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Abstract
Paraphrase generation aims to produce high-001
quality and diverse utterances of a given text.002
Though state-of-the-art generation via the dif-003
fusion model reconciles generation quality and004
diversity, textual diffusion suffers from a trun-005
cation issue that hinders efficiency and qual-006
ity control. In this work, we propose Latent007
Diffusion Paraphraser (LDP), a novel para-008
phrase generation by modeling a controllable009
diffusion process given a learned latent space.010
LDP achieves superior generation efficiency011
compared to its diffusion counterparts. It facili-012
tates only input segments to enforce paraphrase013
semantics, which further improves the results014
without external features. Experiments show015
that LDP achieves improved and diverse para-016
phrase generation compared to baselines. Fur-017
ther analysis shows that our method is also help-018
ful to other similar text generations and domain019
adaptations. Our code and data are available at020
https://anonymous.4open.science/r/8F72 .021

1 Introduction022

Paraphrase generation aims to produce seman-023

tically equivalent sentences in varied linguistic024

forms. It’s versatile in generation tasks such as025

text summarization (Zhou and Bhat, 2021; Dong026

et al., 2017) and question answering (Buck et al.,027

2017). Techniques such as data augmentations (Ku-028

mar et al., 2019) also involve paraphrasing.029

Though mainstream paradigms have achieved030

success, they still struggle to balance generation031

quality and diversity. The deterministic paradigm032

via the encoder-decoder model (Vaswani et al.,033

2017) focuses on high-quality generation instead034

of diversity. Such paradigm is further improved in035

diversity by enforcing explicit external features of036

high-level semantics shared by paraphrases, such037

as syntax (Sun et al., 2021; Bao et al., 2019) and038

examplars (Yang et al., 2021; Chen et al., 2019).039

However, external features for diversity are not al-040

ways available. On the other hand, the variational041

paradigm promotes diversity via variational autoen- 042

coders, which model the latent distribution shared 043

by diverse contextual representations (Bao et al., 044

2019; Du et al., 2022). However, its sampling na- 045

ture given limited Gaussian distributions hinders 046

the generation quality of complex language pat- 047

terns despite additional keyword guidance (Chen 048

et al., 2022). 049

Recently, a novel generation paradigm via the 050

diffusion probabilistic model (Ho et al., 2020, 051

DPM) achieves state-of-the-art generation in both 052

quality and diversity for images and speech. The 053

DPM is the generation that morphs toward high- 054

quality data through numerous rounds of continu- 055

ous Markov transitions. Though DPM shares sim- 056

ilar stochasticity with the variational generation, 057

it does not fall short in quality. Additionally, its 058

neat interventions enable the continuous diffusion 059

transitions to meet the quality required by versa- 060

tile data generations (Nichol and Dhariwal, 2021), 061

which plays a vital role in diffusion implementation. 062

Therefore, we consider the diffusion paradigm to 063

fit paraphrase generation, where its controllability 064

also meets the intuition of possible intervention in 065

traditional paradigms. 066

Lately, Diffusion-LM (Li et al., 2022) and 067

D3PM (Austin et al., 2021) further cater to text gen- 068

eration via an additional discrete sampling called 069

‘rounding’ process. The ‘rounding’ essentially 070

bridges the continuous diffusion representations 071

with corresponding discrete tokens, as arbitrary 072

diffusion intervals are truncated to embeddings of 073

valid texts with additional decodings. However, 074

‘rounding’ introduces decoding overhead, thus hin- 075

dering high-efficiency generation by SOTA dif- 076

fusion implementations (Ye et al., 2023; Karras 077

et al., 2022). Furthermore, ‘rounding’ also intro- 078

duces truncation errors when arbitrary diffusion 079

intervals are rounded to specific token embeddings, 080

further hindering possible intervention. Therefore, 081

we consider circumventing the truncation issue to 082

1



improve efficiency and enable generation interven-083

tions when paraphrasing via text diffusion.084

In this work, we propose Latent Diffusion085

Paraphraser (LDP), which can enforce semantics086

by only input segments instead of external fea-087

tures. LDP adopts the latent space from a given088

encoder-decoder framework, which offers more ef-089

ficacy than raw features for diffusion as suggested090

by Rombach et al. (2022); Lovelace et al. (2022).091

The off-the-shelf encoder and decoder bridge the092

continuous diffusion process with corresponding093

discrete texts, thus LDP prevents the intermediate094

roundings required by diffusion on raw text, which095

offers generation efficiency. Furthermore, remov-096

ing roundings enables state-of-the-art control for097

diffusion steps, where we further utilize only input098

segments rather than external features to enforce099

semantics for improvement. Experiments show100

that LDP achieves better and faster paraphrase gen-101

eration than its diffusion counterparts on various102

datasets. Further analysis shows that our methods103

are helpful to other similar text generations and104

domain adaptation.105

Our contributions can be summarized as follows:106

• We propose a novel paraphrase generation107

called LDP, which improves generation qual-108

ity and diversity. LDP circumvents ‘rounding’109

thus more efficient compared to its diffusion110

counterparts.111

• LDP can enforce paraphrase semantics with112

only input segments instead of external fea-113

tures, which further improves results.114

• Analysis shows that our method is also helpful115

in other similar text scenarios such as question116

generation and domain adaptation.117

2 Preliminary118

2.1 Paraphrase Generation119

Paraphrase refers to the diverse utterances that keep120

the original semantic. Paraphrase generation is cru-121

cial in several downstream natural language pro-122

cessing (NLP) tasks. Though methods based on123

deterministic seq2seq framework have achieved124

success (Vaswani et al., 2017; Sancheti et al., 2022;125

Yang et al., 2019), the nature of maximum likeli-126

hood estimation hinders the generation diversity.127

Some researchers promote generation diversity by128

enforcing explicit external features of high-level129

semantics shared by paraphrases such as syntac-130

tic structures or exemplar syntax (Hosking et al.,131

2022; Yang et al., 2022), which are not easily ac- 132

cessible. Others turn to variational generation to 133

fit the shared latent distribution of diverse textual 134

representations (Bowman et al., 2015; Du et al., 135

2022). However, variational generations sacrifice 136

the quality for its diversity. 137

2.2 Latent Diffusion Models with Control 138

The diffusion probabilistic model (Ho et al., 2020, 139

DPM) is a Markov chain of variational recon- 140

struction of the original inputs z0 given data dis- 141

tribution q(z) from Gaussian-distributed noise. 142

Specifically, the DPM is trained by sampling 143

from a Markov noising process P (zt+1|zt) ∼ 144

N (zt+1;
√
1− βtzt, βtI) scheduled by series of 145

noise scales βt ∈ (0, 1), where the βt is considered 146

the standard deviation of the step-wise transition 147

distribution
√
βt = σt at step t ∈ [0, T ]. Rombach 148

et al. further proposes the latent diffusion where the 149

diffusion process is introduced to the latent space 150

of a well-trained encoder-decoder framework. The 151

latent diffusion achieves better results for video (He 152

et al., 2023), audio (Liu et al., 2023), and image 153

synthesis (Lai et al., 2023) since diffusion upon 154

encoded latent features proves more efficacy than 155

that upon raw representations. 156

Training a diffusion model follows the intuition 157

to fit reconstruction from noised zt to its original z0 158

along a T-step Markov-Gaussian noising process: 159

L = Et∼[0,T ]

[
∥zθ(zt, t)− z0∥22

]
, (1) 160

where zθ(·) is a reconstruction neural net given 161

noised zt and noising step t. Ho et al. (2020) further 162

deducted t-steps Markov-Gaussian noising process 163

into a one-step noising, leading to a closed form zt 164

by given noising step t: 165

zt =
√
αtz0 +

√
1− αtϵ, ϵ ∼ N (0, I), (2) 166

where αt = Πt
i=1(1−βi), as t determines the noise 167

schedule βt. 168

The corresponding diffusion generation itera- 169

tively morph from pure Gaussian noise to valid 170

data by the learned reconstructor zθ(·). That is, 171

given a fully optimized zθ(·), the generation starts 172

from pure Gaussian sample zT ∈ Rl×d ∼ N (0, I) 173

with a roughly reconstructed ẑ0, then iteratively 174

noise and denoise by diminishing noise scales de- 175

termined by βt. Such iteration can be conducted 176

via various diffusion sampling algorithms such as 177

ancestral sampling (Ho et al., 2020), DDIM sam- 178

pler (Song et al., 2020a), or ODE solvers(Lu et al., 179

2022a,b). 180
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Figure 1: Overview of LDP. (a) Model architecture. LDP consists of an encoder-decoder framework (pink) and a
diffusion module (green). The encoder (E) and decoder (D) are frozen to bridge the continuous diffusion process
with corresponding discrete texts. (b) Detailed architecture of denoising model zθ(·)

The iterative diffusion generation can be inter-181

vened by plug-and-play modules with minor over-182

heads, where the state-of-the-art modeling is Con-183

trolNet (Zhang et al., 2023). ControlNet finetunes184

a trainable copy of the DPM z′θ(·) to cater to ver-185

satile generations while freezing the learned DPM186

zθ(·) to maintain harmless adaptation. The train-187

able copy z′θ(·) takes in additional control signals to188

the DPM via zero-convolution layers, i.e., convolu-189

tion layers initialized by zero weight and bias. The190

controller inputs δ are fused with original diffusion191

steps by Eq 3:192

zt+1 =zθ(zt, t)+

zero_conv(z′θ(zt + zero_conv(δ), t)),
(3)193

where δ enables vague yet versatile guidance such194

as Canny edges and poses (Zhang et al., 2023).195

3 Methodology196

In this section, we detail Latent Diffusion197

Paraphraser (LDP). LDP models the diffusion pro-198

cess upon the latent space of a pretrained encoder-199

decoder framework, where mere input segments200

can further enforce paraphrase semantics for im-201

provement.202

3.1 Latent Diffusion Paraphraser203

The overall pipeline is shown in Fig 1(a). LDP con-204

sists of an encoder-decoder framework to provide205

a learned latent space and a diffusion module. The206

encoder and decoder with a learned latent space207

bridge the continuous diffusion process with cor- 208

responding discrete texts once and for all at the 209

beginning and the end of the generation, instead of 210

step-wise rounding. Notably, LDP is compatible 211

with the mainstream encoder-decoder framework 212

as long as it bijectively maps the texts with the 213

corresponding latent representations. 214

To make life easier, we adopt BART (Lewis 215

et al., 2019) for illustration, which is an off-the- 216

shelf pretrained language model that encodes and 217

decodes arbitrary text with its corresponding la- 218

tent representation. Given a text sequence x = 219

{x1, x2, . . . , xl}, the BART encoder E encodes 220

it into a d-dimentional latent representation z = 221

E(x), z ∈ Rl×d for diffusion process, while the de- 222

coder D yields corresponding text sequence given 223

the latent representation y ≈ D(z) = D(E(x)). 224

The model utilizes T5 relative positional embed- 225

dings (Raffel et al., 2020). Input features for diffu- 226

sion are normalized by training data features, where 227

we adopt BART encodings for mean and standard 228

deviation (Rombach et al., 2022). Concordantly, 229

the normalization is reversed before text decod- 230

ing. The encoder and decoder are frozen during 231

diffusion training, thus leaving the reconstruction 232

network zθ(·) the only trainable parameters. 233

Given paraphrase pair ⟨x, y⟩, we then train the 234

end-to-end diffusion models for encoder latent 235

space, where the reconstruction network is parame- 236

terized by zθ(zt, c, t) with addition source encod- 237

ing c = E(x) as input. zθ(·) consists of N layers 238
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of pre-layer norm transformer blocks. As shown in239

Fig 1(b), each layer consists of a self-attention en-240

coding for zt, followed by a cross-attention access241

of the encoded source c and a time step interpo-242

lation via a feedforward layer. The time step t is243

embedded as a d-dimensional vector, then its in-244

terpolation is preprocessed by AdaLN (Xu et al.,245

2019; Peebles and Xie, 2022, adaptive layer norm)246

instead of generic layer norm. AdaLN regresses247

the layer-wise normalization scale and shifts from248

the sum of time embedding and encoded input249

features. The network layers are activated by250

GeGLU (Shazeer, 2020) following SOTA trans-251

former implementation (Raffel et al., 2020).252

zθ(·) is optimized by reconstruction loss in Eq 1.253

We uniformly sample time step t for arbitrary254

noised representation zt by Eq 2, where t deter-255

mines the noise scale βt by noise schedule (Ho256

et al., 2020; Nichol and Dhariwal, 2021). We also257

apply sentence-level condition dropout during train-258

ing to ensure the model’s unconditional language259

generation, that is, to replace the source sentence260

representation with trainable null tokens y∅ with261

probability p = 0.1.262

The optimized zθ(·) is implemented in SOTA263

diffusion samplers (Song et al., 2020b; Lu et al.,264

2022a,b), which will morph pure Gaussian noise265

zT into the latent representation ẑ0 of the given266

source text. D further decodes ẑ0 for text output.267

Unlike generation with length prediction, LDP de-268

termines the sequence length by end-of-sequence269

label automatically.270

3.2 Semantic Enforcing by Controller271
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Figure 2: Architecture of LDP controller, where ckw
indicates the encoded keyword segments. We freeze the
learned zθ(·), then finetune the replica z′θ(·)

Diffusion generation can introduce additional272

controls via ControlNet (Zhang et al., 2023), which 273

is a step-wise plug-and-play controlling framework. 274

It has proved its efficacy by manipulating image 275

generation given vague constraints such as canny 276

edges or skeleton poses. By removing step-wise 277

rounding, LDP circumvents the truncation issue 278

against control signals, where we consider para- 279

phrase generation can harness input segments as 280

the vague constraints likewise. 281

Intuitively, the paraphrase can be enforced by 282

mere segments of vital semantics via a controller 283

for better generation. Therefore, we leverage input 284

tokens above a certain length as keywords, enforc- 285

ing the diffusion generation on given semantics to 286

improve paraphrase. Our implementation is shown 287

in Fig 2. We sample from the longest 15% to- 288

kens in a given sentence as keywords and mask the 289

remaining parts with placeholder <M> as semantic 290

segments. The semantic segments are then encoded 291

by the same encoder used by the original DPM for 292

controller inputs. The controller block z′θ(·) is a 293

trainable copy of the well-trained zθ(·), while zθ(·) 294

is frozen. The controller inputs are fused with orig- 295

inal diffusion generation by Eq 3 as: 296

ẑ0 =zθ(zt, c, t)+

zero_conv(z′θ(zt + zero_conv(ckw), c, t)),
297

where ckw refers to the encoded keyword segment. 298

During fine-tuning, we extract keyword segments 299

from reference paraphrases, while for inference, 300

we likewise harness the source input for keyword 301

segments. 302

4 Experiment 303

4.1 Setups 304

Implementation Details LDP is implemented 305

by N=12 layers of Transformer blocks with 12 at- 306

tention heads, where we adopt time step embed- 307

ding in the same way as the position embedding. 308

The maximum sequence length is 96. We adopt 309

BART-base (139M) for encoder and decoder, and 310

the diffusion dimension is 768, the same as BART 311

embedding dimension. 312

The diffusion process is defined by T = 1000, 313

with cosine schedule (Nichol and Dhariwal, 2021) 314

for βt. We train the model for up to 250k steps 315

with batch size 192. The learning rate for the DPM 316

training is 10−4, while for the controller fine-tuning 317

is 10−5. We apply DPM-Solver++(Lu et al., 2022b) 318

with 25 steps for diffusion sampling. 319
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QQP Twitter
BLEU↑ PPL↓ div-4↑ iBScore↑ BLEU↑ PPL↓ div-4↑ iBScore↑

Transformer 30.36 214.98 58.01 33.53 31.06 299.47 58.42 48.11
BART-FT 33.73 189.23 57.20 33.94 33.21 324.14 58.15 47.10

T5-GPVAE 33.50 200.13 64.15 25.89 27.01 129.86 58.59 52.82
BART-CVAE 32.21 194.81 55.40 47.02 32.24 325.71 59.77 44.37

DiffuSeq 24.13 397.68 86.41 49.11 9.83 1045.88 85.45 50.99
SeqDiffuSeq 24.32 404.28 70.35 48.28 11.92 903.26 71.51 52.46
LDP(ours) 36.56 267.53 73.22 50.57 18.75 466.46 93.32 59.72

LDP(ours) w/ES 37.48 246.76 73.63 51.44 19.72 419.63 93.26 60.36

Table 1: Results on paraphrase generation. Baselines are implemented from the source code. The bold indicates the
top results, whereas the second best is underlined. LDP outperforms SOTA diffusion baselines. Overall, LDP with
enforced semantics (LDP w/ES) achieves the best iBScore.

We trained our model on 4× v100 and 4×320

Nvidia 3090 GPUs for about 100 GPU-hours. LDP321

has approximately 200M trainable parameters.322

Datasets We adopt Quora Question323

Pairs (QQP)1, and Twitter-URL (Twitter) (Lan324

et al., 2017), which is popular amongst main-325

stream paraphrase generations. The QQP data is326

mass-extracted from Quora regarding the shared327

utterance, while the Twitter data is annotated328

from social media by semantic similarity. We329

randomly divide both datasets into three parts: 10k330

test sentences, 10k validation sentences, and the331

remaining sentences were assigned to the training332

set.333

Baselines We first choose several mainstream334

paraphrase generations as baselines, including335

the deterministic paradigm by generic Trans-336

former (Vaswani et al., 2017), fine-tuned BART-337

base (BART-FT) (Lewis et al., 2019), and varia-338

tional paradigm by T5-GPVAE (Du et al., 2022)339

and BART-CVAE (Wang and Wan, 2019). We also340

include state-of-the-art text generations via the dif-341

fusion model, such as DiffuSeq (Gong et al., 2022)342

and SeqDiffuSeq (Yuan et al., 2022), which are343

versatile end-to-end diffusion modeling. DiffuSeq344

applies minimum Bayes risk decoding (Kumar and345

Byrne, 2004, MBR) with 10 candidates, while Se-346

qDiffuSeq implements beam search for decoding347

given an on-the-fly encoder-decoder framework348

during rounding. For all beam search in the ex-349

periments, we apply beam size as 4.350

Metrics An ideal paraphrase must achieve both
generation quality and diversity. We validate
text quality by reference-oriented BLEU (Pap-
ineni et al., 2002) and perplexity (PPL) based
on GPT2 (Radford et al., 2019); The diversity

1https://www.kaggle.com/c/ quora-question-pairs

is measured by intra-diversity within each gen-
erated sentence, where we adopt distinct uni-
gram div-4 (Deshpande et al., 2019). Note that
reference-oriented metrics such as BLEU contra-
dict the intuition of generation diversity, we fi-
nally adopt iBScore (Dou et al., 2022) for overall
metric, which measures the semantics by cosine
similarity of BERT sentence embeddings, namely,
BERTScore (Zhang* et al., 2020), and punishes
source duplication by source BLEU:

iBScore = BERTScore − srcBLEU,

where we calculate BERTScore via RoBERTa- 351

large (Liu et al., 2019). 352

4.2 Main Results 353

Table 1 presents the main results of our experi- 354

ments. LDP achieves comparable or even superior 355

performance compared to mainstream baselines. 356

Moreover, it outperforms other diffusion counter- 357

parts on QQP and Twitter test sets. LDP achieves 358

the best performance amongst all baselines for the 359

QQP test set. 360

Specifically, LDP improves overall results (iB- 361

Score) especially diversity (div-4) compared to tra- 362

ditional end-to-end paradigms such as fine-tuned 363

BART, where we consider the diffusion module 364

significantly improves the generation diversity. On 365

the other hand, LDP also outperforms SOTA dif- 366

fusion baselines such as SeqDiffuSeq in terms of 367

BLEU and perplexity, where we consider the LDP 368

to implement a better bridge between the diffu- 369

sion process with the discrete texts than rounding. 370

Additionally, unlike the intuition to introduce ex- 371

ternal features, the original case output improves 372

greatly when we enforce the generation semantics 373

with mere a segment of source inputs as shown in 374

Table 2. 375
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src how is black money gon na go off with no longer the use of same 500 and 1000 notes ?
origin paraphrase how does black money brought out to black money market or corruption?

enforcement <M> <M> black money <M> <M> <M> <M> <M> no longer <M> <M> <M> <M> <M> <M> 1000 <M> <M>
enforced parphrase how does banning 500 and 1000 rupee notes solve black money problem?

Table 2: Enforce paraphrase semantics by input segments. We inject input segments masked by placeholder <M> of
‘black money’, ‘no longer’, and ‘1000’ via controller, which improves the paraphrase semantic.

Source what should i do to improve my tennis?

DiffuSeq

what is the best way to improve your tennis
andtiv month?
what should i do to improve my tennis?
how can i increase tennis?
how can i improve my tennis?
how do i improve my tennis skills?

BART

how can i improve tennis skills?
how can i get better in tennis?

-CVAE
how do i improve my tennis?
how do i improve tennis playing?
how can i improve tennis skills?

LDP

what is the best way to be good at tennis?
what are the best ways to get better at tennis?
how can i improve to get better at tennis?
how can i improve my skills at professional
tennis?
how can i improve my skill for tennis playing?

Table 3: LDP generates more fluent and diverse para-
phrases compared to baselines. DiffuSeq even generates
errors like ‘andtiv’.

Overall, LDP achieves the best iBScore, indi-376

cating a high-quality and diverse paraphrase gen-377

eration. As shown in Table 3, we generate several378

paraphrases by different latent sampling for gen-379

erations. Though BART-CVAE and DiffuSeq are380

SOTA generators for diversity, they still yield rel-381

atively resemble paraphrases. LDP, on the other382

hand, yields better and more diverse paraphrases.383

QQP
Model BLEU↑ BERTScore↑

DiffuSIA(Tan et al., 2023) 24.95 83.62
BG-DiffuSeq(Tang et al., 2023) 26.27 -

TESS(Mahabadi et al., 2023) 30.2 85.7
Dinoiser(Ye et al., 2023) 26.07 -

Diff-Glat(Qian et al., 2022) 29.86 -
SeqDiffuSeq(Yuan et al., 2022) 24.32 -

DiffuSeq(Gong et al., 2022) 24.13 83.65
LDP(ours) 36.56 87.51

Table 4: Results on QQP dataset compared with more
diffusion generation baselines

We additionally include more recent text dif-384

fusion generators for comparison for QQP tests.385

Table 4 shows that LDP achieves state-of-the-art386

BLEU and BERTScore amongst the diffusion base-387

lines.388

5 Analysis 389

5.1 Inference Efficiency 390

Timelapse (s) Acceleration
Transformer 235 206.3×
BART-FT 238 203.7×

T5-GPVAE 3909 12.4×
BART-CVAE 252 192.4×

DiffuSeq(DDIM 2000) 48480 1×
DiffuSeq(DDIM 500) 11530 4.2×

SeqDiffuSeq(DDIM 2000) 13851 3.5×
LDP(ours) 290 167.2×

Table 5: Inference overhead on QQP validation set (sec-
onds), where we set the DiffuSeq as the efficiency base-
line.

By eliminating the rounding process in text dif- 391

fusion models, LDP achieves improved efficiency. 392

We compare several baseline efficiencies under 393

their best-generation performance. As shown in 394

Table 5, LDP is 167.2 times faster than DiffuSeq 395

and 50 times faster than SeqDiffuSeq, where the 396

diffusion overhead takes up only 18% of the total 397

timelapse. Consequently, our approach achieves 398

a similar efficiency compared to that of the au- 399

toregressive baselines with only encoder-decoder 400

overheads. 401

Note that the rounding takes up considerable 402

computation resources for minimum Bayes risk 403

decoding, which limits the maximum dimension 404

supported by diffusion. Therefore, DiffuSeq is 405

modeled by only 128 dimensions. However, LDP 406

by 768 dimensions is still 10.4× faster than Dif- 407

fuSeq in a single-step text diffusion, excluding the 408

impact of the sampling acceleration. Thus, the 409

removal of the rounding, thereby eliminating the 410

expensive quality insurance like MBR, contributes 411

the efficiency with additional model dimensions 412

for generation quality. 413

5.2 Domain Adaptation by Controller 414

The semantic controller is also apt for domain 415

adaptation. We additionally adopt ChatGPT- 416

augmented paraphrase dataset (Vladimir Vorobev, 417

2023)(ChatGPT-Aug) as the novel data domain, 418

then sample 10k sentences as the test set. ChatGPT- 419
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QQP ChatGPT-Aug
BLEU↑ BLEU↑

origin 36.56 10.16
+ES 36.46 14.65 (+4.49)

Table 6: Domain adaptation by controller

Aug dataset consists of paraphrases generated by420

ChatGPT (OpenAI, 2022) from an ensembled421

dataset including QQP, SQuAD 2.0 (Rajpurkar422

et al., 2016) and CNN news (See et al., 2017).423

We first train the LDP on QQP data for 200k424

steps, then fine-tune it with a controller for425

ChatGPT-Aug data for 40k steps. The fine-tuning426

follows the same routine for controller training,427

where the ChatGPT-Aug data pairs are training428

sources and references, with additional keywords429

from its reference as controller inputs. Table 6430

shows that adaptation by controller is viable, where431

the fine-tuned controller substantially improves432

ChatGPT-Aug test BLEU, with only minor loss433

for the original test domain. Note that, the perfor-434

mance of the original data domain is retained by in-435

ference without controller inputs, which outstands436

from traditional data adaptation by fine-tuning.437

5.3 Ablation Study for Samplers438

QQP
Model BLEU↑ PPL↓ div-4↑ iBScore↑

DiffuSeq(DDIM 2000) 24.13 397.68 86.41 49.11
DiffuSeq(DDIM 500) 0.17 1195.42 79.36 52.61

SeqDiffuSeq(DDIM 2000) 24.32 404.28 70.35 48.28
LDP(DDIM 500) 35.97 245.26 74.16 50.35

LDP(DPM-solver 25) 36.56 267.53 73.22 50.57

Table 7: Ablation study for diffusion samplers.

The diffusion sampler plays an important role439

during inference, thus we conduct an ablation study440

on the diffusion sampler for comparison. Intu-441

itively, the diffusion generation improves by more442

steps given the same sampler. Due to the truncation443

errors introduced by rounding, ODE-based sam-444

plers are not apt for text diffusion with rounding,445

such as DiffuSeq and SeqDiffuSeq. Thus, we addi-446

tionally adopt DDIM sampler (Nichol and Dhari-447

wal, 2021) with 500 and 200 sampling steps, which448

is also adopted for diffusion baselines. Table 7449

shows that LDP still outperforms the DiffuSeq and450

SeqDiffuSeq given the same sampler setting. No-451

tably, LDP still outperforms the baselines by fewer452

sampling steps, which were expected to be inferior.453

Quasar-T
Model BLEU↑ BERTScore↑

DiffuSIA 17.12 62.19
BG-DiffuSeq 17.53 -

TESS 19.50 65.8
SeqDiffuSeq 17.5 -

DiffuSeq 17.31 61.23
LDP(ours) 18.77 73.23

+ES 19.50 73.40

Table 8: Results on Quasar-T compared to other diffu-
sion model baselines

5.4 Question Generation Ability 454

Considering the compatibility of LDP besides para- 455

phrasing, we additionally validate question gener- 456

ation, which aims to generate the exact question 457

by given issue descriptions. Question generation 458

focuses on semantics upon relatively flexible utter- 459

ance, thus we evaluate the BLEU and BERTScore 460

on Quasar-T tests (Dhingra et al., 2017). 461

As shown in Table 8, LDP with enforced seman- 462

tics also achieves a comparable BLEU score with 463

SOTA, TESS (Mahabadi et al., 2023), with much 464

improved BERTScore. 465

5.5 Diffusion Process during Generation 466

Figure 3: BLEU variance with averaged sentence length
during LDP generation. The generation proceeds by
diminishing noise scale with increasing BLEU and di-
minishing generation length.

We track the diffusion sampling during the LDP 467

generation by our implementation in Figure 3, 468

where we force-decode the intermediate latent rep- 469

resentations as text. Intuitively, the BLEU score 470

increases along the sampling process, whereas the 471

generation length will decrease from the maximum 472

to the actual target length. We present a generation 473

process in Table 9, where the output semantics dras- 474

tically morph towards desiderata during the middle 475

of the generation process, with only minor modifi- 476

cations within a smaller noise scale, as indicated 477

by Figure 3. 478
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source What is the best way to lose weight without diet
noise scale outputs

1.0
This is the first time since 2009 that he has not been on the losing side. He has been on and off since
then. He is now on the winning side. He is also on the receiving end. He was on the way home from
the hospital. He was on his way home when he was

0.8
In the meantime, I have a feeling that this is going to be an interesting experience. The fact that I have
the ability to do this shows that I’m not the only one. I’m the one who has the guts to do it. And I’m
also the one that has the will to do

0.6
however, it is not the end of the world. It is the beginning of a new year. The end of a period of time....
The end of an era. The beginning of the year. The end to the period. The start of the next phase. The
first phase.

0.4 how can i i lose weight? how can I lose weight? how do i? what can i lose? how did i? how do I?
what do i eat?

0.2 how can i lose weight without doing exercise or diet??
0.0 how can i lose weight without doing exercise or diet?

Table 9: The generation process tracked by diffusion noise scale. The generation improves along the diffusion, with
diminishing output length from the maximum.

6 Related Work479

Paraphrase generation is commonly modeled by480

end-to-end sequence generation, such as fine-tuned481

Transformers (Vaswani et al., 2017; Lewis et al.,482

2019; Yang et al., 2019). However, such determin-483

istic generation fails to ensure diversity, thus some484

researchers (Xie et al., 2022; Sancheti et al., 2022;485

Vijayakumar et al., 2016; Fan et al., 2018) intro-486

duce external features to amend. Others turn to487

the variational generation for diversity (Bowman488

et al., 2015). To amend the inferior generation by489

latent representation, some researchers further in-490

troduce pre-trained text encoder and decoder for491

generation (Du et al., 2022; Wang and Wan, 2019).492

On the other hand, the diffusion model has been493

a popular Markov variational generation in recent494

years. Existing text diffusions cater to the discrete495

nature of language for versatile generations. Dif-496

fuSeq (Gong et al., 2022) employs a single Trans-497

former encoder and partial noising process to ex-498

tend Diffusion-LM (Li et al., 2022) for end-to-end499

text generations. They introduce discrete sampling500

for diffusion intervals called ‘rounding’, to ensure501

generation quality. However, rounding introduces502

truncation errors that hinder efficient skip-step dif-503

fusion sampler. BG-Diffuseq (Tang et al., 2023)504

aims to narrow the gap between training and sam-505

pling for text diffusion via incorporating distance506

penalty and adaptive decay sampling. Dinoiser (Ye507

et al., 2023), turns to mitigate truncation errors508

by manipulating the noise scale scheduled for text509

diffusion training and inference to improve its effi-510

cacy. On the other hand, SeqDiffuSeq (Yuan et al.,511

2022) turns to a continuous diffusion modeling512

within an on-the-fly encoder-decoder framework.513

Similarly, DiffuSIA (Tan et al., 2023) introduces514

an encoder-decoder diffusion via spiral interaction. 515

Diff-GLAT (Qian et al., 2022) incorporates resid- 516

ual glancing sampling, a text reconstruction via 517

encoder-decoder, with its dropout rate as the noise 518

scale. TESS (Mahabadi et al., 2023) proposes a 519

logit simplex space rather than embedding space 520

for text diffusion. 521

7 Conclusion 522

We propose a novel paraphrase generation by the 523

controllable latent diffusion model, LDP, which 524

can further enforce semantics for paraphrase gener- 525

ation by harnessing only input segments instead of 526

external features. Experiments show that LDP gen- 527

erates better paraphrase with superior efficiency 528

compared to its diffusion counterparts. Further 529

analysis shows that LDP is also applicable to other 530

similar text generations such as question generation. 531

Its controller is also helpful for domain adaptation. 532

Overall, LDP strikes a better balance between 533

generation quality and diversity compared to main- 534

stream baselines. 535

Limitations 536

In this work, we opt not to implement a larger Pre- 537

trained model than the BART-base encoder and de- 538

coder, which will require more GPU memory dur- 539

ing training. The latent diffusion is viable for the 540

diffusion process by lower dimensions to cut down 541

training expenses. However, the diffusion process 542

needs to cater to the dimension of the Pre-trained 543

latent space. Thus, this work does not explore the 544

impact of model scaling. 545

We analyse our method mainly on QQP due to 546

the restriction of the open-sourced baselines. Addi- 547

tionally, we are unable to explore more controller 548
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implementations other than domain adaptation due549

to time constraints.550
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