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ABSTRACT

Stochastic policy gradient methods are a fundamental class of reinforcement learn-
ing algorithms. When using these algorithms for continuous control it is common
to parameterize the policy using a Gaussian distribution. In this paper, we show
that the policy gradient with Gaussian policies can be viewed as the gradient of
a weighted least-squares objective function. That is, policy gradient algorithms
are implicitly implementing a form of regression. A number of recent works have
shown that reformulating regression problems as classification problems can im-
prove learning. Inspired by these works, we investigate whether replacing this
implicit regression with classification can improve the data efficiency and stability
of policy learning. Toward this end, we introduce a novel policy gradient surro-
gate objective for softmax policies over a discretized action space. This surrogate
objective uses a form of cross-entropy loss as a replacement for the implicit least-
squares loss found in the surrogate loss for Gaussian policies. We extend prior
theoretical analysis of this loss to our policy gradient surrogate objective and then
provide experiments showing that this novel loss improves the data efficiency of
stochastic policy gradient learning in continuous action spaces.

1 INTRODUCTION

Stochastic policy gradient algorithms are a fundamental class of reinforcement learning (RL) algo-
rithms. In their simplest form, the learning agent runs its current policy to collect data in the form
of state, action, and reward transitions to produce a dataset of (si, ai, Âi) where Âi is an estimate
of the advantage of taking action ai in state si. The learning agent then updates its parameterized
and differentiable stochastic policy with a step of gradient ascent on the expected cumulative reward
objective. The gradient update increases the log-likelihood of each observed action in proportion to
the advantage of that action.

Following Peters and Schaal (2007), we observe that the policy gradient update can be viewed
as implicitly optimizing a weighted supervised learning loss function. We particularly focus on
the case of continuous control with Gaussian policies in which case we will show that the policy
gradient matches the gradient of a weighted least-squares loss function. In this sense, we say that
policy gradient algorithms are implicitly implementing (weighted) regression.

A growing body of research (discussed in Section 6) supports the claim that reformulating regres-
sion problems as classification problems can boost task performance in supervised regression. Of
particular relevance to this work, Imani and White (2018) introduced a form of classification loss for
regression problems and showed that it boosts regression accuracy compared to the commonly used
squared loss. Subsequently, Farebrother et al. (2024) replaced the squared loss of value-based RL
algorithms with this histogram loss and found that the approach unlocked new levels of scalability
in a wide variety of RL benchmarks. Motivated by these prior works, in this paper, we consider re-
formulating the implicit regression of stochastic policy gradient RL for continuous action domains
as classification. Specifically, this work aims to answer the question:

Does replacing the least-squares loss and Gaussian policies with a cross-entropy loss and softmax
policies over discretized actions improve the data efficiency of policy gradient learning?

In answering this question, we make the following contributions:
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1. We show that the stochastic policy gradient is equal to the gradient of a weighted maximum
likelihood objective. In continuous action spaces with Gaussian policies, optimizing this
objective amounts to implicit weighted regression with a least-squares loss function.

2. We introduce a novel policy gradient surrogate loss that re-casts the implicit regression of
continuous actions as classification of discrete actions.

3. Building on Imani and White (2018), we show that the loss we introduce has a smaller
bound on the gradient norm compared to the surrogate loss for Gaussian policies, implying
that the new loss is easier to optimize.

4. We empirically investigate the use of cross-entropy losses and softmax policies as an al-
ternative to the widely-used Gaussian policies within stochastic policy gradient algorithms
and find that our reformulation leads to increased data-efficiency, more stable learning, and
increased final performance.

2 PRELIMINARIES

In this section, we introduce RL notation, stochastic policy gradient learning, and the histogram
regression loss.

2.1 REINFORCEMENT LEARNING

We formalize an RL agent’s task environment as a finite-horizon, episodic Markov decision process
(MDP) with state set S, action set A, transition function, p : S × A × S → [0, 1], reward function
r : S × A → R, discount factor γ, and initial state distribution d0 (Puterman, 2014). The agent’s
behavior is determined by its policy, π : S × A → [0, 1], which is a function mapping states
to probability distributions over possible actions. Given a policy and task environment, interaction
begins at time t = 0 in some initial state (s0 ∼ d0) and then proceeds with the agent selecting actions
according to its policy (at ∼ π(·|st)) and the environment responding with a reward, rt = r(st, at),
and transitioning to a next state (st+1 ∼ p(·|st, at)). Interaction continues until the agent reaches a
terminal state, at which point, the agent returns to a new initial state and the process begins again.
The result of this interaction is a trajectory, h := (s0, a0, r0, s1, ..., sT , aT , rT ).

We measure policy performance by the expected discounted return in a given MDP:

J(π) := E

[
T∑

t=0

γtRt|H ∼ π

]
where H = (S0, A0, R0, ...ST , AT , RT ) is a random variable representing a trajectory and H ∼ π
denotes sampling H by running π for one episode. In RL, the transition and reward functions of the
task MDP are unknown. RL algorithms are designed to collect trajectory data from the task MDP
and use this data to return a policy, π∗ ∈ argmaxπ J(π).

2.2 POLICY GRADIENT REINFORCEMENT LEARNING

In policy gradient reinforcement learning, the agent’s policy is parameterized by a vector, θ, and the
policy is differentiable with respect to these parameters. Policy gradient RL algorithms optimize the
policy through gradient ascent over θ to maximize J(πθ). The gradient of the J(θ) with respect to
θ, or policy gradient, is typically expressed as:

∇θJ(πθ) ∝ Es∼dπθ
,a∼πθ(·|s) [A

πθ (s,a)∇θ log πθ(a|s)] , (1)

where Aπθ (s,a) is the advantage of choosing action a in state s and quantifies the extra expected
reward that will be obtained when taking a instead of sampling an action from πθ in s, and dπθ

:
S → [0, 1] is the expected distribution of states that will be seen when running πθ in the task MDP
(Schulman et al., 2016). Note that in reality Equation (1) is not the gradient of J(πθ) but is a widely
used and biased approximation of it (Thomas, 2014; Nota and Thomas, 2020).

2.3 SUPERVISED REGRESSION AS CLASSIFICATION

In supervised learning, regression problems are typically formulated using the least-squares loss
function:

LLS(θ) :=
1

m

m∑
j=1

||hθ(xj)− yj ||22, (2)
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for predictor hθ : X → Rd that maps inputs x ∈ X to labels y ∈ Rd and m is the number of training
examples. Though minimizing the squared distance to a desired target is a natural choice of the loss
function, an alternative is to discretize the label space and reformulate regression as classification
with a cross-entropy loss function. Perhaps counterintuitively, this reformulation has been shown to
be beneficial in practice (Farebrother et al., 2024) and theory (Imani et al., 2024).

For exposition, in this section, we will only consider the case when d = 1. Let ymin and ymax be
a minimum and maximum bound on the predicted value from hθ(x). Since classification requires
a discrete label set, we discretize the interval [ymin, ymax] uniformly into k bins and the predictor
hθ(x) outputs k logits that parameterize a softmax distribution over the k bins. Let ỹi be the center
of the ith bin and p̂i(x) be the probability of the ith bin output by hθ(x). The scalar-valued prediction
for y given x is the expected value of ỹi under p̂(x) or

∑k
i=1 ỹip̂i(x).

We train hθ using a cross-entropy loss between hθ(x) and a target distribution that is specified from
y. Following the notation of Imani and White (2018), we denote this target distribution as qy . We
then train hθ by minimizing the cross-entropy loss:

LCE(θ) :=
1

m

m∑
j=1

k∑
i

qyj
(i) log p̂i(xj). (3)

In this work, we will consider two choices for the target distribution qy . A straightforward choice
is a 1-hot distribution with the bin corresponding to y receiving probability 1. However, this choice
potentially discards information about the spatial structure and ordinality of the label space that the
least-squares loss preserves. Imani and White (2018) and Farebrother et al. (2024) found that a
histogram approximation to a Gaussian distribution with a mean of y and the standard deviation
chosen as a hyper-parameter was a better choice for this reason (see Figure 1 in (Imani et al., 2024)
for illustration). Using a histogram approximation of a Gaussian in Equation (3) results in a loss
that Imani and White (2018) called HL-Gauss. Optimizing HL-Gauss for input xj increases the
probability of outputting the target label yj the most while also increasing the probability of values
close to yj .

3 IMPLICIT REGRESSION IN POLICY GRADIENT RL

In this section, we show how policy gradient RL updates with Gaussian policies are equivalent to
weighted regression updates. First, we note that policy gradient algorithms are often implemented
to maximize the surrogate loss:

Lsurr(θ) :=
1

m

m∑
j=1

Aπθ
(sj ,aj) log πθ(aj |sj), (4)

where we have obtained m state-action pairs by running some policy. Assuming that the data was
collected on-policy (i.e., by running πθ) then the gradient of Equation (4) is an unbiased estimator of
Equation (1) (Foerster et al., 2018). We interpret Lsurr as a weighted supervised learning loss with
states as inputs, actions as labels, and the weight on each sample given by the advantage function.

When the task MDP has continuous actions, the most common policy parameterization is a multi-
variate Gaussian where the mean and covariance are given as functions of the state that are param-
eterized by θ. That is πθ(a|s) = N (a;µθ(s),Σθ(s)). For the sake of exposition, we will treat
Σθ(s) as a constant identity matrix and focus on µθ(s).1 Under a Gaussian parameterization, the
surrogate objective becomes a weighted least-squares regression problem:

argmax
θ
Lsurr(θ) = argmin

θ
LPG−LS(θ) :=

1

m

m∑
j=1

Aπθ
(sj ,aj)

1

2
||aj − µθ(sj)||22 + const (5)

It can now be seen that the policy gradient surrogate loss for Gaussian policies is a weighted least-
squares problem that resembles Equation (2).

1In our experiments, we will learn a state-independent covariance matrix when considering Gaussian poli-
cies. A non-identity covariance matrix means that the policy gradient method is implicitly implementing het-
eroscedastic regression.
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The connection between policy optimization and supervised learning has been previously made by
Peters and Schaal (2007); Peng et al. (2019); Abdolmaleki et al. (2018) in the context of formu-
lating policy optimization with KL-divergence constraints. Under the formulation in these past
works, policy optimization can also be cast as weighted regression. The key difference between
these works and ours is that the KL-divergence constraint results in the weighting function being
exp( 1τAπθ

(s,a)) rather than Aπθ
(s,a).2

4 REPLACING IMPLICIT REGRESSION WITH CLASSIFICATION

Empirical evidence in supervised learning and RL suggests there is an empirical benefit to reformu-
lating regression problems as classification problems. Our goal in this work is to understand if this
benefit translates to policy gradient learning if we reformulate the implicit regression in policy gra-
dient methods as classification. Toward this goal, we first describe how we can represent continuous
action policies as policies over discrete actions and then introduce a new policy gradient surrogate
objective for training these policies.

4.1 POLICY REPRESENTATION

To recast regression as classification, we first need to parameterize the policy we are learning as a dis-
tribution over a finite set, Z , where each continuous a ∈ Amaps to an element of z ∈ Z . The naive
way to accomplish this mapping is to discretize the continuous space using a multi-dimensional grid
with k bins along each dimension. The grid representation is useful in that it can learn policies in
which different action dimensions are correlated. The downside of this representation is that the
number of discrete actions will be exponential in the native action space dimensionality.

To make discrete action policies tractable, we make the simplifying assumption that each action
dimension is selected independently of the others. This assumption is reasonable as it is already
standard practice when using Gaussian policies to use a diagonal covariance matrix. Thus, in com-
parison to such Gaussian policies, the policy representation that we introduce is only limited in
terms of the granularity of the discretization. This simplification means that after discretization,
each dimension has k bins and the policy network only needs to output kd values instead of kd. The
limitation of this assumption is that the space of possible distributions over actions that the policy
can represent is now limited.

Formally, we learn a policy that outputs d softmax distributions (one for each action dimension)
where each distribution is over a finite set Zl for l ∈ {1, ..., d}. We map each continuous value in
[amin, amax] to an element of Zl. In this work, we use a uniform discretization with k bins and let
c := amax−amin

k be the width of each bin. The elements of Zl form an ordered set where the ith

element, zil , represents the range [amin+ c · (i−1), amin+ c · i] for i ∈ {1, ...k}. Let ail be the center
of this range. We denote πθ

l(·|s) as the policy distribution over action dimension l. To sample from
this policy representation, we first sample zil ∼ πθ

l(·|s) for each dimension l. We then return the
associated ail as the value of the action for that dimension.3

4.2 POLICY GRADIENT LEARNING AS CLASSIFICATION

Now, to replace the implicit regression in Equation (5) with classification, we replace the least-
squares portion of LPG−LS with a cross-entropy loss. By doing so, we obtain the loss function:

LPG−CE(θ) :=
1

m

m∑
j=1

Aπθ
(sj ,aj)

d∑
l=1

k∑
i=1

qaj,l
(i) log π(ãil|s), (6)

where qal
is a target probability distribution over action dimension l that is defined in terms of

the sampled action aj,l. We consider two choices for the target distribution: the 1-hot distribution
that places all probability mass on the observed action and a histogram approximation to a Gaussian

2We informally experimented with using the exponentiated advantage at the start of our investigation. We
found that the non-exponentiated advantage gave better results and had fewer hyper-parameters to tune.

3We choose to deterministically return the center of the range for simplicity but alternative choices could be
made. For instance, we could uniformly sample from the range.

4
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(a) Least Squares (b) HL-1-Hot Loss (c) HL-Gauss Loss

Figure 1: Illustrations of the three loss functions that we consider in a single-state problem where
three 1-d actions have been sampled to update the policy.

distribution centered at dimension l of action a. We call these two instantiations of our new loss HL-
1-Hot, and HL-Gauss, respectively, following prior work in supervised learning Imani and White
(2018). For the latter, the standard deviation, σ, of the approximated Gaussian is a method hyper-
parameter; we follow Farebrother et al. (2024) by tuning η := σ

c instead of σ directly.

Figure 1 illustrates policy optimization with each of the three losses we consider. When learning
with Gaussian policies, the policy gradient moves the mean of the policy’s distribution toward the
action samples in the same way that regression moves the mean prediction toward target values.
For policy gradient learning, this movement is made in proportion to the advantage of each action;
negative advantages repel the movement. When learning with softmax policies and the HL-1-Hot
loss, the update increases the probability of only the sampled actions in proportion to their advan-
tages; negative advantages lead to decreased probability. When using the HL-Gauss loss, the update
moves the policy distribution toward target distributions centered on sampled actions with positive
advantages.

4.3 BOUNDS ON THE NORMS OF THE LOSS GRADIENTS

Imani and White (2018) found that stable gradients were a benefit of the HL-Gauss loss compared
to either a 1-hot cross-entropy loss or a least-squares loss for regression. Here, increased stability
means that the norm of the loss gradient has a smaller upper bound compared to the gradient of
LPG−LS. Imani and White (2018) attribute the utility of a small gradient norm to prior theoretical
work (Hardt et al., 2016) showing that a loss with a small Lipschitz constant provides an improved
upper bound on generalization performance in supervised learning. Furthermore, a smaller bound
on the gradient norm may ease the difficulty in setting a learning rate for stable, consistent learning
progress. In this section, we extend this analysis to the policy gradient surrogate losses that we
consider in this paper and show that the gradient of LPG−CE has a smaller norm compared to LPG−LS.

For conciseness, we will only consider the case that d = 1. In our analysis, we assume that the
policy function is represented by a neural network. Let fϕ(s) denote the feature representation of
s at the penultimate layer of the network and ϕ is the network parameters before the final layer.
Define the policy gradient cross-entropy loss at a given state-action pair to be LPG−CE(θ, s,a) :=

Aπθ
(s,a)

∑k
i=1 qa,i log p̂i(s). For our analysis, we define θ := [w1, ..,wk,ϕ] where wi is the

weight vector for the inputs of output logit i. We further assume that the policy network’s output is
l-Lipschitz, i.e ∥∇ϕw

⊤
j fϕ(s)∥ ≤ l with respect to ϕ. We can then bound the norm of the policy

gradient cross-entropy loss as follows.
Proposition 1. The norm of ∇θLPG−CE is upper-bounded as follows:

∥∇θLPG−CE(θ, s,a)∥ ≤
∣∣∣∣Aπθ

(s,a)

∣∣∣∣(l + ∥fϕ(s)∥)
(

k∑
i=1

|qa,i − πθ(ai|s)|

)
(7)

Proof. See Appendix A.

In comparison to the supervised learning setting of Imani et al. (2024), our bound on the gradi-
ent norm at any state-action pair is multiplied by the magnitude of the advantage, which is ex-
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pected as LPG−CE is equal to LCE multiplied by the advantage. The next question is how this
bound compares to the upper bound on the gradient norm of LPG−LS. We define LPG−LS(θ, s,a) :=

Aπθ
(s,a)

(a−w⊤fϕ(s))2

2σ . For Gaussian policies, we define θ := [w,ϕ] where w is the weights of
the final linear layer. The mean of the Gaussian policy at state s is equal to w⊤fϕ(s). As we did for
the logits of softmax policies, we assume that the mean is l-Lipschitz i.e ∥∇ϕw

⊤fϕ(s)∥ ≤ l with
respect to ϕ. We then obtain the following bound on the norm of the policy gradient for Gaussian
policies.
Proposition 2. The norm of ∇θLPG−LS is upper-bounded as follows:

∥∇θLPG−LS(θ, s,a)∥ ≤
1

σ

∣∣∣∣Aπθ
(s,a)

∣∣∣∣(l + ∥fϕ(s)∥)∣∣∣∣a−w⊤fϕ(s)

∣∣∣∣ (8)

Proof. See Appendix B.

The bound in Proposition 2 has two different factors from the bound in Proposition 1. The factor 1
σ

may decrease the bound early in training when σ is large. However, as σ → 0, this factor causes the
gradient norm to explode. In fact, in our experiments (and other works in the literature), we found
it necessary to either normalize the gradient or clip σ above 0 to enable stable learning. The final
factor in each of these bounds is difficult to compare but will generally be of similar magnitude.
The term

∑k
i=1 |qa,i− πθ(ai|s)| in the cross-entropy loss is always bounded by 2 whereas the term

|a−wϕ(s)| is bounded by the range of the action-space which can be re-scaled to a comparable value.
This analysis shows that replacing implicit regression with classification leads to a policy gradient
surrogate loss with a smaller bound on the gradient norm with less variation during learning.

5 EMPIRICAL ANALYSIS

We next conduct an empirical study designed to answer the following questions:

1. Does replacing the implicit regression of the policy gradient surrogate loss with a cross-
entropy loss increase the data efficiency of stochastic policy gradient methods?

2. Are observed increases in learning efficiency due to improved exploration or optimization?

We also test the sensitivity of different loss functions to noise in advantage estimates, action space
dimensionality, and hyper-parameter sensitivity.

5.1 EMPIRICAL SET-UP

To investigate these questions, we run learning trials in the following continuous action testbed
domains: a continuous action bandit environment, linear quadratic regulator (LQR), continuous
Acrobot, continuous Mountain Car, HalfCheetah, and Ant (Towers et al., 2023). Please refer to
Appendix C.1 for detailed descriptions of each environment.

For simplicity, we use a stochastic actor-critic algorithm as the base policy gradient algorithm (Sut-
ton and Barto, 2018). We use n-step returns to estimate the advantage function, the Adam optimizer
(Kingma and Ba, 2015), and clip gradients during training. For advantage estimation, we fit a state-
dependent value function using an MSE loss with observed returns as targets.

We compare the following policy representations and loss functions:

1. Gaussian policies with least-squares loss. The policy is a neural network that predicts
a mean action given the current state and has state-independent diagonal covariance that
we parameterize as the log standard deviation. Actions are sampled from a Gaussian dis-
tribution parameterized by this mean and covariance. We use the standard policy gradient
surrogate loss to train this policy.

2. Softmax policies with HL-Gauss loss. This method uses the policy representation de-
scribed in Section 4.1. We use Equation (6) as the surrogate loss to train this policy with
the target distribution a Gaussian. We tune the learning rate, k, and η.

6
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3. Softmax policies with 1-hot loss. The policy is parameterized the same as when using HL-
Gauss. Instead of the HL-Gauss loss, we instead use a target distribution that is 1-hot on
the bin for the action that was taken. This method tests whether it is important to preserve
the spatial structure of the action space in the loss function.

We refer the reader to Appendix C.2 for training details of all the algorithms such hyperparameters,
batch sizes, policy architectures, etc. The best hyper-parameters for each method are chosen using a
sweep where the best is chosen based on the highest average undiscounted return (averaged across all
trials) achieved at the end of training. The sensitivity of each method is discussed in Appendix C.3.
We generally find that the cross-entropy losses are more robust to hyper-parameters (Appendix C.4
gives performance profiles for each method across all hyper-parameters tested).

5.2 EMPIRICAL RESULTS

We now present the results of our empirical study.

5.2.1 COMPARATIVE RESULTS

We present our main results of evaluating the performance of the classification vs. regression loss in
Figure 2 on several environments. In general, we find that re-casting the regression loss as a cross-
entropy loss significantly boosts learning efficiency. An exception was in the Acrobot environment
(shown in Figure 2b), where regression outperformed classification methods. In almost all instances,
however, we observe that agents that minimize a cross-entropy loss learn faster and achieve a higher
return at the end of the training period.

(a) Bandit (d = 2) (b) Acrobot (d = 1) (c) Mountain Car (d = 1)

(d) Reacher (d = 2) (e) HalfCheetah (d = 6) (f) Ant (d = 8)

Figure 2: Highest undiscounted training returns achieved by each algorithm as a function of en-
vironment interaction steps after a hyperparameter sweep. SM is a softmax policy and HL is the
histogram loss. Results are the mean averaged over 20 trials and the shaded region represents the
95% confidence interval. Higher is better. The optimal return can be computed exactly in the Bandit
and LQR settings. For each domain, we also give the action-dimensionality, d.

5.2.2 SENSITIVITY TO ADVANTAGE NOISE AND ACTION DIMENSIONALITY

This subsection examines the sensitivity of different methods to noise in the advantage function
estimate as well as the dimensionality of the agent’s action space. We use the stateless continuous
bandit domain for these experiments and keep all hyper-parameters fixed at their default values
that were tuned for the experiments in the preceding subsection. In this domain, the reward is
r(a) ← 25 − 1

d (a − 5)2 + ϵ where ϵ ∼ N (0, σ) and the default values of d and σ are 2 and 1

7
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respectively. To determine sensitivity to advantage noise and dimensionality, we independently vary
the standard deviation, σ, of the reward and the dimensionality, respectively.

(a) Reward Noise (b) Dimensionality (c) Init Gaussian (d) Gaussian Exploration

Figure 3: Environment sensitivity and exploration ablation studies. Error bars give a 95% confidence
interval over 50 trials.

Figure 3a shows that both cross-entropy loss methods are more insensitive to reward noise, whereas
Gaussian policies are strongly affected by it. Figure 3b shows that all methods degrade in per-
formance as the action space dimensionality increases. However, the cross-entropy loss methods
maintain a higher level of final performance for all tested dimensionalities.

5.2.3 EXPLORATION VS OPTIMIZATION

The use of histogram losses for policy gradient learning is qualitatively different than past studies on
replacing regression with classification because the softmax representation does not just affect policy
optimization but also affects the data distribution of the learning agent. This observation motivates
our second empirical question as to whether the observed benefits arise from improved exploration,
improved optimization, or both. We note that prior work on using discretized action spaces for
continuous control has hypothesized that the benefit is entirely due to improved exploration (Tang
and Agrawal, 2019; OpenAI et al., 2019).

To answer our question, we use the Bandit domain and repeat our main experiment under two addi-
tional conditions.

1. Init Gaussian. We initialize softmax policies to approximate the same initial Gaussian
distribution that Gaussian policies use.

2. Gaussian Exploration At each iteration, we transform the softmax policy into a Gaussian
policy and sample actions from this policy for exploration. To do so, we compute the mean
and variance of bin centers under the softmax distribution. This mean and variance then
parameterize the Gaussian exploration distribution.

The first condition is intended to control for the potential of wider initial exploration under a uniform
softmax distribution and the second condition is intended to control for the potential of more flexible
exploration. Figure 3c and Figure 3d show learning curves under Init Gaussian and Gaussian
Exploration respectively. We contrast these figures with Figure 2a which shows learning curves
when we initialize softmax distributions as uniform distributions. No significant negative effect
for HL-1-Hot and HL-Gauss is observed under Gaussian initialization. This finding suggests that
improved initial exploration with a softmax policy is not a reason for the increase in data efficiency
that we have observed. With Gaussian Exploration, we observe that both HL-1-Hot and HL-Gauss
improve their rate of convergence, indicating that softmax exploration is not the key reason for
increased data efficiency in this domain. For HL-1-Hot, the use of Gaussian exploration removes
the sub-optimal convergence we observe for this method in the base setting. We suspect that this
result is due to the fact that the Gaussian exploration adds information about how close different
actions are to one another.

Our main takeaway from this experiment is that the cross-entropy losses improve the optimization
properties of policy gradient learning. These findings align with our theoretical analysis in Sec-
tion 4.3 that shows a smaller norm on the gradient of the cross-entropy losses. Our findings do not
indicate that exploration cannot also be a benefit of discretization in some RL domains as prior work
has conjectured (OpenAI et al., 2019; Tang and Agrawal, 2019).
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6 RELATED WORK

Several related ideas to the contributions of our paper have been previously explored in the literature.

Policy Search as Supervised Learning We have shown how stochastic policy gradient algorithms
with Gaussian policy representations can be viewed as implicitly solving a regression problem. A
number of prior works have tried to re-cast RL as supervised learning. Peters and Schaal (2007)
derive the reward-weighted regression algorithm in order to cast policy search in continuous control
spaces as a weighted regression problem. Recent works such as MPO (Abdolmaleki et al., 2018),
advantage-weighted regression (Peng et al., 2019), and advantage-weighted actor-critic (Nair et al.,
2021) use similar derivations to develop policy search methods that implicitly solve least-squares
optimization problems when using Gaussian policies. An alternative approach to RL as SL is upside-
down RL that proposes to learn a policy π(s, g) by regressing state-return pairs to the action taken
in state s before ultimately receiving return g. The optimal action for state s is then predicted
as π(s, g⋆) (Schmidhuber, 2020). Upside-down RL is also the basis for the decision-transformer
approach to offline and online RL (Chen et al., 2021). Our study is complementary to these prior
works in its focus on recasting implicit regression as classification in policy search.

Recasting Regression as Classification In the supervised learning literature, several works have
studied the empirical and theoretical benefits of replacing the least-squares regression loss with a
cross-entropy classification loss. Our approach most closely follows the approach of Imani and
White (2018); Imani et al. (2024) due to our use of the HL-Gauss loss as a means to preserve the
spatial structure of the action space. Zhang et al. (2023) found that the cross-entropy loss encouraged
better representations in regression problems and Pintea et al. (2023) found that casting regression
as classification helped with class imbalances. While these findings are focused on the supervised-
learning case and 1-hot cross-entropy losses, it would be interesting to see whether similar benefits
can be found in policy gradient learning. Lastly, we note that a number of applied works, primarily
in computer vision, have found classification formulations of regression to give superior empirical
performance (Cao et al., 2018; Kendall et al., 2017; Li et al., 2022; Rothe et al., 2015, e.g.,). The
policy gradient learning setting is quite different from supervised learning as the function we are
learning also directly determines the data distribution being learned over.

Alternatives to Gaussian Policies in Continuous Action Domains In order to recast continuous
action policy gradient learning as a classification problem, we discretized each dimension of the
action-space and learned softmax policies over each dimension. Tang and Agrawal (2019) previ-
ously found discretization to be effective in continuous control benchmarks and credited the benefit
to improved exploration. OpenAI et al. (2019) also conjectured improved exploration to be a rea-
son to prefer discretized actions. Our theoretical and empirical analysis complements these works
by emphasizing that the cross-entropy loss itself is desirable for learning. As mentioned in the in-
troduction, naive discretization can lead to an exponentially sized action space that would make it
intractable to represent the policy. One prior work has addressed this increase in the size of the
action space by sequentially selecting the discretized action for each dimension (Metz et al., 2019).
Though Metz et al. (2019) introduced this approach to enable q-learning (Watkins and Dayan, 1992)
in continuous action domains, it would be interesting to consider new policy parameterizations based
on this approach that could be trained with classification losses. Alternative policy distributions such
as truncated Gaussians (Fujita and Maeda, 2018), Beta distributions (Chou et al., 2017), and non-
parametric distributions Tessler et al. (2019) have also been explored as alternatives to the Gaussian
representation. Continuous actions can be directly sampled from these distributions and it would be
interesting to investigate if our findings pertain in some form to these alternative representations.

7 DISCUSSION AND LIMITATIONS

We have found that the cross-entropy-based policy gradient surrogate loss that we introduced in this
work generally leads to more data-efficient policy gradient learning across the continuous control
domains where we evaluated it. Results showed that performance improved even as the action-
space dimensionality increased which shows the viability of simply selecting each action dimension
independently. These results suggest that reformulating the weighted regression found in policy
gradient learning for Gaussian policies as weighted classification for softmax policies can be an
effective strategy in continuous control RL applications.

9
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We found that the performance difference between the HL-1-Hot and HL-Gauss surrogate losses
was often small and the ordering of the methods changed across domains. This result was somewhat
surprising to us as HL-1-Hot discards spatial information about the action-space when reinforcing
actions whereas HL-Gauss makes use of this information through the Gaussian target distribution.
We do find in some cases that HL-1-Hot may be more prone to find local optima (i.e., it converges
to a discretized action that is adjacent to the optimal discretized action), however, the loss in perfor-
mance from these cases is small in the benchmarks we considered.

Perhaps the principle limitation of the HL-Gauss loss is the need to discretize the action space so
that a softmax policy can be used. The result is that the true deterministic, optimal policy may not
be representable, e.g., if the optimal action in some state is not a bin center. The degree of this
limitation depends upon the properties of a domain and how necessary it is for the policy to output
precise actions for acceptable performance. In our experiments, we observed mildly adverse effects
from discretizing the action-space only in limited number of settings such as in Figure 7b, but did not
observe negative effects in general when evaluated on 7 environments. This result could be because
the domains we considered do not require precise control for high return. It could also indicate
that learning with Gaussian policies is sufficiently slow that we never reach the point where their
improved representation power becomes useful. Further small-scale studies on carefully controlled
toy problems could help understand when discretization is not a viable strategy.

In terms of broader societal impacts, RL algorithms have the potential for both positive and negative
impacts depending on the application. This paper studies fundamental RL algorithms using theoreti-
cal and empirical analysis in toy problems and benchmarks rather than specific applications. Hence,
its immediate societal impact is neutral.

8 CONCLUSION AND FUTURE WORK

This paper has studied the degree to which stochastic policy gradient algorithms can be improved for
continuous action domains by replacing an implicit least-squares loss term with a cross-entropy loss
term in the policy gradient surrogate objective. We first derived the connection between the policy
gradient for Gaussian policies and a certain weighted least-squares optimization problem. We then
introduced a novel loss function that replaces the implicit weighted regression loss for Gaussian
policies with a weighted cross-entropy loss for softmax policies. We showed theoretically that this
loss enjoys a smaller bound on gradient norms and then showed empirically that this novel loss
improves the data efficiency of a prototypical stochastic actor-critic method for continuous control.

This paper raises new directions for future research. First, for simplicity, our empirical study focused
on a prototypical actor-critic method and left open the question of how histogram losses might be
integrated into more advanced policy gradient methods. For methods such as MPO (Abdolmaleki
et al., 2018), the application of our novel loss is immediate. For methods such as PPO or TRPO,
this integration requires creating a novel surrogate loss that can be optimized for multiple steps
whereas this paper has only considered a single step of gradient descent. Second, prior work in
discrete action spaces has noted limitations of softmax policies for non-stationary problems and
proposed alternative policy update schemes Garg et al. (2022). It would be interesting to study
whether these losses show improvement over the Gaussian policy surrogate loss in non-stationary,
continuous control problems.
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A PROOF OF PROPOSITION 1

Proposition 1. The norm of ∇θLPG−CE is upper-bounded as follows:

∥∇θLPG−CE(θ, s,a)∥ ≤
∣∣∣∣Aπθ

(s,a)

∣∣∣∣(l + ∥fϕ(s)∥)
(

k∑
i=1

|qa,i − πθ(ai|s)|

)
(7)

Proof. The proof for this proposition follows largely from Imani and White (2018) with the key
difference being that the advantage estimate for a given state-action pair is weighted by Aπ(s,a).
However, we list out the proof for completeness for the reader.

Let us represent θ = [w1, ...,wk,ϕ, ]
T where ϕ is network parameters up to and including the

penultimate layer and wi is the weights in the final layer that are associated with output i. The
unnormalized softmax logit for the ith bin is given as bi = efϕ(s)Twi . Then ∀j ̸= i and j ∈
{1, 2, . . . k},

∂

∂bi
πθ(aj |s) =

∂

∂bi

ej∑k
l=1 el

= − ej(∑k
l=1 el

)2 ei = −πθ(aj |s)πθ(ai|s) (9)

Similarly, for j = i, we can write,

∂

∂bi
πθ(aj |s) =

ei∑k
l=1 el

− ei(∑k
l=1 el

)2 ei = πθ(ai|s) [1− πθ(ai|s)] (10)

Using the above expressions we can compute the partial derivative of the histogram loss without the
advantage weighting:

∂

∂bi

k∑
j=1

qal,j log πθ(aj |s) =
k∑

j=1,j ̸=i

−qal,j

πθ(ai|s)
πθ(aj |s)πθ(ai|s) +

qal,i

πθ(ai|s)
πθ(ai|s) [1− πθ(ai|s)]

(11)

= qal,i − πθ(ai|s)
k∑

j=1,j ̸=i

qal,j − qal,iπθ(ai|s) (12)

= qal,i − πθ(ai|s) (13)
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By applying the chain rule, we can use the above to show that,∥∥∥∥∥∥∇ϕ

 k∑
j=1

qal,j log πθ(aj |s)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k∑

j=1

∂

∂bj
(qal,j log πθ(aj |s))

∂bj
∂ϕ

∥∥∥∥∥∥ (14)

=

∥∥∥∥∥∥
k∑

j=1

(qal,j − πθ(aj |s))∇ϕw
⊤
j fθ(s))

∥∥∥∥∥∥ (15)

(a)

≤
k∑

j=1

|qal,j − πθ(aj |s)| l, (16)

where (a) follows by the assumption that ∥∇ϕw
⊤
j fϕ(s)∥ ≤ l.∥∥∥∥∥∥∇wi

 k∑
j=1

qal,j log πθ(aj |s)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k∑

j=1

∂

∂bj
(qal,j log πθ(aj |s))

∂bj
∂wi

∥∥∥∥∥∥ (17)

=

∥∥∥∥∥∥
k∑

j=1

(qal,j − πθ(aj |s))
∂

∂wi
w⊤

j fϕ(s))

∥∥∥∥∥∥ (18)

(b)

≤ |qal,i − πθ(ai|s)| ∥fϕ(s)∥ (19)

Now, the norm of the gradient of the cross-entropy loss, ∥∇LPG−CE(θ, s,a)∥, can be expressed as,∥∥∥∥∥∥∇θAπθ
(s, a)

 k∑
j=1

qal,j log pal,j

∥∥∥∥∥∥ ≤ ∥Aπθ
(s, a)∥

k∑
j=1

∥∥∥∥∥∥∇wi

 k∑
j=1

qal,j log pal,j

∥∥∥∥∥∥
+ ∥Aπθ

(s, a)∥

∥∥∥∥∥∥∇ϕ

 k∑
j=1

qal,j log pal,j

∥∥∥∥∥∥
(c)

≤ ∥Aπθ
(s, a)∥

 k∑
j=1

|qal,j − πθ(aj |s)|(∥fθ(s)∥+ l)


Here (c) follows directly by adding inequalities (a) and (b) and completes the proof.

B PROOF OF PROPOSITION 2

Proposition 2. The norm of ∇θLPG−LS is upper-bounded as follows:

∥∇θLPG−LS(θ, s,a)∥ ≤
1

σ

∣∣∣∣Aπθ
(s,a)

∣∣∣∣(l + ∥fϕ(s)∥)∣∣∣∣a−w⊤fϕ(s)

∣∣∣∣ (8)

Proof. We represent θ = [w,ϕ]T where ϕ is network parameters up to and including the penulti-
mate layer and w is the weights of the final linear layer. Note that the mean of the Gaussian policy
at state s is w⊤fϕ(s). We start with the Gaussian policy policy gradient surrogate loss:

LPG−LS(θ, s,a) = Aπθ
(s,a)

1

2σ
(a−w⊤fϕ(s))

2. (20)

We then differentiate this loss w.r.t. w and bound the norm of the resulting gradient:

∇wLPG−LS(θ, s,a) =Aπθ
(s,a)

1

σ
(a−w⊤fϕ(s))fϕ(s) (21)

∥∇wLPG−LS(θ, s,a)∥ ≤∥Aπθ
(s,a)

1

σ
(a−w⊤fϕ(s))∥fϕ(s)∥ (22)

≤|Aπθ
(s,a)|
σ

|a−w⊤fϕ(s)|∥fϕ(s)∥ (23)
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We then differentiate the loss w.r.t. ϕ and bound the norm of the resulting gradient:

∇ϕLPG−LS(θ, s,a) =Aπθ
(s,a)

1

σ
(a−w⊤fϕ(s))∇ϕw

⊤fϕ(s) (24)

∥∇ϕLPG−LS(θ, s,a)∥ ≤∥Aπθ
(s,a)

1

σ
(a−w⊤fϕ(s))∥∇ϕw

⊤fϕ(s)∥ (25)

≤|Aπθ
(s,a)|
σ

|a−w⊤fϕ(s)|∥∇ϕw
⊤fϕ(s)∥ (26)

≤|Aπθ
(s,a)|
σ

|a−w⊤fϕ(s)| · l (27)

Finally, we combine the inequalities in (23) and (27) to obtain the bound:

∥∇θLPG−LS(θ, s,a)∥ ≤
1

σ

∣∣∣∣Aπθ
(s,a)

∣∣∣∣(l + ∥fϕ(s)∥)∣∣∣∣a−w⊤fϕ(s)

∣∣∣∣. (28)

This completes the proof.

C EMPIRICAL DETAILS

In this section, we provide additional details about the experiments that were deferred from the main
section.

C.1 ENVIRONMENT DETAILS

In this section, we provide details of the evaluated environments.

1. Continuous Bandit: This domain has a single state and the reward is an unknown quadratic
function of a d-dimensional action. The range for possible actions in each dimension is
[amin, amax].

2. Linear quadratic regulator: LQR is a fundamental control problem in control theory.
In this domain, the transition dynamics are a linear function of the state and action with
Gaussian noise added. The reward is a quadratic function of the state and action. The
action space is 2 dimensional where each dimension is bounded between [−1, 1].

3. Continous Mountain Car: In this domain, a toy car attempts to reach the top of a moun-
tain. The action space is 1 dimensional and is bounded between [−1, 1].

4. Continuous Acrobot: In this domain, an agent attempts to swing itself above a certain
height. The action space is 1 dimensional.

5. Reacher: In this domain, a robotic arm tries to reach a goal location. The action space is 2
dimensional and each dimension is bounded between [−1, 1].

6. HalfCheetah: In this domain, a cheetah-like robotic agent attempts to run as fast as possi-
ble. The action space is 6 dimensional and each dimension is bounded between [−1, 1].

7. Ant: In this domain, an ant-like robotic agent attempts to run as fast as possible. The action
space is 8 dimensional and each dimension is bounded between [−1, 1].

C.2 TRAINING DETAILS

The base algorithm is an on-policy actor-critic algorithm and the actual code was based on Stable-
Baselines3’s implementation of the A2C algorithm (A2C itself is quite similar to the actor-critic
algorithm described in Sutton and Barto (2018)) (Raffin et al., 2021). Since it is on-policy, there is
no replay buffer. The critic is learned by regressing to observed returns.

For the continous bandit environment, all the algorithms (Gaussian regression, softmax + 1-hot,
softmax + HL-Gauss) used a linear policy, used a batch size of 5, and all used a value function
baseline. Each algorithm was trained for 2000 interaction steps and the policy was evaluated every
interaction step. We tuned the following hyperparameters. For all algorithms, we swept over the
following values for the learning rate: {10−2, 5 ·10−2, 10−1, 1}. For the two classification methods,
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we swept over the following number of bins (k): {50, 100, 200}. For softmax + HL-Gauss, we
swept over the following width multipliers (η): {0.1, 0.25, 0.5, 0.75, 1}.
For all the other environments, all the algorithms used the default neural network policy in stable-
baseline3 (Raffin et al., 2021), used a batch size of 20, and all used a value function baseline. On
LQR, Continuous MountainCar, Reacher, and Acrobot, all algorithms were trained for 500K inter-
action steps and the policy was evaluated every 500 steps. On the HalfCheetah and Ant domain,
all algorithms were trained for 1M interaction steps and the policy was evaluated every 1000K
steps. For all these domains and algorithms, we swept over the following learning rate values:
{10−4, 3 · 10−4, 7 · 10−4, 10−3}. For the two classification methods, we swept over the following
number of bins (k): {50, 100, 200}. For softmax + HL-Gauss, we swept over the following width
multipliers (η): {0.01, 0.05, 0.1, 0.25, 0.5, 0.75}.
For all algorithms, our hyperparameter sweep is based on picking the hyperparameter combination
that led to the highest average undiscounted return (averaged across all trials) on the final step.

C.3 HYPERPARAMETER SENSITIVITY EXPERIMENTS

In this section, we show the sensitivity of the softmax + HL-Gauss algorithm when varying the
learning rate, number of bins (k), and width mutliplier (η). We conduct the analysis over the values
discussed in Appendix C.2.

The sensitivity study is based on holding one hyperparameter fixed (e.g. learning rate) and averaging
the returns across all other variable hyperparameters. As such, the returns in the sensitivity studies
will always be worse (since high performing and low performing returns may get averaged together)
than the one in the main text which shows the highest possible return by a unique combination of
hyperparameters. We present the results in Figure 4.

From Figure 4, we find that softmax + HL-Gauss is sensitive to the learning rate, and performance
can widely differ based on the value of the learning rate. It is also sensitive to η, which determines
the standard deviation of the histogram Gaussian distribution, where if the standard deviation is too
large (larger η), performance tends to degrade, which is expected since the agent has a challenging
time to converge to the optimal actions. The method is quite robust to number of bins (k), where
performance is generally stable across all k values.

With regards to the baselines, we see in Figure 5 and Figure 6 that the Gaussian regression method
and softmax with 1-hot histogram loss are also sensitive to the learning rates. And softmax 1-hot is
similarly robust to number of bins as softmax + HL-Gauss.

C.4 PERFORMANCE PROFILES

In this section, we report the performance profiles of each algorithm across all trials and hyperpa-
rameters in Figure 7. These plots illustrate what fraction of the total runs of an algorithm led to a
return of greater than τ . In general, we find that the classification losses have a higher fraction of
the runs that achieve a high return than the regression loss.

C.5 EVALUATION RETURNS

In this section, we report (Figure 8) the undiscounted return achieved by the deterministic policy as
a function of environment interaction steps.

C.6 REMAINING TRAINING RETURN RESULT

Due to space limitations, we include the training returns achieved in Acrobot in this section. This
result is part of the results shown in Figure 2.

C.7 ASSETS AND SOFTWARE

We implement a standard actor-critic algorithm with the three loss functions using the
stabelebaselines-3 framework (Raffin et al., 2021), which uses pytorch for auto-differentiation
(Paszke et al., 2019). The HL-Gauss code was built upon the code by Farebrother et al. (2024).
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(a) Acrobot: Learning rate (b) Acrobot: k (c) Acrobot: η

(d) MountainCar: Learning rate (e) MountainCar: k (f) MountainCar: η

(g) Ant: Learning rate (h) Ant: k (i) Ant: η

(j) HalfCheetah: Learning rate (k) HalfCheetah: k (l) HalfCheetah: η

Figure 4: Hyperparameter sensitivity of softmax + HL-Gauss. Undiscounted training returns
achieved by softmax + HL-Gauss as a function of environment interaction steps for different hyper-
parameters. Results are averaged over 20 trials and the shaded region represents the 95% confidence
interval. Higher is better.

All the environments were implemented within the gymnasium framework (Towers et al., 2023).
We use the rlliable code for plotting (Agarwal et al., 2021).

C.8 HARDWARE FOR EXPERIMENTS

For all experiments, we used the following compute infrastructure:

• Distributed cluster on HTCondor framework
• Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz
• RAM: 5GB
• Disk space: 5GB
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(a) Acrobot: Learning rate (b) Acrobot: k (c) MountainCar: Learn-
ing rate

(d) MountainCar: k

(e) Ant: Learning rate (f) Ant: k (g) HalfCheetah: Learning
rate

(h) HalfCheetah: k

Figure 5: Hyperparameter sensitivity of softmax + HL-1-hot. Undiscounted training returns
achieved by softmax + HL-Gauss as a function of environment interaction steps for different hyper-
parameters. Results are averaged over 20 trials and the shaded region represents the 95% confidence
interval. Higher is better.

(a) Acrobot: Learning rate (b) MountainCar: Learning rate

(c) Ant: Learning rate (d) HalfCheetah: Learning rate

Figure 6: Hyperparameter sensitivity of the Gaussion regression method. Undiscounted training
returns achieved by softmax + HL-Gauss as a function of environment interaction steps for different
hyperparameters. Results are averaged over 20 trials and the shaded region represents the 95%
confidence interval. Higher is better.
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(a) Bandit (d = 2) (b) Acrobot (d = 1) (c) Mountain Car (d = 1)

(d) Reacher (d = 2) (e) HalfCheetah (d = 6) (f) Ant (d = 8)

Figure 7: Performance profiles of all the algorithms across all 20 trials and hyperparameter combi-
nations. SM is a softmax policy and HL is the histogram loss. Higher is better. For each domain,
we also give the action-dimensionality, d.

(a) Bandit (b) LQR (c) Acrobot (d) Reacher

(e) Mountain Car (f) Ant (g) HalfCheetah

Figure 8: Highest undiscounted evaluation returns achieved by each algorithm as a function of
environment interaction steps after a hyperparameter sweep. Results are averaged over 20 trials and
the shaded region represents the 95% confidence interval. Higher is better. The optimal return can
be computed exactly in the Bandit and LQR settings.
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(a) LQR (d = 2)

Figure 9: Highest undiscounted training returns achieved by each algorithm as a function of en-
vironment interaction steps after a hyperparameter sweep. SM is a softmax policy and HL is the
histogram loss. Results are the mean averaged over 20 trials and the shaded region represents the
95% confidence interval. Higher is better.
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