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Abstract

Training a machine learning model with adver-001
sarial examples (AEs) improves its robustness002
against adversarial attacks. Hence, it is crucial003
to develop effective generative models to pro-004
duce high-quality AEs. Developing such mod-005
els has been much slower in natural language006
processing (NLP). The current state-of-the-art007
in NLP generates AEs that are somehow hu-008
man detectable and/or include semantic and lin-009
guistic defects. This paper introduces a novel,010
practical, and efficient adversarial attack model011
called SSCAE for Semantic, Syntactic, and012
Context-aware natural language Adversarial013
Examples generator. SSCAE generates hu-014
manly imperceptible context-aware AEs that015
preserve semantic consistency and source lan-016
guage’s syntactical and grammatical require-017
ments. The effectiveness and superiority of018
the proposed SSCAE model are illustrated over019
eleven comparative experiments, extensive ab-020
lation studies, and human evaluations.021

1 Introduction022

Machine learning vulnerability to Adversarial023

Examples (AEs), i.e., maliciously crafted perturba-024

tions, remains an open area of research (Goodfel-025

low et al., 2015; Kurakin et al., 2016; Zhang et al.,026

2020). These humanly imperceptible perturbations027

force a fine-tuned machine learning model (dubbed028

as a target model) to produce wrong decisions that029

align with attackers’ intentions. Recent research030

shows that introducing AEs to a target model dur-031

ing the training, referred to as adversarial training,032

improves the robustness and stability of that model033

against adversarial attacks (Shafahi et al., 2020;034

Wang et al., 2021; Xu et al., 2020). While adversar-035

ial attack/defense studies have largely contributed036

to machine vision (Chakraborty et al., 2021; Good-037

fellow et al., 2015; Papernot et al., 2017), the038

progress of such studies in natural language pro-039

cessing (NLP) has been at a slower pace. Designing040

practical adversarial attack/defense techniques in041

NLP is more challenging due to the discrete nature 042

of the text (Jin et al., 2020). 043

A well-crafted AE fools the target model while 044

establishing three essential principles: (1) compat- 045

ibility with the human decision (Jin et al., 2020; 046

Li et al., 2020), (2) preserving the semantic consis- 047

tency of the original text (Jin et al., 2020; Song 048

et al., 2021), and (3) following the source lan- 049

guage’s syntactic and grammatical rules (Jin et al., 050

2020; Song et al., 2021). TextFooler (Jin et al., 051

2020), as a baseline adversarial attack model in 052

NLP, first employs a word embeddings technique 053

to explore potential synonyms for each important 054

word. Next, it applies grammatical and seman- 055

tic checks to narrow down the synonyms and find 056

proper substitutions to serve as perturbations. How- 057

ever, it produces complicated out-of-context re- 058

placements (Garg and Ramakrishnan, 2020; Li 059

et al., 2020). To address this problem, two re- 060

cent adversarial attack models, BERT-Attack (Li 061

et al., 2020) and BERT-based AEs (BAE) (Garg and 062

Ramakrishnan, 2020), were proposed to generate 063

contextual perturbations by masking and replac- 064

ing important words with substitutions produced 065

by BERT Masked Language Model (BERT MLM) 066

(Devlin et al., 2019). Although the generated per- 067

turbations look context-aware, the original text’s 068

semantic and syntactic characteristics are some- 069

times lost (Li et al., 2020). There is a need for a 070

comprehensive model that simultaneously consid- 071

ers all principles mentioned above for well-crafted 072

perturbations. 073

This paper introduces a novel, practical, and ef- 074

ficient adversarial attack model referred to as SS- 075

CAE for Semantic (principle 2), Syntactic (prin- 076

ciple 3), and Context-aware (principle 1) natural 077

language AEs generator. SSCAE generates hu- 078

manly imperceptible context-aware AEs that pre- 079

serve semantic consistency and source language’s 080

syntactical and grammatical requirements. It first 081

employs the BERT MLM to generate an initial set 082
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of substitution candidates. Next, it applies two lan-083

guage models, Universal Sentence Encoder (USE)084

(Cer et al., 2018) and Generative Pre-trained Trans-085

former 2 (GPT-2) (Radford et al., 2019) to evaluate086

the initial set in terms of semantic and syntactic087

characteristics, respectively (more details are avail-088

able in Appendix A ). To do so, dynamic thresholds089

are utilized to capture more efficient perturbations090

than static thresholding, the focus of similar litera-091

ture (Jin et al., 2020; Kuleshov et al., 2018; Li et al.,092

2018). Eleven computational experiments were de-093

signed employing frequently used text classifica-094

tion and natural language inference (NLI) datasets095

to (1) illustrate SSCAE performance as compared096

with TextFooler, BERT-Attack, and BAE using the097

BERT target model (seven experiments), and (2)098

illustrate SSCAE effectiveness on other target mod-099

els (four experiments). SSCAE outperforms the100

other methods in all experiments while maintain-101

ing a higher semantic consistency with a lower102

query number and a comparable perturbation rate.103

Moreover, a human evaluation study verifies the104

automatic adversarial attack experiments in gener-105

ating high-quality and fluent perturbations.106

2 Related Work107

This section categorizes adversarial attacks on108

textual data into two white-box and black-box109

groups:110

In a black-box setting, the proposed approaches111

range from character-level to sentence-level tech-112

niques where the word-level methods demonstrate113

their superiority compared to other approaches (Jia114

and Liang, 2017; Li et al., 2018; Zhang et al.,115

2020). Jia and Liang (Jia and Liang, 2017) pro-116

posed concatenative adversaries to append distract-117

ing sentences at the end of a paragraph to attack the118

Stanford Question Answering reading comprehen-119

sion system. Belinkov et al. (Belinkov and Bisk,120

2018) applied two types of synthetic (character or-121

der changes) and natural (typos and misspellings)122

noises to the input of the Neural Machine Trans-123

lation (NMT) models to produce AEs for NMT124

systems. Jin et al. (Jin et al., 2020) introduced125

TextFooler, identifying the important words, gath-126

ering a candidate set of possible synonyms, and re-127

placing each important word with the most seman-128

tically similar and grammatically correct synonym.129

Li et al.(Li et al., 2020) proposed The BERT-Attack,130

consists of two steps: (1) searching for the vulnera-131

ble tokens (word/sub-words) (2) employing BERT132

MLM to generate semantic-preserving substitutes 133

for the vulnerable tokens. Maheshwary et al. (Ma- 134

heshwary et al., 2021) proposed a decision-based 135

attack strategy to discover word replacements that 136

maximize the semantic similarity between original 137

and adversarial text. He et al. (He et al., 2021) 138

explored publicly available BERT-based classifica- 139

tion APIs vulnerabilities through a two-step attack: 140

(1) utilizing a model extraction attack to steal a 141

copy of the target model, and (2) employing the 142

extracted model to perform transferable adversarial 143

attacks. 144

In contrast to the black-box setting, the white- 145

box setting provides access to the target model 146

architecture, its parameters and the training dataset. 147

Ebrahimi et al. (Ebrahimi et al., 2018) developed 148

HotFlip that benefits from an atomic flip operation 149

to select the best character-level change (from the 150

insert, delete, and swap operations) to produce AEs. 151

Li et al. (Li et al., 2018) proposed TEXTBUGGER 152

framework, identifying important words by the Ja- 153

cobian matrix of the target model, and selecting an 154

optimal perturbation from five types of generated 155

perturbations. Song et al. (Song et al., 2021) pro- 156

posed Natural Universal Trigger Search (NUTS). 157

It employs a regularized autoencoder (Zhao et al., 158

2018) to generate adversarial attack triggers. Then 159

a gradient-based search is developed to identify 160

triggers with a good attack performance. Guo et 161

al. (Guo et al., 2021) proposed Gradient-based 162

Distributional Attack (GBDA), including two key 163

components: first, AEs are instantiated with the 164

Gumbelsoftmax distribution (Jang et al., 2016), sec- 165

ond, perceptibility and fluency characteristics are 166

enforced using BERTScore (Zhang et al., 2019) and 167

a causal language model perplexity, respectively. 168

3 Proposed SSCAE Computational Model 169

Figure 1 presents the flowchart of the SSCAE 170

model. It includes five steps to be explained in this 171

section. 172

Step 1: Select an Input Sample and Identify 173

its Important Words: A textual input sample is 174

randomly selected from an available dataset and 175

inputted into the SSCAE model. Then, a greedy 176

search method (Gao et al., 2018) is employed to 177

identify the input sample’s important words. To do 178

so, the greedy search masks a word in the input sam- 179

ple at a time. Next, the target model evaluates the 180

masked input sample and estimates a confidence 181

score for the truth label. The difference between the 182
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Figure 1: General architecture of our approach

confidence score before and after masking, denoted183

as δ, is recorded for that particular word. The value184

of δ is computed for most of the words in the input185

sample. Ultimately, the words are sorted based on186

the magnitude of δ; the larger the δ magnitude, the187

more influential (important) is the corresponding188

word in the input sample.189

Step 2: Select an Influential Word and Iden-190

tify Context-Aware Substitutions: The word with191

the largest δ (i.e., most influential) is selected for192

possible substitution. Considering a fixed-size193

word window, BERT MLM is applied on each se-194

lected word’s neighbor words to retrieve a set of195

top K context-aware substitutions; hence, sets of196

top K such substitutions are retrieved and com-197

bined. Then, the combined set serves as an initial198

set of context-aware substitutions for the selected199

influential word. It should be noted that the initial200

set is not relatively larger than K; many substitu-201

tions are identical across top K context-aware sets.202

This helps retrieve both identical and non-identical203

substitutions to improve the chance of fooling the204

target model.205

Step 3: Semantic, Syntactic, and Grammat- 206

ical Refinement: Although BERT-based models 207

demonstrate their superiority in various NLP tasks 208

(Devlin et al., 2019; Lan et al., 2020; Liu et al., 209

2019), unfortunately, most top K-generated sub- 210

stitutions do not eventually lead to valid AEs in 211

terms of language fluency, semantic consistency, 212

and imperceptibility. It is necessary to scrutinize 213

the substitutions to ensure the validity of produced 214

perturbations and comply with linguistic require- 215

ments. In other words, each substitution has to 216

preserve the input sample’s meaning and follow 217

the source language’s syntactic and grammatical 218

structures. SSCAE employs refinement strategies 219

to identify substitutions with a higher chance of 220

preserving semantic, syntactic, and grammatical 221

linguistic characteristics. 222

As a semantic embedding model, USE and GPT- 223

2, as a transformer-based language model, assign 224

a semantic similarity and a syntactic correctness 225

score for each substitution, respectively. The se- 226

mantic similarity score represents to what extent 227

a substitution preserves the meaning of the input 228

sample. The syntactic score represents to what ex- 229

tent a substitution preserves the source language 230

syntax principles. Recent studies employ a con- 231

stant threshold to refine the substitutions of ev- 232

ery important word (Jin et al., 2020; Kuleshov 233

et al., 2018; Li et al., 2018). However, for ex- 234

ample, a threshold of magnitude 0.8 (Jin et al., 235

2020) might be sufficient to retrieve substitutions 236

with higher semantic/syntactic quality for one im- 237

portant word, while it might not be enough to 238

filter out less qualified substitutions for another 239

word. Instead of a predefined constant thresh- 240

old, this paper investigates four different potential 241

heuristics to compute dynamic thresholds to refine 242

high-quality substitutions: (1) Average_threshold, 243

(2) Median_threshold, (3) TopN_threshold, and 244

(4) Top_maxes_distance. Average_threshold (Me- 245

dian_threshold) computes the average (median) 246

of substitutions’ scores. TopN_threshold picks 247

the score of the N th substitution after being 248

descending-sorted where N is a minor hyper- 249

parameter. Top_maxes_distance computes the spe- 250

cific threshold as SN −M∆SN where SN is the 251

score corresponding to the N th substitution after 252

being descending-sorted, M is a minor hyperpa- 253

rameter, and ∆SN is the difference between the 254

highest score amongst substitutions and SN . Over- 255

all, such dynamic thresholds lead to substitutions 256
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with higher semantic consistency, significantly im-257

proving generated AEs’ quality. By extensive trial258

and error experiments on various datasets, a lower259

bound of 0.7 was optimal for the dynamic threshold260

to assure the validity of the substitutions.261

The substitutions’ part-of-speech (POS) tag must262

match that of the selected word to preserve the263

grammatical linguistic characteristic. Otherwise,264

the substitution is filtered out. One exception is265

when the substitution is singular (plural), while the266

selected word’s POS tag indicates a plural (singu-267

lar) substitution. In this case, the substitution is268

modified accordingly (not filtered). Another excep-269

tion is about verb substitutions. If a verb substi-270

tution has the same root as the selected word, it271

is filtered. It should be noted that, in this method,272

the correct POS tag for a substitution is identified273

when the substitution is implemented in the input274

sample.275

Step 4: Generate and Estimate Adversarial276

Examples: AEs are generated by replacing the277

selected word with the substitutions in the input278

sample. Because of the acute and dynamic refine-279

ments in the previous step, the generated adversar-280

ial samples have a higher chance of preserving the281

input sample’s semantic, syntactic, and grammatic282

consistency/correctness. The adversarial samples283

are then estimated using the target model. Those284

adversarial samples that fool the target model are285

being reserved.286

Step 5: Input Sample Replacement: Suppose287

non of the generated adversarial samples fool the288

target model. In that case, the adversarial sample289

with the lowest probability of truth label is selected290

as the new input sample. Next, steps 2 to 5 are291

repeated. It should be noted that the new input292

sample generates adversarial samples with a higher293

probability of fooling the target model than the294

current input sample.295

4 Computational Experiments296

This section introduces different text classifica-297

tion and NLI datasets along with the target models298

fine-tuned on some (or all) of the datasets. Then299

we present a general set of metrics to evaluate the300

adversarial attack results of SSCAE on the differ-301

ent target models and compare it with other recent302

adversarial attack models. Finally, we demonstrate303

our model’s robustness by performing a human304

evaluation to verify our automatic adversarial at-305

tack experiments.306

Datasets and Target Models: In order to illus- 307

trate SSCAE model, four binary text classification 308

(for text classification task) and three NLI datasets 309

(for text entailment task) were employed to develop 310

eleven NLP task experiments. The text classifica- 311

tion datasets are YELP Polarity Review (YELP) 312

(Zhang et al., 2015), Internet Movie Database 313

(IMDb) (IMD) Review, Rotten Tomatoes Movie 314

Reviews (RTMR) (Pang and Lee, 2005), and Stan- 315

ford Sentiment Treebank Version 2 (SST2) (Socher 316

et al., 2013). The NLI datasets are Standford NLI 317

(SNLI) (Bowman et al., 2015) and two Multi-NLI 318

(MNLI) datasets (Williams et al., 2018), referred 319

to as MNLI-Matched and MNLI-Mismatched. See 320

Appendix B for datasets’ descriptions. The first 321

seven experiments compare SSCAE model with 322

three recent and advanced adversarial attack mod- 323

els: TextFooler, BERT-Attack, and BAE. The last 324

four experiments are to present the effectiveness 325

of SSCAE model on four target models other 326

than BERT that are Word Long Short Term Mem- 327

ory (WordLSTM) (Hochreiter and Schmidhuber, 328

1997), Lite BERT for Self-Supervised Learning of 329

Language Representations (ALBERT-Base) (Lan 330

et al., 2020), Enhanced Sequential Inference Model 331

(ESIM) (Chen et al., 2016), and BERT-Large (De- 332

vlin et al., 2019). See Appendix C for target mod- 333

els’ descriptions. 334

Comparison of Adversarial Attack Models 335

Against BERT: Table 1 presents the results of the 336

first seven experiments. The results compare SS- 337

CAE model with TextFooler, BERT-Attack, and 338

BAE adversarial attack models using 1000 ran- 339

domly selected testing instances (Alzantot et al., 340

2018; Jin et al., 2020) that were the BERT as the tar- 341

get model. Four standard metrics (Jin et al., 2020; 342

Li et al., 2020) were used to verify the quality of 343

the generated AEs in Table 1: (1) after-attack accu- 344

racy percentage (AAA), (2) average perturbation 345

percentage (P%), (3) average query number (Q#), 346

and (4) average semantic consistency measurement 347

(SCM). An ideal adversarial attack model would 348

obtain a lower magnitude AAA, P%, and Q# and a 349

higher magnitude SCM. Due to the similarity and 350

dataset sensitivity of BERT-Attack and BAE ad- 351

versarial attack models (Garg and Ramakrishnan, 352

2020; Li et al., 2020), the best literature-available 353

results across these two models are reported in Ta- 354

ble 1. 355

In the most majority of datasets, SSCAE out- 356

performs TextFooler and BERT-Attack/BAE in Ta- 357
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Dataset E# BOA AAM AAA P% Q# SCM Ref

YELP 1 95.6
TextFooler 6.6 12.8 743 0.74 J

BERT-Attack/BAE 5.1 4.1 273 0.77 L
SSCAE (ours) 3.0 4.1 106 0.90 C

IMDB 2 90.9
TextFooler 13.6 6.1 1134 0.86 J

BERT-Attack/BAE 11.4 4.4 454 0.86 L
SSCAE (ours) 10.6 6.3 411 0.86 C

SST2 3 93.0
TextFooler 13.5 16.9 107 0.85 T

BERT-Attack/BAE 18.2 14.5 92 0.86 T
SSCAE (ours) 12.0 12.5 64 0.87 C

MR 4 85.3
TextFooler 30.7 16.7 166 0.90 T

BERT-Attack/BAE 19.2 15.2 126 0.91 G
SSCAE (ours) 16.0 16.9 95 0.90 C

SNLI 5 89.4 (H)
TextFooler 17.8 18.5 85 0.74 T

BERT-Attack/BAE 21.4 18.8 26 0.71 T
SSCAE (ours) 13.7 20.4 20 0.75 C

MNLI-Matched 6 85.1 (P)
TextFooler 32.3 28.1 241 0.75 T

BERT-Attack/BAE 18.9 14.5 64 0.78 T
SSCAE (ours) 15.6 14.8 38 0.80 C

MNLI-Mismatched 7 82.1 (P)
TextFooler 27.9 26.2 197 0.75 T

BERT-Attack/BAE 20.7 15.1 61 0.77 T
SSCAE (ours) 14.6 14.8 38 0.81 C

Table 1: Average results of SSCAE, TextFooler, and BERT-Attack/BAE models on 1000 randomly selected testing
instances from each of seven datasets using the BERT target model (E#: Experiment #; BOA: BERT Target Model’s
Original Accuracy Percentage; AAM: Adversarial Attack Model; AAA: After-Attack Accuracy Percentage; P%:
Average Perturbation Percentage; Q#: Average Query Number; SCM: Average Semantic Consistency Measurement;
Ref: Reference; H: Hypothesis; P: Premise; J: (Jin et al., 2020); T: (Tex); G: (Garg and Ramakrishnan, 2020); L: (Li
et al., 2020); C: Current Study)

ble 1. In the case of AAA, SSCAE results are lower358

(i.e., better) than all other adversarial attack models,359

particularly in experiments corresponding to YELP,360

MR, SNLI, and MNLIs. In the case of P%, SSCAE361

results are lower (i.e., better) than TextFooler and362

around (i.e., comparable) with BERT-Attack/BAE363

results in all experiments. In the case of Q#, the364

SSCAE results are significantly lower (i.e., better)365

than TextFooler and BERT-Attack/BAE in all ex-366

periments. In the case of SCM, except for the exper-367

iment corresponding to the IMDB dataset, where368

the result is near-equal, the SSCAE results are al-369

ways better than the other two adversarial attack370

models. One of the promising outcomes of SSCAE371

model is that it achieved the best (i.e., lower) AAA372

across all experiments while, except the experiment373

corresponding to the SNLI dataset, keeping SCM374

over magnitude 0.8. In other words, the SSCAE375

model fooled the target model in most experiments376

and produced humanly imperceptible adversarial377

attacks with a considerably small Q# due to se-378

mantic/syntactic/grammatical filters. It should be 379

noted that although SSCAE model’s P%, as com- 380

pared with that of BERT-Attack/BAE, is higher 381

(i.e., worse) across some dataset experiments, it 382

preserves a higher (i.e., better) semantic consis- 383

tency using the dynamic threshold. This is due to 384

the adroit implementation of the semantic thresh- 385

old to refine high-quality substitutions in our model. 386

Hence, SSCAE model generates more impercepti- 387

ble and efficient adversarial samples than previous 388

state-of-the-art models. 389

According to Table 1, text entailment experi- 390

ments seem more challenging than the text classi- 391

fication experiments. In NLI datasets, sentences 392

are short (a few words). Hence, replacing impor- 393

tant words would significantly increase P% and 394

reduce the semantic consistency of the generated 395

examples; modifying even one or two important 396

words increases P%, and there are not enough po- 397

tential words to be perturbed. Nevertheless, SS- 398

CAE model remarkably outperforms other mod- 399
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Dataset E# Target Model TOA AAA P%

YELP
8 WordLSTM 96.0 1.0 4.8
9 ALBERT-Base 97.0 3.5 4.2

MNLI-Mismatched
10 ESIM 76.2 9.2 20.4
11 BERT-Large 86.4 14.7 14.5

Table 2: Average results of SSCAE on 1000 randomly selected testing instances using WordLSTM (with YELP),
ALBERT-Base (with YELP), ESIM (with MNLI mismatched), and BERT-Large (with MNLI mismatched) as
the target models (E#: Experiment #; TOA: Target Model’s Original Accuracy Percentage; AAA: After-Attack
Accuracy Percentage; P%:Average Perturbation Percentage)

els with a large AAA margin on text alignment400

experiments while achieving higher semantic con-401

sistency scores, i.e., SCM. It should be noted that402

in document-level classification experiments, i.e.,403

YELP and IMDB experiments here, the lower P%404

indicates that the target model, i.e., BERT, relies405

on only a few important words to make predictions.406

Therefore, identifying and replacing the important407

words could reveal the vulnerability of the BERT-408

base target models (Li et al., 2020).409

Attack Other Target Models: Table 2 presents410

the experimental results of SSCAE model on 1000411

randomly estimated testing instances using WordL-412

STM (with YELP dataset), ALBERT-Base (with413

YELP dataset), ESIM (with MNLI-Mismatched),414

and BERT-Large (with MNLI-Mismatched) as the415

target models. In the case of WordLSTM-YELP416

and ALBERT-Base-YELP (text classification tasks)417

experiments, SSCAE model decreased the AAA to418

lower than 4% (1% and 3.5%, respectively) while419

keeping the P% under 5% (4.8% and 4.2%, re-420

spectively). In the case of the BERT-Large-MNLI-421

Mismatched (text entailment task) experiment, SS-422

CAE model produced close results to that of Ta-423

ble 1, where the target model is BERT. In the most424

majority of this study’s experiments (11 experi-425

ments), which includes a variety of datasets, target426

models, and adversarial attack models, SSCAE427

model illustrated outstanding capability to gener-428

ate humanly imperceptible AEs while preserving429

semantic consistency, syntactic characteristic, and430

grammatical constraint.431

Human Evaluation: Table 3 presents a human432

assessment of the quality and fluency of generated433

AEs by SSCAE in YELP (two-class) and MLNI-434

mismatched (three-class) experiments with BERT435

as the target model. In each experiment, three grad-436

uate students from a Department of Applied Lin-437

guistics, provided 100 randomly selected input sam-438

ples (denoted as “Original” in Table 3) and their439

corresponding SSCAE-generated adversarial sam- 440

ples (denoted as “Adversarial” in Table 3). Whether 441

Original or Adversarial, for a particular sample, if 442

the majority of students correctly estimate the class 443

of a sample, it is counted as one correct human 444

estimation. As shown in Table 3, there is only a 445

small gap (6.5%) between the human estimation of 446

the Original samples and SSCAE-generated Adver- 447

sarial samples in the YELP experiment. In MNLI- 448

Mismatched, since human-crafted hypothesis and 449

premise sentences share a considerable amount of 450

the same words, applying perturbations on these 451

words would negatively affect human assessment 452

to make the correct prediction. 453

Furthermore, each student is asked to assign two 454

scores (on a Likert scale of 1-5) for each sam- 455

ple, whether Original or Adversarial. The first 456

score is about how meaningful (1 to be mean- 457

ingless and 5 to be meaningful) the sample is, 458

and the second score represents the extent of the 459

sample’s grammar correctness (1 to be incorrect 460

and 5 to be correct). The average meaningfulness 461

(grammar correctness) score in Table 3 is 4.2, 4.0, 462

3.9, and 3.7 (4.0, 3.8, 4.1, and 3.7) for YELP- 463

Original, YELP-Adversarial, MNLI-Mismatched- 464

Original, MNLI-Mismatched-Adversarial, respec- 465

tively. There is only a small gap (0.2) between 466

the Original and Adversarial scores in both YELP 467

and MNLI-Mismatched experiments; the SSCAE- 468

generated adversarial samples are semantically and 469

grammatically within the same distribution as the 470

Original samples. 471

5 Ablation Study 472

An ablation study is performed to investigate the 473

major hyperparameters of SSCAE model and its 474

strategies (i.e., steps in Figure 1). 475

A Comparison Study of K in Context-Aware 476

Substitutions: Figure 2 presents an ablation study 477

of K context-aware substitutions of step 3 in Fig- 478
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Dataset E# DT HA M GC

YELP 1
Original 92.5 4.2 4.0

Adversarial 86.0 4.0 3.8

MNLI-Mismatched 7
Original 91.2 3.9 4.1

Adversarial 77.4 3.7 3.7

Table 3: Human Evaluation Task (E#: Experiment Number; DT: Data Type; HA: Human Accuracy Percentage; M:
Meaningfulness; GC: Grammar Correctness)

Dataset E# BOA Method AAA P% SCM

YELP 1 95.6
w Semantic 3.0 4.1 0.90

w/o Semantic 2.1 2.9 0.71

SNLI 5 89.4
w Semantic 13.7 20.4 0.75

w/o Semantic 9.5 11.3 0.58

Table 4: Results of an ablation study on SSCAE with/without semantic refinement (Figure 1, step 3) (E#: Experiment
#; BOA: BERT Target Model’s Original Accuracy Percentage; w: With; w/o: Without; AAA: After-Attack Accuracy
Percentage; P%:Average Perturbation Percentage; SCM: Average Semantic Consistency Measurement)

ure 1, where the horizontal axis shows five possible479

K values of 10, 20, 35, 50, and 60. The vertical480

axis shows the Attack Success Percentage (ASP)481

in six experiments corresponding to YELP (experi-482

ment 1), IMDB (experiment 2), SST2 (experiment483

3), MR (experiment 4), SNLI (experiment 5), and484

MLNI-Mismatched (experiment 7). Generally, a485

larger K means a larger number of substitutions486

for an important word; it increases the chance of487

producing AEs (with a lower P%) that fool the488

model (larger ASP) despite utilizing linguistic re-489

finements. However, in our experiments, starting490

from K = 50, the ASP improvement (SCM de-491

creasing) rate decreases (increases). At K ≥ 60,492

the ASP improvement rate is insignificant while493

SCM decreasing rate is considerable. As such, for494

SSCAE model, a K = 60 was found to be near-495

optimum in all experiments with reasonable SCM.496

Importance of Semantic Refinement: Table 4497

presents the results of an ablation study on SS-498

CAE model using YELP (text classification task)499

and SNLI (text entailment task) datasets with and500

without semantic refinement step (semantic con-501

sistency in step 3, Figure 1). By removing seman-502

tic refinement, AAA, P%, and SCM are dropped503

from 3.0% to 2.1% (i.e., improved), 4.1% to 2.9%504

(i.e., improved), and 0.90 to 0.71 (i.e., worsened).505

Although AAA and P% improved slightly, SCM506

was worsened, indicating that, on average, the AEs507

lost their original meaning. Hence, the SSCAE-508

generated AEs became human detectable. As such,509

the semantic refinement plays an essential role in510

Figure 2: An ablation study of K context-aware substi-
tutions of step 3 in Figure1

generating high-quality and imperceptible AEs in 511

SSCAE model. 512

Table 5 compares the utilization of USE (for 513

assigning a semantic similarity score to each substi- 514

tution) with another possible semantic embedding 515

model, Sentence-BERT (Reimers and Gurevych, 516

2019), in terms of AAA and SCM over experi- 517

ments corresponding to YELP, SNLI, IMDB, and 518

MNLI-Mismatched datasets. These results indi- 519

cate that USE outperforms Sentence-BERT in not 520

only achieving a lower AAA but a slightly higher 521

SCM in these experiments. Therefore, USE was 522

selected as the primary semantic embedding model 523

in SSCAE model. 524
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Dataset E# Semantic Embeding Method AAA SCM

YELP 1
USE 3.0 0.90

Sentence-BERT 4.1 0.91

IMDB 2
USE 10.6 0.86

Sentence-BERT 10.6 0.85

SNLI 5
USE 13.7 0.75

Sentence-BERT 14.5 0.73

MNLI-Mismatched 7
USE 14.6 0.81

Sentence-BERT 17.4 0.80

Table 5: A comparison study between the utilization of USE and Sentence-BERT in terms of AAA and SCM
over experiments corresponding to YELP, SNLI, IMDB, and MNLI-Mismatched datasets in step 5, Figure 1 (E#:
Experiment #; AAA: After-Attack Accuracy Percentage; SCM: Average Semantic Consistency Measurement)

Dataset E# Method AAA P% SCM

YELP 1

Average_threshold 4.5 5.7 0.89
Median_threshold 4.4 5.6 0.89
TopN_threshold 3.4 4.0 0.91

Top_maxes_distance 3.0 4.1 0.90

MNLI-Mismatched 7

Average_threshold 17.9 18.5 0.80
Median_threshold 17.6 18.7 0.81
TopN_threshold 15.3 14.5 0.80

Top_maxes_distance 14.6 14.8 0.81

Table 6: A comparative study of the heuristics to compute the dynamic threshold for semantic and syntactic
refinements in step 5 of SSCAE model (E#: Experiment #; AAA: After-Attack Accuracy Percentage; P%:Average
Perturbation Percentage; SCM: Average Semantic Consistency Measurement)

Specific Threshold Investigations: Table 6525

presents a comparative study of the aforemen-526

tioned heuristics, i.e., Average_threshold,527

Median_threshold, TopN_threshold, and528

Top_maxes_distance, to compute the dy-529

namic threshold for semantic and syntactic530

refinements in step 3 of SSCAE model (Fig-531

ure 1). Average_threshold and Median_threshold532

obtained proportional results in all AAA, P%,533

and SCM metrics, perhaps, because they both534

use similar mathematical approaches for the535

refinement task. On average, TopN_threshold536

and Top_maxes_distance produced better AAA,537

P%, and SCM results than Average_threshold538

and Median_threshold. However, the AAA539

results in Top_maxes_distance are better than540

TopN_threshold, while both produced proximate541

P% and SCM. As such, SSCAE model utilizes542

the Top_maxes_distance technique to compute543

dynamic thresholds. Trial and error identified544

the value of 1 to be the best value for the545

Top_maxes_distance’s minor hyperparameter,546

M , in this paper experiments. See Appendix D547

for examples of adversarial texts generated by 548

SSCAE. 549

6 Conclusion 550

This paper introduced SSCAE, a novel AE gen- 551

erator for developing context-wise AEs while pre- 552

serving essential linguistic features (semantic, syn- 553

tactic, and grammatical). The SSCAE utilized the 554

Bert MLM model to generate potential substitu- 555

tions per important word. Besides, it employed 556

three refinement techniques to maintain the lin- 557

guistic properties of final perturbations. Results of 558

eleven experiments, comprehensive ablation stud- 559

ies, and human evaluations demonstrated the supe- 560

riority of SSCAE compared to three state-of-the-art 561

adversarial attack systems on different text classifi- 562

cation and entailment datasets/tasks. Implementing 563

practical operations such as insertion and deletion 564

within SSCAE remains an open question ripe for 565

further investigation. 566
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Cer et al. (Cer et al., 2018) developed the USE 769
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bitrary length into an embedding vector with a 771
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cosine similarities between the embedding vectors 779
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S (E#) X D T Sentence
Y

E
L

P(
1)

1 I P ...Awesome soy cap, scone, and atmosphere. Nice place to hang out & read, and free WiFi
with no login procedure.

1 A N ...Awesome soy cap, scone, and atmosphere. Fantastic place to hang out & read, and free
WiFi with no login procedure.

2 I N Refused to take my cat, which had passed away, for cremation cause I had not been to the
clinic previously...

2 A P Refused to take my cat, which had passed away, for cremation cause I had not been to the
hospital previously...

M
N

L
I-

M
is

m
at

ch
ed

(7
)

1 H Poirot was disappointed with me

1 I Ne Still, it would be interesting to know. 109 Poirot looked at me very earnestly, and again
shook his head

1 A E Still, it would be interesting to know. 109 Poirot looked at me very carefully, and again
shook his head

2 H Talking about privacy is a complicated topic, there are a couple different ways of talking
about it, for example privacy is something that disturbs...

2 I E

...if privacy is something that disturbs your private state i mean an invasion of privacy
is something that disturbs your private state that’s one thing and if privacy is something
that comes into your private state and extracts information from it in other words finds
something out about you that’s another and the first kind of invasion of the first type of
privacy seems invaded to me in very much everyday in this country but in the second type
at least overtly uh where someone comes in and uh finds out information about you that
should be private uh does not seem uh um obviously everyday

2 A Ne

...if privacy is something that disturbs your private state i mean an invasion of privacy
is something that disturbs your private state that’s one thing and if privacy is something
that comes into your private state and extracts information from it in other words finds
something out about you that’s another and the first kind of invasion of the first type of
privacy seems invaded to me in very much everyday in this country but in the second type
at least overtly uh where someone comes in and uh finds out information about you that
should be private uh does not seem uh um obviously routine

Table 7: Examples of original and adversarial sentences generated by SSCAE from experiments corresponding to
YELP and MNLI datasets (S: Dataset; X: Example #; E#: Experiment #; D: Data Type; T: Target Model Estimation;
I: Input Sample; A: Adversarial Example; P: Positive; N: Negative; H: Hypothesis; E: Entailment; Ne: Neutral;)

each generated AE to its input sentence. Radford781

et al. (Radford et al., 2019) developed GPT-2, a782

transformer-based language model that computes783

the probability of a typical word to be the next784

word in a sentence. It can employ to analyze the785

AEs’ syntactic structure based on the source lan-786

guage’s syntactic rules. SSCAE employs GPT-2787

to compute the probability of the important word,788

PI , and each of its corresponding substitutions, PS .789

The syntactic correctness score for a substation is790

PS − PI .791

B Datasets Descriptions792

YELP (business) is a document-level dataset793

with 560,000 training and 38,000 testing highly po-794

lar samples where negative and positive classes are795

1- and 2-star and 4- and 5-star reviews, respectively.796

IMDb Review (movie) is a document-level797

dataset with 25,000 training and 25,000 testing798

highly polar samples where negative and positive799

classes are review scores ≤4 and ≥7 out of 10,800

respectively.801

RTMR (movie) is a sentence-level dataset based802

on sentiment polarity with 8530 training and 1066 803

testing highly polar samples where negative and 804

positive classes are assigned based on the calibra- 805

tion among different critics. 806

SST2 (movie) is a sentence-level dataset based 807

on sentiment polarity with 8544 training and 2210 808

testing highly polar samples where any multi-level 809

negative and positive reviews are categorized as 810

negative and positive reviews (neutral reviews are 811

excluded). 812

SNLI (MNLI) is a three-class dataset of 550,152 813

(392,702) training and 10,000 (19,643) testing 814

human-written sentence pairs in English. Every 815

three pairs of SNLI (MLNI) are created using a dif- 816

ferent image caption from the Flicker30K dataset 817

(Young et al., 2014) (ten sources of text), called 818

a premise sentence (Bowman et al., 2015). The 819

premise sentence is the first sentence in each of 820

three pairs. The second sentence (called a hypothe- 821

sis sentence) (Bowman et al., 2015) of the first, sec- 822

ond, and third pair is generated to be in entailment 823

(category 1), contradiction (category 2), and neutral 824

(category 3) with the premise sentence, respectively. 825

In contrast with SNLI, where premise sentences 826

11



are from a relatively homogeneous image caption827

dataset, MNLI covers broader text styles (Williams828

et al., 2018). MLNI testing sample pairs are di-829

vided into two general categories, “Matched” and830

“Mismatched;” the MNLI-Matched testing pairs, in831

contrast to MNLI-Mismatched, share similar con-832

text and resemblance as the training pairs.833

C Target Models Other than BERT834

The effectiveness of SSCAE model is illustrated835

on other target models in addition the Bert regular836

model:837

WordLSTM addresses the problem of short-838

term memory in recurrent neural networks by using839

specific gates to regulate the flow of word-based se-840

quential information (Hochreiter and Schmidhuber,841

1997).842

ALBERT utilizes factorized embedding param-843

eterization and cross-layer parameter sharing to844

lower the BERT’s memory consumption and in-845

crease its training speed (Lan et al., 2020).846

ESIM is a sequential model that enhances the847

local inference information (words and their con-848

text) by calculating the sentence pair’s difference849

and element-wise product (Chen et al., 2016).850

BERT-Large is a transformer-based model pre-851

trained on a large corpus of English data with 24852

layers of encoders stacked on top of each other with853

16 bidirectional self-attention heads (Devlin et al.,854

2019).855

D Examples of Adversarial Texts856

Table 7 presents four pairs of original input sam-857

ples and corresponding SSCAE-generated adversar-858

ial attack examples from experiments correspond-859

ing to YELP (two pairs) and MNLI-Mismatch (two860

pairs) datasets. In YELP, the first (second) example,861

the adjective “Nice” (noun “clinic”) in the input862

sample, is recognized as an important word and863

replaced with “Fantastic” (“hospital”) to generate864

an adversarial attack example that fools the BERT865

model. Although these two adjectives (nouns) are866

not necessarily synonyms (despite arguable similar-867

ities), the general meaning of the original sample is868

remarkably preserved in the generated AE. Besides,869

the AE is intact grammatically and syntactically. In870

MNLI-Mismatch, the first (second) example, the871

adverb “earnestly” (term “everyday”) in the input872

sample, is recognized as an important word and873

replaced with “carefully” (term “routine”) to gen-874

erate an adversarial attack example that fools the875

BERT model. It should be noted that in the MNLI- 876

Mismatched second example, the input samples 877

are wordier than YELP. Still, SSCAE model could 878

generate adversarial attacks by replacing only one 879

adverb (term) in the input sample while preserv- 880

ing the original sample’s grammar and syntactic 881

requirements. The MNLI-Mismatched adversarial 882

attack examples both preserved the meaning of the 883

input samples and would not mislead human judg- 884

ment, thanks to steps 3 in SSCAE model (Figure 1), 885

where linguistic filters significantly improved the 886

quality of the generated AEs in terms of impercep- 887

tibility and fluency. 888
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