’s POS tag indicates a plural (singu-
lar) substitution. In this case, the substitution is
modified accordingly (not filtered). Another excep-
tion is about verb substitutions. If a verb substi-
tution has the same root as the selected word, it
is filtered. It should be noted that, in this method,
the correct POS tag for a substitution is identified
when the substitution is implemented in the input
sample.

Step 4: Generate and Estimate Adversarial
Examples: AEs are generated by replacing the
selected word with the substitutions in the input
sample. Because of the acute and dynamic refine-
ments in the previous step, the generated adversar-
ial samples have a higher chance of preserving the
input sample’s semantic, syntactic, and grammatic
consistency/correctness. The adversarial samples
are then estimated using the target model. Those
adversarial samples that fool the target model are
being reserved.

Step 5: Input Sample Replacement: Suppose
non of the generated adversarial samples fool the
target model. In that case, the adversarial sample
with the lowest probability of truth label is selected
as the new input sample. Next, steps 2 to 5 are
repeated. It should be noted that the new input
sample generates adversarial samples with a higher
probability of fooling the target model than the
current input sample.

4 Computational Experiments

This section introduces different text classifica-
tion and NLI datasets along with the target models
fine-tuned on some (or all) of the datasets. Then
we present a general set of metrics to evaluate the
adversarial attack results of SSCAE on the differ-
ent target models and compare it with other recent
adversarial attack models. Finally, we demonstrate
our model’s robustness by performing a human
evaluation to verify our automatic adversarial at-
tack experiments.

Datasets and Target Models: In order to illus-
trate SSCAE model, four binary text classification
(for text classification task) and three NLI datasets
(for text entailment task) were employed to develop
eleven NLP task experiments. The text classifica-
tion datasets are YELP Polarity Review (YELP)
(Zhang et al., 2015), Internet Movie Database
(IMDb) (IMD) Review, Rotten Tomatoes Movie
Reviews (RTMR) (Pang and Lee, 2005), and Stan-
ford Sentiment Treebank Version 2 (SST2) (Socher
et al., 2013). The NLI datasets are Standford NLI
(SNLI) (Bowman et al., 2015) and two Multi-NLI
(MNLI) datasets (Williams et al., 2018), referred
to as MNLI-Matched and MNLI-Mismatched. See
Appendix B for datasets’ descriptions. The first
seven experiments compare SSCAE model with
three recent and advanced adversarial attack mod-
els: TextFooler, BERT-Attack, and BAE. The last
four experiments are to present the effectiveness
of SSCAE model on four target models other
than BERT that are Word Long Short Term Mem-
ory (WordLSTM) (Hochreiter and Schmidhuber,
1997), Lite BERT for Self-Supervised Learning of
Language Representations (ALBERT-Base) (Lan
et al., 2020), Enhanced Sequential Inference Model
(ESIM) (Chen et al., 2016), and BERT-Large (De-
vlin et al., 2019). See Appendix C for target mod-
els’ descriptions.

Comparison of Adversarial Attack Models
Against BERT: Table 1 presents the results of the
first seven experiments. The results compare SS-
CAE model with TextFooler, BERT-Attack, and
BAE adversarial attack models using 1000 ran-
domly selected testing instances (Alzantot et al.,
2018; Jin et al., 2020) that were the BERT as the tar-
get model. Four standard metrics (Jin et al., 2020;
Li et al., 2020) were used to verify the quality of
the generated AEs in Table 1: (1) after-attack accu-
racy percentage (AAA), (2) average perturbation
percentage (P%), (3) average query number (Q#),
and (4) average semantic consistency measurement
(SCM). An ideal adversarial attack model would
obtain a lower magnitude AAA, P%, and Q# and a
higher magnitude SCM. Due to the similarity and
dataset sensitivity of BERT-Attack and BAE ad-
versarial attack models (Garg and Ramakrishnan,
2020; Li et al., 2020), the best literature-available
results across these two models are reported in Ta-
ble 1.

In the most majority of datasets, SSCAE out-
performs TextFooler and BERT-Attack/BAE in Ta-



Dataset E# BOA AAM AAA P% Q# SCM Ref
TextFooler 6.6 128 743 0.74 J
YELP 1 95.6 BERT-Attack/BAE 5.1 41 273 0.77 L
SSCAE (ours) 3.0 41 106 0.90 C
TextFooler 13.6 6.1 1134 0.86 J
IMDB 2 90.9 BERT-Attack/BAE 114 44 454 0.86 L
SSCAE (ours) 106 63 411 0.86 C
TextFooler 135 169 107 0.85 T
SST2 3 93.0 BERT-Attack/BAE 182 145 92 0.86 T
SSCAE (ours) 12.0 125 o4 0.87 C
TextFooler 30.7 1677 166 0.90 T
MR 4 85.3 BERT-Attack/BAE 192 152 126 091 G
SSCAE (ours) 16.0 169 95 0.90 C
TextFooler 17.8 185 85 0.74 T
SNLI 5 894 (H) BERT-Attack/BAE 214 188 26 0.71 T
SSCAE (ours) 13.7 204 20 0.75 C
TextFooler 323 281 241 0.75 T
MNLI-Matched 6 85.1(P) BERT-Attack/BAE 189 14,5 64 0.78 T
SSCAE (ours) 156 148 38 0.80 C
TextFooler 279 262 197 0.75 T
MNLI-Mismatched 7  82.1 (P) BERT-Attack/BAE 20.7 15.1 61 0.77 T
SSCAE (ours) 146 148 38 0.81 C

Table 1: Average results of SSCAE, TextFooler, and BERT-Attack/BAE models on 1000 randomly selected testing
instances from each of seven datasets using the BERT target model (E#: Experiment #; BOA: BERT Target Model’s
Original Accuracy Percentage; AAM: Adversarial Attack Model; AAA: After-Attack Accuracy Percentage; P%:
Average Perturbation Percentage; Q#: Average Query Number; SCM: Average Semantic Consistency Measurement;
Ref: Reference; H: Hypothesis; P: Premise; J: (Jin et al., 2020); T: (Tex); G: (Garg and Ramakrishnan, 2020); L: (Li

et al., 2020); C: Current Study)

ble 1. In the case of AAA, SSCAE results are lower
(i.e., better) than all other adversarial attack models,
particularly in experiments corresponding to YELP,
MR, SNLI, and MNLIs. In the case of P%, SSCAE
results are lower (i.e., better) than TextFooler and
around (i.e., comparable) with BERT-Attack/BAE
results in all experiments. In the case of Q#, the
SSCAE results are significantly lower (i.e., better)
than TextFooler and BERT-Attack/BAE in all ex-
periments. In the case of SCM, except for the exper-
iment corresponding to the IMDB dataset, where
the result is near-equal, the SSCAE results are al-
ways better than the other two adversarial attack
models. One of the promising outcomes of SSCAE
model is that it achieved the best (i.e., lower) AAA
across all experiments while, except the experiment
corresponding to the SNLI dataset, keeping SCM
over magnitude 0.8. In other words, the SSCAE
model fooled the target model in most experiments
and produced humanly imperceptible adversarial
attacks with a considerably small Q# due to se-

mantic/syntactic/grammatical filters. It should be
noted that although SSCAE model’s P%, as com-
pared with that of BERT-Attack/BAE, is higher
(i.e., worse) across some dataset experiments, it
preserves a higher (i.e., better) semantic consis-
tency using the dynamic threshold. This is due to
the adroit implementation of the semantic thresh-
old to refine high-quality substitutions in our model.
Hence, SSCAE model generates more impercepti-
ble and efficient adversarial samples than previous
state-of-the-art models.

According to Table 1, text entailment experi-
ments seem more challenging than the text classi-
fication experiments. In NLI datasets, sentences
are short (a few words). Hence, replacing impor-
tant words would significantly increase P% and
reduce the semantic consistency of the generated
examples; modifying even one or two important
words increases P%, and there are not enough po-
tential words to be perturbed. Nevertheless, SS-
CAE model remarkably outperforms other mod-



Dataset

E# Target Model

TOA AAA P%

8 WordLSTM
9 ALBERT-Base

YELP

96.0 1.0 438
97.0 35 4.2

MNLI-Mismatched 10

ESIM
11  BERT-Large

762 92 204
86.4 147 145

Table 2: Average results of SSCAE on 1000 randomly selected testing instances using WordLSTM (with YELP),
ALBERT-Base (with YELP), ESIM (with MNLI mismatched), and BERT-Large (with MNLI mismatched) as
the target models (E#: Experiment #; TOA: Target Model’s Original Accuracy Percentage; AAA: After-Attack
Accuracy Percentage; P%:Average Perturbation Percentage)

els with a large AAA margin on text alignment
experiments while achieving higher semantic con-
sistency scores, i.e., SCM. It should be noted that
in document-level classification experiments, i.e.,
YELP and IMDB experiments here, the lower P%
indicates that the target model, i.e., BERT, relies
on only a few important words to make predictions.
Therefore, identifying and replacing the important
words could reveal the vulnerability of the BERT-
base target models (Li et al., 2020).

Attack Other Target Models: Table 2 presents
the experimental results of SSCAE model on 1000
randomly estimated testing instances using WordL-
STM (with YELP dataset), ALBERT-Base (with
YELP dataset), ESIM (with MNLI-Mismatched),
and BERT-Large (with MNLI-Mismatched) as the
target models. In the case of WordLSTM-YELP
and ALBERT-Base-YELP (text classification tasks)
experiments, SSCAE model decreased the AAA to
lower than 4% (1% and 3.5%, respectively) while
keeping the P% under 5% (4.8% and 4.2%, re-
spectively). In the case of the BERT-Large-MNLI-
Mismatched (text entailment task) experiment, SS-
CAE model produced close results to that of Ta-
ble 1, where the target model is BERT. In the most
majority of this study’s experiments (11 experi-
ments), which includes a variety of datasets, target
models, and adversarial attack models, SSCAE
model illustrated outstanding capability to gener-
ate humanly imperceptible AEs while preserving
semantic consistency, syntactic characteristic, and
grammatical constraint.

Human Evaluation: Table 3 presents a human
assessment of the quality and fluency of generated
AEs by SSCAE in YELP (two-class) and MLNI-
mismatched (three-class) experiments with BERT
as the target model. In each experiment, three grad-
uate students from a Department of Applied Lin-
guistics, provided 100 randomly selected input sam-
ples (denoted as “Original” in Table 3) and their

corresponding SSCAE-generated adversarial sam-
ples (denoted as “Adversarial” in Table 3). Whether
Original or Adversarial, for a particular sample, if
the majority of students correctly estimate the class
of a sample, it is counted as one correct human
estimation. As shown in Table 3, there is only a
small gap (6.5%) between the human estimation of
the Original samples and SSCAE-generated Adver-
sarial samples in the YELP experiment. In MNLI-
Mismatched, since human-crafted hypothesis and
premise sentences share a considerable amount of
the same words, applying perturbations on these
words would negatively affect human assessment
to make the correct prediction.

Furthermore, each student is asked to assign two
scores (on a Likert scale of 1-5) for each sam-
ple, whether Original or Adversarial. The first
score is about how meaningful (1 to be mean-
ingless and 5 to be meaningful) the sample is,
and the second score represents the extent of the
sample’s grammar correctness (1 to be incorrect
and 5 to be correct). The average meaningfulness
(grammar correctness) score in Table 3 is 4.2, 4.0,
3.9, and 3.7 (4.0, 3.8, 4.1, and 3.7) for YELP-
Original, YELP-Adversarial, MNLI-Mismatched-
Original, MNLI-Mismatched-Adversarial, respec-
tively. There is only a small gap (0.2) between
the Original and Adversarial scores in both YELP
and MNLI-Mismatched experiments; the SSCAE-
generated adversarial samples are semantically and
grammatically within the same distribution as the
Original samples.

5 Ablation Study

An ablation study is performed to investigate the
major hyperparameters of SSCAE model and its
strategies (i.e., steps in Figure 1).

A Comparison Study of K in Context-Aware
Substitutions: Figure 2 presents an ablation study
of K context-aware substitutions of step 3 in Fig-



Dataset E# DT HA M GC
Original 925 42 40

YELP I Adversarial 86.0 4.0 3.8

. Original 912 39 4.1
MNLI-Mismatched 7 Adversarial 774 3.7 3.7

Table 3: Human Evaluation Task (E#: Experiment Number; DT: Data Type; HA: Human Accuracy Percentage; M:

Meaningfulness; GC: Grammar Correctness)

Dataset E# BOA Method AAA P% SCM
w Semantic 3.0 4.1 0.90

YELP I 956 w/o Semantic 2.1 29 0.71
w Semantic 13.7 204 0.75

SNLI > 894 w/o Semantic 9.5 11.3 0.58

Table 4: Results of an ablation study on SSCAE with/without semantic refinement (Figure 1, step 3) (E#: Experiment
#; BOA: BERT Target Model’s Original Accuracy Percentage; w: With; w/o: Without; AAA: After-Attack Accuracy
Percentage; P%:Average Perturbation Percentage; SCM: Average Semantic Consistency Measurement)

ure 1, where the horizontal axis shows five possible
K values of 10, 20, 35, 50, and 60. The vertical
axis shows the Attack Success Percentage (ASP)
in six experiments corresponding to YELP (experi-
ment 1), IMDB (experiment 2), SST2 (experiment
3), MR (experiment 4), SNLI (experiment 5), and
MLNI-Mismatched (experiment 7). Generally, a
larger K means a larger number of substitutions
for an important word; it increases the chance of
producing AEs (with a lower P%) that fool the
model (larger ASP) despite utilizing linguistic re-
finements. However, in our experiments, starting
from K = 50, the ASP improvement (SCM de-
creasing) rate decreases (increases). At K > 60,
the ASP improvement rate is insignificant while
SCM decreasing rate is considerable. As such, for
SSCAE model, a K = 60 was found to be near-
optimum in all experiments with reasonable SCM.

Importance of Semantic Refinement: Table 4
presents the results of an ablation study on SS-
CAE model using YELP (text classification task)
and SNLI (text entailment task) datasets with and
without semantic refinement step (semantic con-
sistency in step 3, Figure 1). By removing seman-
tic refinement, AAA, P%, and SCM are dropped
from 3.0% to 2.1% (i.e., improved), 4.1% to 2.9%
(i.e., improved), and 0.90 to 0.71 (i.e., worsened).
Although AAA and P% improved slightly, SCM
was worsened, indicating that, on average, the AEs
lost their original meaning. Hence, the SSCAE-
generated AEs became human detectable. As such,
the semantic refinement plays an essential role in
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Figure 2: An ablation study of K context-aware substi-
tutions of step 3 in Figurel

generating high-quality and imperceptible AEs in
SSCAE model.

Table 5 compares the utilization of USE (for
assigning a semantic similarity score to each substi-
tution) with another possible semantic embedding
model, Sentence-BERT (Reimers and Gurevych,
2019), in terms of AAA and SCM over experi-
ments corresponding to YELP, SNLI, IMDB, and
MNLI-Mismatched datasets. These results indi-
cate that USE outperforms Sentence-BERT in not
only achieving a lower AAA but a slightly higher
SCM in these experiments. Therefore, USE was
selected as the primary semantic embedding model
in SSCAE model.



Dataset E# Semantic Embeding Method AAA SCM
YELP ! Senterlljcsel-EBERT 431:(1) 823(1)
IMDB 2 SentellljcsffBERT ig:g 8222
SNLI > Senterlljci]—EBERT iig 82;2

MNLI-Mismatched 7 Sent ellljciI_EBERT 13:2 8:2(1)

Table 5: A comparison study between the utilization of USE and Sentence-BERT in terms of AAA and SCM
over experiments corresponding to YELP, SNLI, IMDB, and MNLI-Mismatched datasets in step 5, Figure 1 (E#:
Experiment #; AAA: After-Attack Accuracy Percentage; SCM: Average Semantic Consistency Measurement)

Dataset E# Method AAA P% SCM
Average_threshold 4.5 5.7 0.89

Median_threshold 4.4 5.6 0.89

YELP ! TopN_threshold 34 4.0 091
Top_maxes_distance 3.0 4.1 090

Average_threshold 179 18.5 0.80

. Median_threshold 176 18.7 0.81
MNLI-Mismatched 7“0\ echold 153 145 0.80
Top_maxes_distance 14.6 14.8 0.81

Table 6: A comparative study of the heuristics to compute the dynamic threshold for semantic and syntactic
refinements in step 5 of SSCAE model (E#: Experiment #; AAA: After-Attack Accuracy Percentage; P%:Average
Perturbation Percentage; SCM: Average Semantic Consistency Measurement)

Specific Threshold Investigations: Table 6
presents a comparative study of the aforemen-
tioned heuristics, 1i.e., Average_threshold,
Median_threshold, TopN_threshold, and
Top_maxes_distance, to compute the dy-
namic threshold for semantic and syntactic
refinements in step 3 of SSCAE model (Fig-
ure 1). Average_threshold and Median_threshold
obtained proportional results in all AAA, P%,
and SCM metrics, perhaps, because they both
use similar mathematical approaches for the
refinement task. On average, TopN_threshold
and Top_maxes_distance produced better AAA,
P%, and SCM results than Average_threshold
and Median_threshold. = However, the AAA
results in Top_maxes_distance are better than
TopN_threshold, while both produced proximate
P% and SCM. As such, SSCAE model utilizes
the Top_maxes_distance technique to compute
dynamic thresholds. Trial and error identified
the value of 1 to be the best value for the
Top_maxes_distance’s minor hyperparameter,
M, in this paper experiments. See Appendix D

for examples of adversarial texts generated by
SSCAE.

6 Conclusion

This paper introduced SSCAE, a novel AE gen-
erator for developing context-wise AEs while pre-
serving essential linguistic features (semantic, syn-
tactic, and grammatical). The SSCAE utilized the
Bert MLM model to generate potential substitu-
tions per important word. Besides, it employed
three refinement techniques to maintain the lin-
guistic properties of final perturbations. Results of
eleven experiments, comprehensive ablation stud-
ies, and human evaluations demonstrated the supe-
riority of SSCAE compared to three state-of-the-art
adversarial attack systems on different text classifi-
cation and entailment datasets/tasks. Implementing
practical operations such as insertion and deletion
within SSCAE remains an open question ripe for
further investigation.
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A USE and GPT-2 Utilization Details

Cer et al. (Cer et al., 2018) developed the USE
for English to encode a textual content with ar-
bitrary length into an embedding vector with a
predefined length that preserves semantic charac-
teristics of the textual content. Such embedding
vectors are practical for measuring semantic sim-
ilarities between arbitrary length textual contents
(Jin et al., 2020). SSCAE employs USE to generate
embedding vectors enriched with semantic charac-
teristics of the input sentences and AEs. Next, the
cosine similarities between the embedding vectors
are computed to verify the semantic similarity of



S (E#)

Sentence

YELP(1)

a~]

...Awesome soy cap, scone, and atmosphere. Nice place to hang out & read, and free WiFi
with no login procedure.

...Awesome soy cap, scone, and atmosphere. Fantastic place to hang out & read, and free
WiFi with no login procedure.

—

Z| z

a~]

Refused to take my cat, which had passed away, for cremation cause I had not been to the
clinic previously...

Refused to take my cat, which had passed away, for cremation cause I had not been to the
hospital previously...

MNLI-Mismatched (7)

= = >

Poirot was disappointed with me

Still, it would be interesting to know. 109 Poirot looked at me very earnestly, and again
shook his head

Still, it would be interesting to know. 109 Poirot looked at me very carefully, and again
shook his head

= | >

Talking about privacy is a complicated topic, there are a couple different ways of talking
about it, for example privacy is something that disturbs...

...if privacy is something that disturbs your private state i mean an invasion of privacy
is something that disturbs your private state that’s one thing and if privacy is something
that comes into your private state and extracts information from it in other words finds
something out about you that’s another and the first kind of invasion of the first type of
privacy seems invaded to me in very much everyday in this country but in the second type
at least overtly uh where someone comes in and uh finds out information about you that
should be private uh does not seem uh um obviously everyday

...if privacy is something that disturbs your private state i mean an invasion of privacy
is something that disturbs your private state that’s one thing and if privacy is something
that comes into your private state and extracts information from it in other words finds
something out about you that’s another and the first kind of invasion of the first type of
privacy seems invaded to me in very much everyday in this country but in the second type
at least overtly uh where someone comes in and uh finds out information about you that
should be private uh does not seem uh um obviously routine

Table 7: Examples of original and adversarial sentences generated by SSCAE from experiments corresponding to
YELP and MNLI datasets (S: Dataset; X: Example #; E#: Experiment #; D: Data Type; T: Target Model Estimation;
I: Input Sample; A: Adversarial Example; P: Positive; N: Negative; H: Hypothesis; E: Entailment; Ne: Neutral;)

each generated AE to its input sentence. Radford
et al. (Radford et al., 2019) developed GPT-2, a
transformer-based language model that computes
the probability of a typical word to be the next
word in a sentence. It can employ to analyze the
AEs’ syntactic structure based on the source lan-
guage’s syntactic rules. SSCAE employs GPT-2
to compute the probability of the important word,
Pr, and each of its corresponding substitutions, Ps.
The syntactic correctness score for a substation is
Pg — Pr.

B Datasets Descriptions

YELP (business) is a document-level dataset
with 560,000 training and 38,000 testing highly po-
lar samples where negative and positive classes are
1- and 2-star and 4- and 5-star reviews, respectively.

IMDb Review (movie) is a document-level
dataset with 25,000 training and 25,000 testing
highly polar samples where negative and positive
classes are review scores <4 and >7 out of 10,
respectively.

RTMR (movie) is a sentence-level dataset based
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on sentiment polarity with 8530 training and 1066
testing highly polar samples where negative and
positive classes are assigned based on the calibra-
tion among different critics.

SST2 (movie) is a sentence-level dataset based
on sentiment polarity with 8544 training and 2210
testing highly polar samples where any multi-level
negative and positive reviews are categorized as
negative and positive reviews (neutral reviews are
excluded).

SNLI (MNLI) is a three-class dataset of 550,152
(392,702) training and 10,000 (19,643) testing
human-written sentence pairs in English. Every
three pairs of SNLI (MLNI) are created using a dif-
ferent image caption from the Flicker30K dataset
(Young et al., 2014) (ten sources of text), called
a premise sentence (Bowman et al., 2015). The
premise sentence is the first sentence in each of
three pairs. The second sentence (called a hypothe-
sis sentence) (Bowman et al., 2015) of the first, sec-
ond, and third pair is generated to be in entailment
(category 1), contradiction (category 2), and neutral
(category 3) with the premise sentence, respectively.
In contrast with SNLI, where premise sentences



are from a relatively homogeneous image caption
dataset, MNLI covers broader text styles (Williams
et al., 2018). MLNI testing sample pairs are di-
vided into two general categories, “Matched” and
“Mismatched;” the MNLI-Matched testing pairs, in
contrast to MNLI-Mismatched, share similar con-
text and resemblance as the training pairs.

C Target Models Other than BERT

The effectiveness of SSCAE model is illustrated
on other target models in addition the Bert regular
model:

WordLSTM addresses the problem of short-
term memory in recurrent neural networks by using
specific gates to regulate the flow of word-based se-
quential information (Hochreiter and Schmidhuber,
1997).

ALBERT utilizes factorized embedding param-
eterization and cross-layer parameter sharing to
lower the BERT’s memory consumption and in-
crease its training speed (Lan et al., 2020).

ESIM is a sequential model that enhances the
local inference information (words and their con-
text) by calculating the sentence pair’s difference
and element-wise product (Chen et al., 2016).

BERT-Large is a transformer-based model pre-
trained on a large corpus of English data with 24
layers of encoders stacked on top of each other with
16 bidirectional self-attention heads (Devlin et al.,
2019).

D Examples of Adversarial Texts

Table 7 presents four pairs of original input sam-
ples and corresponding SSCAE-generated adversar-
ial attack examples from experiments correspond-
ing to YELP (two pairs) and MNLI-Mismatch (two
pairs) datasets. In YELP, the first (second) example,
the adjective “Nice” (noun “clinic”) in the input
sample, is recognized as an important word and
replaced with “Fantastic” (“hospital”) to generate
an adversarial attack example that fools the BERT
model. Although these two adjectives (nouns) are
not necessarily synonyms (despite arguable similar-
ities), the general meaning of the original sample is
remarkably preserved in the generated AE. Besides,
the AE is intact grammatically and syntactically. In
MNLI-Mismatch, the first (second) example, the
adverb “earnestly” (term “everyday”) in the input
sample, is recognized as an important word and
replaced with “carefully” (term “routine”) to gen-
erate an adversarial attack example that fools the
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BERT model. It should be noted that in the MNLI-
Mismatched second example, the input samples
are wordier than YELP. Still, SSCAE model could
generate adversarial attacks by replacing only one
adverb (term) in the input sample while preserv-
ing the original sample’s grammar and syntactic
requirements. The MNLI-Mismatched adversarial
attack examples both preserved the meaning of the
input samples and would not mislead human judg-
ment, thanks to steps 3 in SSCAE model (Figure 1),
where linguistic filters significantly improved the
quality of the generated AEs in terms of impercep-
tibility and fluency.



