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Abstract

This paper concerns imitation learning (IL) in cooperative multi-agent systems.
The learning problem under consideration poses several challenges, characterized
by high-dimensional state and action spaces and intricate inter-agent dependencies.
In a single-agent setting, IL was shown to be done efficiently via an inverse
soft-Q learning process. However, extending this framework to a multi-agent
context introduces the need to simultaneously learn both local value functions
to capture local observations and individual actions, and a joint value function
for exploiting centralized learning. In this work, we introduce a new multi-agent
IL algorithm designed to address these challenges. Our approach enables the
centralized learning by leveraging mixing networks to aggregate decentralized Q
functions. We further establish conditions for the mixing networks under which the
multi-agent IL objective function exhibits convexity within the Q function space.
We present extensive experiments conducted on some challenging multi-agent
game environments, including an advanced version of the Star-Craft multi-agent
challenge (SMACv2), which demonstrates the effectiveness of our algorithm.

1 Introduction

Imitation learning (IL) is a powerful approach for sequential decision making in complex environ-
ments in which agents can learn desirable behavior by imitating an expert. There are applications of
IL in several real-world domains, including healthcare [40, 34] and autonomous driving [43, 17, 23].
A rich body of IL literature focuses on simple single-agent settings [1, 18, 13, 44, 32, 14] while
many recent works develop new multi-agent IL methods that are tailored to either cooperative or non-
cooperative settings [36, 42, 22, 4, 19, 37]. Leading methods in [36, 42] explore solution concepts for
Markov games such as Nash equilibria. Findings on underlying properties of these solution concepts
are integrated to extend the single-agent IL models to multi-agent settings. While these methods show
promising results, they face difficulties in training, as the underlying adversarial optimization process
involves biased and high variance gradient estimators, leading to a highly unstable learning process.

Our work studies IL in cooperative multi-agent settings. We leverage recent advanced findings in
both single-agent IL and multi-agent reinforcement learning (MARL) to build a unified multi-agent
IL algorithm, named Multi-agent Inverse Factorized Q-learning (MIFQ). MIFQ is built upon inverse
soft Q-learning (IQ-Learn) [14], a leading single-agent IL method of which advantage is to learn a
single Q-function that implicitly defines both reward and policy functions, thus avoiding adversarial
training. To adapt this idea for multi-agent settings, following the well-known paradigm of centralised
training with decentralised execution (CTDE) in MARL [26, 21], we develop a centralized learning
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approach based on the concepts of mixing and hyper-networks [16]. This approach facilitates the
integration of individual state-value and reward functions into a unified learning objective, enabling
the training of decentralized imitation policies for agents in a centralized manner.

In this work, we formulate the IL problem as a multi-agent inverse soft-Q learning task, where the
objective is to match the occupancy distribution of the joint learning policy with that of the expert. To
make the learning process practical and facilitate the CTDE paradigm, we propose factorizing both
the global Q and V functions using mixing networks with non-negative weights and convex activation
functions (such as ReLU and ELU). We further examine the Individual-Global-Max (IGM) principle
[29, 35], a core concept in factorization learning, which suggests that the optimal joint actions across
agents are equivalent to the collection of individual optimal actions for each agent. However, we
argue that this principle does not apply for our problem setting since our objective is to recover
soft policies based on max-entropy reinforcement learning. Therefore, we introduce a generalized
version of IGM, called Individual-Global-Consistency (IGC), which requires that the distribution of
joint actions produced by the optimal joint policy matches the collection of local action distributions
produced by the individual optimal policies. We then demonstrate that IGC holds in our approach.

A key advantage of single-agent inverse soft Q-learning (IQ-Learn) is that the original training
problem, which is a max-min optimization, can be conveniently converted into a (non-adversarial)
concave maximization problem [14]. This conversion ensures that the optimization objective is
well-behaved, contributing to the effectiveness of the original IQ-Learn. Interestingly, we provide
theoretical results showing that under our factorization approach, the multi-agent training objective
can also be converted into a (non-adversarial) concave maximization problem. This advantage holds
with any multi-layer feed-forward mixing networks with non-negative weights and convex activations.

Finally, we conduct extensive experiments in three domains: SMACv2 [9], Gold Miner [12], and
MPE (Multi Particle Environments) [25]. We show that our MIFQ outperforms other baselines in all
these environments. To the best of our knowledge, our experiments with SMACv2 mark the first time
IL algorithms are employed and evaluated on such a challenging multi-agent environment.

Concretely, we make the following main contribution:

(i) We introduce a new multi-agent IL method based on inverse soft-Q learning and factorization.

(ii) We show that our approach satisfies the IGC, a generation of the IGM principle.

(iii) We show that the max-min learning objective can be converted into a concave maximization
problem, under any mixing networks of non-negative weights and convex activations, which
helps avoid adversarial training and ensure well-behaved learning within the Q-space.

(iv) We empirically show state-of-art results on several challenging multi-agent game tasks,
including an advanced version of the Star-Craft multi-agent challenge (SMACv2).

2 Related Work

Single-Agent Imitation Learning. There is a rich body of existing works focusing on generating
policies that mimic an expert’s behavior given data of expert demonstrations in single-agent settings.
A classic approach is behavioral cloning which casts IL as a supervised learning problem, attempting
to maximize the likelihood of the expert’s trajectories [32, 28]. This approach, while simple, requires
a large amount of data to work well due to its compounding error issue. An alternative approach
is to recover the reward function (either implicitly or explicitly) for which the expert’s policy is
optimal [13, 18, 30, 20, 10]. Leading methods [18, 13] follow an adversarial optimization process
(which is similar to GAN [15]) to train the imitation policy and reward function alternatively. These
adversarial training-based methods, however, suffer instability. A more recent work by [14] overcomes
this instability issue by introducing an inverse soft-Q learning process. For a comprehensive review
of literature on this topic, we refer readers to the survey article in [2].

Multi-Agent Imitation Learning. Most of single-agent IL works, however, do not apply directly to
multi-agent settings. Literature on multi-agent IL is rather limited. A few works study multi-agent IL
either in cooperative environments [3, 22, 37, 5] or competitive environments [24, 31, 36, 42]. Recent
leading methods employ equilibrium solution concepts in Markov games to extend some existing
single-agent IL methods to the multi-agent settings [36, 42]. However, these methods still suffer
the instability challenge during training as they still rely on adversarial training. Our work focuses
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on multi-agent IL in a cooperative Dec-POMDP environment. We utilize the idea of inverse soft-Q
learning in single-agent IL [14] to avoid adversarial training. We extend the idea to the multi-agent
settings under the paradigm of centralized training decentralized execution (CTDE) from MARL,
allowing an efficient and stable learning process.

MARL. The literature of MARL encompasses a number of advanced methods; many follow the
well-known CTDE paradigm. In [25, 11], they employ actor-critic architectures and train a centralized
critic that utilizes global information. Value-decomposition (VD) methods represent the joint Q-
function as a function of agents’ local Q-functions [38, 29]. QMIX [29] offers a more advanced VD
method for consolidating agents’ individual local Q-functions through the utilization of mixing and
hyper-network [16] concepts. Later value function factorization approaches, such as QTRAN [35]
and QPLEX [39], introduce new factorization methods for MARL based on the IGM principle, which
necessitates consistency between joint and local action selections. There are also policy gradient based
MARL algorithms. Independent PPO (IPPO), a decentralized MARL, can achieve high success rates
in several challenging SMAC maps [7]. MAPPO, a PPO version for MARL, achieves SOTA results on
several tasks [41]. Our work utilizes MAPPO to train our expert and generate expert demonstrations.
We also employ a hyper-network architecture [16] with mixing networks of non-negative weights
and convex activations to facilitate our CTDE. While our mixing network techniques are similar to
those used in QMIX [29], we show that this configuration offers several unique advantages in the
context of inverse Q-learning. Specifically, the training objective can be transformed from a max-min
problem into a (non-adversarial) concave maximization problem, and it upholds the IGC principle.
Other methods, such as QTRAN and QPLEX [35, 39], are primarily based on the IGM principle and
are designed for different objective structures, making them unsuitable for our context.

3 Preliminaries

A multi-agent cooperative system can be described as a decentralized partially observable Markov
decision process (Dec-POMDP), defined by a tuple {S,O,N ,A, P,R} [27], where S is the set
of global states, O is the set of local observations of agents, and N is all the agents. In addition,
A =

∏
i∈NA

Ai is the set of joint actions of all the agents, Ai is the set of actions of an agent i ∈ N ,
and P is the transition dynamics of the multi-agent environment. Finally, in Cooperative MARL
(Coop-MARL), all agents share the same reward function, R, that can take inputs as global states and
actions of all the agents and return the corresponding rewards.

At each step, given a global state S, each ally agent i takes an action ai ∈ Ai based on his policy
πi(ai | oi), where oi is his local observation. The joint action is defined as A = {ai | i ∈ N}
and the joint policy is defined accordingly: Π(A | S) =

∏
i∈N πi(ai | oi). After all the agent

actions are executed, the global state is updated to a new state S′ ∈ S with the transition probability
P (S′ | A,S). The objective of Coop-MARL is to find a joint policy Π(· | S) =

∏
i πi(· | oi) that

maximizes the expected long-term joint reward, formulated as follows:

maxΠ EΠ

[∑∞

t=0
γtR(At, St)

]
4 Multi-agent Inverse Q-Learning

In IL, the objective is to recover an expert reward or expert policy from some expert demonstration
data. Our new multi-agent IL algorithm is built upon an integration of recent advanced findings in
single-agent IL (i.e., the new leading IQ-Learn [14]) and in cooperative MARL. In the following, we
first present the main idea of IQ-Learn, with some direct centralized and decentralized adaptations to
multi-agent settings. We then discuss key shortcomings of such simple adaptations in the context of a
Dec-POMDP. Finally, we present our new algorithm which tackles all those shortcomings.

4.1 Inverse Soft Q-Learning

4.1.1 Centralized Inverse Q-Learning

In general, IQ-Learn can be directly adapted for IL in a fully-observable cooperative multi-agent set-
ting. Given expert samples DE={τ={(At, St), t=0, 1...}}, IQ-Learn aims to solve the following
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maximin problem, which is also the objective of adversarial learning-based IL approaches [18, 13]:

maxRminΠ

{
L(R,Π) = E(S,A)∼ρE

[
R(S,A)

]
− EρΠ

[
R(S,A)

]
− EρΠ

[
lnΠ(S,A)

]}
(1)

where ρΠ(S,A) is the occupancy measure of visiting state S and joint action A, under the policy Π:

ρΠ(S,A) = (1− γ)Π(A | S)
∏∞

t=0
γtP (St = S | Π),

ρE is the occupancy measure of the expert policy πE and EρΠ
[
lnΠ(S,A)

]
is the entropy regularizer.

A typical method to solve (1) is to run an adversarial optimization process over rewards and policies,
of which idea is similar to generative adversarial networks [18, 13]. However, such an approach
suffers instability, a well-known challenge of adversarial training. Thus, IQ-Learn avoids adversarial
training by learning a single soft Q-function, as defined in the following.
Definition 4.1 (Soft Q-function [14]). Given a policy Π, the soft Bellman operator BΠ is defined as:

(BΠQ)(S,A) = R(S,A) + γES′∼P (·|S,A)V
Π,Q(S′)

where V Π,Q(S) = EA∼Π(·|S)
[
Q(S,A)− log Π(A | S)

]
(2)

BΠ is contractive and defines a unique soft Q-function for the reward function R, i.e., Q = BΠQ.

Essentially, in [14], they show that (1) is equivalent to the following single minimization problem
which only requires optimizing over the soft Q-function: 1

maxQ

{
J(Q) = E(S,A)∼ρE

[
Q(S,A)− γES′∼P (·|S,A)

[
V Q(S′)

]]
− (1− γ)ES0

[
V Q(S0)

]}
(3)

where Q : S × A → R is the soft Q-function, S0 is the initial state, and V Q(S) is computed as
V Q(S) = log(

∑
A∈A exp(Q(S,A))). A shortcoming of centralized IQ-Learn described above is

that the computation of V Π,Q(S) or V Q(S) is not tractable as it requires to sample joint actions,
an the joint action space grows exponentially in the number of agents. Furthermore, it requires full
observations for agents, which is not applicable in a Dec-POMDP with local partial observations.

4.1.2 Independent Inverse Q-Learning

An alternative approach to overcome the shortcomings of centralized IQ-Learn is to consider a
separate IL problem for each individual agent, considering its local observations. That is, one can set
the objective to recover a local Q function Qi(oi, ai), as a function of a local observation oi and local
action ai, for each agent i ∈ N . The local IQ-Learn loss function can be formulated as follows:

max
Qi

min
πi

{
Ji(Qi, πi) = EDE

[
Qi(oi, ai)− γEo′i∼(P (·|)S,A)

[
V Q,πi (o′i)

]]
− (1− γ)Eo0i

[
V Q,πi (o0i )

]}
(4)

Here, o′i ∼ P (· | S,A) means o′i is the local observation of agent i corresponding to the new state
S′ ∼ P (· | S,A). The value function can be computed as [14]:

V Q,πi (oi) = Eπi(ai|oi) [Qi(oi, ai)− log πi(ai|oi)] (5)

This approach is more tractable than the centralized method, making it suitable for a Dec-POMDP
environment by enabling decentralized policies for agents. However, it has limitations in addressing
the interdependence between agents and the global information available during the training process.

4.2 Inverse Factorized Soft Q-Learning

We now present our new multi-agent IL algorithm designed to recover Q functions in the multi-agent
setting, following the CTDE paradigm. A possible straightforward approach is to directly factorize
the centralized objective function in 3. This factorization can be achieved by decomposing the
global Q-function Q(S,A) into local Q-functions Qi(oi, ai), and computing the global V-functions
using the formula V Q(S) = log(

∑
A∈A exp(Q(S,A))). However, this means that the global policy

1We convert the maximization formulation in [14] into minimization to facilitate our later theoretical analyses.
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has to be computed based on a softmax of the global Q-function as Π(S,A) = exp(Q(S,A))∑
A′ exp(Q(S,A′)) .

This requirement of a global policy computation violates the decentralized execution under CTDE.
According to this analysis, we will instead start from the original max-min formulation in (1), keeping
in mind the necessity of having πi to support CTDE.

Our key ideas involve creating (i) agent local Q-value networks that output local V-values V Q,πi (oi, ai)
and (ii) mixing the networks that utilize global state information to combine local values of agents into
joint values that comprise the objective of the inverse soft Q-learning; and (iii) hyper-networks that
provide a rich representation for the weights of the mixing networks, allowing us to govern their value
ranges. There are two important aspects driving our mixing architecture: the consistency between
local and global policies, and whether we can leverage the advantages of single-agent IQ-learn [14],
specifically non-adversarial training and convexity within the Q-space. We will first describe our
factorization approach, followed by an analysis of these two aspects.

4.2.1 Multi-agent IL Network Architecture

Overall, our network architecture comprises of three different types of networks, described below.

Agent local Q networks. Let Q(S,A) = {Qi(oi, ai)}mi=1 of local soft Q-values of agents where
m = |N | is the number of agents and (oi, ai) ∈ (S,A), i ∈ N . For an abuse of notations, we
denote by Qi(oi, ai; θi) as the local Q-value network of the agent i of which learnable parameter
is θi.2 Given (Q,Π), we then use VQ,Π(S,A) to represent the corresponding state-value vector
VQ,Π(S) = {V Q,πi (oi)}mi=1 where V Q,πi (oi) is computed in (5). Q and VQ,Π will be passed to the
corresponding mixing networks to induce the joint values Qtot and V totQ,Π. These joint values will
be then incorporated into computing the objective of the inverse soft Q-learning. Here, we do not
assume any specific model for the policies πi. As we show later, there exists a closed-form solution
to compute optimal policies, which allows us to eliminate the variable πi from the training problem.

Value mixing networks. We create two mixing networks to combine local Q and V values into the
joint values Qtot and V tot, respectively. Let’s denote these networks asMψQ

(·) andMψV
(·). Here

ψQ and ψV are corresponding weights of these two networks. In particular, we have:

Qtot(S,A) = −MψQ

(
−Q(S,A)

)
V totQ,Π(S) =MψV

(
VQ,Π(S)

)
Note that, instead of directly mixing Q(S), we mix the negative of this vector to achieve the IGC
principle and the convexity. We can now formulate the objective function of our multi-agent inverse
factorized Q-learning w.r.t the local Q-values and polices, and these mixing networks, as follows:

maxQ minΠ

{
J(Q,Π, ψQ, ψV ) =

∑
(S,A)∈DE

[
Qtot(S,A)− γES′∼P (·|S,A)

[
V totQ,Π(S

′)
]]]

− (1− γ)ES0

[
V totQ,Π(S0)

]}
(6)

We further assume that the two mixing networks are multi-layer feed-forward networks, constructed
with non-negative weights and convex activation functions (e.g., ReLU, ELU, and Maxout). This
configuration is widely-used in the literature and, as shown in the next section, is sufficient to ensure
consistency between the global and local policies (a form of the IGM property, as shown later) and,
importantly, the convexity of the training objective function within the Q-space.

Hyper-networks. Finally, we create two hyper-networks corresponding the two mixing networks.
These hyper-networks take the global state S as an input and generate the weights ψV and ψQ
of the mixing networks accordingly. The creation of such hyper-networks allows us to have a
rich representation of the weights that can be governed to ensure the convexity of the objective
J(Q,Π, ψQ, ψV ) as well as the IGC property (as described below) . We can write ψV = ψV (S;ωV )
and ψQ = ψQ(S;ωR) where ωV and ωR denote trainable parameters of the state-value and reward
hyper-networks. We can alternatively write the objective J(Q,Π, ψQ, ψV ) as J(θ, ωR, ωV ) when
the local soft Q-values Q are parameterized by θ = {θ1, θ2, · · · , θm} and the weights of the mixing
networks (ψV , ψQ) are parameterized by ωV and ωR respectively. The optimal policy, as shown later,
can be computed as soft-max of Q. We note that we will use either J(Q,Π, ψQ, ψV ) or J(θ, ωR, ωV )
depending on the context of our analysis.

2In practical implementation, we consider a shared local Q-value network for all agents.
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4.2.2 Individual-Global-Consistency (IGC)

One of the key aspects of CTDE is ensuring consistency between global learning and local policy
execution. In previous MARL approaches based on mixing Q-functions, this is often expressed
through the IGM principle [35, 29, 39], implying that the optimal joint actions across agents (obtained
by maximizing the joint Q-function) are equivalent to the collection of individual optimal actions of
each agent (obtained by maximizing their local Q-functions). In our context, there are significant
differences that prevent direct application of this principle. First, our recovered policy is not derived
from directly maximizing the Q-function. Instead, it is obtained by solving a distribution-matching
objective, which results in soft policies computed as the soft-max of Q-values. To adapt this principle
in the context of inverse Q-learning, we introduce the concept of Individual-Global-Consistency
(IGC), which is a generalization of the IGM, defined in the following.

Definition 4.2 (Individual-Global-Consistency (IGC)). A factorized learning approach is said to
adhere to the IGC principle if and only if the optimal joint policy (obtained from solving the global
training problem) is equivalent to the collection of individual optimal policies for each agent (obtained
by solving their respective local training objectives).

The following result states that our factorized inverse Q-learning approach satisfies the IGC principle.

Theorem 4.3. Let Π∗ = argminΠ{J(Q,Π, ψQ, ψV )}, then there are a set of optimal local policies
{π∗

i } such that π∗
i = argminπi

Ji(Qi, πi), ∀i ∈ N , and Π∗ = {π∗
i , i ∈ N}.

The theorem implies that the distribution of joint actions, produced by the optimal joint policy, is the
same as the collection of local action distributions produced by the local optimal policies. Moreover,
as an additional note, the IGM principle with respect to the joint Q-function also holds under our
mixing network architecture, i.e., for all S ∈ S:

argmaxA{Qtot(S,A)} = {argmaxai{Qi(oi, ai)}, i ∈ N}.

4.2.3 Non-adversarial Training and Convexity

One of the main advantages of the single-agent inverse Q-learning algorithm is that the training
problem can be equivalently transformed into a concave maximization problem over the Q-space,
making the training process highly stable and well-behaved. We demonstrate below that these features
still hold under our mixing network architecture.

Proposition 4.4. The max-min problem in (6) is equivalent to the following maximization problem:

maxQ

{
J(Q, ψQ, ψV ) =

∑
(S,A)∈DE

[
Qtot(S,A)− γES′∼P (·|S,A)

[
V totQ (S′)

]]]
− (1− γ)ES0

[
V totQ (S0)

]}
(7)

where V totQ (S) =MψV

(
VQ(S)

)
, and VQ(S) =

(
V Qi (oi)

def
= log(

∑
ai
exp(Qi(oi, ai))), i ∈ N

)
.

Moreover, let Q∗ be optimal to (7), then the global optimal policy can be recovered as follows:

Π∗ =

{
π∗
i (oi, ai) =

exp(Qi(oi, ai)))∑
a′i
exp(Qi(oi, a′i))

∣∣∣∣∣ i ∈ N
}

(8)

Furthermore, it can be shown that the objective in (7) is concave in Q which is an essential property
that make the Q-learning procedure well-behaved and stable [14].

Theorem 4.5. J(Q, ψQ, ψV ) is (strictly) concave in Q. As a result, (7) always yield a unique solution
within the Q-space.

Theorem (4.5) indicates that the global training objective J(Q, ψQ, ψV ) is concave in Q when using
any multi-layer feed-forward mixing networks with non-negative weights and convex activation
functions. This result is highly general and notably non-trivial due to the nonlinearity and complexity
of V Qi (as functions of Qi) and the mixing networks. Prior work often relies on a two-layer
mixing structure [29], noting that such a two-layer structure is sufficient for the mixing network to
approximate any monotonic function arbitrarily closely in the limit of infinite width [8].
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4.3 MIFQ Algorithm

We now present our practical algorithm, MIFQ, and details of our implemented network architecture.

Mixing and Hyper Networks. We employ the following two-layer feed-forward network structure:

MψQ
(X) = ELU(X× |WQ

1 |+ bQ1 )× |W
Q
2 |+ bQ2 (9)

MψV
(X) = ELU(X× |WV

1 |+ bV1 )× |WV
2 |+ bV2 (10)

for mixing networks, where ψQ = {WQ
1 ,W

Q
2 , b

Q
1 , b

Q
2 , } and ψV = {WV

1 ,W
V
2 , b

V
1 , b

V
2 } are the

weight and bias vectors. The absolute operations | · | ensure that all the weights are non-negative.
Moreover, ψQ and ψV are an output of a hyper-network taking the global state S as input. Each hyper-
network consists of two fully-connected layers with a ReLU activation. Finally, ELU is employed to
mitigate the issue of gradient vanishing and to ensure that negative inputs remain negative. Indeed,
ELU is convex and the two mixing networksMψQ

andMψV
have non-negative weights, implying

that the loss function J(Q, ψQ, ψV ) is concave in Q and the IGC holds.

Practical Implementation. Similar to [14], we use a χ2-regularizer ϕ(x) = x+ 1
2x

2 for the first
terms of the loss function in (6). This convex regularizer is useful to ensure that this is lower-
bounded even when Qi, for some i ∈ N , go to −∞, which is crucial to keep the learning process
stable. In addition, instead of directly estimating ES0

[V tot(S0)], we utilize the following equation to
approximate ES0

[V totQ (S0)] which can stabilize training:

(1− γ)E[V totQ (S)] = E(S,A)∼ρ
[
V totQ (S)− γES′∼P (·|S,A)[V

tot
Q (S′)]

]
for any value function V totQ (·) and occupancy measure ρ [14], we can estimate ES0

[V totQ (S0)] by
sampling (S,A) from replay buffer and estimate E(S,A,S′)∼replay[V

tot
Q (S)− γV totQ (S′)] instead. In

summary, we will employ the following practical loss function:

min
θ,ωR,ωV

{
J(θ, ωR, ωV ) =

∑
(S,A)∈DE

ϕ
(
Qtot(S,A)− γV totQ (S′)

)
+ E(S,A,S′)∈Dreplay

[
V totQ (S)− γV totQ (S′)

]}
. (11)

Fig. 1 shows our network architecture and the details of our MIFQ can be found in the appendix.

Agent
Network

Agent
Network

Mixing Network Mixing Network

...Linear

Linear

Linear

MLP

...

Linear

gather

LogSumExp

Linear

GRU

+

...

ELU

+

Hyper Network

Figure 1: An overview of our network architecture.

5 Experiments

Environments. We use three environments in which enemy agents’ policies are fixed and controlled
by a simulator. We collect expert trajectories from well-trained ally agents and build IL to mimic them.
The resulting imitating agents are evaluated by letting them play against the simulator’s enemies.

SMACv2 [9]. SMAC is a well-known multi-agent environment built based on StarCraft II. We employ
SMACv2 [9], an enhanced version of SMACv1 [33], that introduces a more formidable environment
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Figure 2: Learning curves

Table 1: Winrate and reward comparisons

Scenarios Expert BC IIQ IQ- MA- MA- MA- MIFQ (ours)
VDN SQIL AIRL GAIL Det Soft

Protoss 5vs5 86.7% 19.5% 33.6% 39.8% 47.7% 42.6% 42.6% 64.8% 72.7%
10vs10 90.3% 5.5% 16.6% 38.3% 36.8% 19.8% 28.3% 61.7% 77.3%

Terran 5vs5 81.7% 18.0% 19.7% 32.0% 24.6% 10.9% 10.9% 55.9% 71.9%
10vs10 81.7% 6.2% 14.1% 35.9% 0.5% 2.3% 1.0% 53.8% 72.7%

Zerg 5vs5 73.5% 10.9% 18.6% 33.6% 14.8% 5.3% 18.8% 46.7% 60.9%
10vs10 76.3% 9.4% 16.4% 17.2% 27.1% 1.2% 31.2% 51.0% 59.4%

Miner
easy 82.4% 31.2% 21.9% 18.8% 36.7% 35.2% 34.6% 52.7% 60.2%

medium 74.9% 28.1% 9.8% 14.8% 28.3% 21.1% 26.0% 43.8% 49.2%
hard 69.8% 12.5% 6.6% 11.7% 19.9% 17.2% 20.9% 39.1% 39.8%

MPE
reference -17.3 -18.3 -18.6 -19.0 -36.6 -40.7 -40.0 -23.4 -20.5
spread -11.1 -20.5 -23.6 -21.6 -23.0 -26.5 -24.3 -23.2 -24.2
speaker -19.4 -27.5 -29.1 -29.5 -104.3 -125.5 -78.7 -30.8 -26.3
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Figure 3: Comparison with different numbers of demonstrations. X-axis: winning rate. Y-axis:
number of demonstrations.

for evaluating MARL algorithms. In SMACv2, scenarios are procedurally generated, compelling
agents to adapt to previously un-encountered situations. This benchmark has 6 sub-tasks, including
Protoss, Terran, and Zerg which feature 5 to 10 agents. These agents have the flexibility to engage
with opponents of differing difficulty levels.

Gold Miner [12]. This game originates from a MARL competition, in which two teams, ally and
enemy, navigate through a 2D terrain to find gold. A team win if they mined a larger amount of
gold than the other. Winning this game is challenging since the allied agents must compete against
exceptionally well-developed heuristic-based enemies. We consider three sub-tasks, each involves
two ally and two enemy agents: (i) Easy: The enemies employ a simple shortest-path strategy to
reach the gold deposits; (ii) Medium: One enemy agent follows a greedy approach, while the other
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follows the algorithm developed by the second-ranking team in the competition; and (iii) Hard: the
enemies consists of the first- and second-ranking teams.

Multi Particle Environments (MPE) [25]. MPE contains multiple communication-oriented determin-
istic multi-agent environments. We use three cooperative scenarios available in MPE for evaluating,
including: (i) Simple spread: three agents learn to avoid collisions while covering all of the landmarks;
(ii) Simple reference: two agents learn to get closer to the target landmarks. Each target landmark is
known only by the other agents, so all agents have to communicate to each others; and (iii) Simple
speaker listener: similar to simple reference, but one agent (speaker) can speak but cannot move, and
one agent (listener) can move but cannot speak.

Expert Demonstrations. For each task, we trained an expert policy by MAPPO with large-scale
hyper-parameters (e.g., multi layers, higher dimensions, longer training steps, and using recurrent
neural network, etc). In term of expert buffer collection, we test each method with different numbers
of expert trajectories: up to 128 trajectories for MPEs and up to 4096 trajectories for Miner and
SMAC-v2. Note that MPEs are not dynamic environments, so we do not need a large number of
expert demonstrations for evaluation. For each collected trajectory, we used a different random seed.
For a fair comparison, each method uses the same saved expert demonstrations for the training.

Baselines. We compare our MIFQ against other multi-agent IL algorithms, which either originate
from the multi-agent IL literature, or be adapted from SOTA single-agent IL algorithms. These
baselines include: (i) Behavior Cloning (BC); (ii) Independent IQ-Learn (IIQ) — this is a simple
adaption of IQ-Learn for a multi-agent setting, described in Section 4.1.2; (iii) IQ-Learn with
Value Decomposition Network (IQVDN) — this is another adaptation of IQ-Learn, but instead of
using mixing and hyper networks to aggregate agent Q functions, we employ Value Decomposition
(VDN) [38]; (iv) MASQIL — we adapt SQIL for multi-agent settings [30]. MASQIL shares some
similar advantages with our MIFQ, such as being non-adversarial and enabling decentralized learning
through centralized learning; (v) MAGAIL — a multi-agent IL algorithm introduced by [36]; and
finally (vi) MAAIRL — this algorithm is proposed by [42]. Moreover, since our MIFQ algorithm relies
on soft policies while most previous factorized Q-learning algorithms [29, 35, 39] use deterministic
policies, we include a deterministic-policy version of MIFQ for comparison purposes. In this version,
the deterministic optimal local actions are determined as a∗i = argmaxai{Qi(oi, ai)}, and the local
V functions are V Qi (oi) = maxai Qi(oi, ai). We denote our main MIFQ algorithm as MIFQ (Soft),
and the deterministic-policy version as MIFQ (Det).

Comparison Results. We train each task with our algorithms and the different baselines, using 128
trajectories for MPE, and 4096 trajectories for SMACv2 and Miner. As a standard practice, we report
winrates for SMACv2 & Gold Miner, and reward scores for MPEs. Figure 2 shows the learning
curves and Table 1 reports the final winrates and average scores (the full table with std values can
be found in appendix). Our methods MIFQ (Soft) significantly outperforms all other baselines on
SMACv2 & Gold Miner tasks, and has competitive performance on MPEs, with a note that MPEs
is a deterministic environment and its tasks are considerably easier than SMACv2 and Gold Miner.
We also observe that MIFQ (Det) significantly outperforms other baselines, but remarkably worse
than MIFQ (Soft), indicating the advantage of using soft-policy learning in our context. Moreover, to
evaluate the efficiency of our method with different numbers of expert demonstrations, we compare
our MIFQ with the baselines on two dynamic tasks: SMACv2 & Miner. Figure 3 shows box and
whisker plots of the average winning rate of each method on each task for data summarising analysis.
It shows that MIFQ (Det and Soft) offer higher winrates, and it converges better with smaller standard
errors. Moreover, to evaluate how the convexity help enhance our algorithm, we compares MIFQ
with those that rely on non-convex mixing networks, which are obtained by replacing the convex
activation ELU with non-convex ones such as sigmoid or tanh. More details can be found in the
appendix.

6 Conclusion and Limitations

Conclusion. We developed a multi-agent IL algorithm based on the inversion of soft-Q functions.
By employing mixing and hyper-network architectures, our algorithm, MIFQ, is non-adversarial
and enables the CTDE approach. We demonstrated that, with some commonly used two-layer
mixing network structures, our IL loss function is convex within the Q-function space, making
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learning convenient. Extensive experiments conducted across several challenging multi-agent tasks
demonstrate the superiority of our algorithm compared to existing IL approaches.

Limitations. Some limitations of the work includes: (i) while MIFQ achieves impressive perfor-
mance across various tasks, it falls short of reaching the expertise levels (increasing the number
of expert demonstrations could solve the issue, but it would introduce additional computational
challenges, as the replay buffer will become too large and the training process will be very costly);
(ii) MIFQ, along with other baseline methods, struggles when confronted with very large-scale tasks,
such as some of the largest games in SMACv2; and (iii) our multi-agent IL (and other baselines) still
requires a large amount of (clean) expert demonstrations, which would be not always available in
practice. These limitations could pave the way for future work.

Broader Impacts. Our research focuses on imitation learning in multi-agent systems, it may
have potential applications similar to areas where imitation learning has been impactful, such as
autonomous driving, healthcare, and game theory. There are also potential negative impacts. For
instance, imitation learning could be used for surveillance purposes, following and monitoring
individuals in public spaces, or for developing autonomous weapons.
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Appendices
A Missing Proofs

A.1 Proof of Theorem 4.3

Theorem. Let Π∗ = argminΠ{J(Q,Π, ψQ, ψV )}, then there are a set of optimal local policies
{π∗

i } such that π∗
i = argminπi

Ji(Qi, πi), ∀i ∈ N , and Π∗ = {π∗
i , i ∈ N}.

Proof. We first consider the local objection function:

Ji(Qi, πi) = EDE

[
Qi(oi, ai)− γEo′i∼P (·|S,A)

[
V Q,πi (o′i)

]]
− (1− γ)Eo0i

[
V Q,πi (o0i )

]
From this we can see that that Ji(Qi, πi) is minimized (over πi) if each value function V Q,πi (o′i)

is maximized (over πi). Moreover, from the definition V Q,πi (oi) = Eai∼πi(oi|ai)[Qi(oi, ai) −
log πi(ai | oi)], we see that the value of V Q,πi (oi) is only dependent of Qi(oi, ai) and πi(ai|oi) for
all ai ∈ Ai. It follows that V Q,πi (oi) achieves its maximization at:

π∗
i (·|oi) = argmaxπi(·|oi)

{
Eai∼πi(oi|ai)[Qi(oi, ai)− log πi(ai | oi)]

}
=

{
π∗
i (ai|oi) =

exp(Qi(oi, ai))∑
a′i
exp(Q(oi, a′i))

, ∀ai ∈ Ai

}
(12)

Now let Π∗ = {π∗
i , i ∈ N} be a joint policy (or a set of local policies) defined as in (12). It follows

that V Q,πi (oi) ≤ V Q,π
∗

i (oi) for any i ∈ N .

We now look at the joint objective function J(Q,Π, ψQ, ψV ), defined as

J(Q,Π, ψQ, ψV ) =
∑

(S,A)∈DE

[
Qtot(S,A)− γES′∼P (·|S,A)

[
V totQ,Π(S

′)
]]]

− (1− γ)ES0

[
V totQ,Π(S0)

]
Given V totQ,Π(S) = MψV

(VQ,Π(S)), our mixing structure ensures thatMψV
(VQ,Π(S)) is mono-

tonically increasing with respect to each element of VQ,Π(S). Additionally, for any joint policy
Π = {πi, i ∈ N}, we have V Q,πi (oi) ≤ V Q,π

∗

i (oi) for any i ∈ N . Combining this with the
monotonicity of the mixing network, we obtain:

V totQ,Π(S) ≤ V totQ,Π∗(S),

which implies:
J(Q,Π, ψQ, ψV ) ≥ J(Q,Π∗, ψQ, ψV )

for any joint policy Π. This also implies Π∗ = argminΠ{J(Q,Π, ψQ, ψV )}, as desired.

A.2 Proof of Proposition 4.4

Proposition. The max-min problem in (6) is equivalent to the following maximization problem:

maxQ

{
J(Q, ψQ, ψV ) =

∑
(S,A)∈DE

[
Qtot(S,A)− γES′∼P (·|S,A)

[
V totQ (S′)

]]]
− (1− γ)ES0

[
V totQ (S0)

]}
where V totQ (S) =MψV

(
VQ(S)

)
, and VQ(S) =

(
V Qi (oi)

def
= log(

∑
ai
exp(Qi(oi, ai))), i ∈ N

)
.

Moreover, let Q∗ be optimal to (7), then the global optimal policy can be recovered as:

Π∗ =

{
π∗
i (oi, ai) =

exp(Qi(oi, ai)))∑
a′i
exp(Qi(oi, a′i))

∣∣∣∣∣ i ∈ N
}
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Proof. We can leverage the result stated in Theorem 4.3 to prove the proposition. That is, Theorem
4.3 tells us that J(Q,Π, ψQ, ψV ) is minimized at Π∗ = {π∗

i , i ∈ N} such that

Π∗ =

{
π∗
i (oi, ai) =

exp(Qi(oi, ai)))∑
a′i
exp(Qi(oi, a′i))

∣∣∣∣∣ i ∈ N
}

Therefore, the max-min problem can be converted to a maximization one within the Q-space:

max
Q

min
Π
{J(Q,Π, ψQ, ψV )} = max

Q
J(Q,Π∗, ψQ, ψV )

Moreover, it is well-known the maximal value V Q,π
∗

i (oi) can be computed as a log-sum-exp function
of Qi(oi, ai) [14] as:

V Q,π
∗

i (oi)= log

(∑
ai

exp(Qi(oi, ai))

)
= V Qi (oi)

which confirm our claims.

A.3 Proof of Theorem 4.5

Theorem J(Q, ψQ, ψV ) is (strictly) concave in Q. As a result, (7) always yield a unique solution
within the Q-space.

Proof. To prove the concavity, we will prove that each component of the objective function, i.e.
Qtot(S,A) and V totQ (S) are concave in Q, keeping in mind that the mixing networks have non-
negative weights and convex activations. We will need the following lemmas to validate the main
claim.

Lemma A.1. Any feed-forward mixing networks M(X) constructed with non-negative weights
and non-decreasing convex activation functions (such as ReLU or ELU or Maxout) is convex and
non-decreasing in X.

Proof. Any N -layer feed-forward network with input X can be defined recursively as

f0(X) = X (13)

fn(X) = σn
(
fn−1(X)

)
×Wn + bn, n = 1, . . . , N (14)

where σn is a set of activation functions applied to each element of vector fn−1(X), and Wn and bn
are the weights and biases, respectively, at layer n. Therefore, we will prove the result by induction,
i.e., fn(X) is convex and non-decreasing in X for n = 0, . . .. Here we note that fn(X) is a vector, so
when we say “fn(X) is convex and non-decreasing in X”, it means each element of fn(X) is convex
and non-decreasing in X.

We first see that claim indeed holds for n = 0 . Now let us assume that, fn−1(X) is convex and
non-decreasing in X, we will prove that fn(X) is also convex and non-decreasing in X. The non-
decreasing property can be easily verified as we can see, given two vector X and X′ such that X ≥ X′

(element-wise comparison), then we have the following chain of inequalities

fn−1(X)
(a)

≥ fn−1(X′)

σn(fn−1(X))
(b)

≥ σn(fn−1(X′))

σn(fn−1(X))×Wn + bn
(c)

≥ σn(fn−1(X′))×Wn + bn

where (a) is due to the induction assumption that fn−1(X) is non-decreasing in X, (b) is because σn
are also non-decreasing, and (c) is because the weights Wn is non-negative.

To verify the convexity of fn(X),we will show that for any X,X′, and any scalar α ∈ (0, 1), the
following holds

αfn(X) + (1− α)fn(X) ≥ fn(αX + (1− α)X′) (15)
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To this end, we write

αfn(X) + (1− α)fn(X′) =
(
ασn(fn−1(X)) + (1− α)σn(fn−1(X′))

)
×Wn + bn

(d)

≥
(
σn
(
αfn−1(X) + (1− α)fn−1(X′)

)
×Wn + bn

(e)

≥
(
σn
(
fn−1(αX + (1− α)X′)

)
×Wn + bn

= fn(αX + (1− α)X′)

where (d) is due to the assumption that activation functions σn are convex and Wn ≥ 0, and (e) is
because αfn−1(X) + (1− α)fn−1(X′) ≥ fn−1(αX + (1− α)X′) (because fn−1(X) is convex in
X, by the induction assumption) and the activation functions σn is non-decreasing and Wn ≥ 0. So,
we have

αfn(X) + (1− α)fn(X′) ≥ fn(αX + (1− α)X′)

implying that fn(X) is convex in X. We then complete the induction proof and conclude that fn(X)
is convex and non-decreasing in X for any n = 0, ..., N .

Lemma A.2. For any i ∈ N ,

V Qi (oi) = log

(∑
ai

exp(Qi(oi, ai))

)

are convex in Q.

Lemma A.2 can be easily verified, as V Qi (oi) has the log-sum-exp form, so it is convex in Q [6].

Lemma A.3. Let X(Q) = (Xi(Q), . . . , Xm(Q)) be a vector of size m where each element is a
convex function of Q, i.e., Xi(Q) is convex in Q for any i ∈ N , thenM(X(Q)) is convex in Q, where
M(X(Q)) is a mixing network of non-negative weights and convex activations.

Proof. We will make used general properties of convexity to verify the claim, i.e., we will prove that,
for any two vector Q and Q′, and any scalar α ∈ (0, 1), the following inequality always holds

αM(X(Q)) + (1− α)M(X(Q′)) ≥M(X(αQ + (1− α)Q′)) (16)

According to Lemma A.1, we know thatM(X) is convex in X, thus:

αM(X(Q)) + (1− α)M(X(Q)) ≥M(αX(Q) + (1− α)X(Q′)) (17)

=M

 αX1(Q) + (1− α)X1(Q′)
αX2(Q) + (1− α)X2(Q′)

...
αXm(Q) + (1− α)Xm(Q′)

 (18)

Moreover, since Xi(Q) is convex in Q for all i ∈ N , we have αXi(Q) + (1 − α)Xi(Q′) ≥
Xi(αQ + (1− α)Q′). In addition, from the monotonicity ofM(X) in each element Xi, we have

M

 αX1(Q) + (1− α)X1(Q′)
αX2(Q) + (1− α)X2(Q′)

...
αXm(Q) + (1− α)Xm(Q′)

 ≥M
X1(αQ + (1− α)Q′)
X2(αQ + (1− α)Q′)

...
Xm(αQ + (1− α)Q′)

 =M(X(αQ+(1−α)Q′))

(19)

Combine (18) and (19) we get

αM(X(Q)) + (1− α)M(X(Q)) ≥M(X(αQ + (1− α)Q′))

which validates (16), completing our proof for Lemma A.3.
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We now go back to the main result. First, considering MψQ
(−Q(S,A)), we can see that each

element of −Q(S,A) is linear in Q. Thus, Lemma A.3 tells us thatMψQ
(−Q(S,A)) is convex in Q.

As a result,Qtot(S,A) is concave in Q. Similarly, VQ(S) is also a vector where each element V Qi (oi)

is convex in Q (Lemma A.2), thusMψV
(VQ(S)) (and V totQ (S)) is also convex in Q . Therefore, the

objective function of our IL, formulated as

J(Q, ψQ, ψV ) =
∑

(S,A)∈DE

[
Qtot(S,A)− γES′∼P (·|S,A)

[
V totQ (S′)

]]]
− (1−γ)ES0

[
V totQ (S0)

]
,

should be concave in Q. We further see that V Qi (oi), ∀oi, are strictly convex in Q, implying that
J(Q, ψQ, ψV ) is also strictly concave in Q, as desired.

It is important to note that the above result only holds if Qi are independent. It is not the case if Qi,
for some i, share a common network structure. This is also the case of the IQVDN considered in the
main paper, i.e., the global reward and value function Rtot and V tot are sums of the corresponding
local functions, but Qi share the same neural network structure.

B Additional Details

B.1 MIFQ Algorithm

The detailed steps of our MIFQ algorithm are shown in Algo. 1 below:

Algorithm 1: Multi-agent Inverse Factorized Q-Learning

Input: Parameters θ=(θ1, . . . , θm) and (ωR, ωV ), expert’s demonstrations DE , policy replay
buffer Dreplay = ∅, and learning rates λθ and λω .
repeat

Compute local policies: πi(ai|oi) = exp(Qi(oi,ai;θi))∑
a′
i
∈Ai

exp(Qi(oi,a′i;θi))
, ∀i ∈ N ;

# Collect samples for replay buffer
for a certain number of collecting steps do

Execute policies πi to collect new transitions {(S,A, S′)} and add them to Dreplay;
# Run gradient descent with mini-batches ∼ Dreplay
for a certain number of training steps do

θ ← θ − λθ∇θJ(θ, ωR, ωV ); (ωR, ωV )← (ωR, ωV )− λω∇ωR,ωV
J(θ, ωR, ωV );

until a certain number of loops;

B.2 Global versus Local Value Equations

We discuss equations that describe the relationship between the Q and V functions, which we refer to
as Value equations. Specifically, we consider Eq. 5 for local value functions and Eq. 2 for global
ones. So far, we have assumed that the Value equations hold for all local agents (i.e., Eq. 5 holds),
ensuring that distribution-matching is executed well at the individual level. An alternative approach
to the factorized learning is to assume that the Value equations hold at the global level, i.e.,

V totQ,Π(S) = EA∼Π(A|S)
[
Qtot(S,A)− log Π(A|S)

]
. (20)

Recall that the local value equations can be written as

V Q,πi (oi) = Eπi(ai|oi) [Qi(oi, ai)− log πi(ai|oi)]

We then can see that the local and global Value equations, generally, cannot hold simultaneously, in
particular when V tot and Qtot have different mixing structures. Thus, we can only ensure the validity
of either the local Value equations in (5) or the global one in (20). It can be seen that, while adhering
to (5) is highly tractable due to several advantages shown above (i.e., IGC, non-adversarial training,
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and convexity), using (20) to compute V tot is highly impractical as due to several reasons. First, it
cannot help avoid adversarial training as there is no closed form solution for the minimization over
Π, so one needs to learn both Q and Π adversarially. Second, it requires sampling over joint actions
approximate V tot, which shares the same computational issue as the centralized approach discussed
in Section 4.1.1, namely, the exponentially large joint action space make the training process highly
inefficient.

B.3 Experimental Settings

Each environment has different a observation space, state dimension, and action space. Therefore, we
use different hyper-parameters on each task to try to make all algorithms work stably. Moreover, due
to limitations in computing resources, especially random access memory, we reduce the buffer size to
5000 on two hardest tasks, Miner and SMACv2, to be more efficient in running time with parallel
workers. More details are available in Table 2. We use four High-Performance Computing (HPC)
clusters for training and evaluating all tasks. Specifically, each HPC cluster has a workload with
an NVIDIA L40 GPU 48 GB GDDR6, 32 Intel-CPU cores, and 100GB RAM. In terms of model
architecture, Figure 1 shows our proposed model structure with mixing networks based on QMIX
algorithm [29].

Table 2: Hyper-parameters.

Arguments MPEs Miner SMACv2

Max training steps 100000 1000000
Evaluate times 32

Buffer size 100000 5000
Learning rate 2e-5 5e-4

Batch size 128
Hidden dim 256

Gamma 0.99
Target update frequency 4
Number of random seeds 4

B.4 Ablation Study - Non-convex Mixing Networks

Recall that when convex activation functions are used in building mixing networks, our Theorem 4.5
shows that the objective function of the multi-agent inverse soft Q-learning is convex as long as the
mixing networks are constructed with non-negative weights and convex activations. This convexity
property guarantees the optimization objective is well-behaved and has an unique optimization
solution with Q-space, leading to the effectiveness of the IL process. Therefore, in the practical
implementation of our algorithm, we chose the ELU activation function. In this section, we empirically
demonstrate the impact of convex activation functions by examining the performance of our algorithm
when non-convex activation functions such as sigmoid or tanh are used in mixing networks instead of
convex once. Table 3 reports the winrates and rewards, and Figure 4 shows the learning curves of
different approaches. These results clearly show that the ELU activation significantly outperform
those using non-convex activations (i.e., sigmoid, tanh), for both versions MIFQ (Soft) and MIFQ
(Det).

B.5 Ablation Study - Comparison with SAC-based IQ-learn

In this section, we explore the performance of SAC-IQ, an adaptation of the Soft Actor-Critic (SAC)
algorithm combined with IQ-Learn, tailored for multi-agent settings. SAC-IQ employs a centralized
Q function alongside decentralized critics, maintaining adherence to the original objective of IQ-
Learn. This approach is evaluated across 9 distinct tasks within two environments: SMACv2 and
Gold Miner. For SMACv2, we consider scenarios with varying team sizes, specifically 5vs5 and
10vs10. In the Gold Miner environment, we assess performance across three difficulty levels: easy,
medium, and hard.
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Table 3: Winrate and reward comparisons between different activation functions (the values are
percentages for SMACv2 and Miner, and rewards for MPE.)

Scenarios Expert MIFQ-ELU MIFQ-Sigmoid MIFQ-Tanh
Det Soft Det Soft Det Soft

Protoss 5vs5 86.7 64.8±4.1 72.7±10.0 49.2±4.6 53.1±6.6 60.9±10.0 62.5±3.1
10vs10 90.3 61.7±5.8 77.3±5.6 59.2±8.2 45.3±9.2 36.9±7.2 64.4±1.1

Terran 5vs5 81.7 55.9±0.4 71.9±3.8 48.4±2.9 35.2±10.5 45.1±2.7 60.6±6.7
10vs10 81.7 53.8±6.9 72.7±3.4 26.0±2.2 46.1±9.2 28.6±2.6 53.8±6.7

Zerg 5vs5 73.5 46.7±5.2 60.9±14.7 39.8±5.1 21.1±5.1 27.9±2.2 43.8±5.7
10vs10 76.3 51.0±2.2 59.4±3.1 12.5±4.9 29.7±2.7 15.2±3.9 41.3±2.2

Miner
easy 82.4 52.7±0.7 60.2±5.6 32.0±4.6 53.1±7.7 56.4±7.2 43.1±4.5

medium 74.9 43.8±2.2 49.2±5.1 24.8±2.2 40.6±5.8 45.7±10.1 38.7±12.6
hard 69.8 39.1±5.2 39.8±4.6 21.7±2.0 25.8±3.4 34.8±3.9 32.5±10.8

MPE
reference -17.2 -23.4±0.1 -20.5±0.0 -40.4±1.2 -23.0±0.1 -22.1±0.1 -21.7±0.1
spread -10.7 -23.2±0.1 -24.2±0.1 -46.4±0.1 -24.7±0.7 -27.8±1.1 -26.6±1.5
speaker -19.7 -30.8±0.1 -26.3±0.0 -133.4±0.1 -28.9±0.0 -34.7±1.0 -28.2±0.0

Figure 4: Convergence curves of MIFQ with different activation functions
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The results, detailed in Table 4, illustrate that SAC-IQ demonstrates commendable performance
when compared to other baselines such as Behavior Cloning (BC), Independent IQ-Learn (IIQ), and
Multi-Agent Generative Adversarial Imitation Learning (MAGAIL). However, it does not surpass the
effectiveness of our proposed methods. Figure 5 provides a visual representation of the learning curves,
highlighting the training dynamics of SAC-IQ in comparison to other approaches. This visualization
underscores the competitive nature of SAC-IQ while also affirming the superior performance of our
methods in these challenging multi-agent environments.

B.6 Experimental Details

In this section, we present the experimental details for the SMACv2, Miner, and MPE tasks, with
varying numbers of expert demonstrations. These details complement the box plots shown in Figure
3 in the main paper. Tables 4-9 report win rates (as percentage values) for SMACv2 and Miner tasks
with the number of trajectories ranging from 128 to 4096. Table 10 reports final rewards for MPE
tasks with the number of trajectories ranging from 1 to 128. We also plot the learning curves of these
experiments in Figure 7.
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Figure 5: Learning curves of SAC-IQ compared with other baselines and our methods.
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Table 4: Winning rate (percentage) of SAC-IQ compared with other baselines and our methods.

Task Expert MAGAIL MIFQ SAC-IQDet Soft

Protoss 5vs5 86.7 42.6±4.6 64.8±4.1 72.7±10.0 60.6±3.2
10vs10 90.3 28.3±2.3 61.7±5.8 77.3±5.6 64.4±6.2

Terran 5vs5 81.7 10.9±4.5 55.9±0.4 71.9±3.8 59.4±2.1
10vs10 81.7 1.0±0.7 53.8±6.9 72.7±3.4 53.7±6.3

Zerg 5vs5 73.5 18.8±0.6 46.7±5.2 60.9±14.7 55.6±6.2
10vs10 76.3 31.2±3.6 51.0±2.2 59.4±3.1 51.3±6.3

Miner
easy 82.4 34.6±3.3 52.7±0.7 60.2±5.6 35.0±5.3

medium 74.9 26.0±1.5 43.8±2.2 49.2±5.1 26.9±6.7
hard 69.8 20.9±2.4 39.1±5.2 39.8±4.6 18.8±1.3

Table 5: Results in percentage on SMACv2 & Miner, the number of expert trajectories is: 128

Scenarios Expert BC IIQ IQ- MA- MA- MA- MIFQ
VDN SQIL AIRL GAIL Det Soft

Protoss 5vs5 86.7 17.2±4.7 13.3±2.6 8.6±2.6 0.8±1.4 0.8±0.6 0.0±0.0 18.0±4.6 41.4±4.6
10vs10 90.3 6.2±4.4 2.3±1.4 3.1±3.8 0.0±0.0 0.0±0.0 0.0±0.0 17.2±5.2 32.8±8.4

Terran 5vs5 81.7 9.4±4.9 12.5±3.1 9.4±9.1 0.0±0.0 0.0±0.0 0.0±0.0 25.0±4.4 32.0±3.4
10vs10 81.7 3.9±3.4 1.6±2.7 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 3.1±2.2 35.2±7.1

Zerg 5vs5 73.5 7.0±4.6 10.2±5.6 4.2±4.2 3.9±2.6 2.0±1.2 3.1±3.8 5.5±2.6 24.2±4.1
10vs10 76.3 10.2±3.4 0.8±1.4 0.0±0.0 0.0±0.0 2.1±2.4 0.0±0.0 10.9±1.6 28.9±9.2

Miner
easy 82.4 28.9±8.1 10.2±3.4 13.3±1.4 12.1±2.0 14.1±4.7 10.5±3.7 14.1±8.4 29.7±6.4

medium 74.9 23.4±3.5 7.0±3.4 9.4±3.8 11.5±3.5 13.3±1.4 10.0±2.4 11.3±1.8 21.1±8.1
hard 69.8 15.6±5.8 5.5±1.4 7.0±1.4 7.4±1.6 4.7±2.7 7.0±1.5 8.0±3.2 14.8±4.1
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Figure 6: Comparison with different numbers of demonstrations. X-axis: winning rate/final score.
Y-axis: number of demonstrations.
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Table 6: Results in percentage on SMACv2 & Miner, the number of expert trajectories is: 256

Scenarios Expert BC IIQ IQ- MA- MA- MA- MIFQ
VDN SQIL AIRL GAIL Det Soft

Protoss 5vs5 86.7 12.5±2.2 16.5±2.4 15.1±1.6 1.6±1.6 7.2±3.2 14.1±4.7 40.6±10.4 53.9±6.8
10vs10 90.3 6.2±4.9 3.9±2.6 2.9±3.4 0.0±0.0 0.2±0.3 15.0±4.2 32.3±2.9 59.4±8.6

Terran 5vs5 81.7 10.9±4.7 12.5±2.2 14.8±2.6 0.8±1.4 0.0±0.0 0.0±0.0 27.3±5.6 46.1±7.5
10vs10 81.7 4.7±1.6 3.9±4.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 43.8±16.7

Zerg 5vs5 73.5 8.6±2.6 11.7±2.6 7.8±6.0 1.6±1.6 2.9±2.2 6.2±2.2 12.5±3.8 35.9±5.2
10vs10 76.3 5.5±2.6 2.3±1.4 0.0±0.0 2.3±2.6 0.4±0.4 3.1±2.2 12.5±3.8 41.4±3.4

Miner
easy 82.4 38.3±6.0 18.2±6.2 20.3±5.6 26.2±2.8 14.8±4.6 19.9±2.5 26.6±6.4 34.4±4.4

medium 74.9 21.9±10.8 10.9±6.4 10.2±2.6 15.0±4.0 12.5±3.8 17.0±3.2 19.9±3.4 32.8±8.4
hard 69.8 20.3±1.6 6.2±1.9 7.8±3.5 13.5±3.4 8.6±4.1 10.4±2.2 7.8±1.7 17.2±8.1

Table 7: Results in percentage on SMACv2 & Miner, the number of expert trajectories is: 512

Scenarios Expert BC IIQ IQ- MA- MA- MA- MIFQ
VDN SQIL AIRL GAIL Det Soft

Protoss 5vs5 86.7 21.9±6.6 17.2±1.6 19.5±8.1 0.0±0.0 4.9±1.4 10.2±5.1 43.8±3.1 62.5±7.7
10vs10 90.3 5.5±2.6 7.0±2.6 9.1±2.3 0.0±0.0 0.0±0.0 18.0±7.1 35.9±11.4 62.5±9.4

Terran 5vs5 81.7 9.4±4.9 18.0±3.4 24.2±6.8 4.7±3.5 0.8±1.0 3.9±4.1 39.1±10.0 59.4±8.6
10vs10 81.7 7.0±4.1 7.8±6.4 18.8±18.8 1.6±1.6 0.0±0.0 0.0±0.0 18.0±7.8 51.6±7.8

Zerg 5vs5 73.5 6.2±5.8 10.9±3.5 11.7±8.4 17.2±3.5 2.9±0.3 15.6±3.1 33.6±7.8 51.6±9.2
10vs10 76.3 5.5±4.1 3.1±3.8 0.0±0.0 0.8±1.4 0.2±0.3 1.6±1.6 35.2±4.1 46.1±4.1

Miner
easy 82.4 30.5±5.1 13.9±2.9 16.4±6.0 25.8±4.7 20.3±3.5 25.0±4.3 31.2±3.1 53.9±4.1

medium 74.9 18.8±3.1 14.3±3.4 12.5±2.2 19.5±5.6 11.7±3.4 20.3±4.7 19.9±3.7 39.1±3.5
hard 69.8 15.6±5.8 6.1±0.9 5.5±2.6 14.1±2.4 7.0±2.6 12.5±1.8 14.1±4.6 30.5±4.1

Table 8: Results in percentage on SMACv2 & Miner, the number of expert trajectories is: 1024

Scenarios Expert BC IIQ IQ- MA- MA- MA- MIFQ
VDN SQIL AIRL GAIL Det Soft

Protoss 5vs5 86.7 16.4±8.9 23.4±3.5 25.8±3.4 3.9±3.4 24.4±2.5 43.8±6.6 49.2±5.6 75.8±2.6
10vs10 90.3 4.7±4.7 16.4±4.1 29.2±9.3 0.0±0.0 3.9±3.4 3.9±6.8 53.1±5.8 71.1±2.6

Terran 5vs5 81.7 12.5±5.4 27.3±3.4 33.6±10.2 0.0±0.0 1.0±0.6 0.8±1.4 52.3±2.6 60.9±6.8
10vs10 81.7 7.8±8.1 14.1±1.6 13.3±1.4 2.3±1.4 0.0±0.0 0.0±0.0 0.0±0.0 58.6±2.6

Zerg 5vs5 73.5 5.5±4.6 9.4±2.2 13.5±1.8 19.5±3.4 4.9±4.4 32.0±10.5 38.3±5.1 58.6±3.4
10vs10 76.3 9.4±5.4 11.7±3.4 0.0±0.0 1.6±1.6 2.3±2.6 0.8±1.4 41.4±5.6 52.3±7.5

Miner
easy 82.4 34.4±8.6 17.8±2.3 15.6±5.4 35.9±4.2 22.7±3.4 31.1±3.0 36.9±3.1 54.7±8.1

medium 74.9 20.3±4.7 13.3±4.1 10.9±4.7 23.2±1.9 14.1±1.6 22.1±2.4 36.7±8.7 42.2±1.6
hard 69.8 18.0±2.6 9.0±2.3 8.6±4.1 19.7±4.0 8.6±2.6 15.8±5.6 27.3±6.8 38.3±7.1
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Table 9: Results in percentage on SMACv2 & Miner, the number of expert trajectories is: 2048

Scenarios Expert BC IIQ IQ- MA- MA- MA- MIFQ
VDN SQIL AIRL GAIL Det Soft

Protoss 5vs5 86.7 10.2±5.1 28.1±4.9 28.1±10.4 39.1±10.0 37.3±4.4 56.2±10.6 65.6±11.0 73.4±5.2
10vs10 90.3 2.3±2.6 16.4±3.4 25.0±5.9 43.8±10.6 9.4±1.5 39.8±6.4 45.3±1.6 78.1±5.8

Terran 5vs5 81.7 10.2±6.0 28.1±4.4 36.7±7.1 8.6±3.4 7.0±1.4 28.9±5.1 55.5±5.1 56.2±7.3
10vs10 81.7 5.5±2.6 24.2±2.6 43.8±11.0 0.0±0.0 0.0±0.0 0.0±0.0 46.9±8.8 69.5±7.1

Zerg 5vs5 73.5 7.0±4.6 15.6±3.8 26.3±5.3 28.1±3.8 3.9±1.5 33.6±7.5 48.1±8.0 57.0±10.2
10vs10 76.3 5.5±2.6 19.5±3.4 10.4±3.6 25.8±8.1 1.2±1.3 46.9±7.3 49.2±2.6 53.9±11.8

Miner
easy 82.4 35.9±3.5 19.5±1.2 21.1±1.4 43.8±2.2 26.6±1.6 36.7±7.1 50.0±4.9 64.8±6.0

medium 74.9 19.5±7.1 9.8±4.4 17.2±3.5 30.5±4.6 21.1±3.4 28.5±2.2 41.4±5.1 43.8±11.5
hard 69.8 10.2±3.4 8.6±2.0 10.2±2.6 20.7±2.6 14.1±6.8 18.8±3.1 39.8±8.1 45.3±4.7

Table 10: Results in percentage on SMACv2 & Miner, the number of expert trajectories is: 4096

Scenarios Expert BC IIQ IQ- MA- MA- MA- MIFQ
VDN SQIL AIRL GAIL Det Soft

Protoss 5vs5 86.7 19.5±5.6 33.6±8.9 39.8±4.1 47.7±2.5 42.6±3.9 42.6±4.6 64.8±4.1 72.7±10.0
10vs10 90.3 5.5±1.4 16.6±0.3 38.3±8.9 36.8±2.8 19.8±2.9 28.3±2.3 61.7±5.8 77.3±5.6

Terran 5vs5 81.7 18.0±2.6 19.7±5.3 32.0±6.0 24.6±4.2 10.9±4.5 10.9±4.5 55.9±0.4 71.9±3.8
10vs10 81.7 6.2±2.2 14.1±1.7 35.9±4.7 0.5±0.5 2.3±1.4 1.0±0.7 53.8±6.9 72.7±3.4

Zerg 5vs5 73.5 10.9±3.5 18.6±1.4 33.6±7.5 14.8±3.1 5.3±1.2 18.8±0.6 46.7±5.2 60.9±14.7
10vs10 76.3 9.4±3.8 16.4±0.6 17.2±3.5 27.1±4.8 1.2±1.2 31.2±3.6 51.0±2.2 59.4±3.1

Miner
easy 82.4 31.2±5.8 21.9±4.4 18.8±3.8 36.7±2.9 35.2±2.6 34.6±3.3 52.7±0.7 60.2±5.6

medium 74.9 28.1±3.8 9.8±1.6 14.8±3.4 28.3±1.9 21.1±2.6 26.0±1.5 43.8±2.2 49.2±5.1
hard 69.8 12.5±2.2 6.6±0.7 11.7±2.6 19.9±2.0 17.2±6.4 20.9±2.4 39.1±5.2 39.8±4.6

Table 11: Results on MPEs, the number of expert trajectories is: [1, 2, 4, 8, 16, 32, 64, 128]

Expert Scenarios Expert BC IIQ IQ- MA- MA- MA- MIFQ
Traj. VDN SQIL AIRL GAIL Det Soft

1
reference -17.2 -20.5±0.0 -26.5±0.1 -29.1±0.1 -33.5±0.9 -45.4±2.4 -45.8±0.3 -42.8±0.3 -23.1±0.0
spread -10.7 -21.7±0.0 -30.3±0.2 -41.6±0.4 -44.2±0.1 -28.9±0.6 -31.8±1.5 -30.4±0.1 -30.8±0.4
speaker -19.7 -28.5±0.0 -53.8±0.4 -37.7±0.2 -138.9±0.4 -127.4±0.1 -115.6±1.6 -50.5±0.3 -27.6±0.0

2
reference -17.5 -24.1±0.2 -28.4±0.1 -39.0±1.2 -49.7±0.1 -48.6±0.1 -43.4±0.1 -44.6±0.6 -22.4±0.1
spread -11.4 -24.3±0.0 -35.3±0.2 -48.1±1.9 -54.8±0.2 -33.6±2.2 -25.2±0.1 -27.5±0.6 -28.4±0.4
speaker -19.2 -27.6±0.0 -43.7±0.4 -56.4±4.6 -113.9±3.7 -121.5±6.9 -107.6±0.2 -44.2±0.0 -27.3±0.0

4
reference -17.5 -22.5±0.1 -26.2±0.4 -26.8±0.7 -26.7±0.0 -48.2±0.3 -50.3±0.2 -45.2±0.2 -20.0±0.0
spread -11.4 -23.8±0.0 -28.5±4.8 -34.2±1.1 -46.9±0.2 -28.0±0.2 -43.5±0.2 -25.9±0.2 -23.1±0.4
speaker -19.2 -29.6±0.0 -67.3±1.3 -40.0±1.9 -113.1±0.6 -134.0±0.0 -92.5±1.2 -125.4±0.2 -29.9±0.0

8
reference -17.5 -19.0±0.1 -25.6±0.1 -35.9±1.6 -43.1±0.6 -46.5±1.0 -42.8±1.1 -33.1±0.3 -20.2±0.1
spread -11.4 -21.7±0.0 -27.9±0.1 -29.3±0.2 -47.0±1.2 -33.2±1.9 -28.4±0.7 -35.8±0.1 -53.1±0.9
speaker -19.2 -32.9±0.0 -35.9±0.1 -38.6±0.3 -111.1±0.2 -134.0±0.0 -99.4±0.5 -59.9±0.2 -28.9±0.1

16
reference -17.5 -18.2±0.1 -20.8±0.2 -22.7±0.2 -32.0±0.5 -47.8±2.1 -45.4±0.6 -38.9±0.2 -18.8±0.1
spread -11.4 -21.3±0.0 -24.2±0.2 -38.7±1.1 -45.1±0.2 -25.3±0.5 -41.2±1.0 -31.0±0.3 -37.7±0.6
speaker -19.2 -31.9±0.0 -56.5±0.1 -35.2±0.5 -129.4±0.4 -134.0±0.0 -134.0±0.0 -40.4±0.5 -27.9±0.0

32
reference -17.5 -18.3±0.0 -18.7±0.2 -21.7±0.2 -46.0±0.2 -30.4±1.5 -30.7±1.3 -32.2±0.1 -18.6±0.1
spread -11.4 -20.6±0.0 -27.1±0.1 -34.7±0.5 -34.9±0.3 -32.1±0.7 -33.8±0.4 -24.8±0.2 -54.9±0.4
speaker -19.2 -29.0±0.0 -32.8±0.2 -35.9±0.1 -104.4±0.2 -132.5±2.1 -134.8±0.4 -36.8±1.0 -28.1±0.0

64
reference -17.5 -18.1±0.0 -18.3±0.2 -18.9±0.2 -36.4±0.7 -31.3±1.0 -42.6±0.2 -24.6±0.1 -20.4±0.0
spread -11.4 -20.3±0.0 -23.0±0.1 -23.8±0.2 -29.9±0.2 -29.4±0.0 -32.7±0.1 -23.5±0.2 -23.7±0.2
speaker -19.2 -28.4±0.0 -30.3±0.3 -39.8±1.1 -69.2±1.7 -124.6±0.3 -117.7±0.1 -33.4±0.0 -26.7±0.0

128
reference -17.2 -18.3±0.0 -18.6±0.2 -19.0±0.1 -36.6±1.5 -40.7±3.2 -40.0±0.2 -23.4±0.1 -20.5±0.0
spread -10.7 -20.5±0.0 -23.6±0.2 -21.6±0.2 -23.0±0.4 -26.5±0.3 -24.3±0.1 -23.2±0.1 -24.2±0.1
speaker -19.7 -27.5±0.0 -29.1±0.1 -29.5±0.5 -104.3±5.0 -125.5±0.7 -78.7±4.9 -30.8±0.1 -26.3±0.0
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Figure 7: Learning curves with different numbers of demonstrations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract includes our main claims reflecting our main contributions and
finding.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We created a subsection in the Conclusion to discuss limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the proofs of the theorems and propositions stated in the main paper are
provided in the appendix with clear references.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details on the environments and hyper-parameter settings in the
appendix. We also uploaded our source code for re-productivity purposes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data we used, along with our source code, has been uploaded with the
main paper. We have also provided sufficient instructions for their use.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details are provided in the main paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Following standard practices, we reported mean scores and standard devia-
tions, computed by running several random seeds, for comparison.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provides all the details in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper develops a general imitation learning algorithm for multi-agent
games, which we have tested only in simulated environments. As such, we do not foresee
any direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [TODO]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided clear citations to the source code and data we used in the
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our source code is submitted alongside the paper, accompanied by sufficient
instructions. We will share the code publicly for re-producibility or benchmarking purposes.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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