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ABSTRACT

We study the performance of transformers as a function of the number of rep-
etitions of training examples with algorithmically generated datasets. On three
problems of mathematics: the greatest common divisor, modular multiplication,
and matrix eigenvalues, we show that for a fixed number of training steps, models
trained on smaller sets of repeated examples outperform models trained on larger
sets of single-use examples. We also demonstrate that two-set training - repeated
use of a small random subset of examples, along normal sampling on the rest of
the training set - provides for faster learning and better performance. This high-
lights that the benefits of repetition can outweigh those of data diversity. These
datasets and problems provide a controlled setting to shed light on the still poorly
understood interplay between generalization and memorization in deep learning.

1 INTRODUCTION

When training neural networks, it has become customary to use the largest and most diverse datasets
available, and to limit example reuse as much as possible. This tendency is manifest in large lan-
guage models. GPT (Radford & Narasimhan, 2018) was trained for 100 epochs (each example was
seen 100 times on average), BERT (Devlin et al., 2019) on 40 and GPT-2 (Radford et al., 2019) on
20. In recent models, most examples in the pre-training corpus are seen only once, a few specialized
datasets are iterated 2 or 3 times, and fine-tuning examples are seen once or twice. Meanwhile, data
budgets are on the increase: GPT-2 was trained on less than 10 billion tokens, GPT-3 (Brown et al.,
2020) was pre-trained on 300 billion, Chinchilla (Hoffmann et al., 2022) and Llama (Touvron et al.,
2023) on 1.4 trillion, Llama2 (Touvron & et al., 2023) on 2 trillion, and Llama3 (Dubey & et al.,
2024) on 15.6 trillion. Whereas the use of large train sets is grounded in theory (Vapnik & Kotz,
2006), the practice of not repeating training examples is less motivated. It reflects the belief that,
when availability permits fresh data is superior to repeated use of a corpus (Komatsuzaki, 2019;
Raviv et al., 2022; Hernandez et al., 2022; Muennighoff et al., 2023). This belief is grounded in the
idea that memorization of repeated examples hinders generalization (Zhang et al., 2017). From a
human learner point of view, this is counter-intuitive. When faced with a situation we never experi-
enced, we recall similar instances (Proust, 1919), and use them as anchors to navigate the unknown.
If memorization benefits human learners (Ambridge et al., 2015), why should it hinder machines?

In this paper we challenge the view that the repetition of training examples is undesirable, and that
for a given training budget (TB, the total number of training examples), one should maximize the
data budget (DB, the number of distinct training examples). We explore the impact of repeated
samples in three controlled settings using generated data: computing the greatest common divisor
(GCD) of two integers (Charton, 2024), modular multiplication of two integers, and calculating the
eigenvalues of symmetric real matrices (Charton, 2022). These settings allow for perfect control over
the distribution of repeated examples, unlike natural datasets (e.g. text from the web) which may
feature unintended duplication and redundancy. Our experiments uncover two striking phenomena:

1. Repetition Helps: For fixed training budgets (300M to 1B examples), models trained from small
data budgets (25 to 50M examples) outperform models trained on large DB. This sometimes
gives rise to “emergent” phenomena: properties only learned by models trained on small DB.

2. Two-Set Training: For fixed data budgets, learning speed and performance are significantly
enhanced by randomly selecting a subset of training examples, and repeating them more often
during training. The “two-set effect” is all the more surprising as the repeated examples are not
curated, and only differ from the rest of the training data by their frequency of use.
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Figure 1: Repetition Helps (Left): Performance as a function of repetition for a fixed training budget (600M).
GCD (blue). Models trained on smaller datasets, repeated 30 times, perform much better than models trained
on one to four epochs. Multiplication mod 67 (red). Models trained for 1 to 4 epochs do not learn. Learning
“emerges” when models are trained on smaller data budgets, with increased repetition; albeit in a setting where
the number of examples is large enough to avoid overfitting.
Two-set training (Right): For a fixed data budget, splitting the data into two random subsets and increasing
the training frequency of one greatly improves performance. GCD (left): repeating 50k examples 3000 times
for a training budget of 600M brings performance from 37 to 69 on 100M. Modular multiplication (right):
Models trained on 600M single-use examples do not learn. With 25M examples repeated 18 times, and 150M
single use examples, accuracy is 92%, with 2.5M examples repeated 60 times, and 450M single-use, accuracy
is 68%. Smooth distributions of repetition over the training set achieve 70% accuracy.

In ablation experiments, we show that the performance of two-set training cannot be improved by
curating the set of repeated examples, or refreshing it as training proceeds. This sets us apart from
curriculum learning, and strengthens the observation that repetition of a few random examples is
really all we need. We also show that mixing repeated and non-repeated examples in the same mini-
batches is required for two-set training to work. Finally, we propose a smooth extension of two-set
training, by introducing a probability distribution on the training set.

Our work isolates an interesting phenomenon in a clean setting. The three tasks we study each
exhibit idiosyncratic structure that allows to test a variety of hypotheses. For instance, the GCD
dataset exhibits an inverse polynomial distribution of results, reminiscent of Zipf’s law in natural
language (Zipf, 1935). This allows us to test whether amplification of the tail of the distribution
can benefit learning, by incorporating it into two-set training (while an attractive hypothesis, our
ablations show that this seems not to be the case). In contrast, the results of modular multiplication
are almost uniformly distributed, indicating that our conclusions do not depend on the existence of
a power-law. Finally, the eigenvalue problem features non-linear, approximate calculations on reals.

In all three cases, the benefits of repetition are significant, but come in different flavors, from improv-
ing performance and accelerating learning (GCD), to allowing a new task to be learned (multiplica-
tion), or to be accessible to smaller models (eigenvalues). Alternatively, small random subsets of the
data repeated at high frequency can elicit similar effects. These findings have profound implications
and should lead to a paradigm shift where the training set size becomes a mere hyper-parameter, not
solely governed by the availability of data and the belief that more is always better.

Note. Training budget is known as compute budget in other works (Power et al., 2022; Muennighoff
et al., 2023). We use training budget to distinguish it from the compute cost arising from model size.

2 BACKGROUND AND RELATED WORK

In this paper, we focus on relatively small transformer models performing mathematical tasks, plac-
ing it into a long established corpus of works that study interesting phenomena in a controlled setting,
and advance our understanding of the underlying mechanisms in larger models in the wild, see e.g.
Power et al. (2022); Garg et al. (2022); Charton (2024); Dohmatob et al. (2024).

One such example is the study of “grokking”, first observed with modular arithmetic - a phe-
nomenon where models generalize long after achieving 100% accuracy on their (small) training
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set (Power et al., 2022; Liu et al., 2022b; 2023). On the surface, grokking shares similarities with
our work: a small training dataset is iterated for many epochs, the phenomenon is isolated in clean
experiments on synthetic data, and it contradicts traditional wisdom regarding overfitting (Mohri
et al., 2018). But there are important differences: in grokking, delayed learning occurs, we observe
no such delay; grokking occurs for “tiny” training samples (hundreds or thousands of examples), our
models use millions (even for modular multiplication); grokking is very sensitive to the optimizer
used, our findings are robust across optimizers (Appendix D.5), and, of course, no two-set approach
is documented in the grokking setting.

Another related setting is “benign overfitting” (Bartlett et al., 2020; Belkin, 2021; Bartlett et al.,
2021), where an over-parametrized model perfectly fits noisy data, without harming prediction ac-
curacy. One could argue that our work presents a quantitative manifestation of benign overfitting,
inasmuch as decreasing the data budget increases model over-parametrization. However, this would
not account for the decrease in performance once the data budget falls below a certain number (one
could argue that overfitting is no longer benign, then), nor for the possibility of two-set training.

Prior works have studied the role of data reuse in language models. Hernandez et al. (2022) study
data repetition in models with up to 800M parameters with training budgets of 100M tokens to
exhibit detrimental impact of repetition of a subset of the training data. In the context of scarcity of
training data, Muennighoff et al. (2023) find for LLMs of contemporary size (up to 9B) that with
constrained data for a fixed training budget, training with up to 4 epochs of repeated data yields
negligible changes to loss compared to having unique data; any further repetition decreases the
value of additional training. A limitation of these works is the lack of control over repetition in the
training set: partial copies, of sentences, paragraphs sometimes whole documents, abound in pre-
training corpora. Allen-Zhu & Li (2024) undertake a controlled study on synthetic language data
in the context of knowledge retrieval and find that knowledge augmentation - repeated inclusion of
reformulated variants - of a small subset of the data leads to performance improvement; an effect
somewhat akin to what we observe in two-set training.

Our work is related to, but different from, curriculum learning (CL) (Bengio et al., 2009; Wang
et al., 2022), where training data is presented in a meaningful order, usually from “easy” to “hard”
samples. Two-set training differs from curriculum learning in at least two important ways: in CL,
datasets are curated, our subsets are completely random; in CL, the training distribution shifts over
time, while our subsets are static. Our ablations show that curating the repeated set, or changing it
over time, as in CL, brings no improvement in performance (and may even have an adverse effect).

Lastly, our work touches upon the expansive area of out-of-distribution (OOD) generalization (Gul-
rajani & Lopez-Paz, 2021; Lopez-Paz, 2025), which studies generalization when train and test dis-
tributions differ. Curiously, while our two-set approach increases the frequency of some training
examples, because the repeated set is chosen at random, the training set remains distributionally
equivalent to the test set. Thus, our study falls outside the usual framework of OOD studies. For
additional discussion of our setting and related work, see Appendix A.

3 EXPERIMENTAL SETTINGS AND BASELINES

We focus on three problems of mathematics: computing the greatest common divisor, multiplication
modulo 67, and computing the eigenvalues of real symmetric matrices. The GCD and eigenvalues
were studied in prior work (Charton, 2022; 2024; Dohmatob et al., 2024; Feng et al., 2024).

Greatest common divisor. The model is tasked to predict the GCD of two integers uniformly
distributed between 1 and 1 million, encoded in base 1000. Following Charton (2024), who observes
that throughout training almost all pairs of integers with the same GCD are predicted the same, we
evaluate model performance by the number of GCD below 100 predicted correctly, measured on a
random test sample of 100, 000 pairs: 1000 pairs for each GCD from 1 to 100. Charton reports a
best performance of 22 correct GCD for a model trained on uniformly distributed inputs.
Note. We prefer this test metric over a more standard accuracy on random input pairs, because the
GCD are distributed according to an inverse square law. In particular the probability that a GCD is
1 is about 62%. As a result, the accuracy metric results in overly optimistic model performances.

Modular multiplication. Modular arithmetic plays an important role in many public key cryptog-
raphy algorithms (Diffie & Hellman, 1976; Regev, 2005), and is known to be a hard problem for
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neural networks (Palamas, 2017). Modular addition was studied in several previous works, in the
context of grokking (Power et al., 2022; Liu et al., 2022a) and mechanistic interpretability (Zhong
et al., 2023)1. While modular multiplication over Z/pZ× is mathematically is equivalent to modu-
lar addition mod p − 1, these problems differ computationally, due to the hardness of the discrete
logarithm (Diffie & Hellman, 1976). In most previous works on arithmetic modulo p, model inputs
are sampled from integers between 0 and p, which results in a very small problem space for small p.
In this work, we study the multiplication modulo 67 of two integers from 1 to 1 million. This allows
for a much larger problem space, and training sets. Model accuracy is evaluated by the percentage
of correct predictions of a×b mod 67, on a test set of 10, 000 examples (a new test set is generated
at every evaluation). In this problem, all outcomes from 1 to 66 are uniformly distributed, while 0
appears nearly twice as often.

Eigenvalue calculation. This problem was introduced to deep learning by Charton (2022), who
showed that transformers can learn to predict the eigenvalues of real symmetric matrices with in-
dependent and identically distributed entries, rounded to three significant digits. The eigenvalue
problem is arguably a harder problem than the previous two, non-linear and typically solved by iter-
ative algorithms. Nonetheless the eigenvalue problem seems an easier task for transformers, as even
smaller transformers are able to solve this task for matrices of size up to 8x8 (Charton, 2022). We
include this problem to show that our conclusions extend beyond arithmetic problems on integers.
Note also that because matrix entries and eigenvalues are rounded, this problem features noisy in-
puts and outputs. Model accuracy is evaluated as the percentage of model predictions that predict the
correct eigenvalues of a test matrix with less than 5% relative error (in ℓ1 distance). It is measured
on a test set of 10, 000 samples, generated afresh at every evaluation.

Models and tokenizers. In all experiments, we use sequence-to-sequence transformers (Vaswani
et al., 2017) with 4 layers in the encoder and decoder (4-layers encoders and 1-layer decoder for
eigenvalues), an embedding dimension of 512, and 8 attention heads. Models have 35 million pa-
rameters for GCD and modular multiplication, and 22 million for eigenvalues. They are trained to
minimize a cross-entropy loss, using the Adam optimizer (Kingma & Ba, 2014), with a learning rate
of 10−5, over batches of 64. The integer inputs and outputs of the GCD and multiplication problems
are tokenized as sequences of digits in base 1000, preceded by a separator token. The real num-
bers in the eigenvalue problem are encoded as floating point numbers, rounded to three significant
digits, and tokenized as the triplet (s,m, e) – sign, (base 1000) mantissa, (base 10) exponent – i.e.
f = s · m · 10e (P1000 encoding from Charton (2022)). All experiments are run on one NVIDIA
V100 GPU with 32 GB of memory.

4 REPETITION HELPS

We now embark on a systematic study of the impact of data budget on performance, for various
training budgets. In other words, we compare the performance of models trained on datasets with a
fixed number of examples (data budget), for increasing amounts of time (training budget).

On the GCD problem, we consider data budgets of 1, 5, 10, 25, 50 and 100M distinct examples, and
an “unlimited data” setting, where new examples are generated on the fly and DB≈ TB2. For each
data budget, we train 5 models with a training budget of over 1 billion examples, and report their
average performance (number of correctly predicted GCD), as the TB increases (Figure 2 Left).

For a modest training budget of 30 million, the models with the smallest DB (1 and 5 million, 1M
and 5M-models henceforth) achieve the best performance (20 GCD vs 13 for all other DB). As
TB increases, the 1M-models start overfitting, as shown by the increasing test losses in Figure 2
(Right), and their performance saturates at 21 correct GCD. The performance of the 5M models
keeps improving to 36 GCD, for a TB of 150 million examples, then saturates around 38 GCD
as the models overfit. For TB of 150 and 300 million examples, the best performing models are
the 10M. As training proceeds, they are outperformed by the 25M models, which achieve the best
performance for TB from 450 million to 1.05 billion examples (with the 50M-model a close second

1Power et al. (2022) also study modular division, equivalent to modular multiplication.
2For GCD and modular multiplication, input pairs are uniformly sampled integers from 1 to 1 million. In

the unlimited data case, this gives rise to infrequent repetitions: over ∼ 1 billion input pairs, our largest data
budget, no elements are repeated 3 or more times, and about 500 thousand are repeated twice.
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at 1 billion). Throughout training, the models trained on small data budgets learn faster. However,
past a certain TB, they overfit their training data, and their performance saturates.
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Figure 2: GCD problem: (Left) GCD accuracy for different data and training budgets (average of 5 models).
(Right) Test loss of models as a function of training budget, for fixed data budgets.

Note. Overfitting is an overloaded term. In this paper, we define it by its empirical consequences:
a model overfits when its test loss starts increasing, while the train loss continues to decrease. The
relation between learning and overfitting is further studied in Appendix B.

Conversely, models trained with large or unlimited DB perform the worst. For a TB of one billion
examples, the 25M-models predict 62 GCD on average, and the 50M-models 60. The 100M-models
only predict 37 GCD and models trained on an unlimited data budget, where all training examples
are seen only once, predict 27 GCD, way worse than models trained on 25M distinct examples,
repeated 42 times on average. Summarizing, smaller data budgets and more frequent repetition
allow for faster learning, but also for much better performance.

We observe a similar behavior for modular multiplication. For a TB of 600 million, we train 5
models for small DB, and 25 or 30 for larger DB, to zoom on this interesting region (Table 1).
Models trained on an unlimited data budget perform at “chance level”: they always predict 0 and
achieve about 3% accuracy. Models trained on data budgets of 100 million examples fare little
better, and models trained on 10 million examples or less overfit and do not learn.

Models trained on DB of 25M and 50M (for an average repetition of 24 and 12) achieve 40 and 60%
accuracy and exhibit a different behavior. On this task, learning happens in sudden steps, separated
by flat plateaus (see the empirical learning curves in Figure 7 in Appendix C), the two last plateaus
corresponding to 51% and 99% accuracy. About 25% (7 out of 25) of 50M models achieve 99%
accuracy (i.e. fully learn the task), and almost 90% (22/25) achieve 50% (i.e. one learning step
away). On this task, learning emerges through repetition. Models trained on smaller data budgets
can perform tasks that models trained from large or unlimited data budget cannot learn. To probe
whether learning eventually occurs, we trained 19 models with unlimited and 100M DB on increased
TB of 2 billion examples. None of the unlimited DB models could learn modular multiplication, but
one 100M model out of 19 achieved 99% accuracy after 1B TB, and 5/19 after 2B.

Data budget (millions)
1 5 10 25 50 100 unlimited

Average accuracy (%) 1.6 3.8 4.4 40.4 59.5 5.4 3.0
Number of models achieving 99% accuracy 0/5 0/5 0/5 6/25 7/25 0/30 0/30
Number of models achieving 50%+ accuracy 0/5 0/5 0/5 13/25 22/25 0/30 0/30
Number of models trained 5 5 5 25 25 30 30

Table 1: Multiplication modulo 67. Accuracy of models trained on a budget of 600 million data points.
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Finally, on the eigenvalue problem, Charton (2022) trained models with unlimited data budgets
(DB≈TB) and observed that whereas 4-layer transformers can learn to compute the eigenvalues of
5 × 5 matrices, deeper models are required for larger problems: 6-layers for 8 × 8 matrices, 8 for
10× 10 and 12 layers for 12× 12 matrices. Even with large training budgets, 4-layer models where
unable to learn the eigenvalues of 10 or 12 dimensional matrices.

In our experiments, we wanted to study whether smaller DB could induce small models to learn
large problems. We trained 4-layer transformers to predict the eigenvalues of 10× 10 matrices. We
trained 5 models for each data budget of 1, 5, 10, 25, 50 and 100M, and 5 for an unlimited DB (one
pass over the training data), with TB up to 500 million. As expected, none of the models trained
on unlimited DB did learn: all test accuracy remained close to 0. However, 4 of the 30 models
trained on smaller DB achieved 99% accuracy: 3 models trained on 50 million examples (repeated
10 times), and one model trained on 10 million (repeated 50 times). Scaling even further, to 12× 12
matrices, still using 4-layer transformers, with a TB of 420 millions, 2 models (out of 35) begin
learning: a 10M model achieved 21% accuracy, and a 5M 3.5%. As in previous experiments, for a
given training budget, smaller data budgets and repeated training examples prove beneficial, but on
this task, small datasets improve model scaling. With small DB, problems that required 8-layer or
12-layer transformers can be learned by 4-layer models.

This first series of experiments clearly indicates that repetition helps learning. On three different
tasks, for a fixed training budget, models trained on a small data budget, i.e. fewer distinct examples
repeated several times, achieve much better performance than models trained from examples used
only once or repeated a small number of times, as is customary in most recent works on language
models (Muennighoff et al., 2023).

This phenomenon applies in different ways for different problems. On the GCD task, small DB
allow for faster learning and higher accuracy. For modular multiplication, we observe emergence:
a task inaccessible to models trained with large or unlimited DB is learned with small DB. Finally,
for eigenvalues, small DB allow for better model scaling: tasks that normally require 8 or 12-layer
transformers are learned by 4-layer models. But in all cases, the repetition achieved by small DB
prove beneficial: smaller data budgets with repetition can elicit “emergent learning”.

5 TWO-SET TRAINING

The previous experiments demonstrate that for a fixed training budget, the optimal data budget is
not the largest possible, as commonly practiced. On all three tasks, training from a set of distinct
examples an order of magnitude smaller than the training budget, repeated many times, improves
performance. We now turn to a different but related problem: how to best use a given data budget?

As we have seen, repeated examples help the model learn. Training from a small subset of the
available data should therefore be beneficial, since it would increase repetition. However, models
trained from very small datasets will eventually overfit their data, causing their accuracy to saturate.
Yet, this can be prevented by increasing the size of the training set. To address these contradictory
requirements – a small train set to increase repetition vs a large train set to avoid overfitting – we
propose two-set training. We randomly split the training sample into a small set of examples that
will be repeated many times during training, and a large set of examples that will be seen a few times
only. By doing so, we hope that the small set fosters learning, while the large set prevents overfit.

Specifically, for a data budget of N distinct examples, we randomly select S < N examples that
will form the repeated set – in practice, we shuffle the training set, and assign the S first examples to
the repeated set. During training, examples are selected from the repeated set with probability p, and
from the N − S others with probability (1− p). As a result, a model trained with a training budget
of T will see pT examples from the repeated set, repeated pT/S times on average, while the N −S
remaining examples will be repeated (1− p)T/(N − S) times on average. The repetition levels in
both samples can be adjusted by choosing the values of S and p. Note that the limiting cases p = 0
and p = 1 correspond to one-set training, with a data budget of N −S and S examples respectively.

On the GCD problem, models trained on a single set, with a data budget of 100 million examples
and a training budget of 600 million, predict 27 GCD on average (Figure 2 (Left)). Experimenting
with two-set training for different values of S and p, we observe that models trained on a repeated
set of 250, 000 examples or less, with a probability p of 0.25 or 0.5, predict more than 62 GCD on
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Figure 3: Two-set training for the GCD problem: Number of correctly predicted GCD as a function of S
and p. Each measurement is the average of 6 models. Data budget 100M, training budget 600M. Note the high
performance for very small sets S of sizes 50, 75, 100, 150 and 200 thousand, with p = 0.25 and p = 0.5.

average, a much better performance than their one-set counterparts. For S = 50, 000 and p = 0.25,
models predict 69 GCD on average, a better performance than the best models trained on a single
set, with a larger training budget of 1 billion examples. For these parameters, the 50k examples in
the small set are repeated 3, 000 times on average, and the rest of the training examples 4.5 times on
average. On a 100M data budget, two-set training clearly outperforms single set training.

These results can be extended to unlimited training sets, by creating a fixed set of S examples,
selected with probability p, and generating (unlimited) random examples with probability 1 − p.
The best choices of p and S are roughly the same as with a DB of 100M (Figure 8 in Appendix C).
In particular, with p = 0.25 and S = 50, 000, two-set training on unlimited data achieves an average
performance of 67 GCD on 6 models, a spectacular improvement over models trained on unlimited
(single) datasets, which predict 25 GCD on average.

Therefore, for large and unlimited data budgets, frequent repetition of a tiny number of random
examples, lost in a sea of single-use examples, unlocks surprising performance gains. Note the
synergistic nature of this effect: training on the tiny sample alone (with large repetition), or one-
set training on the same data budget, result in much lower performance than what two-set training
provides by mixing them together (see also Appendix D.2: during training, mixing repeated and
single-use examples into the same mini-batches is required for two-set training to happen).

We observe similar behavior for smaller data budgets. Figure 4 compares single and two-set training
performance, for data budgets of 10, 25 and 50 million example, and training budgets up to 600M.
For a given training budget, two-set training always achieves better performance than single-set
training, and the benefit of two-set training increases as DB get larger. On this problem, two-set
training accelerates learning. With large enough TB, single-set models sometimes catch up with
the performance of their two-set counterparts with large enough TB (for 400M TB for 10M models,
600M for 25M, 1B TB for 50M models, see Figure 9, Appendix C). Still, most two-set models retain
a marginal advantage3 over models trained on a single set.

For modular multiplication, experiments with large and infinite data budget, for a training budget
of 600M (Figure 5), indicate that larger repeated samples and smaller repetition, are needed, com-
pared to GCD. With a DB of 100M, S should be selected between 2.5 and 10 million examples,
and p between 0.25 and 0.5, for a small set repetition between 30 and 60 (vs 3000 for the GCD
experiments). For unlimited DB, S = 25M and 0.75 ≤ p ≤ 0.9, a repetition between 18 and 22,
seem optimal. Note also that in this problem, the choice of parameters S and p is more sentitive:
only a few combinations allow for good performance (empirically, constant ratio between repetition
on the small and large sample (p(N−S)

(1−p)S ≈ 10).

However, with a careful choice of p and S, two-set training achieves better performance than single
set training for all data budgets from 25M to unlimited. Table 2 presents the proportion of models,
trained on single and two sets, that learn to compute multiplication modulo 67, after a training

3and note that S and p might no longer be optimal for this larger training budget
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Figure 4: Two-set versus single-set training for the GCD problem: Number of correct GCD as a function of
training budget (up to 600M) for data budgets of 10M (left), 25M (center), and 50M (right). Two-set training
with p = 0.25 and S = 50, 000 (top 6 curves) versus single-set training (lower 6 curves). See Figure 9 in
Appendix C for extended TB with DB of 50M.
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Figure 5: Two-set training for Modular Multiplication: Accuracy as a function of small set size S and p,
each averaged over 6 models. Data budget 100M (left) and unlimited (right), training budget 600M. Note: the
bottom right of the left graph correspond to single-set 10M-models: for p = 0.1 and S = 10M, the small and
large set are selected with the same probability.

budget of 600M. With two set training, 50 to 58% of the models learn multiplication with 99%
accuracy. With single set training, 24 to 28% learn for DB 25 and 50M, and none for larger DB. In
these experiments, two-set training improves accuracy for all data budgets. However, its impact on
learning speed (observed for GCD) is less conclusive (Table 7 in Appendix C).

Two sets Single set
Data budget p / S > 50% > 99% > 50% > 99%

25M 0.1 / 1M 50 50 52 24
50M 0.25 / 2.5M 90 50 88 28
100M 0.5 / 10M 88 54 0 0
Unlimited 0.25 / 2.5M 92 58 0 0

Table 2: Two-set training on modular multiplication. Percentage of models (different random initializa-
tions) learning to compute modular multiplication with 50 and 99% accuracy. Training budget: 600M. For DB
25M and 50M, 10 models with two-set training, and 25 with single set training. For DB 100M and unlimited,
26 models with two-set training, and 30 with single set training.

Finally, on the eigenvalue problem for 10 × 10 matrices, we train models with an unlimited data
budget and a training budget of 500M. With these parameters, models trained on single sets do not
learn (see Section 4), but two-set training achieves significant accuracy. For p = 0.25 we run 15
models each for 7 different sizes of S between 15, 000 and 960, 000. 9 models out of 105 learn to
predict with more than 60% accuracy (Table 3). We see that injecting small, frequently repeated
random subsets into the training data causes emergence of learning, where uniform repetition fails!
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Note, again, the synergistic effect: neither training on the small set alone, nor training with unlimited
data budget in one epoch would allow any learning at all - it is the combination of both that makes
two-set training powerful!

Two sets Single set
S (thousands) 960 480 240 120 60 30 15

#models learning with 60% accuracy 3/15 1/15 1/15 3/15 0/15 0/15 1/15 0/5

Table 3: Two-set training on eigenvalues. Number of models (different random initializations) learning to
compute eigenvalues with over 60% accuracy. Training budget: 500M. Larger small sets achieve better results,
single-set learning does not learn.

Overall, our experiments indicate that, for a given data budget, two-set training – repeating a small
set of randomly selected during training – greatly improves model performance, either by accelerat-
ing learning (GCD), or increasing model accuracy (modular multiplication, eigenvalues). The size of
the repeated set appears to be problem dependent: small for GCD, larger for modular multiplication
and eigenvalues.

6 ABLATIONS AND VARIATIONS

In this section, we discuss possible improvements to two-set training. Detailed ablation results can
be found in Appendix D.

Curating the repeated sample. In two-set training, repeated examples are randomly sampled
from the available training data. We now experiment with a possible improvement: selecting the
repeated examples. Perhaps what really matters is the repetition of a particular class of “informa-
tive” examples, as in curriculum learning. The GCD problem is particularly well suited for this type
of investigation. Charton (2024) showed that increasing the proportion of small integers, or over-
sampling the tails of the distribution of GCD in the training set (Prob(GCD = k) ∼ 1

k2 ), greatly
improved model performance.

We experimented with three curation strategies for the repeated set: log-uniform and uniform distri-
butions of operands and input, shown to be beneficial by Charton, “easy sets” featuring small input
and outcomes, and “heavy tail sets” featuring large GCD. For each setting, we trained 5 models with
four “good choices” of S and p (Table 4), a data budget of 100M and training budget of 600M.

S / p 50k / 0.25 150k / 0.25 150k / 0.5 500K / 0.5

Log-uniform inputs 55.9 59.4 57.9 62.0
Uniform GCD 55.9 54.5 41.9 54.9
Log-uniform inputs and GCD 62.2 71.7 66.5 72.6

Small inputs (1-1000) 61.2 67.5 62.6 62.9
GCD 1- 10 59.9 63.8 55.8 62.3
GCD products of 2 and 5 54.2 39.8 40.7 30.1

All GCD but 1 65.4 63.7 56.7 58.1
All GCD but 1,2,3 66.7 58.4 62.8 58.2
All GCD but 1,2,3,4,5 66.5 60.6 64.9 56.3

Baseline (two-set training from random examples) 69.4 61.9 65.9 59.4

Table 4: GCD problem: cherry-picking the repeated set. Number of GCD predicted, average of 5 models
(3 for baseline), training budget 600M. bold: more than 65 GCD predicted.

These strategies do not achieve better results than the baseline two-set training with a random re-
peated set. A slight improvement is observed when repeated samples are selected from a log-uniform
input and GCD (for which Charton (2024) reports 91 correct GCD for single-set training). Over-
all, we find that repeated set curation has, at best, a marginal impact on performance. This is a
counter-intuitive but significant result.

Shifting the repeated sample. In the GCD experiments, with p = 0.25 and S = 50, 000, repeated
examples are seen 3000 times for a training budget of 600M. Since this large repetition may lead

9
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to overfit, we experimented with “shifting samples”: replacing the repeated examples after a k
repetitions. In Appendix D.3, we experiment with k from 10 to 100, and observe that this has no
impact on model performance.

Batching matters. All models in this paper are trained on mini-batches of 64 examples. In two-set
training, batches mix examples from the repeated and the large set. We experimented with batches
that only use samples from one set at a time. For instance, when training with p = 0.25, 25% of
batches would use repeated examples only. For both GCD and modular multiplication, we observe
that models trained on batches from one sample only fail to learn. This indicates that mixing repeated
and non-repeated examples is required for two-set training to happen (see also Appendix D.2).

From two to many-set training. Two-set training effectively makes the training sample non
identically-distributed: examples from the repeated sample occur with a larger probability. We
can generalize this method by introducing a probability distribution P on the training examples,
such that for any i ≤ N , P (i) is the probability that the i-th example is selected during training.
In two-set training, P is a step function distribution with two values: p/S and (1 − p)/(N − S),
we now replace it with a discrete exponential distribution P (i) ∼ βe−βi/N , with β > 0, suitably
normalized. Table 5 presents the performance of models trained on the GCD problem with such
“continuous” data distributions, indicating that our observations on two-set training generalize to
such data sampling techniques. More details, and results on modular multiplication, can be found in
Appendix D.4. These results suggests that our observations on two-set training can be extended to a
wider class of methods, that use non-uniform sampling over a randomly ordered training set.

Seff 25k 50k 100k 250k 500k 1M 1.5M 2M 2.5M 3M 3.5M 4M 5M
β 1152 576 288 115 58 29 19 14 11.5 9.6 8.2 7.2 5.8

GCD 19 21 29 38 46 55 56 57 61 65 63 62 56

Table 5: GCD for different exponential distributions. Correctly predicted GCD, best of 5 models, trained
on 600 million examples.

7 DISCUSSION

Our findings indicate that repetition, and possibly memorization, fosters learning. They suggest that
models should be trained on datasets of repeated, but not necessarily curated examples, and that
amplifying a randomly chosen subset of the training data may bring additional learning benefits.
Two-set training is easy to implement, and applicable to a large variety of situations. Its extension
to smooth distributions allows for finer control over repetition levels in the training sets. One fea-
ture of our tasks - which is the case in most reasoning tasks in AI4Math settings - is that they are
deterministic : there is only one correct solution. For this community, our insights are of imme-
diate relevance, as they give prescriptive advice on how to utilize training data (iterate rather than
one-pass, use two-set training).

We can contemplate how our observations carry over to large language models (LLM) trained on
natural data. An important factor is the presence of repetition in the training data. We believe
that pre-training corpora – text scraped from the internet, public code repositories – feature many
repeated examples (quotes, copied passages, duplicated functions), and that the phenomena we de-
scribe are already at work in LLMs during the pre-training stage. Fine-tuning corpora, on the other
hand, are often curated and feature less repetition. We believe two-set training, and associated meth-
ods, may prove beneficial for fine-tuning LLMs.

Our observations on two-set training are thought-provoking and deserve further study. The fact
that the repeated set can be chosen at random, and that curating repeated examples bring little to
no improvement in performance suggest that what matters, here, is seeing the exact same example
several times. The particulars of the example, its informational value, interest, whether it is typical
or exceptional, seem to have little impact. This is all the more curious as, even in the two-set setting,
repetition occurs at a very low frequency. In the two-set GCD experiments, repeated examples were
seen 3000 times over a training budget of 600 million: once every 200,000 examples on average. The
frequency is even lower for modular multiplication. Besides, the repeated examples are mixed with
non-repeated examples into mini-batches, and our experiments indicate that this mixing is required
for the two-set effect to appear. Still, this very infrequent repetition, and mini-batch mixing, brings
a significant boost in model performance.
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APPENDIX

A ADDITIONAL DISCUSSION

Our empirical work studies the role of repetition in learning. In our two-set setting, a select subset of
the data is presented to the learner at increased frequency. This is reminiscent of continual learning,
where, to avoid catastrophic forgetting, certain examples from a previous task are repeated again.
However, it is important to point out that continual learning refers to a setting with distribution
shift: the learner is supposed to adjust to new distributions in the input - and to avoid catastrophic
forgetting of earlier tasks. This is an extremely interesting research area - but it is not what we study.
In our setting the distribution is always the same, both for repeated examples (Section 4) and for the
new phenomenon of two-set training (Section 5). Both the more frequently sampled and the less
frequent larger set come from exactly the same underlying distribution - which is what makes this
effect so surprising.

Our work also resembles curriculum learning, where training data is presented in a particular order
(usually from easy to hard). Our work is different from curriculum learning: We show that randomly
selecting a small subset of the training data, and repeating them more often can significantly enhance
performance or even overcome learning bottlenecks. We discover a synergistic effect: neither train-
ing on the small set alone, nor training with unlimited data budget in one epoch would allow any
learning at all - it is the combination of both that makes two-set training powerful! The fact that the
repeated set can be chosen at random, and that curating repeated examples brings no improvement
in performance sets it aside from curriculum learning and suggest that what matters, here, is seeing
the exact same example several times.

Can the two-step procedure be performed by showing only the repeated samples in a first learning
phase, and then moving on to the more diverse samples in a second phase - thus placing it icloser
to the realm of curriculum learning? We have performed variants of this experiment (see Appendix
D.6) to provide a negative answer to this question.

Very few theoretical works have tried to study repeated examples in the learning process. Indeed,
the fact that our observed two-set effect disappears when data is presented in mono-batches (either
from the frequent set or the larger set), means that the mechanisms at play must involve optimization.
Noteworthy are two recent works from Dandi et al. (2024) and Arnaboldi et al. (2024) in the special
case of the the multi-index model for two-layer nets. There, it is shown that batches need to be seen
more than once for beneficial symmetry breaking - and ultimately learning - to happen. Our mono-
batch ablation shows that this cannot explain what we observe in our case, however. First, in our
case, no two batches are the same, as data gets reshuffled. However, mono-batches are more likely
to resemble each other when they come from the smaller, frequent set, compared to the multi-batch
case where by design most examples in each batch will never be seen again (in the case of unlimited
data at least). This means that our mono-batch case should resemble the scenario in Arnaboldi et al.
(2024) more - yet it fails to show the observed effect.

This raises several tantalizing questions: how does the transformer “figure” that a given example, lost
in a mini-batch, has been seen, several hundred thousand examples before? Our research suggests
that there exists a qualitative difference between “déjà vu” and “jamais vu” examples – data points
the model has already seen, or never seen. How do transformers, and perhaps other architectures,
identify, and then process, “déjà vu” examples? To our knowledge, this aspect was overlooked in
many prior works on model interpretation. We believe our findings point to a number of interesting
questions about memorization in language models. This is an intriguing subject for further study.

B LEARNING DYNAMICS AND OVERFITTING IN MATH TRANSFORMERS

To gain some understanding on the relation between repetition and overfitting, we delve deeper into
the typical training dynamics in our mathematics problems with transformers. We study learning
curves to shed light on the interplay between overfitting and relative size of data versus training
budget. We focus on learning to compute the eigenvalues of 5 × 5 symmetric matrices (Charton,
2022) for illustrative purposes, but the observed dynamics are common to all our problems (e.g. see
Figure 2 (Right)). Figure 6 illustrates training of 10 models on a data budget of 200, 000 samples,
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with increasing training budget (up to 30 million) resulting in increased repetition. Learning curves
exhibit a step shape, which gives rise to three phases:

• Initial phase: training and test loss decrease (up to TB of about 2M), accuracy remains low.
• Learning phase: training and test loss drop suddenly, accuracy increases steeply from a

few percents to 90% (for the next 1-3M of TB). This phase is absent for those models that
overfit too early (dark curves in Figure 6).

• Saturation phase: the model learns the remaining accuracy.
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Figure 6: Learning curves for eigenvalue computation of 5x5 matrices: Accuracy, train and test loss, for
10 models trained on a data budget of 200, 000, as a function of training budget (TB). The curves represent
different seeds. Note the initial phase, common to all curves, up to a sharp transition of test loss at ∼ 2M TB.
At this point the dark curves begin to overfit (test loss increases) while the light curves undergo another drop in
test loss that initiates the learning phase.

Recall that we say that overfitting occurs when the test loss starts increasing while training loss
continues decreasing. Here we see that for all models there is an initial flattening of test loss after ∼
2M training examples (about 10 repetitions of the data budget4). Then, some models start overfitting
already during the initial phase (the 6 dark colored curves in Figure 6), and for those the learning
phase never happens and accuracy plateaus at about 2%. On the other hand, for the other 4 models
the learning phase begins before overfitting sets in (the pale colored curves in Figure 6), the task is
learned in full (to over 95% accuracy), and overfitting is delayed until after that point. Eventually,
these four models start to overfit at training budgets of about 10 million examples, and a slight drop
in accuracy is observed in some models (but not all), after 15 million examples (75 epochs on the
training set). We observe similar effects for different data budgets.

These experiments illustrate the relation between overfitting and learning. Once a model overfits, it
stops learning, accuracy saturates, and eventually sometimes decreases. On the other hand, once a
model trained on limited data starts learning, overfitting is delayed by many more epochs.

C ADDITIONAL FIGURES AND EXPERIMENTS FOR MODULAR
MULTIPLICATION

Figure 7 provides learning curves (test error) for modular multiplication, illustrating step-like learn-
ing, which motivates us to use the number of models achieving 50 + % resp. 99% accuracy as our
performance metric.

Figures 8 and 9 as well as Tables 6 and 7 provide additional results for modular multiplication in the
two-set setting.

4Our runs on a range of small data budgets (up to 250 thousand) show similar initial step shape of test loss
at 10-12 repetitions.
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Figure 7: Learning curves for modular multiplication: Test accuracy for different model initializations.
We see a clear step-like learning curve with a plateau just above 50% accuracy before jumping to near perfect
accuracy.

50 75 100 150 200 250 500 1000 2500 5000 10000 25000
Repeated set size (thousands)

0.9

0.75

0.5

0.25

0.1

R
ep

ea
te

d 
se

t p
ro

ba
bi

lit
y

31 32 32 33 34 39 38 40 46 55 55 56

43 48 51 54 54 55 54 53 54 58 59 47

57 62 65 65 61 60 56 58 61 61 50 28

67 62 56 56 56 57 57 57 47 31 25 24

54 56 56 56 55 55 40 27 25 25 21 24

Figure 8: Two-set training for the GCD problem for ∞-models: Number of correctly predicted GCD as
a function of small set size S and p, each averaged over 6 models. Data budget and training budget equal
600M (∞-models). Note the high performance for very small sets S of sizes between 50 and 200 thousand,
with p = 0.25 and p = 0.5 compared to “standard” training with the same data budget, predicting 25 GCD
correctly (see Section 4 ).

D ABLATION RESULTS

D.1 CURATING THE SMALL SAMPLE

In two-set training, the examples in the small set are chosen at random from the overall training set.
In this section, we experiment with curating the small set, by selecting the examples that will be
repeated during training. As in curriculum learning, selecting easier or more informative examples
may help improve performance. Perhaps when increasing the frequency of our small random set,
what really matters is the repetition of some particular examples, rather than all? The GCD problem
is particularly well suited for this type of investigation, due to the inverse polynomial distribution
of outcomes (Prob(GCD = k) ∼ 1

k2 ). On this problem, we leverage the findings of Charton
(2024), who observes that ∞-models trained from log-uniform distributions of inputs and/or out-
comes (Prob(GCD = k) ∼ 1

k ) learn better.

We experiment with four settings of |S| and p, which correspond to the best results in our previ-
ous experiments (Section 5): 50, 000 and 150, 000 with p = 0.25 and 150, 000 and 500, 000 with
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Figure 9: Two-set versus single-set training for the GCD problem: Number of correctly predicted (test)
GCD as a function of training budget (up to 1B) and data budget of 50M Two-set training with p = 0.25 and
|S| = 50, 000 (top 6 curves) versus single-set training (lower 6 curves). With enough TB, single-set training
achieves comparable performance with two-set training.

(p, S)/ Data budget 25M 50M 100M ∞
> 50% 99% > 50% 99% > 50% 99% > 50% 99%

(0.1, 500K) 2/10 1/10 6/10 3/10 20/26 10/26 25/26 8/26
(0.1, 1M) 5/10 5/10 8/10 4/10 22/26 6/26 0/26 0/26

(0.25, 2.5M) 2/10 1/10 9/10 5/10 20/26 9/26 24/26 15/26
(0.25, 5M) 3/10 1/10 9/10 4/10 24/26 10/26 5/26 0/26
(0.5, 10M) 3/10 3/10 8/10 5/10 23/26 14/26 23/26 12/26

(0.75, 25M) - - - - 23/26 10/26 20/26 14/26

Single set 13/25 6/25 22/25 7/25 0/30 0/30 0/30 0/30

Table 6: Two-set training on modular multiplication. For a training budget of 600M we show the number
of models (random initializations) that achieve 50 +% and 90% accuracy for several data budgets and sizes of
the more frequent sets S, and probabilities p. The baseline of single-set traning from Section 4 is given in the
last line. Similar results for training budgets of 300M and 450M are given in Table 7.

Data budget 25M Data budget 50M
> 50% 99% > 50% 99%

300M 450M 600M 300M 450M 600M 300M 450M 600M 300M 450M 600M

(0.1, 500K) 1 2 2 0 1 1 4 5 6 0 1 3
(0.1, 1M) 1 5 5 0 3 5 3 6 8 0 1 4

(0.25, 2.5M) 2 2 2 0 1 1 5 9 9 0 1 5
(0.25, 5M) 3 3 3 0 0 1 4 9 9 0 1 4
(0.5, 10M) 2 3 3 0 2 3 7 7 8 0 2 5

Single set (/10) 3.6 4.8 5.2 0.4 1.2 2.4 2.4 7.6 8.8 0 0.8 2.8
Single set (/25) 9/25 12/25 13/25 1/25 3/25 6/25 6/25 19/25 22/25 0/25 2/25 7/25

Table 7: Two-set training on modular multiplication. For training budgets of 300M, 450M and 600M we
show the number of models out of 10 (random initializations) that achieve 50 + % and 90% accuracy for data
budgets 25M and 50M, and sizes of the more frequent sets S, and probabilities p. The baseline of single-set
training is given in the last line, out of 25 models. The next to last line renormalizes this to out of 10.

p = 0.5, for a data budget of 100 million and training budget of 600M. For every setting, we
train 5 models with the following three choices for S: log-uniform inputs, uniform GCD or both
log-uniform inputs and GCD. We use two-set training with a random small set S as our baseline.
Table 8 shows that the performance of models using log-uniform inputs, or uniform GCD, is slightly
lower than the baseline. Models trained on log-uniform inputs and GCD achieve slightly better per-
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formance, but we note that models trained on the small set distribution only (p = 1) would predict
91 GCD. On these three distributions, curating the small set proves disappointing.

To summarize our first observations here: Prior work (Charton, 2024) on solving GCD with trans-
formers shows that a form of curriculum learning/data curation, namely training on log uniform
operands, does improve performance. The best performance of training with log-uniform operands
is about the same as our proposed two sample training. One cannot improve performance by mixing
the two, i.e. by curating the small, more frequently seen subset, to have log uniform operands.

In curriculum learning fashion, we also experiment with small sets S of a few “easier cases”: small
inputs (from 1 to 1000), GCD that are products of 2 and 5, the easiest to learn in base 1000 (Charton,
2024), and GCD between 1 and 10 (the most common outcomes). We observe that while models
trained with small inputs in S perform on par with the baseline, models trained on “easy GCD”
perform slightly worse.

Finally, inspired by arguments that rare tail outcomes might require particular attention for learning
(Dohmatob et al., 2024), we experiment with small sets composed of examples from the tail of the
training distribution, namely, large GCD. Charton (2024) observes that these are both harder to learn,
and less common in the training set. Specifically, we create S with examples with GCD larger than
k (for k ranging from 1 to 5). While experiments achieve the best accuracies compared to the other
curation schemes we proposed, and values of k equal to 2 and 3 train slightly faster, they remain a
little below the baseline both in accuracy and learning speed.

Training budget
50k / 0.25 150k / 0.25 150k / 0.5 500K / 0.5 for 60 GCD (M)

Log-uniform inputs 55.9 59.4 57.9 62.0 332
Uniform GCD 55.9 54.5 41.9 54.9 -
Log-uniform inputs and GCD 62.2 71.7 66.5 72.6 88

Small inputs (1-1000) 61.2 67.5 62.6 62.9 247
GCD 1- 10 59.9 63.8 55.8 62.3 401
GCD products of 2 and 5 54.2 39.8 40.7 30.1 548

All GCD but 1 65.4 63.7 56.7 58.1 405
All GCD but 1,2 66.8 60.0 62.8 56.9 326
All GCD but 1,2,3 66.7 58.4 62.8 58.2 327
All GCD but 1,2,3,4 65.5 60.3 62.8 56.9 379
All GCD but 1,2,3,4,5 66.5 60.6 64.9 56.3 376

GCD product of 2, 3, and 5 66.1 59.4 59.8 47.3 359
Prime GCD 64.9 62.5 58.8 64.7 422
GCD divisible by primes ≥ 11 60.1 54.4 35.7 42.7 569

Baseline (two-set training) 69.4 61.9 65.9 59.4 373

Table 8: GCD problem: cherry-picking the small set. (Left) Number of (test) GCD predicted for training
budget of 600 million examples, average of 5 models (3 models for baseline). bold: more than 65 GCD
predicted. (Right) Training budget needed to predict 60 GCD, fastest of 20 models (of 12 models for baseline).

Overall, these experiments suggest that in two-set training, random selection of the small set may be
optimal. Selecting a small set of easy cases (GCD multiple of 2 and 5), and examples that are known
to help training (log-uniform inputs) does not help, and limiting the small set to edge cases from the
tail of the outcome distribution brings no improvement to performance. This is a counter-intuitive,
but significant result.

D.2 BATCHING IN TWO-SET TRAINING: MIXED BATCHES ARE NEEDED

In all experiments, during training, the model computes gradients over minibatches of 64 examples.
In two-set training, minibatches mix examples from the small and large set. We experimented with
using “mono-batches” that use samples from one set at a time. For instance, when training with
p = 0.25, 25% of minibatches would use examples from the small set (of size S) only, and 75%
would only use those from its complement.
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On the GCD problem, we rerun the most successful two-set experiments (Section 5) with “mono-
batches” for S = 50K, 100K and 250K, and p = 0.25 and 0.5. For training budgets of 600M
and data budget of 100M examples, the models trained on mixed batches predicted 62 to 69 GCD
(Section 5). With “mono-batches”, the number of correctly predicted GCD never rises above 15.
For modular multiplication, we experimented with the following (S, p) pairs (S in millions):
(0.5, 0.1), (2.5, 0.25) and (10, 0.5) with data budget 100M and training budget 600M. With these
settings, mixed-batch models achieve an average accuracy of 67% or more (Section 5). With “mono-
batches”, none of the models manages to learn (accuracy around 4%). This indicates that mixed
batching of samples from each of the two sets plays a central role for the two-set effect.

D.3 SHIFTING THE SMALL SET

In these experiments, we study, in two-set training, the possible impact of overfitting on the small
set, by refreshing the small set with fresh examples periodically. This mimics certain aspects of
curriculum learning, where the training set is changed over time. On the GCD experiments, with
a data budget of 100 million, a training budget of 600 million, we shift the small set as training
proceeds, so that examples in the small set are seen k times on average. At the beginning of training,
the small set is the S first elements in the train set. After training on kS/p examples, examples in
the small set have been seen k times, and the small set is shifted to elements S + 1 to 2S of the
training set.

Table 9 provides performances for two-set training with shift, for different values of p, S and k, for a
data budget of 100 million, and a training budget of 600 million. It is interesting to note that shifting
brings no improvement to 2-set training.

S 250,000 500,000 1,000,000
k 10 25 50 100 10 25 50 100 10 25 50 100

p = 1.0 37 22 21 22 37 38 30 31 55 45 37 30
p = 0.9 47 38 38 38 55 47 43 39 55 48 47 47
p = 0.75 56 38 54 48 56 55 49 55 60 56 55 56
p = 0.5 61 56 56 58 61 60 56 58 64 63 63 61
p = 0.25 56 62 61 63 49 63 63 61 49 63 62 63

Table 9: Shifted two-set training. GCD predicted, average of 3 models, trained on a budget of 600 millions,
and a data budget of 100 million, for different values of S, p and k.

D.4 FROM TWO-SET TO MANY-SET TRAINING

Two-set training with a small randomly selected subset S amounts to assigning different probabilities
to elements in the training set. For a randomly shuffled training set of size N , two-set training
amounts to selecting the first S elements with probability p/S (with replacement) and the N−S last
with probability (1− p)/(N −S), a step-function distribution over {1, . . . , N}. We now generalize
this approach by introducing a probability law P such that P (i) is the probability of selecting the
i-th example in the training set. Our motivation is to obtain a smooth, possibly more principled,
distribution than the step-function induced by the two-set approach. Pragmatically, a one-parameter
family of smooth distributions eliminates the need to tune both S and p. Lastly, we can study
whether a smooth decay in frequency might be even more beneficial than a non-continuous two-set
partition.

In this section, we consider a discrete exponential distribution:

P (i) ∼ βe−βi/N ,

with β > 0, suitably normalized5. If β tends to 0, P tends to the uniform distribution, and imple-
ments the single-set strategy of Section 4. As β becomes large, a small fraction of the full training

5The normalization factor is (1 − e−β)−1. In our calculations we will approximate it by 1 to simplify
computing Seff. For the range of β we consider, the resulting approximation error is negligible. In general,
for fixed p, to compute the size of the set S(p) of first elements that carry probability mass p, we can use
β ≈ − ln (1− p)N/|S(p)|.
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set is sampled (99% of the probability mass lies on the 4.6N/β first elements, 99.99% on the first
9.2N/β). For intermediate values of β, the model oversamples the first elements in the training set,
and undersamples the last: we have a continuous version of two-set training. To allow for compar-
ison with two-set training, we define Seff such that the first Seff examples in the training set jointly
are sampled with probability 25%. In this setting, 10% of the probability mass is on the 0.37Seff
first training examples, and 99% on the first 16Seff.

For GCD, we experiment with values of β ranging from 5.8 to 1152 (Seff from 25,000 to 5 million)6.
Table 5 shows that for our training budget of 600 million examples, the best model (Seff = 3M)
predicts 65 correct GCD, slightly less than what was achieved with two-set training (Section 5).

For modular multiplication, we need lower β (i.e larger Seff) for our training budget of 600M. We
report the number of models (out of 25 for each setting) that learn to accuracy above 50% and 95%
respectively (Table 10). Again we see that these results are comparable to two-set training (Section
5).

Seff 2.5M 5M 6M 8M 10M 12M 14M
β 11.5 5.8 4.8 3.6 2.9 2.4 2.1

# Models with 95% accuracy 2 9 11 13 7 4 3
# Models with 50% accuracy 4 16 25 22 17 13 6

Table 10: Modular multiplication with different exponential distributions. 25 models trained on 600
million examples.

We conclude that the benefits observed in two-set training do not pertain to the specific two-set par-
tition of the training set; rather, it seems that the core of the effect lies in the non-uniform sampling
frequency distribution over the (randomly ordered) training set, with a range of frequencies.

D.5 VARYING THE OPTIMIZER

Some effects observed in deep learning depend on the optimizer, with grokking being a prominent
example (Power et al., 2022). Here we provide experimental evidence to show that our findings hold
for a variety of optimizers and are thus robust and universal. We rerun models used for the GCD
problem with different optimizers. Specifically, we trained models to predict GCD, with a training
budget of 600 million examples, single and two-set training (with |S| = 50, 000 and p = 0.25), and
data budgets of 25 million, 50 million and unlimited. We considered four optimizer settings:

• Adam without dropout or weight decay,
• Adam with weight decay 0.01,
• Adam with dropout (0.1) in the feed-forward networks of the transformer,
• AdamW with weight decay 0.01.

Table 11 presents the best performance of 5 models for each configuration. On average, dropout has
an adverse effect on learning, but there is no clear benefit of using weight decay, or AdamW over
Adam. Importantly, the separation in performance between single-epoch unlimited training, training
on smaller data budgets with more repetitions and two-set training persists across optimizers: the
effects we present are robust.

D.6 TWO-SET AS CURRICULUM LEARNING?

Here we study whether the two-step procedure can be performed by showing only the repeated
samples in a first learning phase, and then moving on to the more diverse samples in a second phase.
We have run this experiment, for both the GCD and modular multiplication task. We first train the
model on a repeated set (or 50K and 2.5M examples respectively), for a fixed number of epochs,
then switch to a larger set (of 100M examples). For each task, we ran 50 experiments: 10 model
initializations, and 5 levels of repetition. All models overfit very rapidly, causing lower performance
than previously observed (8 correct GCD predicted, vs 13 in previous experiments). Once the model

6Note that for these values of β the distinction between DB 100M and unlimited DB becomes essentially
meaningless, as the tails of the training set are sampled exceedingly rarely.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

One-set Two-set
Unlimited 50M 25M Unlimited 50M 25M

Adam 28 49 61 70 72 63
Adam wd=0.01 30 56 61 70 70 66
AdamW wd=0.01 29 50 58 69 72 67
Adam dropout=0.1 24 40 49 66 66 66

Table 11: Modular multiplication with different optimizers. Correctly predicted GCD of the best (of 5)
models for various optimizers. The effects we observe are robust under change of optimizer, with a very small
degradation for dropout for both the unlimited (single-epoch) and limited DB.

switches to the large training set, catastrophic forgetting sets in, and the model seems to learn from
scratch. We note that this second phase is slightly delayed: overfitting seems to result in a bad
initialization of weights.

We believe these results are also explained by our observation on mini-batches (Section 6 and Ap-
pendix D.2). If repeated and non repeated examples are presented separately, i.e. not mixed into the
same mini-batches, the benefits of two-sample training disappear.
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