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Abstract

Paraphrase generation aims to produce high-
quality and diverse utterances of a given text.
Though state-of-the-art generation via the dif-
fusion model reconciles generation quality and
diversity, textual diffusion suffers from a trun-
cation issue that hinders efficiency and qual-
ity control. In this work, we propose Latent
Diffusion Paraphraser (LDP), a novel para-
phrase generation by modeling a controllable
diffusion process given a learned latent space.
LDP achieves superior generation efficiency
compared to its diffusion counterparts. It facili-
tates only input segments to enforce paraphrase
semantics, which further improves the results
without external features. Experiments show
that LDP achieves improved and diverse para-
phrase generation compared to baselines. Fur-
ther analysis shows that our method is also help-
ful to other similar text generations and domain
adaptations. Our code and data are available at
https://anonymous.4open.science/t/8F72 .

1 Introduction

Paraphrase generation aims to produce seman-
tically equivalent sentences in varied linguistic
forms. It’s versatile in generation tasks such as
text summarization (Zhou and Bhat, 2021; Dong
et al., 2017) and question answering (Buck et al.,
2017). Techniques such as data augmentations (Ku-
mar et al., 2019) also involve paraphrasing.
Though mainstream paradigms have achieved
success, they still struggle to balance generation
quality and diversity. The deterministic paradigm
via the encoder-decoder model (Vaswani et al.,
2017) focuses on high-quality generation instead
of diversity. Such paradigm is further improved in
diversity by enforcing explicit external features of
high-level semantics shared by paraphrases, such
as syntax (Sun et al., 2021; Bao et al., 2019) and
examplars (Yang et al., 2021; Chen et al., 2019).
However, external features for diversity are not al-
ways available. On the other hand, the variational

paradigm promotes diversity via variational autoen-
coders, which model the latent distribution shared
by diverse contextual representations (Bao et al.,
2019; Du et al., 2022). However, its sampling na-
ture given limited Gaussian distributions hinders
the generation quality of complex language pat-
terns despite additional keyword guidance (Chen
et al., 2022).

Recently, a novel generation paradigm via the
diffusion probabilistic model (Ho et al., 2020,
DPM) achieves state-of-the-art generation in both
quality and diversity for images and speech. The
DPM is the generation that morphs toward high-
quality data through numerous rounds of continu-
ous Markov transitions. Though DPM shares sim-
ilar stochasticity with the variational generation,
it does not fall short in quality. Additionally, its
neat interventions enable the continuous diffusion
transitions to meet the quality required by versa-
tile data generations (Nichol and Dhariwal, 2021),
which plays a vital role in diffusion implementation.
Therefore, we consider the diffusion paradigm to
fit paraphrase generation, where its controllability
also meets the intuition of possible intervention in
traditional paradigms.

Lately, Diffusion-LM (Li et al., 2022) and
D3PM (Austin et al., 2021) further cater to text gen-
eration via an additional discrete sampling called
‘rounding’ process. The ‘rounding’ essentially
bridges the continuous diffusion representations
with corresponding discrete tokens, as arbitrary
diffusion intervals are truncated to embeddings of
valid texts with additional decodings. However,
‘rounding’ introduces decoding overhead, thus hin-
dering high-efficiency generation by SOTA dif-
fusion implementations (Ye et al., 2023; Karras
et al., 2022). Furthermore, ‘rounding’ also intro-
duces truncation errors when arbitrary diffusion
intervals are rounded to specific token embeddings,
further hindering possible intervention. Therefore,
we consider circumventing the truncation issue to



improve efficiency and enable generation interven-
tions when paraphrasing via text diffusion.

In this work, we propose Latent Diffusion
Paraphraser (LDP), which can enforce semantics
by only input segments instead of external fea-
tures. LDP adopts the latent space from a given
encoder-decoder framework, which offers more ef-
ficacy than raw features for diffusion as suggested
by Rombach et al. (2022); Lovelace et al. (2022).
The off-the-shelf encoder and decoder bridge the
continuous diffusion process with corresponding
discrete texts, thus LDP prevents the intermediate
roundings required by diffusion on raw text, which
offers generation efficiency. Furthermore, remov-
ing roundings enables state-of-the-art control for
diffusion steps, where we further utilize only input
segments rather than external features to enforce
semantics for improvement. Experiments show
that LDP achieves better and faster paraphrase gen-
eration than its diffusion counterparts on various
datasets. Further analysis shows that our methods
are helpful to other similar text generations and
domain adaptation.

Our contributions can be summarized as follows:

* We propose a novel paraphrase generation
called LDP, which improves generation qual-
ity and diversity. LDP circumvents ‘rounding’
thus more efficient compared to its diffusion
counterparts.

* LDP can enforce paraphrase semantics with
only input segments instead of external fea-
tures, which further improves results.

* Analysis shows that our method is also helpful
in other similar text scenarios such as question
generation and domain adaptation.

2 Preliminary

2.1 Paraphrase Generation

Paraphrase refers to the diverse utterances that keep
the original semantic. Paraphrase generation is cru-
cial in several downstream natural language pro-
cessing (NLP) tasks. Though methods based on
deterministic seq2seq framework have achieved
success (Vaswani et al., 2017; Sancheti et al., 2022;
Yang et al., 2019), the nature of maximum likeli-
hood estimation hinders the generation diversity.
Some researchers promote generation diversity by
enforcing explicit external features of high-level
semantics shared by paraphrases such as syntac-
tic structures or exemplar syntax (Hosking et al.,

2022; Yang et al., 2022), which are not easily ac-
cessible. Others turn to variational generation to
fit the shared latent distribution of diverse textual
representations (Bowman et al., 2015; Du et al.,
2022). However, variational generations sacrifice
the quality for its diversity.

2.2 Latent Diffusion Models with Control

The diffusion probabilistic model (Ho et al., 2020,
DPM) is a Markov chain of variational recon-
struction of the original inputs 2y given data dis-
tribution ¢(z) from Gaussian-distributed noise.
Specifically, the DPM is trained by sampling
from a Markov noising process P(zi4+1|z¢) ~
N (zt41;v/1 = Bizt, BiL) scheduled by series of
noise scales 3; € (0,1), where the ; is considered
the standard deviation of the step-wise transition
distribution \/B; = oy at step ¢ € [0, T]. Rombach
et al. further proposes the latent diffusion where the
diffusion process is introduced to the latent space
of a well-trained encoder-decoder framework. The
latent diffusion achieves better results for video (He
et al., 2023), audio (Liu et al., 2023), and image
synthesis (Lai et al., 2023) since diffusion upon
encoded latent features proves more efficacy than
that upon raw representations.

Training a diffusion model follows the intuition
to fit reconstruction from noised z; to its original 2g
along a T-step Markov-Gaussian noising process:

L=Ewpm [l20(z,t) — 20l3], (D

where zy(+) is a reconstruction neural net given
noised z; and noising step t. Ho et al. (2020) further
deducted t-steps Markov-Gaussian noising process
into a one-step noising, leading to a closed form z;
by given noising step ¢:

2 = Vauzo + V1 — e, e ~ N(0,Z), (2)

where &y = II'_, (1—f3;), as t determines the noise
schedule j;.

The corresponding diffusion generation itera-
tively morph from pure Gaussian noise to valid
data by the learned reconstructor zg(-). That is,
given a fully optimized zy(-), the generation starts
from pure Gaussian sample z7 € R4 ~ A(0, I)
with a roughly reconstructed Zj, then iteratively
noise and denoise by diminishing noise scales de-
termined by ;. Such iteration can be conducted
via various diffusion sampling algorithms such as
ancestral sampling (Ho et al., 2020), DDIM sam-
pler (Song et al., 2020a), or ODE solvers(Lu et al.,
2022a,b).
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Figure 1: Overview of LDP. (a) Model architecture. LDP consists of an encoder-decoder framework (pink) and a
diffusion module (green). The encoder (E) and decoder (D) are frozen to bridge the continuous diffusion process
with corresponding discrete texts. (b) Detailed architecture of denoising model zy(-)

The iterative diffusion generation can be inter-
vened by plug-and-play modules with minor over-
heads, where the state-of-the-art modeling is Con-
trolNet (Zhang et al., 2023). ControlNet finetunes
a trainable copy of the DPM zj(-) to cater to ver-
satile generations while freezing the learned DPM
zp(+) to maintain harmless adaptation. The train-
able copy z(-) takes in additional control signals to
the DPM via zero-convolution layers, i.e., convolu-
tion layers initialized by zero weight and bias. The
controller inputs § are fused with original diffusion
steps by Eq 3:

211 =20(2, 1)+ 3)

zero_conv(zy(z; + zero_conv(6), t)),
where  enables vague yet versatile guidance such
as Canny edges and poses (Zhang et al., 2023).

3 Methodology

In this section, we detail Latent Diffusion
Paraphraser (LDP). LDP models the diffusion pro-
cess upon the latent space of a pretrained encoder-
decoder framework, where mere input segments
can further enforce paraphrase semantics for im-
provement.

3.1 Latent Diffusion Paraphraser

The overall pipeline is shown in Fig 1(a). LDP con-
sists of an encoder-decoder framework to provide
a learned latent space and a diffusion module. The
encoder and decoder with a learned latent space

bridge the continuous diffusion process with cor-
responding discrete texts once and for all at the
beginning and the end of the generation, instead of
step-wise rounding. Notably, LDP is compatible
with the mainstream encoder-decoder framework
as long as it bijectively maps the texts with the
corresponding latent representations.

To make life easier, we adopt BART (Lewis
et al., 2019) for illustration, which is an off-the-
shelf pretrained language model that encodes and
decodes arbitrary text with its corresponding la-
tent representation. Given a text sequence r =
{z1,29,...,2;}, the BART encoder E encodes
it into a d-dimentional latent representation z =
E(x), z € R4 for diffusion process, while the de-
coder D yields corresponding text sequence given
the latent representation y =~ D(z) = D(E(z)).
The model utilizes T5 relative positional embed-
dings (Raffel et al., 2020). Input features for diffu-
sion are normalized by training data features, where
we adopt BART encodings for mean and standard
deviation (Rombach et al., 2022). Concordantly,
the normalization is reversed before text decod-
ing. The encoder and decoder are frozen during
diffusion training, thus leaving the reconstruction
network zp(-) the only trainable parameters.

Given paraphrase pair (z, y), we then train the
end-to-end diffusion models for encoder latent
space, where the reconstruction network is parame-
terized by zg(z, ¢, t) with addition source encod-
ing ¢ = E(x) as input. zy(-) consists of N layers



of pre-layer norm transformer blocks. As shown in
Fig 1(b), each layer consists of a self-attention en-
coding for z;, followed by a cross-attention access
of the encoded source c and a time step interpo-
lation via a feedforward layer. The time step ¢ is
embedded as a d-dimensional vector, then its in-
terpolation is preprocessed by AdaLLN (Xu et al.,
2019; Peebles and Xie, 2022, adaptive layer norm)
instead of generic layer norm. AdalLN regresses
the layer-wise normalization scale and shifts from
the sum of time embedding and encoded input
features. The network layers are activated by
GeGLU (Shazeer, 2020) following SOTA trans-
former implementation (Raffel et al., 2020).

2g(+) is optimized by reconstruction loss in Eq 1.
We uniformly sample time step ¢ for arbitrary
noised representation z; by Eq 2, where ¢ deter-
mines the noise scale ; by noise schedule (Ho
et al., 2020; Nichol and Dhariwal, 2021). We also
apply sentence-level condition dropout during train-
ing to ensure the model’s unconditional language
generation, that is, to replace the source sentence
representation with trainable null tokens y5 with
probability p = 0.1.

The optimized zy(-) is implemented in SOTA
diffusion samplers (Song et al., 2020b; Lu et al.,
2022a,b), which will morph pure Gaussian noise
zr into the latent representation Zy of the given
source text. D further decodes 2, for text output.
Unlike generation with length prediction, LDP de-
termines the sequence length by end-of-sequence
label automatically.

3.2 Semantic Enforcing by Controller

zero-conv

Figure 2: Architecture of LDP controller, where cg.,
indicates the encoded keyword segments. We freeze the
learned zg(-), then finetune the replica 2 ()

Diffusion generation can introduce additional

controls via ControlNet (Zhang et al., 2023), which
is a step-wise plug-and-play controlling framework.
It has proved its efficacy by manipulating image
generation given vague constraints such as canny
edges or skeleton poses. By removing step-wise
rounding, LDP circumvents the truncation issue
against control signals, where we consider para-
phrase generation can harness input segments as
the vague constraints likewise.

Intuitively, the paraphrase can be enforced by
mere segments of vital semantics via a controller
for better generation. Therefore, we leverage input
tokens above a certain length as keywords, enforc-
ing the diffusion generation on given semantics to
improve paraphrase. Our implementation is shown
in Fig 2. We sample from the longest 15% to-
kens in a given sentence as keywords and mask the
remaining parts with placeholder <M> as semantic
segments. The semantic segments are then encoded
by the same encoder used by the original DPM for
controller inputs. The controller block zj(-) is a
trainable copy of the well-trained z4(-), while zp(-)
is frozen. The controller inputs are fused with orig-
inal diffusion generation by Eq 3 as:

20 =z9(2t, ¢, )+

zero_conv(zp(z + zero_conv(cgy), ¢, t)),

where cg,, refers to the encoded keyword segment.
During fine-tuning, we extract keyword segments
from reference paraphrases, while for inference,
we likewise harness the source input for keyword
segments.

4 Experiment

4.1 Setups

Implementation Details LDP is implemented
by N=12 layers of Transformer blocks with 12 at-
tention heads, where we adopt time step embed-
ding in the same way as the position embedding.
The maximum sequence length is 96. We adopt
BART-base (139M) for encoder and decoder, and
the diffusion dimension is 768, the same as BART
embedding dimension.

The diffusion process is defined by 7" = 1000,
with cosine schedule (Nichol and Dhariwal, 2021)
for B;. We train the model for up to 250k steps
with batch size 192. The learning rate for the DPM
training is 10~4, while for the controller fine-tuning
is 10~°. We apply DPM-Solver++(Lu et al., 2022b)
with 25 steps for diffusion sampling.



QQP Twitter

BLEUtT PPL| div4f iBScore? | BLEU?T PPL] div-41  iBScoret
Transformer 30.36 21498  58.01 33.53 31.06 299.47 5842 48.11
BART-FT 33.73 189.23  57.20 33.94 33.21 324.14  58.15 47.10
T5-GPVAE 33,50  200.13  64.15 25.89 27.01 129.86  58.59 52.82
BART-CVAE 32.21 194.81  55.40 47.02 32.24 325.71 59.77 44.37
DiffuSeq 24.13 397.68  86.41 49.11 9.83 1045.88  85.45 50.99
SegDiffuSeq 2432 40428 70.35 48.28 11.92 903.26  71.51 52.46
LDP(ours) 36.56  267.53 7322 50.57 18.75 466.46  93.32 59.72
LDP(ours) w/ES 3748  246.76  73.63 51.44 19.72 419.63  93.26 60.36

Table 1: Results on paraphrase generation. Baselines are implemented from the source code. The bold indicates the
top results, whereas the second best is underlined. LDP outperforms SOTA diffusion baselines. Overall, LDP with
enforced semantics (LDP w/ES) achieves the best iBScore.

We trained our model on 4x v100 and 4x
Nvidia 3090 GPUs for about 100 GPU-hours. LDP
has approximately 200M trainable parameters.

Datasets We adopt Quora Question
Pairs (QQP)!, and Twitter-URL (Twitter) (Lan
et al., 2017), which is popular amongst main-
stream paraphrase generations. The QQP data is
mass-extracted from Quora regarding the shared
utterance, while the Twitter data is annotated
from social media by semantic similarity. We
randomly divide both datasets into three parts: 10k
test sentences, 10k validation sentences, and the
remaining sentences were assigned to the training
set.

Baselines We first choose several mainstream
paraphrase generations as baselines, including
the deterministic paradigm by generic Trans-
former (Vaswani et al., 2017), fine-tuned BART-
base (BART-FT) (Lewis et al., 2019), and varia-
tional paradigm by T5-GPVAE (Du et al., 2022)
and BART-CVAE (Wang and Wan, 2019). We also
include state-of-the-art text generations via the dif-
fusion model, such as DiffuSeq (Gong et al., 2022)
and SeqDiffuSeq (Yuan et al., 2022), which are
versatile end-to-end diffusion modeling. DiffuSeq
applies minimum Bayes risk decoding (Kumar and
Byrne, 2004, MBR) with 10 candidates, while Se-
gDiffuSeq implements beam search for decoding
given an on-the-fly encoder-decoder framework
during rounding. For all beam search in the ex-
periments, we apply beam size as 4.

Metrics An ideal paraphrase must achieve both
generation quality and diversity. We validate
text quality by reference-oriented BLEU (Pap-
ineni et al., 2002) and perplexity (PPL) based
on GPT2 (Radford et al., 2019); The diversity

"https://www.kaggle.com/c/ quora-question-pairs

is measured by intra-diversity within each gen-
erated sentence, where we adopt distinct uni-
gram div-4 (Deshpande et al., 2019). Note that
reference-oriented metrics such as BLEU contra-
dict the intuition of generation diversity, we fi-
nally adopt iBScore (Dou et al., 2022) for overall
metric, which measures the semantics by cosine
similarity of BERT sentence embeddings, namely,
BERTScore (Zhang* et al., 2020), and punishes
source duplication by source BLEU:

iBScore = BERTScore — srcBLEU,

where we calculate BERTScore via RoBERTa-
large (Liu et al., 2019).

4.2 Main Results

Table 1 presents the main results of our experi-
ments. LDP achieves comparable or even superior
performance compared to mainstream baselines.
Moreover, it outperforms other diffusion counter-
parts on QQP and Twitter test sets. LDP achieves
the best performance amongst all baselines for the
QQP test set.

Specifically, LDP improves overall results (iB-
Score) especially diversity (div-4) compared to tra-
ditional end-to-end paradigms such as fine-tuned
BART, where we consider the diffusion module
significantly improves the generation diversity. On
the other hand, LDP also outperforms SOTA dif-
fusion baselines such as SeqDiffuSeq in terms of
BLEU and perplexity, where we consider the LDP
to implement a better bridge between the diffu-
sion process with the discrete texts than rounding.
Additionally, unlike the intuition to introduce ex-
ternal features, the original case output improves
greatly when we enforce the generation semantics
with mere a segment of source inputs as shown in
Table 2.



src how is black money gon na go off with no longer the use of same 500 and 1000 notes ?

origin paraphrase
enforcement
enforced parphrase

how does black money brought out to black money market or corruption?
<M> <M> black money <M> <M> <M> <M> <M> no longer <M> <M> <M> <M> <M> <M> 1000 <M> <M>
how does banning 500 and 1000 rupee notes solve black money problem?

Table 2: Enforce paraphrase semantics by input segments. We inject input segments masked by placeholder <M> of
‘black money’, ‘no longer’, and ‘1000’ via controller, which improves the paraphrase semantic.

Source  what should i do to improve my tennis?

what is the best way to improve your tennis
andtiv month?

what should i do to improve my tennis?
how can i increase tennis?

how can i improve my tennis?

how do i improve my tennis skills?

DiffuSeq

how can i improve tennis skills?
how can i get better in tennis?
how do i improve my tennis?
how do i improve tennis playing?
how can i improve tennis skills?

BART
-CVAE

what is the best way to be good at tennis?
what are the best ways to get better at tennis?
how can i improve to get better at tennis?

how can i improve my skills at professional
tennis?

how can i improve my skill for tennis playing?

LDP

Table 3: LDP generates more fluent and diverse para-
phrases compared to baselines. DiffuSeq even generates
errors like ‘andtiv’.

Overall, LDP achieves the best iBScore, indi-
cating a high-quality and diverse paraphrase gen-
eration. As shown in Table 3, we generate several
paraphrases by different latent sampling for gen-
erations. Though BART-CVAE and DiffuSeq are
SOTA generators for diversity, they still yield rel-
atively resemble paraphrases. LDP, on the other
hand, yields better and more diverse paraphrases.

QQP
Model BLEUT BERTScoret
DiffuSIA(Tan et al., 2023) 24.95 83.62
BG-DiffuSeq(Tang et al., 2023) 26.27 -
TESS(Mahabadi et al., 2023) 30.2 85.7
Dinoiser(Ye et al., 2023) 26.07 -
Diff-Glat(Qian et al., 2022) 29.86 -
SeqDiffuSeq(Yuan et al., 2022) 24.32 -
DiffuSeq(Gong et al., 2022) 24.13 83.65
LDP(ours) 36.56 87.51

Table 4: Results on QQP dataset compared with more
diffusion generation baselines

We additionally include more recent text dif-
fusion generators for comparison for QQP tests.
Table 4 shows that LDP achieves state-of-the-art
BLEU and BERTScore amongst the diffusion base-
lines.

S Analysis

5.1 Inference Efficiency

Timelapse (s)  Acceleration

Transformer 235 206.3 x

BART-FT 238 203.7 x
T5-GPVAE 3909 12.4%

BART-CVAE 252 192.4 %

DiffuSeq(DDIM 2000) 48480 1x

DiffuSeq(DDIM 500) 11530 4.2x
SeqDiffuSeq(DDIM 2000) 13851 3.5%

LDP(ours) 290 167.2x

Table 5: Inference overhead on QQP validation set (sec-
onds), where we set the DiffuSeq as the efficiency base-
line.

By eliminating the rounding process in text dif-
fusion models, LDP achieves improved efficiency.
We compare several baseline efficiencies under
their best-generation performance. As shown in
Table 5, LDP is 167.2 times faster than DiffuSeq
and 50 times faster than SeqDiffuSeq, where the
diffusion overhead takes up only 18% of the total
timelapse. Consequently, our approach achieves
a similar efficiency compared to that of the au-
toregressive baselines with only encoder-decoder
overheads.

Note that the rounding takes up considerable
computation resources for minimum Bayes risk
decoding, which limits the maximum dimension
supported by diffusion. Therefore, DiffuSeq is
modeled by only 128 dimensions. However, LDP
by 768 dimensions is still 10.4x faster than Dif-
fuSeq in a single-step text diffusion, excluding the
impact of the sampling acceleration. Thus, the
removal of the rounding, thereby eliminating the
expensive quality insurance like MBR, contributes
the efficiency with additional model dimensions
for generation quality.

5.2 Domain Adaptation by Controller

The semantic controller is also apt for domain
adaptation. We additionally adopt ChatGPT-
augmented paraphrase dataset (Vladimir Vorobev,
2023)(ChatGPT-Aug) as the novel data domain,
then sample 10k sentences as the test set. ChatGPT-



QQP  ChatGPT-Aug
BLEU?T BLEU?t
origin __ 36.56 10.16
+ES 3646  14.65 (+4.49)

Table 6: Domain adaptation by controller

Aug dataset consists of paraphrases generated by
ChatGPT (OpenAl, 2022) from an ensembled
dataset including QQP, SQuAD 2.0 (Rajpurkar
et al., 2016) and CNN news (See et al., 2017).

We first train the LDP on QQP data for 200k
steps, then fine-tune it with a controller for
ChatGPT-Aug data for 40k steps. The fine-tuning
follows the same routine for controller training,
where the ChatGPT-Aug data pairs are training
sources and references, with additional keywords
from its reference as controller inputs. Table 6
shows that adaptation by controller is viable, where
the fine-tuned controller substantially improves
ChatGPT-Aug test BLEU, with only minor loss
for the original test domain. Note that, the perfor-
mance of the original data domain is retained by in-
ference without controller inputs, which outstands
from traditional data adaptation by fine-tuning.

5.3 Ablation Study for Samplers

QQP
Model BLEU?T PPL| div-41  iBScoret
DiffuSeq(DDIM 2000) 24.13 397.68 86.41 49.11
DiffuSeq(DDIM 500) 0.17 119542 79.36 52.61
SeqDiffuSeq(DDIM 2000) 24.32 404.28  70.35 48.28
LDP(DDIM 500) 35.97 24526  74.16 50.35
LDP(DPM-solver 25) 36.56 267.53 73.22 50.57

Table 7: Ablation study for diffusion samplers.

The diffusion sampler plays an important role
during inference, thus we conduct an ablation study
on the diffusion sampler for comparison. Intu-
itively, the diffusion generation improves by more
steps given the same sampler. Due to the truncation
errors introduced by rounding, ODE-based sam-
plers are not apt for text diffusion with rounding,
such as DiffuSeq and SeqDiffuSeq. Thus, we addi-
tionally adopt DDIM sampler (Nichol and Dhari-
wal, 2021) with 500 and 200 sampling steps, which
is also adopted for diffusion baselines. Table 7
shows that LDP still outperforms the DiffuSeq and
SeqDiffuSeq given the same sampler setting. No-
tably, LDP still outperforms the baselines by fewer
sampling steps, which were expected to be inferior.

Quasar-T

Model BLEUT BERTScoret
DiffuSIA 17.12 62.19
BG-DiffuSeq 17.53 -
TESS 19.50 65.8
SeqDiffuSeq 17.5 -
DiffuSeq 17.31 61.23
LDP(ours) 18.77 73.23
+ES 19.50 73.40

Table 8: Results on Quasar-T compared to other diffu-
sion model baselines

5.4 Question Generation Ability

Considering the compatibility of LDP besides para-
phrasing, we additionally validate question gener-
ation, which aims to generate the exact question
by given issue descriptions. Question generation
focuses on semantics upon relatively flexible utter-
ance, thus we evaluate the BLEU and BERTScore
on Quasar-T tests (Dhingra et al., 2017).

As shown in Table 8, LDP with enforced seman-
tics also achieves a comparable BLEU score with
SOTA, TESS (Mahabadi et al., 2023), with much
improved BERTScore.

5.5 Diffusion Process during Generation
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Figure 3: BLEU variance with averaged sentence length
during LDP generation. The generation proceeds by
diminishing noise scale with increasing BLEU and di-
minishing generation length.

We track the diffusion sampling during the LDP
generation by our implementation in Figure 3,
where we force-decode the intermediate latent rep-
resentations as text. Intuitively, the BLEU score
increases along the sampling process, whereas the
generation length will decrease from the maximum
to the actual target length. We present a generation
process in Table 9, where the output semantics dras-
tically morph towards desiderata during the middle
of the generation process, with only minor modifi-
cations within a smaller noise scale, as indicated
by Figure 3.



source

What is the best way to lose weight without diet

noise scale

outputs

This is the first time since 2009 that he has not been on the losing side. He has been on and off since
1.0 then. He is now on the winning side. He is also on the receiving end. He was on the way home from
the hospital. He was on his way home when he was

In the meantime, I have a feeling that this is going to be an interesting experience. The fact that I have
0.8 the ability to do this shows that I’'m not the only one. I'm the one who has the guts to do it. And I'm

also the one that has the will to do

however, it is not the end of the world. It is the beginning of a new year. The end of a period of time....

0.6 The end of an era. The beginning of the year. The end to the period. The start of the next phase. The
first phase.
04 how can i1 lose weight? how can I lose weight? how do i? what can i lose? how did i? how do I?
) what do i eat?
0.2 how can i lose weight without doing exercise or diet??
0.0 how can i lose weight without doing exercise or diet?

Table 9: The generation process tracked by diffusion noise scale. The generation improves along the diffusion, with

diminishing output length from the maximum.

6 Related Work

Paraphrase generation is commonly modeled by
end-to-end sequence generation, such as fine-tuned
Transformers (Vaswani et al., 2017; Lewis et al.,
2019; Yang et al., 2019). However, such determin-
istic generation fails to ensure diversity, thus some
researchers (Xie et al., 2022; Sancheti et al., 2022;
Vijayakumar et al., 2016; Fan et al., 2018) intro-
duce external features to amend. Others turn to
the variational generation for diversity (Bowman
etal., 2015). To amend the inferior generation by
latent representation, some researchers further in-
troduce pre-trained text encoder and decoder for
generation (Du et al., 2022; Wang and Wan, 2019).

On the other hand, the diffusion model has been
a popular Markov variational generation in recent
years. Existing text diffusions cater to the discrete
nature of language for versatile generations. Dif-
fuSeq (Gong et al., 2022) employs a single Trans-
former encoder and partial noising process to ex-
tend Diffusion-LM (Li et al., 2022) for end-to-end
text generations. They introduce discrete sampling
for diffusion intervals called ‘rounding’, to ensure
generation quality. However, rounding introduces
truncation errors that hinder efficient skip-step dif-
fusion sampler. BG-Diffuseq (Tang et al., 2023)
aims to narrow the gap between training and sam-
pling for text diffusion via incorporating distance
penalty and adaptive decay sampling. Dinoiser (Ye
et al., 2023), turns to mitigate truncation errors
by manipulating the noise scale scheduled for text
diffusion training and inference to improve its effi-
cacy. On the other hand, SeqDiffuSeq (Yuan et al.,
2022) turns to a continuous diffusion modeling
within an on-the-fly encoder-decoder framework.
Similarly, DiffuSIA (Tan et al., 2023) introduces

an encoder-decoder diffusion via spiral interaction.
Diff-GLAT (Qian et al., 2022) incorporates resid-
ual glancing sampling, a text reconstruction via
encoder-decoder, with its dropout rate as the noise
scale. TESS (Mahabadi et al., 2023) proposes a
logit simplex space rather than embedding space
for text diffusion.

7 Conclusion

We propose a novel paraphrase generation by the
controllable latent diffusion model, LDP, which
can further enforce semantics for paraphrase gener-
ation by harnessing only input segments instead of
external features. Experiments show that LDP gen-
erates better paraphrase with superior efficiency
compared to its diffusion counterparts. Further
analysis shows that LDP is also applicable to other
similar text generations such as question generation.
Its controller is also helpful for domain adaptation.

Overall, LDP strikes a better balance between
generation quality and diversity compared to main-
stream baselines.

Limitations

In this work, we opt not to implement a larger Pre-
trained model than the BART-base encoder and de-
coder, which will require more GPU memory dur-
ing training. The latent diffusion is viable for the
diffusion process by lower dimensions to cut down
training expenses. However, the diffusion process
needs to cater to the dimension of the Pre-trained
latent space. Thus, this work does not explore the
impact of model scaling.

We analyse our method mainly on QQP due to
the restriction of the open-sourced baselines. Addi-
tionally, we are unable to explore more controller



implementations other than domain adaptation due
to time constraints.
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