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a b s t r a c t 

There is currently no standard or widely accepted subset of features to effectively classify different emo- 

tions based on electroencephalogram (EEG) signals. While combining all possible EEG features may im- 

prove the classification performance, it can lead to high dimensionality and worse performance due to 

redundancy and inefficiency. To solve the high-dimensionality problem, this paper proposes a new frame- 

work to automatically search for the optimal subset of EEG features using evolutionary computation (EC) 

algorithms. The proposed framework has been extensively evaluated using two public datasets (MAHNOB, 

DEAP) and a new dataset acquired with a mobile EEG sensor. The results confirm that EC algorithms can 

effectively support f eature selection to identify the best EEG features and the best channels to maximize 

performance over a four-quadrant emotion classification problem. These findings are significant for in- 

forming future development of EEG-based emotion classification because low-cost mobile EEG sensors 

with fewer electrodes are becoming popular for many new applications. 

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved. 

1

 

n  

u  

s  

2  

a  

&  

i  

w  

m  

t  

s  

w  

a  

d  

t  

(

 

m  

N

s

r  

o  

e  

n  

f  

c  

e  

s

 

s  

a  

t  

&  

f  

h  

l  

t  

c  

t  

a  

w  

h

0

. Introduction 

Recent advances in emotion recognition using physiological sig-

als, particularly electroencephalogram (EEG) signals, have opened

p a new era of human computer interaction (HCI) applications,

uch as intelligent tutoring ( Calvo & D’ Mello, 2010; Du Boulay,

011 ), computer games ( Mandryk & Atkins, 2007 ) and e-Health

pplications ( Liu, Conn, Sarkar, & Stone, 2008; Luneski, Bamidis,

 Hitoglou-Antoniadou, 2008 ). Automatic emotion recognition us-

ng sensor technologies such as wireless headbands and smart

atches is increasingly the subject of research, with the develop-

ent of new forms of human-centric and human-driven interac-

ion with digital media. Many of these portable sensors are easy to

et up and connect via Bluetooth to a smart phone or computer,

here the data can be readily analyzed. These mobile sensors are

ble to support real-world applications, such as detecting driver

rowsiness ( Li, Lee, & Chung, 2015 ), and, more recently, assessing

he cognitive load of office workers in a controlled environment

 Zhang et al., 2017 ). 

Emotion recognition supports automatic interpretation of hu-

an intentions and preferences, allowing HCI applications to better
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espond to users’ requirements and customize interactions based

n affective responses. The strong correlation between different

motional states and EEG signals is most likely because these sig-

als come directly from the central nervous system, providing in-

ormation (features) about internal emotional states. EEG signals

an thus be expected to provide more valuable than less direct or

xternal indicators of emotion such as interpreting facial expres-

ions. 

Previous works on extraction of EEG features have demon-

trated that there are many useful features from time, frequency

nd time–frequency domains, which have been shown to be effec-

ive for recognizing different emotions. A recent study ( Jenke, Peer,

 Buss, 2014 ) proposed the most comprehensive set of extractable

eatures from EEG signals, noting that advanced features like

igher order crossing can perform better than common features

ike power spectral bands for classifying basic emotions. However,

heir experiment did not include a publicly available dataset and

annot be directly compared with our proposed method. Moreover,

here is no standardized set of features that have been generally

greed as the most suitable for emotion recognition. This leads to

hat is known as a high-dimensionality issue in EEG, as not all of

hese features would carry significant information regarding emo-

ions. Irrelevant and redundant features increase the feature space,

aking patterns detection more difficult, and increasing the risk

f overfitting. It is therefore important to identify salient features

hat have significant impact on the performance of the emotion
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classification model. Feature selection methods have been shown

to be effective in automatically decreasing high dimensionality by

removing redundant and irrelevant features and maximizing the

performance of classifiers. 

Among the many methods which can be applied to feature se-

lection problems, the simplest are filter methods which are based

on ranking techniques. Filter methods select the features by scor-

ing and ordering features based on their relevance, and then defin-

ing a threshold to filter out the irrelevant features. The methods

aim to filter out the less relevant and noisy features from the

feature list to improve classification performance. Filter methods

that have been applied to emotion classification systems include

Pearson Correlation ( Kroupi, Yazdani, & Ebrahimi, 2011 ), correla-

tion based feature reduction ( Nie, Wang, Shi, & Lu, 2011; Schaaff

& Schultz, 2009 ), and canonical correlation analysis (CCA). How-

ever, filtering methods have two potential disadvantages as a re-

sult of assuming that all features are independent of each other

( Zhang & Zhao, 2008 ). The first disadvantage is the risk of discard-

ing features that are irrelevant when considered individually, but

that may become relevant when combined with other features. The

second disadvantage is the potential for selecting individual rele-

vant features that may lead to redundancies. 

Evolutionary computation (EC) algorithms can help to overcome

the limitations of individual feature selection by assessing the sub-

set of variables based on their usefulness. The main advantage of

using EC to solve optimization problems is the ability to search

simultaneously within a set of possible solutions to find the op-

timal solution, by iteratively trying to improve the feature subset

with regard to a given measure of quality. Five well-known EC al-

gorithms – Ant Colony Optimization (ACO), Simulated Annealing

(SA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO)

and Differential Evolution (DE) – are widely used for feature selec-

tion in various applications, including facial expression-based emo-

tion recognition ( Mistry, Zhang, Neoh, Lim, & Fielding, 2016 ) and

classification of motor imagery EEG signals( Baig, Aslam, Shum, &

Zhang, 2017 ). Baig’s study, particularly, has achieved a very high

(95%) accuracy using a DE algorithm, but was based on only 5 sub-

jects. 

Compared to previous work, this is the first study to iden-

tify the best EC-based feature selection method(s), which have

not been previously tested on EEG-based emotion recognition. The

proposed method is evaluated using two public datasets (DEAP

and MAHNOB) and a newly collected dataset using wireless EEG

sensors to give a comprehensive review on experimental results

in different contexts. In all three datasets, video clips and music

were used as stimuli to induce different emotions. In addition, this

study investigates the most optimal subset of features within each

dataset and identifies the most frequent set of selected channels

using the principle of weighted majority voting. These findings are

significant for informing future development of EEG-based emo-

tion classification because low-cost mobile EEG sensors with fewer

electrodes are becoming popular for many new applications. 

This paper is organized as follows. Section 2 discuss the frame-

work and adjustment of algorithms for the feature-selection prob-

lem. Section 3 presents the methodology, including the data

collection. Section 4 discusses the experimental results, while

Section 5 provides the conclusion and discusses future work. 

2. System framework 

A typical emotion classification system using EEG signals con-

sists of four main tasks: pre-processing, feature extraction, feature

selection and classification (see Fig. 1 ). 

The first and most critical step is pre-processing, as EEG sig-

nals are typically noisy as a result of contamination by physiolog-

ical artefacts caused by electrode movement, eye movement, mus-
le activities, heartbeat and so on. The artefacts that are gener-

ted from eye movement, heartbeat, head movement and respira-

ion are below the frequency of 4 Hz, while the artefacts caused

y muscle movement are higher than 40 Hz. In addition, there are

ome non-physiological artefacts caused by power lines with fre-

uencies of 50 Hz, which contaminate the EEG signal. 

In order to remove artefacts while keeping the EEG signals

ithin specific frequency bands, sixth-order (band-pass) Butter-

orth filtering was applied to obtain 4–64 Hz EEG signals to cover

ifferent emotion-related frequency bands. Notch filtering was ap-

lied to remove 50 Hz noise caused by power lines. In addition

o these pre-processing methods, independent component analysis

ICA) was used to reduce the artefacts caused by heartbeat and to

eparate complex multichannel data into independent components

 Jung et al., 20 0 0 ), and provide a purer signal for feature extrac-

ion. 

The purer EEG signals were then passed through a feature ex-

raction step, in which several types of features from time, fre-

uency and time–frequency domains were extracted to distinguish

ifferent emotions. Subsequently, all the extracted features from

ach channel were concatenated into a single vector represent-

ng a large feature set. To reduce the number of features used for

he machine learning process, EC algorithms are applied iteratively

o the different feature sets to find the optimal and most effec-

ive set. The classification and feature selection steps were inte-

rated to iteratively evaluate the quality of the feature sets pro-

uced by the feature selection against the classification of specific

motions based on experimental results. To evaluate the perfor-

ance of each EC feature selection algorithm, a probabilistic neural

etwork (PNN) ( Specht, 1990 ) was adopted, as it has been shown

o be effective for emotion recognition using different modalities.

 PNN is a feedforward network with three layers which is de-

ived from Bayesian networks. In our framework, training and test-

ng of each EC algorithm was conducted using 10-fold cross valida-

ion, which helps to avoid overfitting. This process is made possible

hanks to PNN’s faster training process compared to other classifi-

ation methods, as the training is achieved using one pass of each

raining vector rather than several passes. 

Of these tasks, feature extraction and the integrated feature

election and classification methods represent the most impor-

ant parts of the framework. After reviewing and evaluating these

ethods, the key contribution of this paper is to find the optimal

trategy for feature selection of high-dimensional EEG-based emo-

ion recognition. 

.1. Feature extraction 

EEG features are generally categorized into three main domains:

ime-, frequency- and time–frequency . 

.1.1. Time-domain features 

Time-domain features have been shown to correlate with dif-

erent emotional states. Statistical features – such as mean, maxi-

um, minimum, power, standard deviation, 1st difference, normal-

zed 1st difference, standard deviation of 1st difference, 2nd differ-

nce, standard deviation of 2nd difference, normalized 2nd differ-

nce, quartile 1, median, quartile 3, quartile 4 – are good at classi-

ying different basic emotions such as joy, fear, sadness and so on

 Chai, Woo, Rizon, & Tan, 2010; Takahashi, 2004 ). Other promis-

ng time-domain feature is Hjorth parameters: Activity, Mobility

nd Complexity ( Ansari-Asl, Chanel, & Pun, 2007; Horlings, Datcu,

 Rothkrantz, 2008 ). These parameters represent the mean power,

ean frequency and the number of standard slopes from the sig-

als, which have been used in EEG-based studies on sleep disorder

nd motor imagery ( Oh, Lee, & Kim, 2014; Redmond & Heneghan,

006; Rodriguez-Bermudez, Garcia-Laencina, & Roca-Dorda, 2013 ).
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Fig. 1. The proposed emotion classification system using evolutionary computational (EC) algorithms for feature selection. 
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ll abovementioned features were applied for real-time applica-

ions, as they have the least complexity compared with other

ethods ( Khan, Ahamed, Rahman, & Smith, 2011 ). 

In addition to these well-known features, we incorporated two

ewer time-domain features. The first one is fractal dimension to

xtract geometric complexity, which has been shown to be effec-

ive for detecting concentration levels of subjects ( Aftanas, Lotova,

oshkarov, & Popov, 1998; Sourina & Liu, 2011; Sourina, Kulish, &

ourin, 2009; Sourina, Sourin, & Kulish, 2009; Wang, Sourina, &

guyen, 2010 ). Among the several methods for computing fractal-

imension features, the Higuchi method has been shown to out-

erform other methods, such as box-counting and fractal brownian

otion ( Liu & Sourina, 2012 ). The second newer feature is Non-

tationary Index (NSI) ( Kroupi et al., 2011 ), which segments EEG

ignals into smaller parts and estimates the variation of their lo-

al averages to capture the degree of the signals’ non-stationarity.

he performance of NSI features can be further improved by com-

ining them with other features, such as higher order crossing fea-

ures ( Petrantonakis & Hadjileontiadis, 2010 ) that are based on the

ero-crossing count to characterize the oscillation behavior. 

.1.2. Frequency-domain features 

Compared to time-domain features, frequency-domain features

ave been shown to be more effective for automatic EEG-based

motion recognition. The power of the EEG signal among different

requency bands is a good indicator of different emotional states.

eatures such as power spectrum, logarithm of power spectrum,

aximum, minimum and standard deviation should be extracted

rom different frequency bands, namely Gamma (30–64 Hz), Theta

13–30 Hz), Alpha (8–13 Hz) and Beta (4–8 Hz), as these features

ave been shown to change during different emotional states

 Barry, Clarke, Johnstone, Magee, & Rushby, 2007; Davidson, 2003;

oelstra et al., 2012; Onton & Makeig, 2009 ). 

.1.3. Time–frequency domain features 

The limitation of frequency-domain features is the lack of

emporal descriptions. Therefore, time–frequency - domain features

re suitable for capturing the non-stationary and time-varying

ignals, which can provide additional information to character-

ze different emotional states. The most recent and promis-

ng features are discrete wavelet transform (DWT) and Hilbert

uang spectrum (HHS). DWT decomposes the signal into differe
ttp://bit.ly/DianOfficent frequency bands while concentrating in 

ime, and it has been used to recognize different emotions using

ifferent modalities, such as speech ( Shah et.al., 2010 ), electromyo-

raphy ( Cheng & Liu, 2008 ) and EEG ( Murugappan et al., 2008 ).

HS extracts amplitude, squared amplitude and instantaneous am-

litude from decomposed signals obtained from intrinsic mode

unctions, and has been applied to investigate the connection be-

ween music preference and emotional arousal ( Hadjidimitriou &

adjileontiadis, 2012 ). From the Discrete Wavelet Transform, differ-

nt features can be further extracted to distinguish basic emotions

 Murugappan, Ramachandran, & Sazali, 2010; Murugappan, Rizon,

agarajan, & Yaacob, 2010 ), including power, recursive energy effi-

iency (REE), root mean square, and logarithmic REE. 

This study adopts all of the abovementioned features to auto-

atically select the most important subset of EEG features that

an achieve the optimal classification performance. The features

re summarized in Table 1 . 

.2. Feature selection 

Evolutionary computation (EC) algorithms can be used to se-

ect the most relevant subset of features from extracted EEG fea-

ures. Our study used the five population-based heuristic search

lgorithms useful for global searching, mentioned above, namely:

nt Colony Optimization, Simulated Annealing, Genetic Algorithm,

article Swarm Optimization and Differential Evolution. Although

ach of these algorithms is different , the common aim among them

s to find the optimum solution by iteratively evaluating new solu-

ions. All EC algorithms follow three steps: 1) initialization, where

he population of solutions is initialized randomly; 2) evaluation

f each solution in the population for fitness value; 3) iteratively

enerating a new population until the termination criteria are met.

he termination criteria could be the maximum number of itera-

ions or finding the optimal set of features that maximize classifi-

ation accuracy. 

.2.1. Ant colony optimization (ACO) 

First proposed by Dorigo and Gambardella (1997) , ACO is in-

pired from the foraging behavior of ant species. It is based the

nding the shortest paths from food sources to the nest. In an

nt colony system, ants leave a chemical, pheromone, on the

http://bit.ly/DianOfficent
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Table 1 

Extracted features from EEG signal. 

Time domain 

Minimum Mean 

Maximum Power 

Standard deviation 1st difference 

Normalized 1st difference 2nd difference 

Normalized second difference Hjorth feature (Activity, mobility and complexity) 

Non-stationary index Fractal dimension (Higuchi algorithm) 

Higher order crossing Variance 

Root mean square Quartile 1, quartile median, quartile 3, quartile4 

Frequency domain 

Power spectrum density (PSD) from Gamma, Theta, Alpha, Beta Mean 

Time–frequency domain 

Power of Discrete Wavelet Transform (DWT) from Gamma, Theta, Alpha, Beta 

Root Mean Square (RMS) of DWT from Gamma, Theta, Alpha, Beta Recursive Energy Efficiency (REE) of DWT from Gamma, Theta, Alpha, Beta 

Log (REE) of DWT from Gamma, Theta, Alpha, Beta Abs (log (REE)) of DWT from Gamma, Theta, Alpha, Beta 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

i  

i  

s  

a  

a  

f  

j  

(  

n

 

f  

g  

s  

d  

i  

r  

o  

t  

l  

b  

(  

a

e  

 

t  

(  

c  

n

T  

w

2

 

b  

s  

t  

f  

2

 

s  
ground while they are searching for food ( Dorigo, Birattari, & Stut-

zle, 2006 ). Once an ant finds a food source, it evaluates the quan-

tity and quality of the food and, during its return trip to the

colony, leaves a quantity of pheromone based on its evaluation of

that food. This pheromone trail guides the other ants to the food

source. Ants detect pheromone by smell and choose the path with

the strongest pheromone. This process is performed iteratively un-

til the ants reach the food source. 

ACO has been widely applied in many domains such as job

scheduling ( Blum & Sampels, 2002; Colorni, Dorigo, Maniezzo, &

Trubian, 1994 ), sequential ordering ( Dorigo & Gambardella, 1997 ),

graph coloring ( Costa & Hertz, 1997 ), shortest common super se-

quences ( Michel & Middendorf, 1998 ) and connectionless network

routing ( Sim & Sun, 2003 ). Studies have shown the utility of the

ACO algorithm for the feature-selection problem ( Al-Ani, 2005;

Sivagaminathan & Ramakrishnan, 2007 ). 

To apply the ACO algorithm to the feature-selection problem,

we need to include a path for feature selection algorithms. The

path can be represented as a graph, where each node in the graph

represents a feature and the edge shows the next feature to be se-

lected. Based on this path, the ants are generated with a random

set of features. From their initial positions, they start to construct

the solution (set of features) using heuristic desirability, which de-

notes the probability of selecting feature i by ant r at time step t:

P r i ( t ) = 

⎧ ⎨ 

⎩ 

τ ( i ) 
α
.n ( i ) 

β

∑ 

u ∈ J ( r ) τ ( u ) 
α
.n ( u ) 

β
i f i ∈ J ( r ) 

0 otherwise 

(1)

Where, for the ant r, n ( i ) and τ ( i ) are the heuristic informa-

tion and the pheromone value of feature i, and α and β are the

parameters which determine the importance of pheromone value

and heuristic information respectively. The n ( i ) and τ ( i ) parameters

can create a balance between exploration and exploitations, influ-

enced by α and β values. If α = 0, then no pheromone information

is used and the previous search is overlooked and if β = 0, then

the exploration or global search is overlooked. After constructing

the solutions (a set of features) for each ant, the fitness function is

applied on each solution to evaluate performance. In this study, a

PNN classifier was employed to evaluate the accuracy of each so-

lution, which represents the set of features. Then the pheromone

evaporation was applied as follows: 

τ ( t + 1 ) = ( 1 − ρ) ∗ τ ( t ) (2)

Where ρ ∈ (0, 1) is the pheromone decay coefficient. Finally,

the process stops when the termination criteria are met – either

the optimum set of features with highest accuracy or the maxi-

mum number of iterations is achieved. 
.2.2. Simulated annealing (SA) 

First proposed by Kirkpatrick, Gelatt, and Vecchi (1983 ), SA

s inspired from metallurgy processes. It is based on select-

ng the best sequence of temperatures to achieve the best re-

ult. The algorithm starts from the initial state of high temper-

ture, then iteratively creates a new random solution and opens

 search space widely to slowly decrease the temperature to a

rozen ground state. SA is used for different domains such as

ob shop scheduling ( Suresh & Mohanasundaram, 2006 ), clustering

 Bandyopadhyay, Saha, Maulik, & Deb, 2008 ) and robot path plan-

ing ( Zhu, Yan, & Xing, 2006 ). 

For feature selection, SA iteratively generates new solutions

rom the neighborhood and then the fitness function of the new

enerated solution is calculated and compared with the current

olutions. A neighbor of a solution is generated by selecting a ran-

om bit and inverting it; if the fitness function of the new solution

s better than the current solution, then the new solution will be

eplaced for the next iteration. Otherwise, it will be accepted based

n the Metropolis condition which states that, if the difference be-

ween the fitness function of the current solution and the new so-

ution is equal or higher than zero, then a random number δ will

e generated between [0,1]. And then if the Boltzmann’s function

 Eq. 4 ) value is higher than δ, the new generated solution will be

ccepted for the next iteration. 

xp ( �E/T ) ≥ δ (4)

After all iterations at each temperature are complete, the next

emperature state is selected based on a temperature updating rule

 Eq. (5 )). This process continues iteratively until the termination

riteria are reached, namely a fixed number of iterations or until

o further improvement is observed. 

 n = ∝ 

N T i (5)

here: 

• T d is the new decreasing temperature state 
• ∝ is the cooling ratio 
• N is the number of iteration in each temperature state 
• T i is the initial temperature state 

.2.3. Genetic algorithm (GA) 

First proposed by Goldberg and Holland (1988) , GA is inspired

y natural selection. The algorithm aims to find the (near) optimal

olution for chromosomes to continue surviving, based on stochas-

ic optimization. It has been applied to find the optimal solutions

or job scheduling ( Gonçalves, de Magalhães Mendes, & Resende,

005; Yang & Honavar, 1998 ) problems. 

The algorithm contains a set of chromosomes, which are repre-

ented in binary form, with operators for fitness function, breed-
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ng or crossover, and mutation. Each of these binary chromosomes

s represented as a solution and these solutions are used to gen-

rate new solutions. Initially, the chromosomes are created ran-

omly to represent different points in the search space. The fitness

f each chromosome is evaluated and the chromosomes with bet-

er fitness value are more likely to be kept for the next generation

as a parent). New chromosomes are then generated using a pair

f the fittest current solutions through the combination of suc-

essive chromosomes and some crossover and mutation operators.

he crossover operator replaces a segment of a parent chromosome

o generate a new chromosome, while the mutation operator mu-

ates a parent chromosome into a newly generated chromosome to

ake a very small change to the individual genome. This mutation

rocess helps in introducing randomness into the population and

aintaining diversity within it. Otherwise, the combination of the

urrent population can cause the algorithm to become trapped in

he local optima, unable to explore the other search space. Finally,

he newly generated chromosomes are used for the next iterations.

his process continues until some satisfactory criteria are met. 

To apply the GA algorithm to the feature-selection prob-

em, each chromosome is represented by a binary vector of

imension m , where m is the total number of features. If a bit is

, then the corresponding feature is included, and if a bit is 0,

he feature is not included. The process of GA for feature selec-

ion problem is the same as GA. The process terminates when it

nds the subset of features with highest accuracy or reaches the

aximum number of iterations. 

.2.4. Particle swarm optimization (PSO) 

First proposed by Eberhart and Kennedy (1995) , PSO is inspired

y the social behaviors of bird flocking and fish schooling. The

lgorithm is a population-based search technique similar to ACO

see 2.4.1). PSO was originally applied to continuous problems and

hen extended to discrete problems ( Kennedy & Eberhart, 1997 ).

ue to its simplicity and effectiveness, this algorithm is used inn

ifferent domains such as robotics ( Couceiro, Rocha, & Ferreira,

011; Nakisa, Nazri, Rastgoo, & Abdullah, 2014; Nakisa, Rastgoo,

asrudin, & Nazri, 2014; Rastgoo, Nakisa, & Nazri, 2015 ) and job

cheduling ( Sha & Hsu, 2006; Zhang, Shao, Li, & Gao, 2009 ). 

The algorithm is similar to GA, as it consists of a set of parti-

les, which resemble the chromosome in GA, and a fitness func-

ion. Each particle in the population has a position in the search

pace, a velocity vector and a corresponding fitness value which

s evaluated by the fitness function. However, unlike GA, PSO does

ot require sorting of fitness values of any solution in any process,

hich may be a computational advantage, particularly when the

opulation size is large. 

To apply PSO to feature-selection problems, the first step is ini-

ialization. At each iteration, the population of particles spread out

n the search space with random position and velocity. The fit-

ess value of each particle is evaluated using the fitness function.

he particles iterate from one position to another position in the

earch space using the velocity vector. This velocity vector ( Eq. (6 )

s calculated using the particle’s personal best position ( P best ), the

lobal best ( g best ) and the previous velocity vector. The particle’s

ersonal best value is the best position that the particle has vis-

ted so far and the global best ( g best ) is the best visited position

y any particle in the population. These two values can be con-

rolled by some learning factors. The next particle’s position will

e evaluated through the previous position and the calculated ve-

ocity vector (as described in Eqs. (6 ) and ( 7 )). 

 

t+1 
i 

= ωv t i + c 1 r 1 
(
P t i − x t i 

)
+ c 2 r 2 

(
G 

t − x t i 
)

(6)

 

t+1 
i 

= x t i + v t+1 
i 

(7)
here v t 
i 

and x t 
i 

are the previous iteration’s velocity vector and the

revious particle’s position respectively, ω is the inertia weight,

 1 , c 2 are learning factors and r 1 , r 2 are random numbers that are

niformly distributed between [0, 1]. 

.2.5. Differential evolution (DE) 

Another stochastic optimization method is Differential Evolu-

ion (DE), which has recently attracted increased attention for

ts application to continuous search problems ( Price, Storn, &

ampinen, 2006 ). Although its process is similar to the PSO algo-

ithm, for unknown reasons it is much slower than PSO. Recently,

ts strength has been shown in different applications such as strat-

gy adaptation ( Qin, Huang, & Suganthan, 2009 ) and job shop

cheduling ( Pan, Wang, & Qian, 2009 ). Most recently this algorithm

as shown promising performance as a feature-selection algorithm

or EEG signals in motor imagery applications ( Baig et al., 2017 ). 

DE algorithm represents a solution by a d -dimensional vector.

 population size of N with a d -dimensional vector is generated

andomly. Then a new solution is generated by combining sev-

ral solutions with the candidate solution, and these solutions are

volved using three main operators: mutation, crossover and selec-

ion. Although the concept of solution generation is applied in the

E algorithm in the same way as it is applied in GA, the operators

re not all the same as those with the same names in GA. 

The key process in DE is the generation of a trial vector. Con-

ider a candidate or a target vector in a population of size N of

 -dimensional vectors. The generation of a trial vector is accom-

lished by the mutation and crossover operations and can be sum-

arized as follows. 1) Create a mutant vector by mutation of three

andomly selected vectors. 2) Create a trial vector by the crossover

f the mutant vector and the target vector. When the trial vector

s formed, the selection operation is performed to keep one of the

wo vectors, that is, either the target vector or the trial vector. The

ector with better fitness value is kept, and is the one included for

he selection of the next mutant vector. This is an important dif-

erence since any improvement may affect other solutions without

aving to wait for the whole population to complete the update. 

. Experimental method 

We conducted extensive experiments to determine if evolution-

ry computation algorithms can be used as effective feature selec-

ion processes to improve the performance of EEG-based emotion

lassification and to find the most successful subset of features.

ased on the experiments, we determined which features are gen-

rally better, across all stimuli and subjects. 

The experiments were based on the goal of classifying four-

lass emotions based on EEG signals, using the most success-

ul subset of features generated from five different EC algo-

ithms (ACO, SA, GA, PSO and DE). The experiments used two

ublic datasets (MAHNOB and DEAP), which contain EEG sig-

als with 32 channels. In addition, a new dataset of EEG sig-

als with only 5 channels was used for comparison purposes. In

rder to decrease the computation time, the experiments used

ata from 15 randomly-selected subjects. We simplified the di-

ensional (arousal-valence based) emotions into four quadrants:

) High Arousal-Positive emotions (HA-P); 2) Low Arousal-Positive

motions (LA-P); 3) High Arousal-Negative emotions (HA-N); 4)

ow Arousal-Negative emotions (LA-N)). 

As described in Section 2.1 , some noise reduction techniques,

ncluding Butterworth, notch filtering and ICA, were applied to the

EG signals to remove artefacts and noise. After noise reduction, a

ariety of EEG features from time, frequency and time–frequency do-

ains were extracted from a one-second window with 50% overlap

45 features in total from each window). For the experiments us-

ng the MAHNOB and DEAP datasets, we extracted features from
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Fig. 2. The Emotiv insight headset. 

Fig. 3. The location of five channels used in Emotiv sensor (represented by the 

black dots, while the white dots are the other channels normally used in other 

wired sensors). 
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all 32 EEG channels. Hence, the total number of EEG features for

each subject was 45 × 32 = 1440 features. To reduce the high di-

mensionality of the feature space and to improve the performance

of EEG-based emotion classification, the five EC algorithms were

applied. Finally, a PNN classifier with 10-fold cross validation was

used to evaluate the performance of the generated set of features.

This means that the integrated feature selection and classification

process was iteratively processed 10 times on each dataset with a

different initial population from the 15 subjects. The average over

all 10 runs was calculated as a final performance. The whole ex-

perimental software was implemented using MATLAB, and the fol-

lowing settings were applied: 

• For the ACO algorithm: number of ants = 20, evaporation

rate = 0.05, initial pheromone and heuristic value = 1. 
• For the SA algorithm: initial temperature = 10, cooling ra-

tio = 0.99, maximum number of iteration in each temperature

state = 20. 
• For the GA algorithm: crossover percentage = 0.7, mutation per-

centage = 0.3, mutation rate = 0.1, selection pressure = 8. 
• For the PSO algorithm: construction coefficient = 2.05, damp-

ing ratio = 0.9, particle size = 20. For the DE algorithm: popula-

tion size = 20, crossover probability = 0.2, lower bound of scal-

ing factor = 0.2, upper bound of scaling factor = 0.8. 

3.1. Description of datasets 

3.1.1. MAHNOB (Video) 

MAHNOB ( Soleymani, Lichtenauer, Pun, & Pantic, 2012 ) con-

tains a recording of user responses to multimedia content. In the

study, 30 healthy young people, aged between 19 and 40 years

old, from different cultural backgrounds, volunteered to participate.

Fragments of videos from online sources, lasting between 34.9 and

117 s, with different content, were selected to induce 9 specific

emotions in the subjects. After each video clip the participants

were asked to describe their emotional state using a keyword

such as neutral, surprise, amusement, happiness, disgust, anger,

fear, sadness, and anxiety. While each participant was watching

the videos, EEG signals using 32 channels based on a 10/20 sys-

tem of electrode placement were collected. The sampling rate of

the recording was 1024 Hz, but it was down-sampled to 256 Hz

afterwards. Only the signal parts recorded while the participants

watched the videos were included in the analysis and the annota-

tion part was left out. To decrease computational time, our exper-

iment randomly selected 15 of the 30 recorded participants. 

3.1.2. DEAP (music) 

DEAP ( Koelstra et al., 2012 ) contains EEG signals with 32 chan-

nels and other physiological signals, recorded from 32 participants

while they were listening to 40 one-minute music videos. The

self-assessment in this dataset was based on the Arousal-Valence,

like/dislike, and dominance and familiarity levels. To decrease com-

putational time, our experiment used the EEG signals from 15 of

the 32 participants. 

3.1.3. New experiment dataset (video) 

The third dataset was newly collected from 13 subjects, aged

between 20 and 38 years old, while they watched video clips. To

collecting the EEG data, the Emotiv Insight wireless headset was

used (see Fig. 2 ). This Emotiv headset contains 5 channels (AF3,

AF4, T7, T8, Pz) and 2 reference channels located and labeled ac-

cording to the international 10–20 system (see Fig. 3 ). Compared to

the EEG recording devices that were used in MAHNOB and DEAP,

our data collection used Emotiv wireless sensor, which only cap-

tures EEG signals from five channels (instead of 32). Based on the
xperimental results, we will determine if the use of wireless sen-

or can become a viable option for future studies that require sub-

ects to move around freely. 

We used TestBech software for acquiring raw EEG data from

he Emotiv headset while a participant was watching videos. Emo-

ions were induced by video clips, used in MAHNOB dataset, and

he participants’ brain responses were collected while they were

atching 9 video clips in succession. The participants were asked

o report their emotional state after watching each video, using

 keyword such as neutral, anxiety, amusement, sadness, joy or

appiness, disgust, anger, surprise, and fear. Before the first video

lip, the participants were asked to relax and close their eyes for

ne minute to allow their baseline EEG to be determined. Between

ach video clip stimulus, one minute’s silence was given to pre-

ent mixing up the previous emotion. The experimental protocol

s shown in Fig. 4 . 

To ensure data quality, we manually analyzed the signal quality

or each subject. Some EEG signals from the 5 channels were either

ost or found to be too noisy due to the long study duration, which

ay have been caused by loose contact or shifting electrodes. As

 result, only signal data from 11 (5 female and 6 male) out of 13

articipants is included in this dataset. Despite this setback, the ex-

eriment with this new data allows an investigation into the feasi-

ility of using the Emotiv Insight sensor for emotion classification

urposes. The expected benefit of this sensor is due to its light-

eight, and wireless nature, making it possibly the most suitable

or free-living studies in natural settings. 
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Fig. 4. Illustration of the experimental protocol for emotion elicitations. 

Table 2 

The average accuracy of EC algorithms over three datasets (MAHNOB, DEAP, our dataset). 

FS method No. iteration (MAHNOB) (DEAP) (Our dataset) Average time across datasets 

Time (h) Accuracy (%) Time (h) Accuracy (%) Time (h) Accuracy (%) 

PSO 15 12.5 82.94263 ∓ 2.865 12.9 51.18436 ∓ 4.23412 11.7 59.16438 ∓ 4.07415 

25 20.9 85.5012 ∓ 2.5847 21.5 51.64421 ∓ 3.06233 19.5 60.84009 ∓ 5.77746 

45 37.5 95.30953 ∓ 2.0627 38.7 54.07454 ∓ 2.36788 35.4 60.41786 ∓ 2.81327 

100 83.9 96.58661 ∓ 1.83694 86.1 65.31437 ∓ 3.22760 78.4 61.48601 ∓ 6.59215 82.8 h 

ACO 15 16 89.63667 ∓ 1.54467 16.2 46.09645 ∓ 1.22374 15.3 53.58217 ∓ 1.99010 

25 26.6 89.96537 ∓ 1.45023 27.2 56.7229 ∓ 1.87711 25.5 54.4585 ∓ 1.57451 

45 48 90.7626 ∓ 1.32020 48.8 58.23569 ∓ 1.54648 45.9 55.58698 ∓ 1.27219 

100 106.6 91.97158 ∓ 1.14934 110 59.25536 ∓ 1.39521 102 55.58698 ∓ 5.94841 106.2 h 

GA 15 11.9 84.85624 ∓ 2.21359 12.3 50.12445 ∓ 2.98451 11.8 57.62701 ∓ 2.89420 

25 19.7 86.26149 ∓ 1.97594 20.6 55.91216 ∓ 2.63143 19.6 59.59106 ∓ 2.67428 

45 35.6 94.99567 ∓ 1.93795 37.1 57.98351 ∓ 2.42171 35.4 57.58815 ∓ 3.60488 

100 79 97.11983 ∓ 1.41752 82.5 63.63564 ∓ 3.17107 71.3 61.237212 ∓ 2.16085 77.6 h 

SA 15 10.9 83.11863 ∓ 3.114 4 4 11.2 44.65506 ∓ 2.73391 10 4 9.04 851 ∓ 1.94359 

25 18.1 84.54847 ∓ 5.37894 18.7 48.6937 ∓ 3.62394 16.6 51.30788 ∓ 2.31224 

45 32.7 86.86808 ∓ 3.89385 33.7 52.20574 ∓ 5.76376 30 51.14426 ∓ 3.10572 

100 72.7 89.01175 ∓ 2.31283 75 55.25314 ∓ 2.64210 66.6 52.04453 ∓ 2.95477 71.4 h 

DE 15 11.6 83.01443 ∓ 1.9758 11.9 60.92632 ∓ 2.92837 10.8 56.14765 ∓ 2.73955 

25 19.4 89.67716 ∓ 2.00478 19.8 63.59828 ∓ 2.17161 18 59.11505 ∓ 3.03241 

45 35.1 92.99567 ∓ 1.85698 35.7 64.59933 ∓ 2.85288 32.4 63.04303 ∓ 2.19556 

100 77.8 96.97023 ∓ 1.89385 79.3 67.47447 ∓ 3.38984 72.1 65.043028 ∓ 3.19556 76.4 h 

4
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. Experimental results and discussion 

.1. Benchmarking feature selection methods 

The performance of EC algorithms was assessed based on the

ptimum accuracy that can be achieved within reasonable time

rames for convergence. Each algorithm was tested based on its

bility to achieve the best subset of features within a limited time.

s mentioned in Section 3 , the total number of features generated

rom 32 channels was 1440. In order to find the minimum subset

f features to maximize the classification performance, we empir-

cally limited the selected number of features to 30 out of 1440.

ased on our findings, this number of features not only maximizes

he performance of the proposed model, but can also keep the

omputational cost sufficiently low. In addition to feature size, the

omputational complexity of ECs algorithms is dependent on the

umber of iterations required for convergence, which may need to

e obtained by a trial-and-error process. Despite EC algorithms are

omputationally expensive, they are less complex than full search

nd sequential algorithms. Moreover, the computational complex-

ty of the proposed feature selection method is less important, as

ong as it is possible to achieve an acceptable result and complete

he step in a reasonable time. This is due to the fact that the pro-

ess of proposing the most optimized feature selection method is

nly conducted during development and training stages. 

Table 2 presents the relative performance of each EC algorithm,

roviding average accuracy ± standard error and processing time
or 30 selected features over 10 runs on three datasets (MAHNOB,

EAP and our dataset). Processing time was determined by Intel

ore i7 CPU, 16 GB RAM, running windows 7 on 64-bit architec-

ure. Based on the average processing time across three datasets,

CO takes the most amount of processing time (106.2 h), while

ot delivering the highest accuracy (92%, 60% and 60% for MAH-

OB, DEAP and our dataset respectively). In contrast, DE gives the

ighest accuracy (96%, 67% and 65% for MAHNOB, DEAP and our

ataset respectively), while the processing time (76.4 h on aver-

ge) is lower than others and only higher than that of SA (but SA

ives the lowest accuracy). Based on the average accuracy across

ll datasets (representing the overall performance), the best result

s achieved when DE is applied, followed by PSO and GA. From

5 to 100 iterations, the mean accuracy rate of PSO and GA im-

roved by 11% over the MAHNOB dataset and 14% and 8% over the

EAP dataset respectively. However, the improvement rate for DE

as lower (7% for MAHNOB and 4% for DEAP). Similarly, the im-

rovement rate for ACO and SA was only 2% and 5% over MAHNOB

espectively. This phenomenon is most likely due to PSO and GA’s

iversity property (i.e. its capability in searching for solutions more

idely), while ACO and SA are more likely to be trapped in local

ptima from the early iterations and seem to converge faster than

he other algorithms. This is one of the common problems among

C algorithms, known as the premature convergence problem. 

Further analysis of the diversity property of all algorithms is

rovided in Fig. 5 , showing that the proposed system reached an

cceptable result based on the peak performance within 100 it-
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Fig. 5. Performance of different algorithms for DEAP (a) and MAHNOB (b) databases. 
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erations within an acceptable processing time period. This graph

depicts the challenging part of EC algorithms, when these algo-

rithms become trapped in local optima and fail to explore the

other promising subsets of features. Generally, these algorithms

converge to local optima/ global optima after some iterations and

their performance remains steady without any improvement. In

this study, it is shown that as the number of iterations increased,

the performance of DE, PSO and GA increased and they found bet-

ter solutions with higher accuracy, while ACO and SA converged

in the early iterations and failed to improve their performance. DE

had the best convergence speed and founds better solutions. All

DE, PSO and GA algorithms came very close to the global optima

in the MAHNOB dataset in all runs, but the other two algorithms

(SA and ACO) usually failed to explore and stagnated into the local

optima, due to less diversity in the nature of these algorithms. 

In terms of comparing results across the different datasets, the

results from MAHNOB are significantly better than DEAP. This can

be explained by the fact that video is a more effective stimulus to

induce different emotions, compared to music. This hypothesis is

further justified by the results from our new dataset, which was

obtained using the same video stimuli as MAHNOB. Using only 5

EEG channels (instead of 32), the overall performance appears to

be very similar to that of the DEAP dataset (slightly lower), which

confirms the feasibility of using the wireless and light-weight EEG

sensor (albeit of lower accuracy). 

4.2. Frequently-selected features 

To investigate the general quality features for emotion recogni-

tion based on two shared datasets (MAHNOB and DEAP), i.e. which

feature selected by 5 EC feature-selection methods are repeated

more frequently than the others and performed more successfully

in emotion classification, we computed the occurrence number of

each of the 45 features in the best generated features by each EC

algorithm. In this case, we put all the best generated subset of fea-

tures using 5 EC algorithms tested against each dataset (MAHNOB,

DEAP) together and then generated a set of features regardless of

the channels (since each channel has the set of 45 features and in

order to find the most repeated features we do not need to con-

sider the channels). Then we provided figures to show the occur-

rence weight of each feature for each dataset. 

The most frequent time-domain features from the MAHNOB

dataset are maximum, 1st difference, 2nd difference, normalized

2nd difference, band power, HOC, mobility and complexity. Among

the frequency-domain features, PSD from alpha, beta, and gamma

are repeated more than the other frequency bands. Of the time–

frequency domain features, Rms_Theta, REE_Beta, power_Gamma,
nd power_Theta are selected more often than the others (see

ig. 6 ). 

Similarly, as shown in Fig. 7 , the most repeated features using

he 5 EC algorithms tested against the DEAP dataset are mostly se-

ected from the time domain such as: maximum, 1st difference,

nd difference, normalized 2nd difference, median, mobility, com-

lexity, HOC. Features from the frequency domain, such as PSD

rom Alpha and Gamma, are repeated more than the other fre-

uency bands. Among the time–frequency features, rms_Theta and

ms_Gamma, power_Gamma, power_Theta and power_Alpha are

ore frequent than the others. 

For the two datasets (collectively), the most common frequently

elected features are: maximum, 1st difference, 2nd difference,

ormalized 2nd difference, com plexity, mobility, HOC, PSD from

amma and Alpha, rms_Theta, power_Gamma and power_ Alpha.

owever, results suggest that REE and LogREE from different bands

rom the time–frequency features are less efficient in emotion clas-

ification, since their relative occurrence is lower than the others.

he relative occurrence of power features from DWT is higher than

he other features in this domain, but not as high as PSD features

rom the frequency domain. It should be noted that the combina-

ion of time and frequency domain features is more efficient, since

C algorithms find the more successful and efficient subset of fea-

ures by the combination of these features. 

.3. Channel selection 

We investigated the most frequent set of selected channels (i.e.

lectrodes usage) by the combination of EC algorithms via the

rinciple of weighted majority voting. Having the best subsets of

eatures from each 10 runs of the EC algorithms, we then consid-

red the task of building a vector representing the importance of

hannels. The importance of channels can be represented as fol-

ows: 

 c = 

k ∑ 

i =1 

n ∑ 

j=1 

αi ∗ f c , 0 < αi < 1 , (8)

here κ , n are the number of algorithms and the number of runs

n each algorithm respectively (10 runs for each algorithm is con-

idered for this study). αi represents the average weight of i th al-

orithm over all runs which is dependent on the accuracy of clas-

ifiers over 10 runs. It means that at each run the performance of

ach EC algorithm is collected and then, based on the average per-

ormance over all 10 runs, an average weight ( αi ) is allocated to

ach EC algorithm. This number is multiplied by f c , which is the

otal number of selected features for c th channel. w c represents the

eight of channel c . 
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Fig. 6. The weighted relative occurrence of features over the MAHNOB dataset. 

Fig. 7. The weighted relative occurrence of features over the DEAP dataset. 

Fig. 8. Average electrode usage of each EC algorithm within 10 runs on the DEAP dataset is specified by darkness on each channel. 

Fig. 9. Average electrode usage of each EC algorithm within 10 runs on the MAHNOB dataset is specified by darkness on each channel. 
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Figs. 8–10 show the plots of w c based on the experiments using

EAP and MAHNOB (32 channels), and our dataset with 5 channels

espectively. Darker boxes are channels with higher weight ( w c ),

hich indicates the most repeated channels among the EC algo-

ithms. 

Based on the DEAP dataset, the average accuracy shows that the

E algorithm achieves better accuracy, followed by the PSO and
A algorithms. Therefore, their average weight is higher than oth-

rs. Based on the obtained results, FP1, F7, FC5, AF4, CP6, PO4, O2,

7 and T8 are the prominent electrodes among all other channels.

lthough the average weights of ACO and SA are lower, the num-

er of selected features from the frontal lobe channels (FP1, F7,

C5) are big enough to compensate and increase the value of w c .

7 and T8 are also salient, since these channels were frequently
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Fig. 10. Average electrode usage of each EC algorithm within 10 runs on our dataset 

is specified by darkness on each channel. 
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selected by PSO, GA and DE, which have bigger average weights.

Moreover, features selected from PO4 and O2 are shown to give

acceptable accuracy using these feature selection methods. Based

on these findings, electrodes located over the frontal and parietal-

partial lobes are generally favored over the occipital lobes (see

Fig. 11 a). 

Based on the MAHNOB dataset, the most selected features us-

ing the ACO and GA algorithms are from the frontal lobes, which

increase the w c value of these channels (FP1, FC1, F3, F7, and AF4).

In addition to those channels from the frontal lobe, the channels

CP1, CZ CP6, C3, T8, C4 and Cp2 are also highly selected by most

of the feature-selection methods. We can conclude that most of the

prominent channels using the 5 EC algorithms over the MAHNOB

dataset are selected from the frontal and central lobes ( Fig. 11 a).

Based on the most optimal subsets of features from each of the 10

runs of the EC algorithms, the most frequently selected channels

are CZ, CP6, C3, T8, C4, CP2 from the frontal and central lobe. 

Across DEAP and MAHNOB datasets, the electrodes located on

the frontal and central lobes, such as FP1, AF4, CZ, T8, are found to

be most salient. This is aligned with the results from our dataset,

which found that the electrodes of frontal and central lobes were

the most activated for four quadrant emotion classification (as
Fig. 11. The average electrode usage of each EC algorithm within 10 runs on (a) DEAP

frequently used channel. 
hown previously in Fig. 3 ). This confirms that emotion classi-

cation using the mobile and wireless Emotiv Insight sensor is

easible. 

.4. Comparison with other work over MAHNOB and DEAP datasets 

A final experiment compared the best-tuned configuration of

ur system against some state-of-the-art methods. To this end, DE

nd PSO were used for feature selection and PNN as a classifier.

xperimental results are shown in Table 3 , indicating the classifi-

ation accuracy for different emotion classification methods. While

t only shows the DE results to represent the proposed method (as

E yields the highest performance based on the experiments). EC-

ased feature selection after 100 iterations is consistently better

han not using any feature selection. 

The comparisons show that although Yin, Wang, Liu, Zhang,

nd Zhang (2017) achieved promising accuracy (about 78%),

heir feature-selection method was Recursive Feature Elimination,

hich is computationally expensive. In addition, this method was

sed on two-class classification (Arousal and Valence), while our

ethod was able to achieve similar accuracy (Maximum 71%

67.474 ± 3.389%) on DEAP dataset) on four-class classifications

HA-P, LA-P, HA-N, LA-N). The performance of their method was

ested on one specific dataset (DEAP) with on mode of stimuli

music), whereas our proposed method was tested on two public

atasets (DEAP and MAHNOB) plus a newly collected dataset us-

ng mobile sensors (Emotiv Insight), across two different modes of

timuli (music and video). 

Ackermann, Kohlschein, Bitsch, Wehrle, and Jeschke (2016) clas-

ified three different emotions (anger, surprise and others) us-

ng Support Vector Machine (SVM) and Random Forest classifica-

ion systems, which are trained by a smaller number of features.

hey only applied the Minimum Redundancy Maximum Relevance

mRMR) feature-selection method to eliminate less useful features.

heir evaluation of the results on the DEAP dataset shows that the

erformance of the proposed method using the SVM classifier (av-

rage of 55%) is more robust and successful when the number of

elected features is between 80 and 125. 

Menezes et al. (2017) extracted some limited features from time

nd frequency domains and applied SVM method to classify each

motion dimension (Arousal and Valence), into two and three-class

Bipartition and Tripartition). This model has been tested on DEAP

ataset. Although, the performance of their method in Bipartition

s promising, the extracted features using SVM classifier could not

lassify Tripartition-class significantly. 
 and (b) MAHNOB (a) dataset. On the greyscale, darkest nodes indicate the most 
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Table 3 

Comparison of our recognition approach with some state-of-the-art methods. 

Method Extracted features (No.) Feature selection 

methods 

Classifier No. classes Accuracy Dataset 

( Zhu, Wang, & 

Ji, 2014 ) 

Statistical features (5) – SVM 2 Arousal Valence Arousal: 60.23% 

Valence:55.72% 

MAHNOB 

( Candra et al., 

2015 ) 

Time-frequency feature (2) – SVM 4 Sad Relaxed 

Angry Happy 

60.9 ± 3.2% DEAP 

( Feradov & 

Ganchev, 2014 ) 

Short term energy (2) – SVM 3 Negative Positive 

Neutral 

62% DEAP 

( Ackermann et al., 

2016 ) 

Statistical features (number 

not specified) 

mRMR SVM & random 

forest 

3 Anger, Surprise 

Others 

Average 

accuracy:55% 

DEAP 

( Kortelainen & 

Seppänen, 2013 ) 

Frequency-domain features 

(number not specified) 

Sequential 

feed-forward 

selection (SFFS) 

KNN 2 Arousal Valence Valence: 63% 

Arousal: 65% 

MAHNOB 

( Menezes et al., 

2017 ) 

Frequency domain and 

Time domain (11) 

– SVM Bipartition 

Arousal& Valence 

Arousal = 69% 

Valence = 88% 

DEAP 

3Triple on Arousal 

&Valence 

Arousal = 58% 

Valence = 63% 

( Yin et al., 2017 ) Frequency and Time 

domain features (16) 

Transfer Recursive 

Feature elimination 

(T-RFE) 

LSSVM 2 Arousal Valence Arousal: 78% 

Valence: 78% 

DEAP 

Our proposed 

method 

Frequency, Time and 

Time–Frequency domain 

features (45) 

EC algorithms PNN 4 HA-P HA-N LA-P 

LA-N 

DEAP: 67.474 ±
3.389% MAHNOB: 

96.97 ± 1.893% Our 

Dataset: 65.043028 

∓ 3.195% 

DEAP, MAHNOB & 

Our Dataset 
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In comparison with other latest studies, our proposed EEG-

ased emotion classification framework has shown state-of-the-art

erformance for both the DEAP and MAHNOB datasets, which con-

rms the value of integrating EC algorithms for feature selection to

mprove classification performance. 

.5. Towards the use of mobile EEG sensors for real world 

pplications 

The reliability and validity of mobile EEG sensors has been

ested in earlier studies ( Duvinage et al., 2013; Stytsenko, Jablon-

kis, & Prahm, 2011 ). These studies found that, while mobile sen-

ors are not as accurate as a wired and full-scale EEG device,

hey can be used in noncritical applications. Some recent stud-

es into the benefits of mobile EEG sensors on different domains

ave demonstrated an acceptable reliability ( Leape, Fong, & Rat-

ani, 2016; Lushin & others, 2016; Wu, Wei, & Tudor, 2017 ; F.

hang et al., 2017 ). 

In our study, a mobile EEG sensor (Emotiv Insight) was used

o recognize four-quadrant dimensional emotions while watching

ideo clips. The proposed method uses different EC algorithms for

eature selection applied to three different datasets (DEAP, MAH-

OB and our collected dataset), and the result of 65% accuracy

hows the validity of using mobile EEG sensors in this domain.

n addition, we compared the salient channels in two datasets us-

ng full-scale EEG devices (32 channels) with the collected dataset

sing the mobile EEG sensor (5 channels). The result shows that

he most frequent channels from the two public datasets (DEAP

nd MAHNOB) were from the frontal and central lobes, the same

hannels detected in our four-quadrant emotion recognition us-

ng five EC algorithms. This comparison confirms the feasibility

f using mobile EEG sensor for emotion classification. However,

he performance based on the MAHNOB dataset (96.97%) is still

ignificantly higher than that of our new dataset (65.04%) de-

pite using the same stimuli. This confirms that more progress is

eeded to improve the results for mobile EEG sensors. This pa-

er paves a way for future sensor development in selecting the

orrect channels and features to focus on the most important

lectrodes. 
. Conclusion and future work 

In this study, we propose the use of evolutionary computation

EC) algorithms (ACO, SA, GA, PSO and DE algorithms) for fea-

ure selection in an EEG-based emotion classification model for

he classification of four-quadrant basic emotions (High Arousal-

ositive emotions (HA-P), Low Arousal-Positive emotions (LA-P),

igh Arousal-Negative emotions (HA-N), and Low Arousal- Nega-

ive emotions (LA-N)). Our experiments have used two standard

atasets, MAHNOB and DEAP, obtained using an EEG sensor with

2 channels, and a new dataset obtained using a mobile sensor

ith 5 channels. We have reported the performance of these algo-

ithms with different time intervals (different iterations) – 10, 25,

5 and 100 iterations – to demonstrate the benefits of using EC

lgorithms to identify salient EEG signal features and improve the

erformance of classifiers. 

Of the EC algorithms, DE and PSO showed better performance

ver every iteration. Moreover, the combination of time and fre-

uency features consistently showed more efficient performance,

ompared to using only time or frequency features. The most fre-

uently selected source of features (i.e. the EEG channels) were

nalyzed using the 5 EC algorithms and weighted majority vot-

ng. The electrodes in the frontal and central lobes were shown to

e more activated during emotions based on DEAP and MAHNOB

atasets, confirming the feasibility of using a lightweight and wire-

ess EEG sensor (Emotiv Insight) for four-quadrant emotion classi-

cation. 

Despite the promising results, this paper has identified an im-

ortant limitation due to the premature convergence problem in

C algorithms, particularly DE, PSO and GA. Therefore, for future

ork, it is worthwhile exploring development of new EC algo-

ithms or modifying the existing ones to overcome this problem

nd improve the classification performance accordingly. 
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