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Abstract
We consider a spiked random matrix model ob-
tained by applying a function entrywise to a
signal-plus-noise symmetric data matrix. We
prove that the largest eigenvalue of this model,
which we call a transformed spiked Wigner ma-
trix, exhibits Baik–Ben Arous–Péché (BBP) type
phase transition. We show that the law of the
fluctuation converges to the Gaussian distribution
when the effective signal-to-noise ratio (SNR) is
above the critical number, and to the GOE Tracy–
Widom distribution when the effective SNR is
below the critical number. We provide precise
formulas for the limiting distributions and also
concentration estimates for the largest eigenval-
ues, both in the supercritical and the subcritical
regimes.

1. Introduction
First introduced in the early 1900s, the principal compo-
nent analysis (PCA) has been widely used as a fundamental
method for analyzing multivariate data across a wide range
of scientific fields including genetics, economics, and var-
ious other disciplines. One notable application of PCA is
detecting and recovering a signal from matrix-type data that
includes inevitable noise, commonly referred to as signal-
plus-noise data.

When the signal is a low-rank matrix, the signal-plus-noise
data can be modeled by spiked random matrix models,
which play a crucial role in analyzing for many machine
learning problems. For instance, in the study of the feature
learning in a two-layer neural network, a rank-1 perturbation
of the initial weight matrix can approximate the updated
weight after one gradient step (Ba et al., 2022). This idea is
further developed by (Cui et al., 2024; Dandi et al., 2025),
where the spiked Random Features model was considered

1Department of Mathematical Sciences, KAIST, Daejeon, Ko-
rea. Correspondence to: Aro Lee <sditar444@kaist.ac.kr>, Ji
Oon Lee <jioon.lee@kaist.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

with first layer weights. Additionally, these models have
practical applications in machine learning algorithms, such
as an ensemble method for Q-learning in reinforcement
learning (Lee et al., 2023a).

One of the most natural models for signal plus-noise data is
a spiked Wigner matrix, which is of the form

M = W +
√
λxxT , (1)

where the noise W is an N×N symmetric (real) Wigner ma-
trix, x ∈ RN is the spike, and λ ∈ R is the signal-to-noise
ratio (SNR). (See Definitions 2.1 and 2.2.) Spiked Wigner
matrices appear naturally in inference problems where the
data is obtained from pairwise measurements. Notable ex-
amples of such problems include the community detection
from the stochastic block model and synchronization over
Z/2.

It is well-known that the largest eigenvalue of M exhibits a
phase transition, known as the BBP transition named after
the seminal work by Baik, Ben Arous, and Péché (Baik et al.,
2005), depending on the parameter λ. If λ > 1, then the
largest eigenvalue of M converges to

√
λ+ 1√

λ
, separated

from the other eigenvalues of M . On the other hand, if
λ < 1, the largest eigenvalue converges to 2, which is the
spectral edge of the pure noise model.

In this paper, we consider an entrywise transformation of
the spiked Wigner matrix in (1), defined by

M̃ij = N− 1
2 f(

√
NMij) (2)

for a function f . (Note that a typical size of the entries
of a Wigner matrix is of order N−1/2.) Such an entrywise
transformation was considered in (Lesieur et al., 2015; Perry
et al., 2018) to improve PCA by effectively increasing the
SNR. Heuristically, the entries of the transformed spiked
Wigner matrix in (2) can be approximated using the Taylor
expansion by

N− 1
2 f(

√
NMij) = N− 1

2 f(
√
NWij +

√
λNxixj)

≈ f(
√
NWij)√
N

+
√
λf ′(

√
NWij)xixj

≈ f(
√
NWij)√
N

+
√
λE[f ′(

√
NWij)]xixj .

(3)
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The transformed matrix M̃ is approximately a
spiked Wigner matrix, where the SNR is changed to
λ(E[f ′(

√
NWij)])

2. By optimizing f , it is possible to
make the new SNR larger than the original SNR, which
makes the PCA with the transformed matrix (called the
transformed PCA) stronger than the vanilla PCA. The
approximation in (3) is proven to be valid in (Perry et al.,
2018), in the sense that the difference between the largest
eigenvalues of M̃ and its approximation defined by the
right side of (3) is o(1). We note that, while Theorem 4.8 in
(Perry et al., 2018) considers the approximation in (3) only
for the optimal transformation, the same proof works for
any transformation.

Suppose now that we want to detect the presence of the
signal in the given data matrix by PCA. It would require to
compute the largest eigenvalues of the data matrix, estimate
the p-value from the known limiting distributions of the
largest eigenvalues, and compare it with a predefined signifi-
cance level; for an algorithm involving the largest eigenvalue
only, see (Kritchman & Nadler, 2008), and for an algorithm
based on the ratio between the top eigenvalues, see (Onatski,
2009). If the given data matrix is a spiked Wigner matrix,
the limiting distributions of the largest eigenvalues are also
well-known, which is also a part of the BBP transition; if
λ > 1, then the fluctuation of the largest eigenvalue of M is
given by a Gaussian of order N−1/2, whereas if λ < 1, it is
given by GOE Tracy–Widom distribution of order N−2/3.
However, a corresponding result for transformed spiked
Wigner matrices are not known.

1.1. Contributions

In this paper, we prove the fluctuations of the largest eigen-
value of the transformed spiked Wigner matrix M̃ coincide
with those of the spiked Wigner matrix. More precisely,
under mild assumptions on M̃ (see Assumptions 2.3 and
2.4) if we let µ1 be the largest eigenvalue of M̃ and the
effective SNR λe = λ(E[f ′(

√
NW12)])

2, then

• (Supercritical case) If λe > 1, then N1/2(µ1− (
√
λe+

1√
λe
)) converges to a Gaussian distribution with mean

0 and variance 2(λe − 1)/λe.

• (Subcritical case) If λe < 1, then N2/3(µ1 − 2) con-
verges to the GOE Tracy–Widom distribution.

• (Rigidity) For both the supercritical and the subcritical
cases, the deviation of the largest eigenvalue from its
limit cannot be significantly larger than the typical size
of the fluctuation with overwhelming probability.

See Theorems 2.5 and 2.6 for the precise statements. This
establishes the BBP transition for the largest eigenvalue of

M̃ . We also consider some specific examples to compare
the numerical results with the theoretical results.

The main technical difficulty in the proof is that the error
terms in the approximation in (3) is not negligible a priori.
Most precisely, in (3), the term

√
λ
(
f ′(

√
NWij)− E[f ′(

√
NWij)]

)
xixj (4)

is ignored. However, if we follow the analysis in (Perry
et al., 2018), the norm of the matrix whose entries are given
by (4) is of order N−1/2, which is of the same size as the
fluctuation of the largest eigenvalue of a spiked Wigner ma-
trix in the supercritical case, and much larger than that of
the largest eigenvalue in the subcritical case. It is thus im-
possible to ignore the term in (4), but then the noise matrix
is no more a Wigner matrix since the size of xi and xj may
not be uniform. Another issue is that the second derivative
term in the Taylor expansion in (3) is not negligible, since
it is also of order N−1/2 a priori. Thus, the correct approx-
imation should be not by a (rank-1) spiked Wigner matrix
but a rank-2 spiked Wigner-type matrix. (See Proposition
3.1 for more detail.)

To prove the BBP transition for the rank-2 spiked Wigner-
type matrix, we apply the Green function comparison argu-
ment. In this strategy, the distribution function of the largest
eigenvalue is first approximated by a functional of the re-
solvent of the matrix. Then, by comparing the resolvent
of the given matrix and that of the target matrix for which
the limiting distribution of the largest eigenvalue is known,
it is possible to prove that the fluctuations of the largest
eigenvalues of two matrices are equal. The target matrices
are a rank-2 spiked Wigner matrix for the supercritical case,
and a Wigner matrix for the subcritical case. The Green
function comparison argument is conducted by following
a continuous matrix flow, typically called an interpolation,
and it requires a technical input, known as the local law,
which is the estimate on the resolvent of the matrices.

The rigidity of the largest eigenvalue is one of the main
technical inputs for the Green function comparison argu-
ment, and it is also of separate interest since it asserts strong
concentration of the largest eigenvalue in near-optimal scale.
In the subcritical case, the rigidity is a consequence of a
stronger estimate on the difference between the largest eigen-
values of the noise matrix with and without a spike, known
as the eigenvalue sticking.

1.2. Applications

Our results can provide theoretical background for the under-
standing of transformed spiked Wigner matrices, especially
(asymptotically) exact error probability of the improved
PCA for the finite N case. We list possible examples where
transformed spiked Wigner matrices are useful.
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Improved PCA. It was proved in (Perry et al., 2018) that
PCA achieves the optimal strong detection threshold for
a spiked Wigner matrix with Gaussian noise, in the sense
that it is impossible to reliably distinguish (with probability
1− o(1)) a Wigner matrix with a spike and one without a
spike if λ < 1. The threshold for the strong detection is
lowered if the noise is non-Gaussian, but it can be matched
by improving PCA via entrywise transformation, with the
function f = −p′/p where p is the density of the noise.

Machine learning theory. In deep neural networks, the
transformed spiked Wigner matrix can be used in theoretical
analysis, where the noise corresponds to the pre-activation,
the spike is due to initial training, and the entrywise trans-
formation is the activation function. Another important ex-
ample is the feature matrix of the two-layer neural network,
where the SNR corresponds to the step size.

1.3. Related Works

The spiked random matrix model was introduced by John-
stone (Johnstone, 2001) for Wishart matrices (Gaussian
i.i.d. rectangular matrices) with spiked covariance. The
transition of the largest eigenvalue was proved by Baik,
Ben Arous, and Péché (Baik et al., 2005) for spiked com-
plex Wishart matrices and generalized to other models, in-
cluding the spiked Wigner matrices (Péché, 2006; Féral
& Péché, 2007; Capitaine et al., 2009; Benaych-Georges
& Nadakuditi, 2011; Knowles & Yin, 2013; Pizzo et al.,
2013; Renfrew & Soshnikov, 2013; Knowles & Yin, 2014;
Bloemendal et al., 2016). The detection problems for the
spiked Wigner matrices have been extensively studied re-
cently, and many important results, including the theoretical
limits (Perry et al., 2018; El Alaoui et al., 2020; Chung et al.,
2025; Moitra & Wein, 2025) and algorithms (Perry et al.,
2018; Chung & Lee, 2019; 2022), have been proved. For
more results on the spiked Wigner matrices, we refer to
(Moitra & Wein, 2025) and references therein.

The spectral properties of spiked random matrix models
are important in analyzing various problems in machine
learning and statistics, as spectral methods can improve
convergence analysis and provides theoretical guarantees.
Notable examples include the community detection (Abbe,
2017) and submatrix localization (Butucea et al., 2013). In
the context of machine learning, we refer to (Mondelli &
Venkataramanan, 2021) for an application to the approxi-
mate message passing algorithm and (Chi et al., 2019) to
non-convex optimization.

Entrywise transformed random matrix models provide valu-
able insights into the study of fundamental limits of de-
tection for the signal from a spiked random matrix, which
has been extensively studied by analyzing the eigenvalues
(Montanari et al., 2015; Johnstone & Onatski, 2020) or
the mutual information and minimum mean squared error

(Lesieur et al., 2015; Krzakala et al., 2016; Dia et al., 2016;
Lelarge & Miolane, 2019). Entrywise transformation of
spiked Wigner matrices was first described by Lesieur, Krza-
kala, and Zdeborová (Lesieur et al., 2015) and rigorously
analyzed by Perry, Wein, Bandeira, and Moitra (Perry et al.,
2018). The transition of the limit of the largest eigenvalue
of transformed spiked Wigner matrices was first proved
in (Perry et al., 2018), where the correlation between the
top eigenvector and the spike was also proved. Similar re-
sults were proved with weaker assumptions (Guionnet et al.,
2023; Feldman, 2025; Moniri & Hassani, 2024) and also
generalized to other models (Jung et al., 2021; Guionnet
et al., 2023; Feldman, 2025; Mergny et al., 2024), including
spiked rectangular matrices.

The spiked random matrix models and their entrywise trans-
formation have been extensively used in the theoretical study
of neural networks. These models contribute to the theo-
retical analysis of deep neural network, where entrywise
transformations correspond to pointwise nonlinear activa-
tion functions (Pennington & Worah, 2017). They are also
crucial in the analysis on the feature learning. See, e.g.,
(Damian et al., 2022; Ba et al., 2022; Lee et al., 2023b;
Mousavi-Hosseini et al., 2023; Moniri et al., 2024; Cui
et al., 2024; Ba et al., 2024). For more results, we refer to
(Cui et al., 2024) and references therein.

1.4. Organization of the Paper

The rest of the paper is organized as follows: In Section 2,
we precisely define the model and state our main results. In
Section 3 and Section 4, we outline the proofs of our main
results for the supercritical case and the subcritical case, re-
spectively. In section 5, we conduct numerical experiments
to compare theoretical results with numerical results for
several examples. We conclude the paper in Section 6 with
a summary of our results and directions for future research.
Details of the numerical simulations and the proofs of the
results can be found in Appendices.
Notational Remark. We use the standard big-O and little-o
notation. For an event Ω, we say that Ω holds with over-
whelming probability if for any (large) D > 0 there exists
N0 ≡ N0(D) such that P(Ωc) < N−D whenever N > N0.
For a sequence of random variables, the notation ⇒ denotes
the convergence in distribution as N → ∞.

2. Main Result
2.1. Definition of the Model

We first define the model we consider in this paper. We
assume that the noise matrix is a Wigner matrix for which
we use the following definition.

Definition 2.1 (Wigner matrix). We say an N ×N random
matrix W = (Wij) is a Wigner matrix if W is symmetric
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and Wij (1 ≤ i ≤ j ≤ N ) are independent real random
variables satisfying the following conditions:

• For all i, j, E[Wij ] = 0 and for any (N -independent)
positive integer D, ND/2E[|Wij |D] ≤ CD for some
(N -independent) constant CD.

• For all i < j, NE[|Wij |2] = 1.

Note that the upper triangle entries of a Wigner matrix
are not necessarily identically distributed. The signal-plus-
noise model we consider is a (rank-1) spiked Wigner matrix,
which is defined as follows:
Definition 2.2 (Spiked Wigner matrix). We say an N ×N
random matrix M = W +

√
λxxT is a spiked Wigner

matrix with a spike x and signal-to-noise ratio (SNR) λ if
W is a Wigner matrix and x = (x1, x2, . . . , xN ) ∈ RN

with ∥x∥2 = 1.

Throughout the paper, we assume that λ is independent of
N . (See Remark 2.8 for the discussion on the case λ ≫ 1.)
In addition, we assume the following for the data matrix.
Assumption 2.3. Let M = W +

√
λxxT be a spiked

Wigner matrix as in Definition 2.2. For the spike x =
(x1, x2, . . . , xN ), we assume the following:

• For any ϵ > 0, maxi |xi| = O(N− 1
2+ϵ),

∑
i xi =

O(N ϵ), and
∑

i x
3
i = O(N−1+ϵ).

For the noise matrix W , we assume that the following:

• For all i ≤ j, the normalized entries
√
NWij are iden-

tically distributed.

• For all i, j and any fixed D, the D-th moment of√
NWij is finite.

We remark that the assumption on the spike is satisfied
with the i.i.d. prior, where we let yi be i.i.d. with an N -
independent distribution whose mean is 0, variance 1, and all
moments are finite, and set xi = yi/

√
N . The assumption

is also satisfied for many other priors such as the spherical
prior. We believe our result can also be proved with weaker
assumptions. Especially, the same result would hold even
when the distribution of the diagonal entries are different
from that of the off-diagonal entries. However, we do not
pursue it in the current paper.

Lastly, we assume that the entrywise transformation satisfies
the following properties.
Assumption 2.4. For a given Wigner matrix W , we assume
that the following holds with the function f : R → R.

• The function f is C3 and its derivatives are polyno-
mially bounded in the sense that |f (ℓ)(w)| ≤ Cℓ(1 +
|w|)Cℓ (ℓ = 0, 1, 2, 3) for some constant Cℓ.

• For all i and j, E[f(
√
NWij)] = 0. Furthermore,

E[f(
√
NW12)

2] = 1 and E[f ′(
√
NW12)] ≥ 0.

We remark that the last part of Assumption 2.4 is not re-
strictive, since it can be satisfied by simply multiplying the
function f by a suitable constant.

2.2. Main Result

Our main result is the following theorem on asymptotic nor-
mality of the largest eigenvalue of the transformed matrix.
Theorem 2.5. Suppose that M is a spiked Wigner matrix,
satisfying Assumption 2.3. Let M̃ be a matrix defined by
M̃ij = N− 1

2 f(
√
NMij) for a function f satisfying As-

sumption 2.4. Let µ1(M̃) be the largest eigenvalue of M̃ .
Set

λe := λ(E[f ′(
√
NW12)])

2. (5)

• (Supercritical case) If λe > 1, then

N1/2

(
µ1(M̃)−

(√
λe +

1√
λe

))
⇒ N (0, σ2),

(6)
where the right-hand side of (6) is a Gaussian distri-
bution with mean 0 and variance

σ2 :=
2(λe − 1)

λe
=

2(λ(E[f ′(
√
NW12)])

2 − 1)

λ(E[f ′(
√
NW12)])2

.

(7)

• (Subcritical case) If λe < 1, then

N2/3
(
µ1(M̃)− 2

)
⇒ TW1, (8)

where the right-hand side of (8) is the GOE Tracy–
Widom distribution.

Theorem 2.5 shows that our model, the transformed spiked
Wigner matrix, exhibits the BBP transition, and it coincides
with that of the (non-transformed) spiked Wigner matrix
even in terms of the fluctuation with λe being the effective
SNR.

In addition to Theorem 2.5, we also have the following
result on the rigidity of the largest eigenvalue.
Theorem 2.6. Suppose that the assumptions in Theorem
2.5 hold. Then, for any ϵ > 0, the following holds with
overwhelming probability.

• (Supercritical case) If λe > 1, then

µ1(M̃)−
(√

λe +
1√
λe

)
= O(N− 1

2+ϵ). (9)

• (Subcritical case) If λe < 1, then

µ1(M̃)− 2 = O(N− 2
3+ϵ). (10)
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For the supercritial case, Theorem 2.6 was essentially
proved in (Perry et al., 2018). For the sake of complete-
ness, we will prove it in Appendices. The rigidity of the
largest eigenvalue for the subcritical case is a consequence
of a stronger result, known as the eigenvalue sticking. For a
spiked Wigner matrix in the subcritical case, it means that
the difference between the largest eigenvalue of a Wigner
matrix W and that of the spiked Wigner matrix W+

√
λxxT

is much less than N−2/3, which is the size of the fluctua-
tion of the largest eigenvalue. (See, e.g., Theorem 2.7 in
(Knowles & Yin, 2013).)
Remark 2.7. Adapting the strategy for the proof of Theo-
rems 2.5 and 2.6, we believe that it is also possible to prove
corresponding statements for transformed rank-k spiked
Wigner matrices for any fixed k ≥ 2. A rank-k spiked
Wigner matrix is of the form

M = W +

k∑
i=1

√
λ(i)x(i)(x(i))T , (11)

where W is an N × N Wigner matrix, x(i) ∈ RN with
⟨x(i),x(j)⟩ = δij , and λ(1) > · · · > λ(k) > 0. Let M̃ be
the transformed matrix defined by M̃ij = N− 1

2 f(
√
NMij)

and let λ(i)
e = λ(i)(E[f ′(

√
NW12)])

2. Suppose that

λ(1)
e > · · · > λ(ℓ)

e > 1 > λ(ℓ+1)
e > · · · > λ(k)

e > 0.

It was proved in (Jung et al., 2024) that, almost surely,

(1) if i ≤ ℓ, then µi(M̃) →
√
λ
(i)
e + 1√

λ
(i)
e

and (2) if

i > ℓ, then µi(M̃) → 2. (While Theorem 1 in (Jung et al.,
2024) is stated only for the optimal transformation of the
form −p′/p, the same proof works for any transformation.)
The BBP transition for M̃ would assert that (1) if i <

ℓ, then N1/2

(
µi(M̃)−

(√
λ
(i)
e + 1√

λ
(i)
e

))
converges in

distribution to a centered Gaussian with variance 2(λ
(i)
e −

1)/λ
(i)
e and (2) if i > ℓ, then the fluctuation of µi(M̃)

coincides with that of the (i− ℓ)-th largest eigenvalue of a
GOE matrix. However, to avoid complication, we refrain
from considering the rank-k models in this paper.
Remark 2.8. If λe = 0 in Theorem 2.5, it is natural to con-
sider a different scaling of the SNR λ for the BBP transition.
Suppose that E[f ′(

√
NW12)] = 0 and E[f ′′(

√
NW12)] ̸=

0. With the scaling λ ≡ λ(N) = λ0

√
N , the Taylor expan-

sion in (3) is then

N− 1
2 f(

√
NMij)

≈ f(
√
NWij)√
N

+
1

2
λ0NE[f ′′(

√
NWij)]x

2
ix

2
j .

This suggests that the effective SNR

λ̃e = (λ2
0/4)N

2E[f ′′(
√
NW12)]

2∥x2∥4,

where x2 = (x2
1, x

2
2, . . . , x

2
N ). Notice that for the i.i.d.

prior, ∥x2∥2 = N−1E[x4
1] + o(N−1).

In (Guionnet et al., 2023), it was proved that the limit of
the largest eigenvalue exhibits the BBP transition with the
effective SNR λ̃e. Adapting the strategy for the proof of
Theorems 2.5 and 2.6, it is also possible to prove that the
corresponding statements for the fluctuation of the largest
eigenvalue. We remark that the actual statement also con-
tains a deterministic shift term of order N−1/2; see (79) for
more precise statement. In Appendix D, we provide the idea
of the proof for this case. It can be further generalized by
considering

kf := inf{k ∈ Z+ : E[f (k)(
√
NWij)] ̸= 0}

and the scaling λ = λ0N
1
2 (1−

1
kf

)
. See Appendix D.4 for

more discussion.

3. Outline of the Proof - Supercritical Case
In this section, we outline the proof of the first part of our
main result, Theorem 2.5. (The detailed proofs for the re-
sults in Section 3 can be found in Appendix B.) Throughout
Section 3, we assume λe > 1.

3.1. Approximation by a Spiked Random Matrix

We begin the proof of Theorem 2.5 by approximating the
transformed matrix M̃ by a spiked random matrix. As dis-
cussed in Introduction, it is required to approximate M̃ by
a spiked Wigner-type matrix instead of a spiked Wigner
matrix, which is obtained from the Taylor expansion for the
entrywise transformation f . The first step of this approxi-
mation is the following proposition:

Proposition 3.1. Suppose that M is a spiked Wigner matrix
satisfying Assumption 2.3. Let M̃ be a matrix defined by
M̃ij = N− 1

2 f(
√
NMij). Define an N ×N random matrix

H by

Hij =
f(
√
NWij)√
N

+
√
λf ′(

√
NWij)xixj

+
λ

2
E[f ′′(

√
NWij)]

√
Nx2

ix
2
j .

(12)

Let µ1(M̃) and µ1(H) be the largest eigenvalues of M̃ and
H , respectively. Then, for any ϵ > 0, µ1(M̃) − µ1(H) =
O(N−1+ϵ) with overwhelming probability.

Proposition 3.1 basically asserts that in the Taylor expan-
sion for f , the terms involving the third or higher derivatives
can be ignored. Moreover, the terms involving the second
derivative can only affect the largest eigenvalue via its ex-
pectation. Note that it is an a priori estimate and we will
eventually see that in the Taylor expansion, only the terms
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involving the first derivative affect the largest eigenvalue,
via its expectation, which justifies the approximation in (3).

Our strategy for the proof of Theorem 2.5 is to compare
the largest eigenvalue of H with that of a rank-2 spiked
Wigner matrix (in the sense of (11)) for which the asymp-
totic normality of the fluctuation of the outlier eigenvalue is
known. The main obstacle is that the ‘noise’ matrix in H is
not a Wigner matrix. To analyze this more in detail, let us
introduce the short-handed notation

fij := f(
√
NWij), f ′

ij := f ′(
√
NWij),

f ′′
ij := f ′′(

√
NWij), f

(k)
ij := f (k)(

√
NWij).

(13)

(From the assumption on the function f , we have that
E[fij ] = 0 for all i, j, and E[f2

12] = 1.) If we denote
the noise matrix in H by V , whose entries are

Vij =
fij√
N

+
√
λ(f ′

ij − E[f ′
ij ])xixj , (14)

then the matrix V is a symmetric random matrix whose
upper triangle entries are independent random variables (up
to symmetric constraint), satisfying E[Vij ] = 0, but

E[(Vij)
2] =

1

N
+

2
√
λ√
N

(
E[fijf ′

ij ]− E[fij ]E[f ′
ij ]
)
xixj

+ λ
(
E[(f ′

ij)
2]− E[f ′

ij ]
2
)
x2
ix

2
j

=:
1

N
(1 + CV

1

√
Nxixj + CV

2 Nx2
ix

2
j ).

(15)

Thus, V is not a Wigner matrix but a Wigner-type matrix.

Although it might seem natural to interpolate between Vij

and fij/
√
N , this approach is complicated by the corre-

lation between fij/
√
N and the sub-leading order term√

λ(f ′
ij − E[f ′

ij ])xixj . In this paper, we instead consider
another interpolation, defined by a matrix V (t) for t ∈ [0, 1]
whose entries are given by

V (t)ij :=

√
1 + CV

1 t
√
Nxixj + CV

2 tNx2
ix

2
j

NE[(Vij)2]
Vij . (16)

By definition, V (1) = V and V (t) is a Wigner-type matrix
for any t ∈ [0, 1]. We can also see that V (0) is a Wigner
matrix whose off-diagonal entries are not identically dis-
tributed. Note that it does not affect our proof since the
fluctuation of the outlier eigenvalue is known for spiked
Wigner matrices, even when the entries of the Wigner ma-
trix are not identically distributed.

With V (t), we finally introduce the desired interpolation,
defined by a matrix H(t) for t ∈ [0, 1] with entries

H(t)ij = V (t)ij +
√
λE[f ′

ij ]xixj +
λ

2
E[f ′′

ij ]
√
Nx2

ix
2
j .

(17)
Note that H(0) is a rank-2 spiked Wigner matrix and H =
H(1).

3.2. Local Law

To estimate the change of the largest eigenvalue along the
matrix flow given by H(t), we use the Green function com-
parison argument. It relies on the fact that the distribution
function of the largest eigenvalue of a matrix can be well
approximated by a certain functional of the resolvent of the
matrix. (See Proposition 3.3 for an example of such a func-
tional.) The main technical input necessary for the Green
function comparison is an estimate for the resolvent of the
matrix, known as the local law. We will use the following
local law for the resolvent of H(t).

Proposition 3.2. Let H(t) be the matrix defined in (17).
Define the resolvent of H(t) by

G(t, z) := (H(t)− zI)−1 (Im z ≥ 0). (18)

Set z ≡ τ + iη and

κ := τ −

(
√
λE[f ′

12] +
1√

λE[f ′
12]

)
.

Suppose that |κ| ≤ N− 1
2+ϵ and η = N− 1

2−ϵ for a fixed
ϵ > 0. Then,

max
i,j

|Gij(t, z)−msc(z)δij | = O(N− 1
2+6ϵ), (19)

uniformly on t ∈ [0, 1], where msc is the Stieltjes transform
of the Wigner semicircle law, given by msc(z) = (−z +√
z2 − 4)/2.

For the proof of Proposition 3.2, we first prove a corre-
sponding result for the resolvent of V (t) and then apply
some resolvent identities. Define the resolvent of V (t) by

R(t, z) := (V (t)− zI)−1 (Im z ≥ 0). (20)

A local law for R(t, z) was proved in (Ajanki et al., 2017)
where Rij(t, z) was approximated by a deterministic num-
ber mi(t, z), given as the solution of the quadratic vector
equation

− 1

mi(t, z)
= z +

∑
j

E[(V (t)ij)
2]mj(t, z). (21)

Note that if E[(V (t)ij)
2] = N−1 for all i, j, then (21) is sat-

isfied by mi(0, z) = msc(z) for all i, since −1/msc(z) =
z +msc(z).

For our purpose, the local law involving mi(t, z) is not
sufficient since we need an estimate on Rij(t, z) that is
uniform in i, j. To obtain such an estimate, we notice that
while V (t) is not a Wigner matrix for t > 0, it is asymp-
totically a Wigner matrix in the sense that E[(V (t)ij)

2] =

N−1 +O(N− 3
2+2ϵ). Thus, it is possible to bound the dif-

ference |msc(z)−mi(t, z)| and prove the desired local law
for R(t, z). (See Lemma B.3 for the precise statement.)
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3.3. Green Function Comparison

With the local law in Proposition 3.2, we can compare func-
tionals of the resolvents of H(0) and H(1). Before the
comparison, we first introduce a well-known example of
such a functional, in Proposition 3.3. We apply the follow-
ing three-step procedure: (i) the cutoff of the eigenvalues
by an indicator function on a small interval around the limit
of the largest eigenvalue (by χE in Proposition 3.3), (ii)
mollification of the cutoff function by the Poisson kernel
(by θη in Proposition 3.3), and (iii) approximation of the dis-
tribution function of the largest eigenvalue by the (mollified)
cutoff function (by K in Proposition 3.3).

Proposition 3.3. Let H(t) be the matrix defined in (17) and
denote by µ1(H(t)) the largest eigenvalue of H(t). Define

L :=
√
λe +

1√
λe

=
√
λE[f ′

12] +
1√

λE[f ′
12]

Fix ϵ > 0. Let E ∈ R such that |E − L| ≤ N−1/2+ϵ. Let
E+ := L+2N−1/2+ϵ and define χE := χ[E,E+]. Set η1 :=

N−1/2−ϵ/2 and η2 := N−1/2−3ϵ. Let K : R → [0,∞) be
a smooth function satisfying

K(x) =

{
1 if |x| < 1/3

0 if |x| > 2/3

which is a monotone decreasing function on [0,∞). Define
the Poisson kernel θη for η > 0 by

θη(y) :=
η

π(y2 + η2)
.

Then, for any D > 0,

E[K(Tr(χE ∗θη2
)(H))] > P(µ1(H(t)) ≤ E−η1)−N−D

and

E[K(Tr(χE ∗θη2
)(H))] < P(µ1(H(t)) ≤ E−η1)+N−D

for any sufficiently large N .

Heuristically, if µ1(H(t)) > E, then Tr(χE ∗ θη2)(H) is
nearly 1. By applying K, we change it to 0, so that it
can approximate the indicator function 1(µ1(H(t)) ≤ E).
Note that we assume K is smooth to ensure that the Green
function comparison theorem is applicable. The precise
statement of the Green function comparison theorem is as
follows.

Proposition 3.4. Let ϵ > 0 and set η = N− 1
2−ϵ. Let

E1, E2 ∈ R satisfy

|Eℓ − L| ≤ N− 1
2+ϵ (ℓ = 1, 2).

Let F : R → R be a smooth function satisfying

max |F (m)(x)| ≤ Cm(1 + |x|)C (m = 0, 1, 2, 3, 4)

for some constants Cm > 0. Then, for any sufficiently small
ϵ > 0, there exists δ > 0 such that∣∣∣∣∣EF

(
Im

∫ E2

E1

TrG(1, x+ iη)dx

)

−EF

(
Im

∫ E2

E1

TrG(0, x+ iη)dx

)∣∣∣∣∣ ≤ N−δ.

(22)

for any sufficiently large N .

3.4. Proof of Theorem 2.5 - Supercritical Case

To finish the proof, we need to compute the eigenvalues of
the spike in H(1). Let x2 := (x2

1, x
2
2, . . . , x

2
N ). Note that

x and x2 are not orthogonal, thus
√
λe =

√
λE[f ′

12] may
not be an eigenvalue of H(1)− V (1).

Proposition 3.5. Let AN := H(t) − V (t) =
√
λexx

T +
λ
2E[f

′′
12]

√
Nx2(x2)T . Denote the ordered eigenvalues of

AN by θ1 ≥ θ2 ≥ · · · ≥ θN . Then, for any ϵ > 0,

1. θ1 =
√
λe +O(N−1+ϵ),

2. θ2 = O(N− 1
2+ϵ),

3. θ3 = · · · = θN = 0.

Finally, invoking known results on the largest eigenvalues of
rank-2 spiked Wigner matrices (e.g., (Renfrew & Soshnikov,
2013)), we can complete the proof of Theorem 2.5.

4. Outline of the Proof - Subcritical Case
In this section, we outline the proof of the second part of our
main result, Theorem 2.5. (The detailed proofs for the re-
sults in Section 3 can be found in Appendix B.) Throughout
Section 4, we assume λe < 1.

4.1. Approximation by a Wigner-type Matrix

The first step of the proof of Theorem 2.5 is the approxi-
mation of the transformed matrix M̃ by a spiked random
matrix H in (12) for which we can directly use Proposition
3.1. In the second step, however, instead of interpolating
H and a spiked Wigner matrix H(0) in (17), we directly
compare H and a Wigner-type matrix V in (14). We will
prove the following result on the difference between the
largest eigenvalues of H and V .

Proposition 4.1. Let µ1(H) and µ1(V ) be the largest eigen-
values of H and V , respectively. Then, 0 ≤ µ1(H) −
µ1(V ) ≤ N−3/4 with overwhelming probability.

To prove Proposition 4.1, we compare the normalized trace

7
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of the resolvents of H and V . Recall that

Hij =
fij√
N

+
√
λf ′

ijxixj +
λ

2
E[f ′

ij ]
√
Nx2

ix
2
j ,

Vij =
fij√
N

+
√
λ(f ′

ij − E[f ′
ij ])xixj .

Set

G(z) ≡ G(1, z) = (H − zI)−1,

R(z) ≡ R(1, z) = (V − zI)−1.

From the resolvent identity on R − G, we can prove that
|Tr(R(z) − G(z))| ≪ |TrR(z)| with high probability.
We can then prove Proposition 4.1 by showing that if
µ1(H) is not sufficiently close to µ1(V ), then |TrG(z)| ≫
|TrR(z)| for some z close to µ1(H) (but not to µ1(V )). We
remark that Proposition 4.1 is not optimal, and the bound
can be lowered; however, we do not pursue it in this paper.

4.2. Local Law and Green Function Comparison

From Proposition 4.1, we can immediately see that the fluc-
tuation of µ1(H) is governed by that of µ1(V ), which is
expected to be of order N−2/3. To prove that the fluctuation
of µ1(V ), we estimate the change of the largest eigenvalue
along the matrix flow given by V (t), defined in (16). We
use the Green function argument, which requires the local
law, analogous to Proposition 3.2, for the resolvent of V (t).
The precise statement is as follows:

Proposition 4.2. Let V (t) be the matrix defined in (16).
Recall that we denote the resolvent of V (t) by R(t, z). Set
z ≡ τ + iη and κ := τ − 2. Suppose that |κ| ≤ N− 2

3+ϵ

and η = N− 2
3−ϵ for a fixed ϵ > 0. Then,

max
i,j

|Rij(t, z)−msc(z)δij | = O(N− 1
3+ϵ), (23)

uniformly on t ∈ [0, 1].

With the local law in Proposition 4.2, we can prove a state-
ment analogous to Proposition 3.4. By adapting the strategy
explained in the beginning of Section 3.3, we can then con-
clude that the the limiting distribution of the fluctuation of
µ1(V ) is equal to that of the largest eigenvalue of a Wigner
matrix V (0), which is given by the Tracy–Widom distribu-
tion.

5. Numerical Experiments
In this section, we perform numerical experiments compare
the theoretical results from Theorem 2.5 with empirical
results using specific models.

5.1. Spiked Non-Gaussian Wigner Matrix with
Entrywise Transformation

We first consider a transformed spiked Wigner matrix with
non-Gaussian noise. The (rescaled) noise entries

√
NWij

(i ≤ j) are independently drawn from the sum of Gaussian
and Rademacher random variables, whose density p is given
by a centered bimodal distribution with unit variance. (See
Figure 1(a) for the graph of p.) For the spike, we sample a
random N -vector x so that

√
Nxi’s are i.i.d. Rademacher

random variables, independent from the noise. We apply
the entrywise transformation

f = −p′/(
√
Fhp) (24)

where the Fisher information Fh of h := −p′/p is defined
by

Fh := E[h(
√
NW12)

2] =

∫ ∞

−∞

(p′(x))2

p(x)
dx.

(See Figure 1(b) for the graph of f .) We remark that f in
(24) is the optimal entrywise transformation in the sense
that it maximizes the effective SNR λe, and it also satisfies
Assumption 2.4.

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

(a) The graph of the noise density p

-4 -2 2 4

-10

-5

5

10

(b) The graph of the entrywise transform f

Figure 1. The noise density and the entrywise transformation used
in the numerical experiment with non-Gaussian bimodal noise.

We set N = 1024 and generate 5,000 independent trans-
formed spiked Wigner matrices described above. For a
supercritical case, we set SNR λ = 0.8 with λe ≈ 2.902.
The histogram for the shifted, rescaled largest eigenvalue
N1/2(µ1 − (

√
λe + 1√

λe
)) is shown in Figure 2(a). For
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a subcritical case, we set SNR λ = 0.1 with λe ≈ 0.363.
The histogram for the shifted, rescaled largest eigenvalue
N2/3(µ1 − 2) is shown in Figure 2(b). For both cases, the
empirical distributions closely match the theoretical results.
See Appendix A.1 for more detail, including the precise
formulas for the noise density p and the entrywise transfor-
mation f .)
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0.05

0.10

0.15

0.20
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(a) Supercritical case

-4 -2 0 2 4
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0.15

0.20

0.25

0.30

0.35

(b) Subcritical case

Figure 2. The sampled distribution of µ1(M̃) for non-Gaussian
noise with N = 1024, λ = 0.8(left) and λ = 0.1(right), after
shifting and rescaling. The lines in figure 2(a) plots the Gaussian
distribution introduced in Theorem 2.5, and the line in figure 2(b)
plots the GOE Tracy–Widom distribution.

5.2. Spiked Gaussian Wigner Matrix with Entrywise
Transformation

We next consider a spiked Gaussian Wigner matrix, en-
trywise transformed by a polynomial. We let each noise
entry be i.i.d. Gaussian and apply the mapping f(x) =
(x2 + 3x− 1)/

√
11 entrywise. The spike is again sampled

using i.i.d. Rademacher random variables.

We set N = 1024 and generate 5,000 independent trans-
formed spiked Wigner matrices described above. For a
supercritical case, we set SNR λ = 2.5 with λe ≈ 1.294.
The histogram for the shifted, rescaled largest eigenvalue
N1/2(µ1 − (

√
λe + 1√

λe
)) is shown in Figure 3(a). For

a subcritical case, we set SNR λ = 0.1 with λe ≈ 0.350.
The histogram for the shifted, rescaled largest eigenvalue
N2/3(µ1 − 2) is shown in Figure 3(b). For both cases, the

empirical distributions closely match the theoretical results.
See also Appendix A.2 for additional detail.

-2 0 2 4
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0.4

(a) Supercritical case
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0.00
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0.10

0.15

0.20

0.25

0.30

0.35

(b) Subcritical case

Figure 3. The sampled distribution of µ1(M̃) for Gaussian noise
with N = 1024, λ = 2.5 (left) and λ = 0.15 (right), after shifting
and rescaling. The line in figure 3(a) plots the Gaussian distribution
introduced in Theorem 2.5, and the line in figure 3(b) plots the
GOE Tracy–Widom distribution.

6. Conclusion and Future Works
In this paper, we proved that the largest eigenvalue of the
transformed rank-one spiked Wigner matrix exhibits the
BBP transition in terms of the fluctuation of the largest
eigenvalue. The limiting law of the fluctuation is given
by the Gaussian when the effective SNR is above a cer-
tain threshold, and by the GOE Tracy–Widom below the
threshold. We also proved the precise formulas for the limit-
ing laws involving the effective SNR due to the entrywise
transform, and strong concentration estimates for the largest
eigenvalues, known as the rigidity. We conducted numerical
simulations with several examples to compare the theoreti-
cal results with the numerical ones.

A natural future research direction would be to prove the
corresponding results for rectangular models, which gen-
eralize the spiked Wishart matrices. We believe that our
approach would work for the analysis on the largest singular
values of transformed spiked rectangular matrices. We also
hope to remove several technical assumptions on our model
in the future.
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general Wigner-type matrices. Probability Theory and
Related Fields, 169:667–727, 2017.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D., and
Yang, G. High-dimensional asymptotics of feature learn-
ing: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:
37932–37946, 2022.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., and Wu, D.
Learning in the presence of low-dimensional structure: a
spiked random matrix perspective. Advances in Neural
Information Processing Systems, 36, 2024.

Baik, J., Ben Arous, G., and Péché, S. Phase transition
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probabilistic low-rank matrix estimation: Universality
with respect to the output channel. In 2015 53rd Annual

Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 680–687. IEEE, 2015.

Mergny, P., Ko, J., Krzakala, F., and Zdeborová, L. Funda-
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A. Details of the Numerical Experiments
In this appendix, we provide the details of the numerical experiments in Section 5.

A.1. Spiked Non-Gaussian Wigner matrix

The density function p(x) of each noise entry is

p(x) =
5

2
√
2π

(
e−

5
2 (x−2/

√
5)2 + e−

5
2 (x+2/

√
5)2
)
. (25)

If we denote by N and R a standard Gaussian random variable and a Rademacher random variable, respectively, then p is
the density function of a random variable

1√
5
N +

2√
5
R.

which represents the convolution of a rescaled Gaussian density function and a rescaled Rademacher density function.

An optimal entrywise transformation (up to constant multiple) h(x) for the transformed PCA is h(x) := −p′(x)
p(x) . For our

model, the explicit formula for h(x) is

h(x) =
5
(
(x− 2√

5
)e−

5
2 (x−2/

√
5)2 + (x+ 2√

5
)e−

5
2 (x−+2/

√
5)2
)

e−
5
2 (x−2/

√
5)2 + e−

5
2 (x+2/

√
5)2

. (26)

Note that h does not satisfy Assumption 2.4, since Fh := E[h(
√
NW12)

2] ≈ 3.628, which is the Fisher information of the
noise entry. We rescale h by dividing it by

√
Fh, and thus we are led to apply

f(x) :=
h(x)√
Fh

≈
2.62503

(
(x− 2√

5
)e−

5
2 (x−2/

√
5)2 + (x+ 2√

5
)e−

5
2 (x−+2/

√
5)2
)

e−
5
2 (x−2/

√
5)2 + e−

5
2 (x+2/

√
5)2

. (27)

Note that E[f2
12] = 1 and E[f ′

12] ≈ 1.905. We remark that for the transformed PCA the threshold for the strong detection is
(E[f ′

12])
−2 ≈ 0.276.

A.2. Spiked Gaussian Wigner Matrix

Recall that we let

f(x) =
x2 + 3x− 1√

11
.

It satisfies Assumption 2.4, since

E[f2
ij ] =

m4

11
+

7m2

11
− 6m1

11
+

1

11
= 1 (28)

where mℓ denotes the ℓ−th moment of the standard Gaussian distribution. (Note that m4 = 3, m2 = 1, and m1 = 0.) In
this setting, E[f ′

12] =
3√
11

≈ 0.905, and the threshold for the transformed PCA is (E[f ′
12])

−2 ≈ 1.222. We remark that the
threshold cannot be decreased from 1 when the noise is Gaussian.

B. Proof of Main Results - Supercritical case
In this appendix, we provide the detail of the proofs of the results for the supercritical case. Throughout Appendix B, we
assume that λe = λ(E[f ′

12])
2 > 1.

In Appendices B and C, we will use the following notions, known as the stochastic domination in random matrix theory,
which are useful when making precise estimates that hold with overwhelming probability up to small powers of N .

Definition B.1 (Stochastic domination). Let

ξ =
(
ξ(N)(u) : N ∈ N, u ∈ U (N)

)
, ζ =

(
ζ(N)(u) : N ∈ N, u ∈ U (N)

)
13
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be two families of random variables, where U (N) is a possibly N -dependent parameter set. We say that ξ is stochastically
dominated by ζ (uniformly in u) if for all (small) ϵ > 0 and (large) D > 0

sup
u∈U(N)

P
(
|ξ(N)(u)| > N ϵζ(N)(u)

)
≤ N−D

for any sufficiently large N ≥ N0(ε,D).

We write ξ ≺ ζ or ξ = O(ζ), if ξ is stochastically dominated by ζ.

B.1. Proof of Theorem 2.6

We first prove Proposition 3.1.

Proof of Proposition 3.1. From Taylor’s expansion,

M̃ij =
f(
√
NMij)√
N

=
f(
√
NWij +

√
λNxixj)√

N

=
f(
√
NWij)√
N

+
√
λf ′(

√
NWij)xixj +

λ

2
f ′′(

√
NWij)

√
Nx2

ix
2
j +O

(
f ′′′(

√
NWij)Nx3

ix
3
j

)
.

(29)

Recall the notation

fij := f(
√
NWij), f ′

ij := f ′(
√
NWij), f ′′

ij := f ′′(
√
NWij), f

(k)
ij := f (k)(

√
NWij) (k ∈ Z+), (30)

defined in (13).

Define H̃ by

H̃ij =
fij√
N

+
√
λf ′

ijxixj +
λ
√
N

2
f ′′
ijx

2
ix

2
j .

Then, by definition (M̃ − H̃)ij = O
(
f ′′′
ij Nx3

ix
3
j

)
. For given ϵ > 0, let Ωϵ

W be the event

Ωϵ
W = {max

i,j
|f ′′′

ij | ≤ N ϵ}.

Note that Ωϵ
W holds with overwhelming probability. Thus, the Frobenius norm (Hilbert-Schmidt norm) of (M̃ − H̃) is

bounded by

∥M̃ − H̃∥F ≤ C

∑
i,j

∣∣f ′′′
ij Nx3

ix
3
j

∣∣2 1
2

≤ C(max
i,j

|f ′′′
ij |)N

∑
i

|xi|6 = O(N−1).

In particular, ∥M̃ − H̃∥ = O(N−1).

We next consider (H − H̃). Note that

(H − H̃)ij =
λ
√
N

2
(f ′′

ij − E[f ′′
ij ])x

2
ix

2
j .

Thus, for any unit vector v = (v1, v2, . . . , vN ) ∈ RN ,

⟨v, (H − H̃)v⟩ =
∑
i,j

λ
√
N

2
(f ′′

ij − E[f ′′
ij ])x

2
ix

2
jvivj .

If we let F ′′ be a matrix defined by F ′′
ij = N− 1

2 (f ′′
ij − E[f ′′

ij ]), then it is a constant multiple of a Wigner matrix. Since the
matrix norm of a Wigner matrix is bounded by a constant with overwhelming probability, by considering the vector whose
i-th entry is x2

i vi, we obtain that

∑
i,j

λ
√
N

2
(f ′′

ij − E[f ′′
ij ])x

2
ix

2
jvivj = O

(
N
∑
i

x4
i v

2
i

)
= O(N−1).

14
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Since v was an arbitrary unit vector, we find that ∥H − H̃∥ = O(N−1).

So far, we have shown that ∥M̃ −H∥ = O(N−1). Then, applying Weyl’s inequality (or the min-max principle for the
largest eigenvalue), we conclude that µ1(M̃)− µ1(H) = O(N−1).

Next, we prove Theorem 2.6 for the supercritical case by adapting the strategy of the proof of Theorem 4.8 in (Perry et al.,
2018).

Proof of Theorem 2.6 - Supercritical case. From Proposition 3.1, we find it suffices to prove that∣∣∣∣µ1(H)−
(√

λe +
1√
λe

)∣∣∣∣ ≺ N− 1
2 .

Let A and ∆ be the matrices defined by

Aij =

√
λ

N
(f ′

ij − E[f ′
ij ]), ∆ij =

√
NAijxixj .

Then, for any unit vector y = (y1, . . . , yN ), letting z = (x1y1, . . . , xNyN ),

⟨y,∆y⟩ =
√
N

N∑
i,j=1

xiyiAijxjyj =
√
N⟨z, Az⟩ ≤

√
N∥A∥ · ∥z∥2.

Since |xi| ≺ N−1/2, we have that ∥z∥ ≺ N−1/2∥y∥ = N−1/2. Further, since A is a constant multiple of a Wigner matrix,
we find that ∥A∥ ≺ 1. Thus, we have ⟨y,∆y⟩ ≺ N−1/2. Since y was arbitrary, it shows that ∥∆∥ ≺ N−1/2.

We now consider (H −∆), whose entries are

Hij −∆ij =
fij√
N

+
√
λE[f ′

ij ]xixj +
λ

2
E[f ′′

ij ]
√
Nx2

ix
2
j .

Note that (H −∆) is a rank-2 spiked Wigner matrix. We want to invoke Theorem 2.7 in (Knowles & Yin, 2013), which can
be rephrased as follows in our setting.

Proposition B.2 (Theorem 2.7 in (Knowles & Yin, 2013)). Let M = W +
√
λ1xx

T +
√
λ2yy

T , where W is a Wigner
matrix and x = (x1, . . . , xN ),y = (y1, . . . , yN ) ∈ R with ⟨x,y⟩ = 0. Assume further that 0 < λ2 < 1 < λ1 and
E[Wii]

2 = 2N−1 for any i. Then, for the largest eigenvalue µ1(M) of M ,∣∣∣∣µ1(M)−
(√

λ1 +
1√
λ1

)∣∣∣∣ ≺ N− 1
2 .

Since the variance of the diagonal entries of (H −∆) is not 2N−1 but N−1, we introduce a diagonal matrix D with entries

Dii = (
√
2− 1)

fii√
N

.

From the first part of Definition 2.1 (the definition of the Wigner matrix), we can easily find that |fii| ≺ 1. Thus,
∥D∥ ≺ N−1/2. Now, if we let µ1(H −∆+D) be the largest eigenvalue of (H −∆+D), then from Proposition B.2, we
find that ∣∣∣∣µ1(H −∆+D)−

(√
λe +

1√
λe

)∣∣∣∣ ≺ N− 1
2 .

Since
|µ1(H)− µ1(H −∆+D)| ≤ ∥∆−D∥ ≤ ∥∆∥+ ∥D∥ ≺ N− 1

2 , (31)

this concludes the proof of Theorem 2.6 for the supercritical case.
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B.2. Proof of the Local Law and the Green Function Comparison Theorem

The proof of the local law, Proposition 3.2, relies on the following lemma, which is the local law for the resolvent of V (t).

Lemma B.3. Let V (t) be the matrix defined in (16) and its resolvent R(t, z) in (20). Then,

max
i,j

|Rij(t, z)−msc(z)δij | = O(N− 1
2+2ϵ), (32)

where we assume that the conditions in Proposition 3.2 hold for z ≡ τ + iη.

Proof. Recall the quadratic vector equation (21). In the regime considered in this lemma, we have an estimate for the
resolvent R(t, z) that

max
i,j

|Rij(t, z)−mi(t, z)δij | = O(N− 1
2+ϵ). (33)

(See Theorem 1.7 in (Ajanki et al., 2017), where the parameters are given as κ(z) = Θ(1) and ρ(z) = Θ(η) from (1.17),
(1.23), and (4.5f) in (Ajanki et al., 2017).) For the solution mi ≡ mi(t, z) of (21), we can consider an ansatz

mi(t, z) = msc(z) + si(t, z)

with si ≡ si(t, z) ≪ msc. We then have from (21) that

0 = 1 + zmi +
∑
j

E[(V (t)ij)
2]mimj = 1 + z(msc + si) +

∑
j

E[(V (t)ij)
2](msc + si)(msc + sj).

From (16), applying the identity 1 + zmsc +m2
sc = 0, we further have that

zsi −m2
sc +

1

N
(msc + si)

∑
j

(1 + CV
1 t

√
Nxixj + CV

2 tNx2
ix

2
j )(msc + sj) = 0,

which yields

(z +msc)si +
msc + si

N

∑
j

sj + (msc + si)
CV

1 t√
N

∑
j

(msc + sj)xixj = O(N−1+2ϵ). (34)

Summing the left-hand side of (34) over the index i and dividing it by N ,

(z + 2msc)

(
1

N

∑
i

si

)
+

(
1

N

∑
i

si

)2

+
CV

1 t

N
√
N

(∑
i

(msc + si)xi

)2

= O(N−1+2ϵ). (35)

Since |xi| = O(N− 1
2+ϵ), by naive power counting, the last term in the left-hand side of (35) is O(N− 1

2+2ϵ). Thus,
1
N

∑
i si = O(N− 1

2+2ϵ). Plugging it into (34), since the last term in the left-hand side of (35) is O(N− 1
2+2ϵ), we find that

si = O(N− 1
2+2ϵ) as well. With this bound on si, we then bound the last term in the left-hand side of (35) by

CV
1 t

N
√
N

(
msc

∑
i

xi +
∑
i

sixi

)2

= O(N− 3
2+6ϵ),

where we used the assumption that
∑

i xi = O(N ϵ). Thus, from (35), we find that 1
N

∑
i si = O(N−1+2ϵ), and plugging

it again into (34), we conclude that si = O(N−1+2ϵ).

Combining the estimate si = O(N−1+2ϵ) with the local law (33), we now obtain (32).

Remark B.4. The local law in (32) can be strengthened further; we will use the averaged local law∣∣∣∣∣ 1N
N∑
i=1

wi(Rii(t, z)−mi(t, z))

∣∣∣∣∣ = O(N−1+2ϵ) (36)
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for any deterministic vector (w1, w2, . . . , wN ) with maxi |wi| ≤ 1 and the anisotropic local law∣∣∣∣∣∣
N∑

i,j=1

wiRij(t, z)vj −
N∑
i=1

mi(t, z)wivi

∣∣∣∣∣∣ = O(N− 1
2+2ϵ) (37)

for any deterministic unit vectors (w1, w2, . . . , wN ) and (v1, v2, . . . , vN ). (See Theorem 1.7 and Theorem 1.13 of (Ajanki
et al., 2017), respectively.) With the estimate si = mi −msc = O(N−1+2ϵ) that we showed in the proof of Lemma B.3,
we find that the local laws in (32), (36), and (37) remain valid even if we replace mi by msc.

With the local laws for R(t, z), we now prove the local law for G(t, z), Proposition 3.2.

Proof of Proposition 3.2. We apply the resolvent identity

R(t, z)−G(t, z) = R(t, z)(H(t)− V (t))G(t, z), (38)

which can be easily checked by multiplying the identity by (H(t)− zI) from the right and by (V (t)− zI) from the left.
Let x2 := (x2

1, x
2
2, . . . , x

2
N ). Note that ∥x2∥ ≤ (maxi |xi|)∥x∥ = O(N− 1

2+ϵ′) for any ϵ′ > 0. Then,

H(t)− V (t) =
√
λE[f ′

12]xx
T +

λ

2
E[f ′′

12]
√
Nx2(x2)T .

Set R ≡ R(t, z), G ≡ G(t, z), and let ei be the i-th standard basis vector. Then,

Rij −Gij = ⟨ei, (R−G)ej⟩ =
√
λE[f ′

12]⟨ei, Rx⟩⟨x, Gej⟩+
λ

2
E[f ′′

12]
√
N⟨ei, Rx2⟩⟨x2, Gej⟩. (39)

We want to show that the right-hand side of (39) is negligible. First, by applying the anisotropic local law in (37), we find

⟨ei, Rx⟩ = O(N− 1
2+2ϵ), ⟨ei, Rx2⟩ = O(N−1+2ϵ). (40)

To bound the second term in the right-hand side of (39), it suffices to use the trivial estimate ∥G∥ ≤ η−1 = N
1
2+ϵ, which

can be readily checked from an inequality |(µi(H(t))− z)−1| ≤ | Im z|−1 = η−1, where µi(H(t)) (i = 1, 2, . . . , N) are
the eigenvalues of H(t). We then find that

λ

2
E[f ′′

12]
√
N⟨ei, Rx2⟩⟨x2, Gej⟩ = O(N

1
2N−1+2ϵη−1∥x2∥) = O(N− 1

2+3ϵ). (41)

We now estimate ⟨x, Gej⟩. From the resolvent identity (38),

⟨x, Rej⟩ − ⟨x, Gej⟩ =
√
λE[f ′

12]⟨x, Rx⟩⟨x, Gej⟩+
λ

2
E[f ′′

12]
√
N⟨x, Rx2⟩⟨x2, Gej⟩.

Solving it for ⟨x, Gej⟩, we get

⟨x, Gej⟩ =
1

1 +
√
λE[f ′

12]⟨x, Rx⟩

(
⟨x, Rej⟩ −

λ

2
E[f ′′

12]
√
N⟨x, Rx2⟩⟨x2, Gej⟩

)
. (42)

It should be noted that for our choice of z, from the anisotropic local law, ⟨x, Rx⟩ is near −1/(
√
λE[f ′

12]). To obtain an
estimate on ⟨x, Gej⟩, we consider the imaginary part of ⟨x, Rx⟩. From the spectral decomposition,

R =
∑
k

vk(t)vk(t)
T

µk(V (t))− z
,

where vk(t) is the normalized eigenvector of V (t) associated with the eigenvalue µk(V (t)). Since V (t) is a Wigner-type
matrix with ∥V (t)− V (0)∥ = o(1), it is not hard to see that µk(V (t)) ≥ −3 for all k = 1, 2, . . . , N with overwhelming
probability. Thus,

Im⟨x, Rx⟩ = Im
∑
k

xTvk(t)vk(t)
Tx

µk(V (t))− z
=
∑
k

|⟨x,vk(t)⟩|2 Im
1

µk(V (t))− z

=
∑
k

|⟨x,vk(t)⟩|2
η

(µk(V (t))− τ)2 + η2
≥ η

(τ + 4)2

∑
k

|⟨x,vk(t)⟩|2 =
η

(τ + 4)2
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with high probability, since {vk(V (t))} forms an eigenbasis. We now have that

|1 +
√
λE[f ′

12]⟨x, Rx⟩| ≥
√
λE[f ′

12] Im⟨x, Rx⟩ ≥ Cη (43)

for some constant C with high probability. Furthermore, from the anisotropic local law in (37), we find that

⟨x, Rx2⟩ =
N∑
i=1

mix
3
i +O(N−1+2ϵ) = msc

N∑
i=1

x3
i +

N∑
i=1

(mi −msc)x
3
i +O(N−1+2ϵ)

= O(N−1+ϵ′ +N− 3
2+5ϵ +N−1+2ϵ).

Thus, following the argument we used to derive (41), we obtain

λ

2
E[f ′′

12]
√
N⟨x, Rx2⟩⟨x2, Gej⟩ = O(N− 1

2+3ϵ). (44)

Plugging (43) and (44) into (42), together with (40), we get

⟨x, Gej⟩ = O(η−1N− 1
2+3ϵ) = O(N4ϵ).

Finally, going back to the resolvent identity (39), from (32), (40), and (41), we conclude that (19) holds. This completes the
proof of Proposition 3.2.

Next, we prove the Green function comparison theorem, Proposition 3.4.

Proof of Proposition 3.4. Fix x ∈ [E1, E2]. For simplicity, set

G ≡ G(t, x+ iη), X ≡ Im

∫ E2

E1

TrG(t, x+ iη)dx.

From our choice of x and η, and the assumption on F , we have from the local law for G, Proposition 3.2, that

X = O(NCϵ), F (m)(X) = O(NCϵ)

for some constant C. (Throughout the proof, we use C to denote positive constants independent of N , whose value may
change from line to line.) Differentiating F (X) with respect to t,

d

dt
EF (X) = E

[
F ′(X)

dX

dt

]
= E

[
F ′(X) Im

∫ E2

E1

∑
i

dGii

dt
dx

]

= E

F ′(X) Im

∫ E2

E1

∑
i

∑
j≤k

dH(t)jk
dt

∂Gii

∂H(t)jk
dx

 .

(45)

From the definition of H(t) in (17) and (16),

Ḣ(t)jk :=
dH(t)jk

dt
=

CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k

2(1 + CV
1 t

√
Nxjxk + CV

2 tNx2
jx

2
k)

1/2

Vjk√
NE[(Vjk)2]

=
CV

1

√
Nxjxk + CV

2 Nx2
jx

2
k

2(1 + CV
1 t

√
Nxjxk + CV

2 tNx2
jx

2
k)

V (t)jk.

Applying the well-known formula for the derivative of the resolvent,

∂Gab

∂H(t)jk
=

{
−GajGkb −GakGjb if j ̸= k

−GajGjb if j = k
,

18
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we find that

d

dt
EF (X) = − Im

∫ E2

E1

E

F ′(X)
∑
i,j,k

CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k

2(1 + CV
1 t

√
Nxjxk + CV

2 tNx2
jx

2
k)

V (t)jkGijGki

dx. (46)

To prove that the derivative of E[F (X)] is small, we use Stein’s method to bound the right-hand side of (46). Notice that

∂Gab

∂V (t)jk
=

∂Gab

∂H(t)jk
,

which can be readily checked from the definition of H(t) in (17). Let

Ωϵ = {max
i,j

|Gij −mscδij | < N− 1
2+7ϵ for all x ∈ [E1, E2]}.

Then, Ωϵ holds with high probability. On Ωϵ, when we expand the right-hand side of (46), the terms involving the
third or higher cumulants are negligible in the sense that it is O(N− 1

2+Cϵ). Indeed, if we perform the naive power
counting, we get a factor N− 3

2 from the third (or higher) cumulant, N− 1
2+ϵ from the length |E2 − E1| of the interval

in the integral, N3 from the three summation indices i, j, k, N− 1
2+2ϵ from the factor (CV

1

√
Nxjxk + CV

2 Nx2
jx

2
k), and

N−1+Cϵ since each term contains at least two off-diagonal entries of G, hence the total size of these terms are at most
O(N− 3

2N− 1
2+ϵN3N− 1

2+2ϵN−1+Cϵ) = O(N− 1
2+Cϵ). (While some terms may contain less than two off-diagonal entries

in case some summation indices coincide, the power from the summation indices decreases to N2 in such cases.)

From the power counting argument above, on Ωϵ, we find that

d

dt
EF (X)

= − Im

∫ E2

E1

∑
i,j,k

E[(V (t)jk)
2]

CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k

2(1 + CV
1 t

√
Nxixj + CV

2 tNx2
ix

2
j )
E
[

∂

∂V (t)jk
(F ′(X)GijGki)

]
dx

+O(N− 1
2+Cϵ)

= − 1

2N
Im

∫ E2

E1

∑
i,j,k

(CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k)E

[
F ′′(X)

∂X

∂V (t)jk
GijGki + F ′(X)

∂(GijGki)

∂V (t)jk

]
dx

+O(N− 1
2+Cϵ) .

(In the rest of the proof, we always assume that Ωϵ holds.) We notice that,

∂X

∂V (t)jk
= − Im

∫ E2

E1

∑
a

(GajGka +GakGja)dx = O(N− 1
2+Cϵ)

from the power counting; here the factors are N− 1
2+ϵ from the length |E2−E1|, N from the summation index, and N−1+Cϵ

from two off-diagonal entries of G. (The notation above illustrates the case where j ̸= k; however, we easily see that the
same calculation applies for j = k.) Then, again by power counting,

1

N

∫ E2

E1

∑
i,j,k

(CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k)E

[
F ′′(X)

∂X

∂V (t)jk
GijGki

]
dx = O(N− 1

2+Cϵ).

It remains to bound

− 1

2N

∫ E2

E1

∑
i,j,k

(CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k)E

[
F ′(X)

∂(GijGki)

∂V (t)jk

]
dx

=
1

N

∫ E2

E1

∑
i,j,k

(CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k)E [F ′(X)(GijGkkGji +GijGkjGki)] dx.

(47)
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For the term with three off-diagonal entries of G, we can again use the power counting to show that it is O(N− 1
2+Cϵ).

Similarly, with the factor Nx2
jx

2
k = O(N−1+4ϵ), we can find that

1

N

∫ E2

E1

∑
i,j,k

CV
2 Nx2

jx
2
kE [F ′(X)GijGkkGji] dx = O(N− 1

2+Cϵ).

For the remaining term,

1

N

∫ E2

E1

∑
i,j,k

CV
1

√
NxjxkE [F ′(X)GijGkkGji] dx

=
1

N

∫ E2

E1

∑
i,j,k

CV
1

√
NxjxkE [F ′(X)GijmscGji] dx

+
1

N

∫ E2

E1

∑
i,j,k

CV
1

√
NxjxkE [F ′(X)Gij(Gkk −msc)Gji] dx.

(48)

The second term in the right-hand side of (48) is O(N− 1
2+Cϵ) again by power counting, where we use the local law

|Gkk −msc| = O(N− 1
2+Cϵ), proved in Proposition 3.2. The first term in the right-hand side of (48) can be bounded as

1

N

∫ E2

E1

∑
i,j,k

CV
1

√
NxjxkE [F ′(X)GijmscGji] dx

=
CV

1 msc√
N

∫ E2

E1

(∑
k

xk

)∑
i,j

xjE [F ′(X)GijGji] dx = O(N− 1
2+Cϵ),

where we use the assumption that
∑

k xk = O(N ϵ).

So far, we have seen that d
dtEF (X) = O(N− 1

2+Cϵ) for any sufficiently small ϵ > 0. Integrating it from t = 0 to t = 1, we
can conclude that (22) holds. This completes the proof of Proposition 3.4.

B.3. Proof of the Main Theorem - Supercritical case

We begin by proving Proposition 3.5.

Proof of Proposition 3.5. It is obvious that θ3 = · · · = θN = 0 since AN is a rank-2 matrix. To ease the notation, we
assume that E[f ′′

12] ≥ 0 and denote AN = uuT + vvT , where

u = (
√
λE[f ′

12])
1/2x

v = (
λ

2
E[f ′′

12]
√
N)1/2x2.

(49)

(The case E[f ′′
12] < 0 can be proved in a similar manner.) It can be readily shown that the two nontrivial eigenvalues of AN

are given by
∥u∥2 + ∥v∥2 ±

√
(∥u∥2 − ∥v∥2)2 + 4⟨u,v⟩2

2
.

By substituting u and v, we get

θ1 =

√
λE[f ′

12] +
λ
2E[f

′′
12]

√
N(
∑

i x
4
i ) +

√
λE[f ′

12]
2 +Θ(N,x)

2
(50)

and

θ2 =

√
λE[f ′

12] +
λ
2E[f

′′
12]

√
N(
∑

i x
4
i )−

√
λE[f ′

12]
2 +Θ(N,x)

2
(51)
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where we define

Θ(N,x) :=
λ2

4
E[f ′′

12]
2N(

∑
i

x4
i )

2 + λ
√
λE[f ′

12]E[f ′′
12]

√
N(2(

∑
i

x3
i )

2 −
∑
i

x4
i ).

Note that for any ϵ > 0,

Θ(N,x) = −2
(√

λE[f ′
12]
)(λ

2
E[f ′′

12]
√
N(
∑
i

x4
i )

)
+O(N−1+ϵ). (52)

Then, √
λE[f ′

12]
2 +Θ(N,x) =

√
λE[f ′

12]

(
1 +

Θ(N,x)

2(
√
λE[f ′

12])
2
+O(N−1+ϵ)

)

=
√
λE[f ′

12]−
λ

2
E[f ′′

12]
√
N(
∑
i

x4
i ) +O(N−1+ϵ),

(53)

and plugging it into (50), we get
θ1 =

√
λE[f ′

12] +O(N−1+ϵ) (54)

and
θ2 =

λ

2
E[f ′′

12]
√
N(
∑
i

x4
i ) +O(N−1+ϵ) = O(N− 1

2+ϵ). (55)

This proves the desired proposition.

The proof of Proposition 3.3 essentially follows the same strategy as the proof of Proposition 7.1 in (Lee & Schnelli, 2018).
However, since the asymptotic spectrum is determined thanks to Theorem 2.1 of (Capitaine et al., 2009), we take a more
straightforward approach as follows.

Proof of Proposition 3.3. Let µk(t) ≡ µk(H(t)) be the k-th largest eigenvalues of H(t). Recall that in the proof of
Theorem 2.6 in Appendix B.1, we have seen that ∥H − (H −∆+D)∥ ≺ N−1/2 and (H −∆+D) is a rank-2 spiked
Wigner matrix. By Proposition 3.5, Theorem 2.1 in (Capitaine et al., 2009), and Theorem 2.7 (Knowles & Yin, 2013), with
overwhelming probability,

|µk(t)− L| > L− 2

2

for k = 2, 3, . . . , N. To prove the proposition, we compare (χE ∗ θη2)(λi) and χE−η1 for the following cases.
Case 1. For x < L+2

2 , χE−η1(x) = 0. Then we get

(χE ∗ θη2)(x) =
1

π

(
tan−1 E+ − x

η2
− tan−1 E − x

η2

)
=

1

π

(
tan−1 η2

E − x
− tan−1 η2

E+ − x

)
<

1

2

(
η2

E − x
− η2

E+ − x

)
=

1

2

η2(E+ − E)

(E − x)(E+ − x)
< N−1− 3

2 ϵ.

(56)

Therefore, ∑
i:λi<E−L−2

2

((χE ∗ θη2
)(λi)− χE−η1

(λi)) ≤ N · 2N−1− 3
2 ϵ ≤ N−ϵ (57)

Observe that only one eigenvalue of H(t), namely µ1(t), can be in the following two cases with overwhelming probability.
Case 2. For x ∈ [L+2

2 , E − η1), χE−η1(x) = 0. Similarly to the formula shown above,

(χE ∗ θη2)(x) =
1

π

(
tan−1 E+ − x

η2
− tan−1 E − x

η2

)
=

1

π

(
tan−1 η2

E − x
− tan−1 η2

E+ − x

)
<

1

2

(
η2

E − x
− η2

E+ − x

)
=

1

2

η2(E+ − E)

(E − x)(E+ − x)
≤ N−ϵ

(58)
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Therefore, ∑
i:E−L−2

2 ≤λi<E−η1

((χE ∗ θη2
)(λi)− χE−η1

(λi)) ≤ N−ϵ (59)

Case 3. For x ∈ [E − η1, E+), we use the trivial estimate

(χE ∗ θη2
)(x) < 1 = χE−η1

(x). (60)

Case 4. There are no eigenvalues in [E+,∞) with overwhelming probability.

Considering all cases above, with overwhelming probability, we observe that

Tr(χE ∗ θη2
)(H) ≤ TrχE−η1

(H) +N−ϵ. (61)

Since TrχE−η1
(H) is an integer, by the definition of the cutoff K,

K(TrχE−η1(H) +N−ϵ) = K(N[E−η1,E+]),

where N[E−η1,E+] := |{i : λi ∈ [E − η1, E+]}|. Since K is monotone decreasing on [0,∞), (61) implies that

K(Tr(χE ∗ θ2)(H)) ≥ K(N[E−η1,E+])

with overwhelming probability. By taking expectation on both sides, we find that

E[K(Tr(χE ∗ θ2)(H))] > P(λ1 ≤ E − η1)−N−D,

for any D > 0. The second part of the proposition can also be proved using similar approach by showing that

Tr(χE ∗ θη2
)(H) ≥ TrχE+η1

(H)−N−D.

To finish the proof of Theorem 2.5, we use the following result on the fluctuation of the outlier eigenvalues of spiked Wigner
matrices. Let

cθj :=
θ2j

θ2j − 1
, ρj = θj +

1

θj
.

Proposition B.5 (Theorem 1.3 in (Renfrew & Soshnikov, 2013)). Let λ1 ≥ · · · ≥ λN be ordered eigenvalues of WN +AN .

Let u1
N , . . . ,u

kj

N be a set of orthogonal eigenvectors of AN with eigenvalue θj > 1. When the eigenvectors of AN are
delocalized, the difference between the kj−dimensional vector

(cθj
√
N(λk1+···+kj−1+i − ρj), i = 1, . . . , kj .)

and the vector formed by the (ordered) eigenvalues of a kj × kj GOE matrix with the variance of the matrix entries given by
θ2
j

θ2
j−1

plus a deterministic matrix with lpth entry (1 ≤ l, p ≤ kj) given by 1
θ2
jN

(ul
N )∗M3u

p
N converged to zero in probability

with
(M3)ij := E[(

√
NWij)

3](1− δij).

We now prove the first part of Theorem 2.5.

Proof of Theorem 2.5 - Supercritical case. Fix ϵ > 0 and let η1 := N−1/2−ϵ/2 and η2 := N−1/2−3ϵ. Consider E =
L+ sN−1/2 with s ∈ (−N ϵ, N ϵ) and E+ := L+2N−1/2+ϵ. Recall that µk(t) ≡ µk(H(t)) is the k-th largest eigenvalues
of H(t). By Proposition 3.3, we get

P(µ1(1) ≤ E) < EK(Tr(χE+η1 ∗ θη2)(H)) +N−D
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for any D > 0. By applying Proposition 3.4 with 3ϵ instead of ϵ, we find that

EK(Tr(χE+η1 ∗ θη2)(H)) = EK

(
Im

N

π

∫ E+

E+η1

TrG(1, x+ iη2) dx

)

≤EK

(
Im

N

π

∫ E+

E+η1

TrG(0, x+ iη2) dx

)
+N−δ = EK (Tr(χE+η1 ∗ θη2)(H(0))) +N−δ

(62)

for some δ > 0. We can apply Proposition 3.3 again to H(0). Consequently, we obtain

P
(
N1/2(µ1(1)− L) ≤ s

)
= P(µ1(1) ≤ E)

< EK(Tr(χE+η1
∗ θη2

)(H(1))) +N−D < EK (Tr(χE+η1
∗ θη2

)(H(0))) +N−D +N−δ

< P(µ1(0) ≤ E) + 2N−D +N−δ = P
(
N1/2(µ1(0)− L) ≤ s

)
+ 2N−D +N−δ

(63)

Similarly, we also find that

P
(
N1/2(µ1(1)− L) ≤ s

)
> P

(
N1/2(µ1(0)− L) ≤ s

)
− 2N−D −N−δ (64)

Since the fluctuation of µ1(0) coincides with that of µ1(M̃) from Proposition 3.1, it remains to prove the limiting distribution
of N1/2(µ1(0)). We apply Proposition B.5 to the largest eigenvalue µ1(0) of H(0) = V (0)+AN to find that the fluctuation
of

N1/2
(
µ1(0)− (θ1 +

1

θ1
)
)

coincides with that of a Gaussian random variable with variance 2θ21/(θ
2
1 − 1). Further, from Proposition 3.5, we can replace

θ1 by
√
λe with negligible error. To find the mean of the limiting Gaussian, we need to compute the deterministic term

involving M3 in Proposition B.5. For simplicity, we let

γ3 := E[(V (0)12)
3]

so (M3)ij = γ3(1− δij) since V (0) is a real Wigner matrix. Then,

1

θ2N
xT M3x =

1

θ2N

(
(
∑
i

xi)
2 − γ3

)
= O(N−1+2ϵ) (65)

with the assumption
∑

i xi = O(N ϵ). We thus find that the mean of the limiting Gaussian is 0, which concludes the proof
of Theorem 2.5.

C. Proof of Main Results - Subcritical Case
In this appendix, we provide the detail of the proofs of the results for the subcritical case. Throughout this appendix we
assume that λe = λ(E[f ′

12])
2 < 1.

C.1. Proof of the Local Law and Theorem 2.6

We begin by proving the local law, Proposition 4.2.

Proof of Proposition 4.2. Recall that we have seen in the proof of B.3 that |mi(z) − msc(z)| ≺ O(N−1). Since this
estimate does not depend on z,

max
i,j

|Rij(t, z)−mi(t, z)δij | = O(N− 1
3+ϵ),

which was to be proved. (See Theorem 1.7 in (Ajanki et al., 2017), where the parameters are given as κ(z) = Θ(1) and
ρ(z) = Θ(

√
κ+ η) from (1.17), (1.23), and (4.5d) in (Ajanki et al., 2017).)
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We first notice that Proposition 3.1 holds for the subcritical case without any change. Thus, Theorem 2.6 is a simple corollary
of Proposition 4.1, since from the rigidity of the eigenvalues of Wigner-type matrices, |µ1(V )− 2| ≺ N−2/3. (We refer to
Corollary 1.11 in (Ajanki et al., 2017) for more detail.) We now prove Proposition 4.1.

Proof of Proposition 4.1. The first inequality of the proposition, µ1(H) ≥ µ1(V ), is obvious from the min-max principle
for the largest eigenvalue. We now suppose that µ1(H)− µ1(V ) > N−3/4.

Fix ϵ > 0. We choose the parameter z ≡ τ + iη with τ = µ1(V ) + ξ for ξ ∈ [N−3/4, N−1/2+ϵ] and η = N−5/6. Set
R ≡ R(z) = (V − zI)−1, G ≡ G(z) = (H − zI)−1. Our first goal is to show that |Rii −Gii| = O(N−1/3). To prove
this, we start with the resolvent identity

Rii −Gii = ⟨ei, (R−G)ei⟩ =
√
λE[f ′

12]⟨ei, Rx⟩⟨x, Gei⟩+
λ

2
E[f ′′

12]
√
N⟨ei, Rx2⟩⟨x2, Gei⟩, (66)

which is obtained by letting i = j in (39). To estimate the terms involving R in (66), we apply the anisotropic local law,
Theorem 1.13 in (Ajanki et al., 2017), which is

|⟨w, Rv⟩ −msc(z)⟨w,v⟩| ≺ N−1/6 (67)

for any unit vectors w,v. (Here, the parameters are given as κ(z) = Θ(1) and ρ(z) = O(η) = O(N−5/6) from (1.17),
(1.23), and (4.5d) in (Ajanki et al., 2017).) From (67), we find that

⟨x, Rei⟩ = O(N−1/6), ⟨x, Rx2⟩ = O(N−2/3).

To prove an estimate for ⟨x, Gei⟩, we use a bootstrap argument. In (42) in the proof of Proposition 3.2, by using the
resolvent identity in (38), we had

⟨x, Gei⟩ =
1

1 +
√
λE[f ′

12]⟨x, Rx⟩

(
⟨x, Rei⟩ −

λ

2
E[f ′′

12]
√
N⟨x, Rx2⟩⟨x2, Gei⟩

)
. (68)

From (67), ⟨x, Rx⟩ = −1 + o(1) with overwhelming probability. Since
√
λE[f ′

12] < 1, we find that

|1 +
√
λE[f ′

12]⟨x, Rx⟩| > c > 0

with overwhelming probability, for some (N -independent) constant c. Then, applying the trivial bound ∥G∥ ≤ η−1 = N5/6,
from (68), we find ⟨x, Gei⟩ = O(N1/6), which serves as an a priori estimate. To improve this bound, we consider

⟨x2, Rei⟩ − ⟨x2, Gei⟩

using the resolvent identity in (38) and solve it for ⟨x2, Gei⟩. Then, we get

⟨x2, Gei⟩ =
1

1 + λ
2E[f

′′
12]

√
N⟨x2, Rx2⟩

(
⟨x2, Rei⟩ −

√
λE[f ′

12]⟨x2, Rx⟩⟨x, Gei⟩
)
. (69)

We notice that ⟨x2, Rx2⟩ = O(N−1), ⟨x2, Rei⟩ = O(N−2/3), and ⟨x2, Rx⟩ = O(N−2/3) from (67). Thus, from the a
priori estimate ⟨x, Gei⟩ = O(N1/6), we obtain that ⟨x2, Gei⟩ = O(N−1/2). Plugging it back to (68), we now have that
⟨x, Gei⟩ = O(N−1/6).

So far, we have seen that
⟨x, Gei⟩ = O(N−1/6), ⟨x2, Gei⟩ = O(N−1/2).

Plugging these back into (66), we finally obtain that |Rii −Gii| = O(N−1/3). In particular,

|TrR− TrG| = O(N2/3). (70)

To prove the desired theorem, we consider

ImTrR =

N∑
i=1

η

(µi(V )− τ)2 + η2
,
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where µ1(V ) ≥ · · · ≥ µN (V ) are the eigenvalues of V . We now find an upper bound for ImTrR by partitioning the
eigenvalues {µi(V )} into the following four groups:

E1 = {µi(V ) : 0 ≤ µ1(V )− µi(V ) ≤ N−2/3}, E2 = {µi(V ) : N−2/3 < µ1(V )− µi(V ) ≤ N−5/9},
E3 = {µi(V ) : N−5/9 < µ1(V )− µi(V ) ≤ N−2/9}, E4 = {µi(V ) : µ1(V )− µi(V ) > N−2/9}.

From the rigidity of eigenvalues µi(V ), we have that

|E1| = O(1), |E2| = O(N1/6), |E3| = O(N1/3), |E4| = O(N).

Recall that we are assuming η = N−5/6 and τ − µ1(V ) = ξ ≥ N−3/4 ≫ η. Then, for any eigenvalues in E1,

(µi(V )− τ)2 + η2 ≥ N−3/2 + η2 ≥ N−3/2.

For the eigenvalues in E2,
(µi(V )− τ)2 + η2 ≥ (µi(V )− µ1(V ))2 ≥ N−4/3,

and similar estimates hold for the eigenvalues in E3 and E4, respectively. Thus, we get

ImTrR =

(∑
E1

+
∑
E2

+
∑
E3

+
∑
E4

)
η

(µi(V )− τ)2 + η2

= O(N− 5
6 /N− 3

2 ) +O(N
1
6N− 5

6 /N− 4
3 ) +O(N

1
3N− 5

6 /N− 10
9 ) +O(N1N− 5

6 /N− 4
9 )

= O(N
2
3 ).

(71)

Now, suppose that µ1(H) ∈ [τ, τ + η]. Then, with z = τ + iη,

ImTrG =

N∑
i=1

η

(µi(H)− τ)2 + η2
≥ η

(µ1(H)− τ)2 + η2
≥ 1

2η
=

N
5
6

2
,

which does not hold with overwhelming probability, since ImTrG = O(N2/3) from (70) and (71). Considering O(N1/3+ϵ)
such intervals, we can conclude that

µ1(H) /∈ [µ1(V ) +N−3/4, µ1(V ) +N−1/2+ϵ]

with overwhelming probability.

Finally, adapting the strategy of the proof of Theorem 2.6 in the supercritical case, we can prove that |µ1(H)− µ1(V )| ≺
N−1/2. This completes the proof of the desired theorem.

C.2. Proof of the Main Theorem - Subcritical Case

We begin by introducing a result analogous to Proposition 3.3.

Proposition C.1. Let V (t) be the matrix defined in (16) and denote by µ1(V (t)) the largest eigenvalue of V (t). Fix ϵ > 0.
Let E ∈ R such that |E − 2| ≤ N−2/3+ϵ. Let E+ := 2 + 2N−2/3+ϵ and define χE := χ[E,E+]. Set η1 := N−2/3−ϵ/2 and
η2 := N−2/3−3ϵ. Let K and θη be defined as in Proposition 3.3. Then, for any D > 0,

E[K(Tr(χE ∗ θη2
)(H))] > P(µ1(H(t)) ≤ E − η1)−N−D

and
E[K(Tr(χE ∗ θη2)(H))] < P(µ1(H(t)) ≤ E − η1) +N−D

for any sufficiently large N .

Proof. The proof is standard; see, e.g., Proposition 7.1 in (Lee & Schnelli, 2018), with straightforward adjustments by
applying the results in (Ajanki et al., 2017).
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Next, we introduce and prove the Green function comparison theorem, analogous to Proposition 3.4.

Proposition C.2. Let ϵ > 0 and set η = N− 2
3−ϵ. Let E1, E2 ∈ R satisfy

|Eℓ − 2| ≤ N− 2
3+ϵ (ℓ = 1, 2).

Let F : R → R be a smooth function satisfying

max |F (m)(x)| ≤ Cm(1 + |x|)C (m = 0, 1, 2, 3, 4)

for some constants Cm > 0. Then, for any sufficiently small ϵ > 0, there exists δ > 0 such that∣∣∣∣∣EF
(
Im

∫ E2

E1

TrR(1, x+ iη)dx

)
− EF

(
Im

∫ E2

E1

TrR(0, x+ iη)dx

)∣∣∣∣∣ ≤ N−δ. (72)

The proof of C.2 is almost a verbatim copy of the proof of 3.4. We nevertheless present here a detailed proof of C.2 for
completeness.

Proof of Proposition C.2. Fix x ∈ [E1, E2]. For simplicity, set

R ≡ R(t, x+ iη), X ≡ Im

∫ E2

E1

TrR(t, x+ iη)dx.

Then, X = O(NCϵ), F (m)(X) = O(NCϵ) for some constant C. (Throughout the proof, we use C to denote positive
constants independent of N , whose value may change from line to line.) Differentiating F (X) with respect to t, we find the
following formula, anaogous to (46):

d

dt
EF (X) = − Im

∫ E2

E1

E

F ′(X)
∑
i,j,k

CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k

2(1 + CV
1 t

√
Nxjxk + CV

2 tNx2
jx

2
k)

V (t)jkGijGki

dx. (73)

Applying Stein’s method on the event

Ωϵ = {max
i,j

|Rij −mscδij | < N− 1
3+ϵ for all x ∈ [E1, E2]},

we expand the right-hand side of (73). In the expansion, the terms involving the third or higher cumulants are negligible in
the sense that it is O(N− 1

3+Cϵ), which can be proved by performing the naive power counting. (Alternatively, we can rely
on the edge universality for Wigner-type matrices to assume that the entries of V are Gaussian for which the third or higher
cumulants vanish; see Theorem 1.16 in (Ajanki et al., 2017) and the remark below it.)

From the power counting argument as in the proof of 3.4, on Ωϵ, we find that

d

dt
EF (X)

= − Im

∫ E2

E1

∑
i,j,k

E[(V (t)jk)
2]

CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k

2(1 + CV
1 t

√
Nxixj + CV

2 tNx2
ix

2
j )
E
[

∂

∂V (t)jk
(F ′(X)RijRki)

]
dx

+O(N− 1
3+Cϵ)

= − 1

2N
Im

∫ E2

E1

∑
i,j,k

(CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k)E

[
F ′′(X)

∂X

∂V (t)jk
RijRki + F ′(X)

∂(RijRki)

∂V (t)jk

]
dx

+O(N− 1
3+Cϵ) .

(In the rest of the proof, we always assume that Ωϵ holds.) We notice that

∂X

∂V (t)jk
= − Im

∫ E2

E1

∑
a

(RajRka +RakRja)dx = O(N− 1
3+Cϵ)
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from the power counting, and also

1

N

∫ E2

E1

∑
i,j,k

(CV
1

√
Nxjxk + CV

2 Nx2
jx

2
k)E

[
F ′′(X)

∂X

∂V (t)jk
RijRki

]
dx = O(N− 1

3+Cϵ).

For the main term, which coincides with (47), we apply the same expansion as in the proof of 3.4. Then, we can find that

1

N

∫ E2

E1

∑
i,j,k

CV
2 Nx2

jx
2
kE [F ′(X)RijRkkRji] dx = O(N− 1

3+Cϵ).

For the remaining term,

1

N

∫ E2

E1

∑
i,j,k

CV
1

√
NxjxkE [F ′(X)RijRkkRji] dx = O(N− 1

3+Cϵ)

by splitting Rkk into msc and (Rkk −msc) as in the proof of 3.4.

From the estimates above, we find that d
dtEF (X) = O(N− 1

3+Cϵ) for any sufficiently small ϵ > 0. Integrating it from t = 0
to t = 1, we can complete the proof of Proposition C.2.

Finally, we prove the second part of Theorem 2.5.

Proof of Theorem 2.5 - Subcritical case. Proceeding as in the proof of Theorem 2.5 in Appendix B.3, we can prove that
the limiting distribution of µ1(M̃) coincides with that of µ1(V ). Since V is a Wigner matrix, it is well-known that the
fluctuation of µ1(M̃) is given by the GOE Tracy–Widom distribution. (See, e.g., Theorem 1.2 in (Lee & Yin, 2014).) This
proves the desired theorem.

D. Discussion on Different Scaling for the Effective SNR
In this Appendix, we analyze the case λe = 0 and λ = λ0

√
N , considered in Remark 2.8, more in detail. Recall the

short-handed notation in (13) and the assumption that E[f ′
12] = 0, E[f ′′

12] ̸= 0. For simplicity, we further assume the i.i.d.
prior, where

√
Nxi are i.i.d. with mean 0 and variance 1, and all moments of

√
Nxi are finite. While we discuss mainly the

supercritical case in this appendix, the subcritical case can also be handled in a similar manner.

D.1. Approximation by a Spiked Random Matrix

From Taylor’s expansion,

M̃ij =

4∑
ℓ=0

λℓ/2N (ℓ−1)/2

ℓ!
f
(ℓ)
ij xℓ

ix
ℓ
j +O(N13/4x5

ix
5
j )

=
fij√
N

+

4∑
ℓ=1

λ
ℓ/2
0 N (3ℓ−2)/4

ℓ!
(f

(ℓ)
ij − E[f (ℓ)

ij ])xℓ
ix

ℓ
j +

4∑
ℓ=2

λ
ℓ/2
0 N (3ℓ−2)/4

ℓ!
E[f (ℓ)

ij ]xℓ
ix

ℓ
j +O(N13/4x5

ix
5
j )

=: Hij +O(N13/4x5
ix

5
j ).

(74)

Note that H in the right-side of (74) is different from the matrix H defined in 3.1, but we use the notation only in this
appendix to make the comparison between the case λe = 0 and the case λe ̸= 0. As in Appendix B.3, the Frobenius norm
of (M̃ −H) is bounded by

∥M̃ −H∥ = O

N13/4
(∑

i,j

x10
i x10

j

)1/2 = O(N−3/4),

which will be negligible when compared to the fluctuation of the largest eigenvalue. This in particular shows that we can use
H as an approximation to M̃ .
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As a next step, we denote the noise matrix in H by V , whose entries are

Vij =
fij√
N

+

4∑
ℓ=1

λ
ℓ/2
0 N (3ℓ−2)/4

ℓ!
(f

(ℓ)
ij − E[f (ℓ)

ij ])xℓ
ix

ℓ
j .

Again, we use the V as in the equation above only in this appendix to ease the notation when comparing the cases λe = 0
and λe ̸= 0. The matrix V is a Wigner-type matrix with the variance

E[(Vij)
2] =

1

N

(
1 + CV

1 N3/4xixj + CV
2 N3/2x2

ix
2
j + CV

3 N9/4x3
ix

3
j + CV

4 N3x4
ix

4
j

)
+O(N−9/4).

Here, we can notice that the variance of Vij in this case is significantly larger than that in the case λe ̸= 0, computed in (15).
Indeed, if we compute the sum of E[(Vij)

2], we find∑
i,j

E[(Vij)
2] = N + CV

2

√
N +O(1).

Note that
CV

2 = E[f2
12] + E[f12f ′′

12]− E[f12]E[f ′′
12]. (75)

Since the sum of the variances of the entries of a Wigner matrix is N +O(1), it means that the limiting empirical distribution
of V is not exactly given by the semicircle law but it is stretched by the factor of (1 + CV

2 N−1/2)−1/2. To compensate this
factor, we introduce the interpolation matrix defined by

V (t)ij =
(
1 + CV

2 tN−1/2
)−1/2

√√√√1 +

4∑
ℓ=1

CV
ℓ tN3ℓ/4xℓ

ix
ℓ
j

Vij√
NE[(Vij)2]

.

Note that

E[(V (t)ij)
2] =

1

N
+ CV

1 tN−1/4xixj + CV
2 t

√
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(
x2
ix

2
j −

1

N2

)
+ CV

3 tN9/4x3
ix

3
j − CV

1 CV
2 t2N1/4xixj +O(N−2).

From the definition of V (t), we have

V =
(
1 + CV

2 N−1/2
)1/2

V (1). (76)

D.2. Local Laws

We now continue to prove the local laws for V (t), the estimates corresponding to the statements in Lemma B.3 and Remark
B.4. Following the proof of Lemma B.3 in Appendix B.2, with the ansatz mi(t, z) = msc(z) + si(t, z), we find that

(z +msc)si +
msc + si

N

∑
j

sj + (msc + si)
CV

1 t

N1/4

∑
j

(msc + sj)xixj
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V
2 t

√
N
∑
j

(msc + sj)(x
2
ix

2
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1
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)

= (z +msc)si +
msc + si
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∑
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+ (msc + si)C
V
2 t

√
Nmsc(x

2
i −

1

N
) + (msc + si)C

V
2 t

√
N
∑
j

sj(x
2
ix
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1

N2
) = O(N−1).

(77)

which corresponds to the estimate in (34). Summing the left side of (77) over the index i and dividing it by N , we find that

(z + 2msc)

(
1

N

∑
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si

)
+

(
1

N

∑
i

si

)2

+
CV

1 t
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2mscC
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2 t√
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si(x
2
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1
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)
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CV
2 t√
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∑
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sisj(x
2
ix

2
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1

N2
) = O(N−1),

(78)
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which gives 1
N

∑
i si = O(N−1/4) by naive power counting. Plugging it back into (77), we also find that si = O(N−1/4)

as well. (Note that these estimates are weaker than the ones we had in Appendix B.2.) By following the bootstrapping
argument in Appendix B.2, we can improve the estimates to 1

N

∑
i si = O(N−3/4) and si = O(N−1/2). Finally, by

bootstrapping again, we find 1
N

∑
i si = O(N−1) and si = O(N−3/4). Now, combining the estimate si = O(N−3/4)

with (33), we can conclude that the entrywise local law (32) and the anisotropic local law (37) hold for the current case.

With the entrywise local law and the anisotropic local law for R, the resolvent of V , we can also prove the local law for G,
the resolvent of H , as in the proof of Proposition 3.2 in Appendix B.2. Here, we have

H(t)ij = V (t)ij +
(
1 + CV

2 tN−1/2
)−1/2

(
λ0N

2
E[f ′′

ij ]x
2
ix
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j +
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0 N7/4

6
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ij ]x
3
ix

3
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λ2
0N

5/2

24
E[f (4)

ij ]x4
ix

4
j

)
,

and in particular, H(0) is a rank-3 spiked Wigner matrix and

H =
(
1 + CV

2 N−1/2
)1/2

H(1).

D.3. Green Function Comparison

With the local laws for R, we can prove a statement analogous to Propositions 3.3 and 3.4. Indeed, the proof of Proposition
3.3 does not change in the current case. To prove Proposition 3.4, we can proceed as in Appendix B.2 and find that the most
part of the proof remain unchanged, except that the error bound O(N− 1

2+Cϵ) changes to O(N− 1
4+Cϵ). The only nontrivial

term that should be considered separately is

1
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∫ E2

E1

∑
i,j,k

CV
2 N(x2

jx
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N2
)E [F ′(X)GijGkkGji] dx,

which is O(NCϵ) from the naive power counting. To obtain a better estimate for this term, we adapt the idea in (48) to find
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)E [F ′(X)Gij(Gkk −msc)Gji] dx.

The second term in the right side of the equation above is O(N− 1
2+Cϵ) by the power counting, where we use the local law

for Gkk −msc. The first term in the right side is further decomposed into

1
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∫ E2

E1
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CV
2 N(x2
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N
)E [F ′(X)m′

scmsc] dx.

Note that the second term in the right side of the equation above vanishes due to the summation of (x2
j −N−1) over the

index j. To estimate the first term in the right side, we notice that G2(z) = G′(z). Thus, by applying the Cauchy integral
formula for the derivative of G and msc along the square contour centered at z with the sidelength η, together with a lattice
argument on the contour, we can prove that (G2)jj −m′

sc = O(N−1/2). (The proof of the local law for the derivative,
based on the Cauchy integral formula and the lattice argument is standard in random matrix theory; see, e.g., Appendix B of
(Chung & Lee, 2022).)
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D.4. Fluctuation of the Largest Eigenvalue

Recall that the largest spike of H(t) is (1 + o(1))(λ0N/2)E[f ′′
ij ]x

2(x2)T . If we let E[x4
i ] = w4, the matrix norm of the

largest spike of H(t) converges to (λ0w4/2)E[f ′′
12].

Following the discussion in the previous appendices, we can conclude that the fluctuation of µ1(H(1)) coincides with that
of µ1(H(0)), and thus it satisfies

N1/2

µ1(H(1))−
(√

λ̃e +
1√
λ̃e

)→ N (0, σ2)

with σ2 = 2(λ̃e − 1)/λ̃e, where the effective SNR λ̃e is given by

λ̃e = (λ2
0w

2
4/4)E[f ′′(

√
NW12)]

2].

As the last step, we need to multiply the statement above by the factor (1 + CV
2 N−1/2)1/2, introduced in the definition of

V (t); see (76). We can thus conclude that

N1/2

µ1(M̃)−
(√

λ̃e +
1√
λ̃e

)⇒ N (m̃, σ2), (79)

where σ2 = 2(λ̃e − 1)/λ̃e and the mean of the limiting distribution is given by

CV
2

2

(√
λ̃e +

1√
λ̃e

)
.

The argument we used in Appendix D also applies to the subcritical case, which shows that the largest eigenvalue converges
to 2 and its fluctuation converges to the GOE Tracy–Widom distribution after it is shifted by CV

2 N−1/2. Note that the
deterministic shift CV

2 N−1/2 is much larger than the size of the Tracy–Widom fluctuation, which is of order N−2/3.

Finally, we remark that the argument in Appendix D can be naturally adapted to a more general case. If we let

kf := inf{k ∈ Z+ : E[f (k)(
√
NWij)] ̸= 0},

then by following the argument in Appendix D, it can be readily checked that the transition happens in the scaling

λ = λ0N
1
2 (1−

1
kf

)
. (Note that we had assumed kf = 2.) Moreover, we can also prove that the BBP transition in the level of

the fluctuation also can be proved in a similar manner, though the proof would require more involved analysis with more
levels of bootstraps. We also remark that an appropriate ‘correction factor’, which was (1 + CV

2 N−1/2)1/2 for the case
kf = 2, should be applied to find the deterministic shift for both the supercritical and the subcritical cases.
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