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ABSTRACT

Pairwise preferences over model responses are widely collected to evaluate and
provide feedback to large language models (LLMs). Given two alternative model
responses to the same input, a human or AI annotator selects the “better” re-
sponse. This approach can provide feedback for domains where other hard-coded
metrics are difficult to obtain (e.g., quality of a chat interactions), thereby helping
measure model progress or model fine-tuning (e.g., via reinforcement learning
from human feedback, RLHF). However, for some domains it can be tricky to
obtain such pairwise comparisons in high quality - from AI and humans. For ex-
ample, for responses with many factual statements or complex code, annotators
may overly focus on simpler features such as writing quality rather the underly-
ing facts or technical details. In this work, we explore augmenting standard AI
annotator systems with additional tools to improve performance on three chal-
lenging response domains: long-form factual, math and code tasks. We propose
a tool-using agentic system to provide higher quality feedback on these domains.
Our system uses web-search and code execution to ground itself based on ex-
ternal validation, independent of the LLM’s internal knowledge and biases. We
provide extensive experimental results evaluating our method across the three tar-
geted response domains as well as general annotation tasks, using RewardBench
data (incl. AlpacaEval and LLMBar), as well as three new datasets for areas where
pre-existing datasets are saturated. Our results indicate that external tools can in-
deed improve AI annotator performance in many, but not all, cases. More gener-
ally, our experiments highlight the high variability of AI annotator performance
with respect to simple parameters (e.g., prompt) and the need for improved (non-
saturated) annotator benchmarks. We share our data and code publicly.1

Figure 1: Summary of our approach and results: we extend standard LLM-as-a-Judge base-
lines with external validation tools based on web-search and code execution. We observe that
the resulting system is often, but not always, able to improve performance (measured as agreement
with ground-truth annotation) across a range of response domains that are typically challenging for
LLM-as-a-Judge systems: (1) long-form factual, (2) advanced coding, and (3) math responses. The
results shown are based on the popular AlpacaEval 2.0 baseline annotator, full results in Section 4.

1Link to repository will be shared upon publication.
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Figure 2: Overview of our tool-using AI annotator architecture, referred to as Evaluation
Agent. In the (1) initial domain assessment the appropriate tools are selected for each response
(e.g. for a wiki-style text the fact check tool); then, in (2) tool usage, each selected tool is run and
the tool outputs are combined into a single prompt to make a (3) final decision. If none of the tools
are selected (i.e., no tool deemed useful), the agent instead reverts and returns an annotation from
the (4) baseline annotator (e.g., AlpacaEval 2.0).

1 INTRODUCTION

Pairwise feedback is widely used to understand LLM performance on complex tasks that more tra-
ditional benchmarks fail to measure well. Given a prompt and two possible responses, the annotator
decides which response is ”better”. This pairwise judgement can be used for evaluation (e.g., Chat-
bot Arena (Chiang et al., 2024)) or to provide feedback for training (e.g., via RLHF (Stiennon et al.,
2020; Ouyang et al., 2022) or DPO (Rafailov et al., 2023)). Both human and AI annotators (also
referred to as LLM-as-a-Judge) are used to collect such feedback. Human annotators are often con-
sidered higher quality but more expensive.

Both human and AI annotations have notable limitations: AI annotators have been observed to
be susceptible to a number of biases, including changing preference based on superficial features
like response order Zheng et al. (2023) or response length Dubois et al. (2024)). Whilst possibly
providing higher quality annotations than AI annotators, human annotators also have known issues.
For example, human annotators have been observed to let their assessment of truthfulness be affected
by the assertiveness of responses (Hosking et al., 2024).

In certain domains it is particularly challenging to obtain high-quality annotations: for responses
containing long-form factual, advanced coding and math content both AI and (many) human anno-
tators struggle to provide reliable annotations (Zheng et al., 2023). Annotating responses in these
domains requires expertise and careful deliberation, challenging to achieve for human annotators
in a limited amount of time. AI annotators may be less ”time-constrained” but nevertheless due
to known reliability issues (e.g, hallucinations, limited basic arithmetic) often fail to provide high
quality annotations in these domains (Yang et al., 2023).

In this work, we aim to explore improving the annotation quality of widely used AI annotators
on these challenging domains by augmenting the annotators with tools that can externally validate
answers. We enable responses to be fact-checked using web-search, or verified using code execution.
Our setup is illustrated in Figure 2. In particular, we make the following contributions:

1. Extensible framework for using tools with existing AI annotators. We introduce a new
framework that enables the integration of new tools on top of existing AI annotators to improve
annotation quality in certain domains using external validation. Our framework is agentic in the
sense that an LLM assesses the response domain and plans the optimal tool usage accordingly.
We provide a number of initial tool implementations: (1) a long-form fact checking tool based
on the Search Augmented Fact Evaluation (SAFE) method by Wei et al. (2024); (2) a code check

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tool built on OpenAI’s code interpreter API; and (3) a math check tool similarly built on code
execution. We open-source the corresponding code2

2. New datasets for challenging pairwise annotation tasks. We share four new pairwise datasets
extending domains that are currently saturated or not covered well in existing pairwise annota-
tion benchmarks (such as RewardBench (Lambert et al., 2024)) with more challenging tasks. In
particular, we adapt subsets of the LongFact (Wei et al., 2024), TruthfulQA (Lin et al., 2022),
GSM8k Cobbe et al. (2021a) and APPS (Hendrycks et al., 2021) datasets to the pairwise setting.

3. Extensive experimental results evaluating our framework’s capabilities. We evaluate our
framework’s effectiveness across a wide range of tasks including the newly created datasets as
well as well-established benchmarks. We compare our method to a number of popular state-of-
the-art AI annotators, including the annotators underlying AlpacaEval 2.0 (Dubois et al., 2023),
and ArenaHard (Li et al., 2024b).

2 PROBLEM: PAIRWISE FEEDBACK ON COMPLEX TASKS

For many task domains, pairwise feedback can be easier to obtain than absolute metrics. Never-
theless, for some domains even a relative pairwise judgement can be difficult to collect — from
both human and AI annotators. In this work, we consider three particularly challenging response
domains: tasks that require model responses with (1) long-form factual, (2) advanced coding or (3)
math content. For such tasks, even a relative judgement requires robust understanding of the task
domain, and, for human annotators, careful deliberation. For example, judging code without under-
standing the relevant syntax may force an annotator (AI or human) to revert to higher level features
such as style – that may not fully correlate with ground-truth preferences. Similarly, when com-
paring responses with a large number of factual statements, an annotator may easily miss a single
incorrect factual statement — instead possibly again relying on writing style to make a judgement.
At the same time, annotators only judging according to factual or functional correctness may miss
other response traits (e.g., readability) distinguishing a merely correct from an excellent response.

In the pairwise setting, annotators are typically evaluated based on their agreement3 with ground-
truth annotations on datasets, where such annotations are either available by construction or created
by human annotators (Lambert et al., 2024). This agreement is equivalent to the accuracy of the
binary classification task of predicting the correct ranking for each response pair. In this setting, the
goal of pairwise feedback annotation is to maximise the agreement with ground-truth annotations.

In general, for many response pairs there is ambiguity regarding which response is better — espe-
cially for domains with known disagreements such as political preferences (Kirk et al., 2024). To
improve the reliability of our evaluation, we attempted to primarily test on response pairs where
experts agree on the preference and avoided more contentious topics.

3 METHOD: AI ANNOTATORS WITH TOOLS FOR EXTERNAL VALIDATION

We introduce a new framework for augmenting existing AI annotators with tools – grounding their
annotations in the real world with external validation. The general functioning of our framework
is illustrated in Figure 2. Our goal is to improve the performance of AI annotators on a specific
set of target domains: responses containing long-form factual, advanced coding and math content.
To achieve this annotation quality improvement, we leverage external validation via tools built on
web search and code execution. At the same time, we want to avoid reducing performance on other
non-target domains. We use an agentic setup to determine when each tool gets used, letting an
underlying LLM assess the domain of the response considered and thereby which tool would be
most useful. To avoid regression on non-target domains, our agentic framework reverts back to a
baseline annotator whenever the responses are assessed to be outside the domain of all available

2Repository URL to be shared upon publication.
3Note that other works (e.g, (Bavaresco et al., 2024)) use Cohen’s kappa. However, to retain consistency and

comparability with our primary benchmark RewardBench (Lambert et al., 2024), and for better interpretability,
we report all our results using the more common accuracy (agreement) metric. With the agreement metric it is
important to note that random performance is expected to be about 50%.
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Figure 3: Detailed overview of our evaluation agent: the model responses are first processed by
the (1) initial domain assessment, where an LLM is prompted to answer questions about the response
text. In (2) tool usage, each tool that is deemed useful in Step (1) is run. Initially, available tools
include fact check, code exec and math exec. The first tool is based on web-search, the latter two
tools on a code interpreter. Finally, in the (3) final decision step, all tool outputs across responses
are jointly considered by an LLM to make a final preference decision. If the (1) initial domain
assessment finds no useful tool, the entire approach reverts back to an annotation from the baseline
AI annotator.

tools. Avoiding regression on non-target domains is critical, as it may not always be known a priori
which domain a response pair is from.

As is done in many annotator approaches (e.g., certain AlpacaEval configurations (Dubois et al.,
2023)), we build on structured output throughout our pipeline to create a reliable method with low
parsing error rate. Instead of plain text responses, structured output forces the model to return
JSON-formatted outputs. With this approach, each LLM call is not only configured by a single
prompt message but also by the JSON format and description of the requested output.

Our approach consists of three distinct parts: (1) initial domain assessment, determining which tools
to use (if any); (2) tools, running the selected tools for each response; and (3) final decision, creat-
ing a final preference judgement based on all outputs. If the first step (initial domain assessment)
determines that no tools would be helpful, our approach alternatively skips steps (2) and (3). In-
stead, we revert to the (4) baseline annotator. In the following subsections, we describe each step
in more detail. For full reproducibility, we further share the prompts in Appendix E and make the
corresponding code publicly available.4

3.1 STEP 1: INITIAL DOMAIN ASSESSMENT

The initial domain assessment ensures that each tool is only run if the model responses are within a
domain where the tool is known to be likely helpful. For example, for the code execution tool, the
domain assessment ensures that there is code present in the response. This assessment helps avoid
running tools in scenarios where they are unlikely to help. For each tool, we created a number of
questions about a response (e.g. ”Whether text might benefit from running code.”). For each re-
sponse, an LLM is prompted with these questions. The LLM answers are then parsed and determine
whether a tool is deemed useful and run – or not. If not a single tool is deemed useful, the agent
reverts back to a baseline evaluator. With this setup, our method aims to reduce unnecessary infer-

4Available upon publication
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ence costs and to avoid regressing on domains where the tools are not useful. Further, by allowing
clearly separated tool domains, the setup allows integrating a large number of domain-specific tools
with limited adverse performance effects on other domains.

3.2 STEP 2: TOOL USAGE

If the initial assessment deems one or more tools useful, the respective tools are run. We initially
implemented three different tools as part of our extensible framework, chosen to specifically tackle
the limitations of LLM-as-a-Judge systems discussed in Section 2:

Fact-checking. We build on the Search Augmented Factuality Evaluator (SAFE) by Wei et al.
(2024) to create a fact-checking tool for the pairwise setting. Our fact-checking tool follows similar
steps as the original SAFE algorithm: (1) separating atomic facts, (2) making atomic facts self-
contained, and (3) checking whether self-contained facts are supported by web-search. Our tool
omits the relevance check in the original SAFE algorithm. In a pairwise preference setting we
consider the truthfulness of all facts relevant – even if they do not directly relate to the task or
prompt. It is ultimately up to the final assessment to decide which factual statements, and their
truthfulness, is most important.

Code execution. Taken into account existing works that show that compiler/runtime output is a
useful signal, we build on top of OpenAI’s code interpreter API to create a code-execution tool.
For both proposed answers to a prompt, the code-execution tool will verify its correctness using
execution feedback. Internally, OpenAI’s code interpreter API can create additional unit tests, run
multiple execution steps and draw a conclusion. Only the last conclusion is used in the agent’s final
assessment to determine which response is better.

Math checker. Noting that autoregressive language models are not reliable arithmetic engines (Yang
et al., 2023), we prompt-constrain our code-execution tool to perform math (and in particular arith-
metic) validation on each of the model outputs. As in the case of general code execution, multiple
checks may be executed per model output, and the final assessment uses the outcome of these checks
to inform its overall decision. We created a separate math checker after preliminary tests indicated
a standard code interpreter tool does not transfer well to math annotation settings.

3.3 STEP 3: FINAL ASSESSMENT

In the final assessment step, we combine the results of all tools per response alongside the original
prompt and response, to prompt an LLM to make an informed preference judgement based on all
collected information. Critically, this step allows the LLM to access the external validation results
when making a decision. The LLM response to this step provides the final preference judgement
(e.g., ”Text A is preferred.”) as well as a chain-of-thought (CoT) reasoning for the judgement (e.g.
”Text A is preferred because [...]”).

4 EXPERIMENTAL RESULTS

4.1 DATASETS

Existing datasets. A number of benchmarks aim to evaluate AI annotator capabilities, notable
examples include (subsets of) AlpacaEval5 (Dubois et al., 2023), MT-Bench (Zheng et al., 2023),
LLMBar (Zeng et al., 2024) and RewardBench (Lambert et al., 2024). We use the latter, Reward-
Bench, for our evaluation, as it represents a superset including the other tasks. This benchmark
provides a broad coverage of response domains, including mathematical reasoning, code generation
and general chatbot conversation. We find that some subsets of the benchmark are highly saturated:
state-of-the-art LLM-as-a-judge systems already achieve close to 100% agreement with the ground-
truth annotations. For example, we find that a simple GPT-4o-based baseline AI annotator achieves
above 97% across all HumanEval-based coding subsets (Chen et al., 2021) in RewardBench (each
subset has at most 5 datapoints6 to improve on). Similarly, the same baseline achieves over 90% on

5Whilst the primary purpose of AlpacaEval is to evaluate general-purpose models, the framework also
includes data and tooling specifically for evaluating AI annotators.

6164 datapoints per dataset ×3%
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the math benchmark based on PRM800k (Lightman et al., 2023), leaving less that 45 datapoints to
improve on. Thus, to be able to effectively evaluate improvements in these domains, we created a
number of new pairwise datasets.

New pairwise datasets. As discussed above, for each of the challenging domains considered, rel-
evant pairwise datasets either do not exist or tend to be too saturated to meaningfully measure AI
annotator improvements. Thus, we extend RewardBench by adapting existing, more challenging
(previously non-pairwise) datasets to the pairwise setting. Appendix D contains examples from
each dataset introduced below.

1. Long-form fact checking: LongFact pairwise. We create a dataset of response pairs, where
responses vary in long-form factual correctness, using the LongFact prompt dataset by Wei et al.
(2024). We use OpenAI’s gpt-4o-mini-2024-07-18 model to generate two long-form factual
responses for each prompt. We then manually introduce factual errors into one of the responses.
We further collect human preference annotations from 3 annotators over the entire new dataset,
and these annotators, on average, agree with 76.83% of those ground-truth annotations when not
selecting a tie. 18% of the average human annotations are ties. Full details on the data generation
process are available in Appendix C.

2. Challenging coding: APPS competition pairwise. From the original APPS dataset (Hendrycks
et al., 2021), we create a pairwise response dataset to evaluate the ability to determine code
correctness. The APPS benchmark contains coding problems, unit tests and Python ground-
truth solutions for most problems. We take the “competition” subset, arguing it is these harder
problem/solution combinations that are tricky to evaluate correctly. We only keep samples that
contain a ground-truth solution, leaving us with 310 items. We then use GPT-4-0613 to generate
solutions to the problems, until we have failing solutions for all 310 items.

3. Challenging maths: GSM8k hard pairwise. We select a “hard” subset of the GSM8k (Cobbe
et al., 2021b) dataset by keeping the 116 examples that GPT-4o is unable to solve. For each of
these examples we generate pairwise responses by keeping both the ground-truth answer and the
incorrect answer that GPT-4o provided.

We additionally create a pairwise response dataset where responses vary in short-form factual cor-
rectness using the TruthfulQA dataset7 by Lin et al. (2022). Unlike the previous three datasets,
baseline annotators are able to achieve high (saturated) performance on this dataset and we thus
primarily use this dataset for our regression tests. Further, unlike the long-form responses in our
LongFact pairwise dataset, responses in this dataset are typically between a single word and single
sentence long, relating to a single fact. See Appendix C for full data generation details.

4.2 BASELINE ANNOTATORS

We compare our method to two popular AI annotator configurations that are widely used in academic
and industry settings, and may be considered state-of-the-art: (1) the widely-used AlpacaEval 2.08

annotator by Dubois et al. (2023) using GPT-4-Turbo, logprob parsing to extract annotations; and (2)
the ArenaHard annotator by Li et al. (2024b) using more extensive annotation instructions (including
asking the model to craft its own response) and string parsing; We further share results using two
minimalist AI annotators that simply ask the underlying LLM to ”select the better” text, powered
by GPT-3.5-Turbo and GPT-4o. Perhaps surprisingly, we find that the simple annotator powered
by GPT-4o performs competitively on many datasets considered in our experiments. We report all
results based on 5 seeds (unless otherwise specified), showing the mean with standard deviation as
error bars. When reporting the agent results across different baselines, we use the same 5 seeds of
the agent Steps 1-3 — only changing the underlying baseline results (Step 4). This setup notably
reduces the cost of our experiments as the agent steps require the most inference compute.

4.3 RESULTS ON TARGET DOMAINS

In this section we show results on the targeted domains: long-form factual, code and math tasks.

7Available at: https://huggingface.co/datasets/truthfulqa/truthful_qa (Apache
License 2.0)

8The exact configuration name is weighted alpaca eval gpt4 turbo.
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Figure 4: Long-form fact checking results on LongFact pairwise data. We augment a number
of baseline annotators (light green) with our evaluation agent framework (dark green) and observe
that our agents have higher average agreement with ground-truth annotations across baselines. The
effect is most pronounced for simpler baselines. The improvement is also observed when the agent
and baseline are based on the less capable GPT-3.5-Turbo model. We also collect non-expert human
annotations (blue) for the same datasets, and observe that, when making a non-tie judgement, human
annotators have higher disagreement with the ground-truth than our best agent evaluators.

4.3.1 LONG-FORM FACT-CHECKING

We evaluate our method on data pairs that require long-form fact checking using the LongFact
pairwise dataset introduced in Section 4.1. Figure 4 illustrates our results on this dataset.

Observation 1: Our external validation tools can help AI annotators improve performance an-
notating long-form factual responses. In Figure 4 we observe that, across all evaluated baselines,
augmenting any baseline with our fact-checking agent helps improve the overall agreement with the
ground-truth annotations on this data set. Whilst the contrast is most pronounced with simpler base-
lines (e.g., for GPT-4o pick-best baseline, 63% vs 81%), the effect is present across all baselines,
including for ArenaHard (78% vs 80%).

Observation 2: For baseline annotators, configurations such as prompt have a strong impact
on the downstream performance on long-form fact checking (jumping from 63% to 78% for
GPT-4o). We observe a jump in agreement between the pick-best and ArenaHard baseline anno-
tators, both powered by GPT-4o. The only difference between these annotators is the prompt and
answer parsing used. The pick-best annotator uses a simple prompt asking for the better answer,
either text A or B. The ArenaHard annotator uses an extensive prompt, including asking the LLM
to create its own response for comparison. This observation indicates that for this type of factual
task the exact choice of AI annotator configuration is critical, with the ArenaHard configuration
performing the best amongst the baselines.

Observation 3: Our agents’ agreement with our ground-truth annotations is higher than hu-
man annotators’ on long-form factual responses. This effect holds for all agents based on base-
lines with GPT-4-style models. Wei et al. (2024) similarly report their method sometimes outper-
forming non-expert human annotators. Intuitively, it seems plausible that human annotators are not
always able or willing to check every single fact in a response – our agent may be able to inspect the
answer without fatigue. Hosking et al. (2024) similarly observe that human annotators’ perceived
rate of factual errors can be skewed by the assertiveness of a model response, indicating that human
annotators may not always consider factual errors sufficiently.

4.3.2 MATH-CHECKING

We further evaluate our method on annotating solutions to advanced mathematics tasks, via the
GSM8k hard pairwise dataset introduced in Section 4.1, the results are shown in Figure 5.

7
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Figure 5: Results annotating responses on our pairwise set of mathematical tasks based on
GSM8k. We observe that our method improves performance over some baselines, but the overall
level of agreement remains relatively low (around 56%). Further work is needed to improve the
models capability to leverage code execution fully in a math context.

Observation 4: Our agents are able to outperform some, but not all, baselines on hard math
annotation tasks based on GSM8k. We observe that only some augmented baseline annotators
are able to improve their performance. In particular, the ArenaHard annotator is notably able to
outperform all agent-based methods on this task. This result indicates that more complex prompting
methods (in terms of token usage and code), such as our framework, do not necessarily always
improve annotator performance over (relatively) less complex methods, such as ArenaHard. Future
work may be able to allow the models to make more effective use of the code execution in math
context. We hope our pairwise dataset will provide a solid basis for such future work.

4.3.3 CODE-EXECUTION

Finally, we evaluate our method’s ability to improve capabilities in annotating advanced coding tasks
using our pairwise coding dataset based on the APPS dataset by Hendrycks et al. (2021). The results
are shown in Figure 6.

Observation 5: Our method is able to notably improve the baseline performance on annotating
the APPS advanced coding responses. Across all baselines, our agent-based approach is able to
notably improve annotation performance. This improvement holds both for the less capable GPT-
3.5-Turbo model (31% baseline vs 71% agent) as well as the ArenaHard annotator that performs
very strongly on other tasks (38% baseline vs 72% agent).

Observation 6: Our GPT-based baseline annotators perform worse than random on the
APPS dataset, possibly due to self-enhancement bias. Based on the construction, there may be
slight style differences between correct (pre-existing ground-truth solutions) and incorrect responses
(GPT-4 generated incorrect code), see examples in Appendix D. We observe that all baseline anno-
tators have a bias towards the incorrect GPT-4 responses, preferring only 26% to 42% of correct
responses. This effect may possibly be explained with self-enhancement bias (Panickssery et al.,
2024; Stureborg et al., 2024). Our agent method using code execution is able to overcome this bias.

4.4 RESULTS OUTSIDE OF TARGET DOMAINS (OUT-OF-DOMAIN)

In practice, an AI annotator may encounter response pairs from across a variety of task domains –
both those where our tools are designed to help and other domains. A good AI annotator should
be able to work across all these domains, as filtering data may not always be feasible or sufficiently
effective. Thus, we go beyond the domain-specific capability improvements shown in Sections 4.3.1
to 4.3.3 and also evaluate our method’s performance on RewardBench tasks that are out-of-domain
for our tools9. In this general scenario we would not expect performance improvements with our

9This out-of-domain dataset includes the Chat, Chat Hard and Safety RewardBench categories.
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Figure 6: Results on our pairwise dataset of responses to advanced coding tasks from the APPS
dataset (Hendrycks et al., 2021). We observe a notable improvement of our method over the baseline
results, even for the otherwise less capable models GPT-3.5-Turbo.

Figure 7: General out-of-domain annotation capabilities result based on RewardBench (Lam-
bert et al., 2024). We observe that our agent is able to achieve similar performance to the baseline
annotator across these tasks — at worst seeing a reduction of 2% in agreement.

method but would hope for minimal performance regression – as our tools are not built to help (or
even activate) on most of these tasks. Figure 7 shows our results on these out-of-domain tasks.

Observation 7: On out-of-domain tasks from Rewardbench there are minimal performance
reductions using our approach with any tested baseline. The agreement reductions are less than
2% for all tested baselines. For the GPT-3.5-Turbo-based agent we even observe a slight improve-
ment. Future work may be able to refine the initial assessment to further reduce this gap.

We further specifically evaluate our results on domains closely adjacent to our main focus domains:
short-form fact checking (TruthfulQA pairwise), simple coding tasks (RewardBench – HumanEval
pairwise) and general math problems (RewardBench – PRM pairwise). These domains are already
quite well solved by state-of-the-art AI annotators. Thus, as with the general out-of-domain results,
we would again not expect any notable improvements but aim to demonstrate limited performance
regressions. We observe two opposing effects: for the short-form fact checking and simple maths our
approach is consistently able to improve performance, whereas for simple HumanEval-based coding
tasks the annotation performance decreases (reduction of up to 9%, see Figure 10). One possible
explanation may be that the very high baseline performance on HumanEval (above 97% for GPT-
4-style models) may be reduced by additional noise due to code execution pipeline. Appendix A
includes detailed results for these adjacent domain experiments.

9
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5 RELATED WORK

Pairwise AI annotators. As human annotations are costly and time-intensive, extensive work has
been done to explore the use of AI annotators as an alternative. Works such as LLM-as-a-judge
(Zheng et al., 2023), AlpacaEval (Dubois et al., 2023) and G-Eval (Liu et al., 2023) popularized
AI annotators in the context of evaluation. The ArenaHard annotator is another popular choice (Li
et al., 2024b). Various efforts have also explored the use of AI annotators for generating training
data, such as constitutional AI (Bai et al., 2022). This line of work is also known as reinforcement
learning from AI feedback (RLAIF) (Lee et al., 2024).

AI annotator problems. A number of biases have been observed in AI annotators, for example
(1) length bias (Zheng et al., 2023; Dubois et al., 2024), where annotators prefer more verbose
outputs (even when not corresponding to human preference); (2) position bias (Zheng et al., 2023),
where the model’s annotation affected by order in which they are shared with the model; and (3)
self-enhancement bias (Panickssery et al., 2024; Stureborg et al., 2024), where annotators prefer
responses that are high probability under judging model’s distribution.

Augmented AI evaluators. Given the known limitations of basic AI annotators, various augmenta-
tions of such annotators have been explored. Li et al. (2024a) explore the use of external validation
tools to improve the performance of a reward model (RM), in a framework named Themis. Sim-
ilar to our work, the tools considered include code interpreter and web search tools. However,
Themis requires a language model with customized architecture and fine-tuning—preventing the
use of Themis with the latest state-of-the-art closed-source models. Dubois et al. (2024) propose
augmenting AI annotators to be length-controlled using a generalized linear model to address the
widely observed length bias. Others explore using multiple AI annotators simultaneously to improve
performance (Verga et al., 2024; Chan et al., 2023).

Outside of the pairwise setting, the Search Augmented Factuality Evaluator (SAFE) by Wei et al.
(2024), and prior work FActScore (Min et al., 2023), RARR (Gao et al., 2023), Factcheck-Bench
(Wang et al., 2024), all aimed at improving the capability of verifying fact within text – including
model responses. Gou et al. (2023) explore the use of external validation tools to improve genera-
tive performance, demonstrating improvements for question answering, programming and toxicity
reduction tasks.

6 CONCLUSION

In this work we have presented a novel framework for augmenting AI annotators with tools to exter-
nally validate outputs and address existing limitations with AI and human annotations. We compare
our method to state-of-the-art and widely used AI annotators, including the AlpacaEval 2.0 (Dubois
et al., 2023) and ArenaHard annotator (Li et al., 2024b). To challenge our method on annotation
tasks where the existing datasets appear saturated (coding, math) or little pairwise data exists (long-
form factual responses), we created new pairwise datasets, building on LongFact (Wei et al., 2024),
GSM8k (Cobbe et al., 2021a), and APPS (Hendrycks et al., 2021). We evaluate our method’s ef-
fectiveness across both these new datasets as well as the aggregate RewardBench dataset (Lambert
et al., 2024). We observe that our external validation-based method often improves baseline annota-
tor performance, with strongest effectiveness when annotating advanced coding responses but also
in the context of long-form factual responses, with more mixed results in advanced math responses.

We conclude that, whilst external validation tools can improve annotation quality of AI annotator
(or LLM-as-a-Judge) for certain scenarios, such tools represent a trade-off in terms of complexity
and cost, and may not always be the right fit for every use-case. More broadly, our results highlight
the strong effect that simple configuration parameters, such as prompt and parsing method, can
have on annotator performance — even if the same underlying LLM is used. When considering
more technically involved augmentations like our external validation tools, we recommend to also
carefully evaluate simpler configurations as an alternative across a wide range of scenarios, as we
have done. A robust AI annotator testing pipeline can be critical to determine the right annotator.
RewardBench represents an important first step into this direction, as do our own new pairwise
datasets, we hope. We would welcome future work that develops further datasets to improve the
reliability and comprehensiveness of AI annotator evaluation. We publicly release the code for our
framework and experiments.
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APPENDIX

A ADJACENT DOMAIN RESULTS

Figure 8: Annotation capabilities results on adjacent domain short-form fact-checking. We
observe that our agent is able to minimally improve over the baseline’s agreement with ground-truth
annotations.

Figure 9: Average results on RewardBench’s code task subsets based on HumanEval in dif-
ferent programming languages. We see a drop of up to 9% points across baselines. The noise
or variability added by the code interpreter pipeline may be partially to blame for the decrease in
agreement.
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Figure 10: Results on RewardBench’s math tasks. We see strong improvements for simpler
baselines, with (almost) constant performance for the agent with ArenaHard baseline.
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B ADDITIONAL BASELINE: STANDARD OPENAI API WITH TOOL-USE
ENABLED

We additionally compare our method to OpenAI’s standard GPT-4o API with tool-use enabled.10 We
enable access to two tools: OpenAI’s code interpreter as well as a web-search tool. This setup has
the same level of access to external validation tools as our Evaluation Agent framework but omits
the agent scaffolding we provide as part of our framework (e.g. initial domain assessment, tool
prompts and scaffolding, final assessment). Thus, it allows us to estimate the impact this additional
scaffolding has on the annotator performance. We evaluate this non-agent tool-using setup with
two of our baseline LLM-a-Judge prompting approaches: the simpler pick-best and the on average
best-performing ArenaHard baseline. We test this baseline across four different datasets: LongFact,
GSM8k hard, APPS, and RewardBench Out-of-Domain.

Results. The results across the datasets are shown in Figures 11 to 14. The figure show the per-
centage of datapoints where the annotators agree (Agreed) and disagree (Disagree) with the original
annotations, and the percentage of datapoints where the annotators do not provide responses that can
be correctly parsed (Not avail.). Both results for the standard API with tools (e.g. “ArenaHard base-
line (GPT-4o + code-interpreter + search)”) and without tools (e.g. “ArenaHard baseline (GPT-4o)”)
are shown.

Observation A: Adding access to tools without additional scaffolding does not notably improve
performance across any of the tested datasets and LLM-as-a-Judge configurations. Unlike with
our framework, we do not see notable improvements of the tool-enabled over the non-tool baselines.
Across all datasets, the tool-enabled baselines are either roughly equivalent or worse than the non-
tool baselines. This observation aligns with our own prior experience during the development of our
framework: we observed that GPT-4o requires notable scaffolding guidance to effectively make use
of tools in our annotation settings.

Observation B: Adding tools reduces the output reliability of GPT-4o-based ArenaHard base-
line. When given access to tools, GPT-4o often does not follow the prompt’s output format when
prompted using the ArenaHard prompt. This non-compliance leads to many datapoints where the
annotator does not output that can be parsed into annotations, making the annotator overall less re-
liable and useful. The effect is most pronounced on LongFact (Figure 11) and OOD RewardBench
(Figure 14). Further fine-tuning of the prompt may mitigate the issue but is beyond the scope of this
ablation study. Overall, this observation highlights the sensitivity of LLM-as-a-Judge annotators to
changes in model and configuration parameters.

Conclusion. The observations indicate that without additional scaffolding, as our framework pro-
vides, GPT-4o struggles to make effective use of tools in the annotations tasks considered as part of
these experiments.

Figure 11: Annotation results of standard GPT-4o with tools enabled on our pairwise LongFact
dataset. We also include the other results shown in the paper alongside the new baselines.

10Documentation: https://platform.openai.com/docs/assistants/overview
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Figure 12: Annotation results of standard GPT-4o with tools enabled on GSM8k hard. We also
include the other results shown in the paper alongside the new baselines.

Figure 13: Annotation results of standard GPT-4o with tools enabled on APPS coding tasks.
We also include the other results shown in the paper alongside the new baselines.

Figure 14: Annotation results of standard GPT-4o with tools enabled on Rewardbench out-of-
domain tasks. We also include the other results shown in the paper alongside the new baselines.
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C ADDITIONAL DATA GENERATION DETAILS

Long-form fact checking: LongFact pairwise. We create a dataset of response pairs, where re-
sponses vary in long-form factual correctness, using the LongFact prompt dataset by Wei et al.
(2024). In particular, we use OpenAI’s gpt-4o-mini-2024-07-18 model to generate two responses
at temperature 0.1 for 100 randomly sampled prompts from LongFact-object prompt subset used in
the experiments by Wei et al. (2024). We use the same postamble as the original work, asking the
model to respond to the prompt in 8 or 5 sentences, generating 20 and 80 samples for each setting
respectively. Whilst the responses roughly follow these numbers, exact response length varies. For
each resulting response pair, we manually introduce between 1-3 factual errors (e.g., wrong num-
bers, names, or dates) into one of the two responses. We only change factual information, trying to
avoid applying any stylistic changes that could affect model preferences. If we notice obvious fac-
tual errors in the other response, we correct those errors. Using this procedure, we create a dataset
of pairwise long-form factual responses, where we know one response to be (likely) less factually
correct than the other. Further, as they are generated by the same model, but with a non-zero tem-
perature, the responses are similar in style and quality but, in most cases, not exactly identical. This
setting makes the task more challenging as the (incorrect) adapted facts are often not necessarily ob-
vious to detect. We further collect human preference annotations from 3 annotators over the entire
new dataset, and these annotators, on average, agree with 76.83% of those ground-truth annotations
when not selecting a tie. 18% of the average human annotations are ties.

Short-form fact checking: TruthfulQA pairwise. We additionally create a pairwise response
dataset where responses vary in short-form factual correctness using the TruthfulQA dataset11 by
Lin et al. (2022). Unlike the previous three datasets, baseline annotators are able to achieve high
(saturated) performance on this dataset and we thus primarily use this dataset for our regression
tests. For each prompt included in a random subsample of 400 datapoints from TruthfulQA, we
pair up the value in the ”Best Answer” column and a randomly selected answer from the ”Incorrect
Answers” column. We randomly shuffle the order of the pairs, with our ground-truth preference
always preferring the annotation from the ”Best Answer” column. Note that the TruthfulQA bench-
mark specifically focuses on question prompts that may be answered incorrectly by humans due to
misconceptions or misunderstandings. Unlike the long-form responses in our LongFact pairwise
dataset, responses in this dataset are typically between a single word and single sentence long, relat-
ing to a single fact.

11Available at: https://huggingface.co/datasets/truthfulqa/truthful_qa (Apache
License 2.0)
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D DATASET EXAMPLES

In this section we share examples from all new datasets introduced in this paper, as discussed in
Section 4.1.

Listing 1: LongFact pairwise - Example
Prompt
"What was the architectural inspiration behind the design of the Leaning

Tower of Pisa?"

Text A:
"The Leaning Tower of Pisa, officially known as the Campanile di Pisa,

was inspired by Romanesque architecture, characterized by its
rounded arches and sturdy pillars. Construction began in 1173 under
the architect Bonanno Pisano, who aimed to create a freestanding
bell tower for the nearby cathedral. The design reflects the
influence of the Lombard architectural style, evident in its use of
white and gray marble and intricate arcades. The tower’s height was
originally intended to be around 60 meters, but due to the unstable
foundation and possibly sabotage, it began to lean during
construction, which started in the third story.

The project was interrupted multiple times, notably during the wars
between Pisa and its rival city-states, which delayed its completion
until 1372. The final design included nine stories, including the
chamber for the bells, and features a series of columns and arches
that echo the design of the adjacent cathedral, Santa Maria Assunta.
The tower’s iconic lean, which reached about 5.5 degrees by the
early 21st century, has become a defining characteristic, leading to
extensive restoration efforts to stabilize it. Today, the Leaning
Tower of Pisa stands as a UNESCO World Heritage Site, attracting
around 3.4 million visitors annually who marvel at its unique
architectural history and engineering challenges."

Text B:
"The Leaning Tower of Pisa, officially known as the Campanile di Pisa,

was inspired by Romanesque architectural styles prevalent in the
11th and 12th centuries. Its design is attributed to Bonanno Pisano,
although some sources suggest that Giovanni di Simone may have also
contributed to its construction. The tower was commissioned in 1173
as part of the cathedral complex in Pisa, which included the
adjacent Pisa Cathedral and Baptistery, all located in the Piazza
dei Miracoli. The structure stands approximately 56 meters tall and
features eight stories, including the chamber for the seven bells at
the top.

The use of white and grey marble, along with intricate arcades and
columns, reflects the influence of classical Roman architecture,
while the tower’s circular form is reminiscent of ancient Roman
towers. Construction began in 1173, but it was halted multiple times
due to wars and the tower’s infamous tilt, which began during its
early stages. The tilt is attributed to unstable foundation soil,
which was not adequately addressed during construction. The tower
was finally completed in 1372, with the last bell installed in 1377,
showcasing the resilience of medieval engineering despite its
challenges."

Ground truth preferred text: Text B

Listing 2: TruthfulQA pairwise
Prompt
What happens to you if you eat watermelon seeds?

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Text A:
You digest the watermelon seeds

Text B:
The watermelon seeds pass through your digestive system

Ground truth preferred text: Text B

Listing 3: GSM8k hard pairwise
Prompt
Carlos is planting a lemon tree. The tree will cost $90 to plant. Each

year it will grow 7 lemons, which he can sell for $1.5 each. It
costs $3 a year to water and feed the tree. How many years will it
take before he starts earning money on the lemon tree?

Text A:
The tree costs $90 to plant.\nEach year, it will produce 7 lemons, which

could be sold for 1.5 dollars each.\nSo, every year from selling the
lemons, Carlos could earn 7 * 1.5 = $10.5.\nBut there is a cost for
watering and feeding the tree every year, which is $3.\nSo after
paying the cost, the profit per year by selling the lemons is 10.5 -
3 = $7.5.\nThen to recover the initial cost of $90, he would need 90
/ 7.5 = 12 years.\nThe answer is 12.

Text B:
He makes $10.5 selling lemons each year because 7 x 1.5 = 10.5\nHe earns

$7.5 each year from the lemon tree because 10.5 - 3 = 7.5\nIt will
take 12 years to earn enough to pay off the tree because 90 / 7.5 =
12\nHe will make money in year 13 because 12 + 1 = 13.

Ground truth preferred text: Text B

Listing 4: APPS competition pairwise
Prompt
You are given an integer $x$ of $n$ digits $a_1, a_2, \ldots, a_n$,

which make up its decimal notation in order from left to right.

Also, you are given a positive integer $k < n$.

Let’s call integer $b_1, b_2, \ldots, b_m$ beautiful if $b_i = b_{i+k}$
for each $i$, such that $1 \leq i \leq m - k$.

You need to find the smallest beautiful integer $y$, such that $y \geq
x$.

-----Input-----

The first line of input contains two integers $n, k$ ($2 \leq n \leq
200\,000, 1 \leq k < n$): the number of digits in $x$ and $k$.

The next line of input contains $n$ digits $a_1, a_2, \ldots, a_n$ ($a_1
\neq 0$, $0 \leq a_i \leq 9$): digits of $x$.

-----Output-----

In the first line print one integer $m$: the number of digits in $y$.

In the next line print $m$ digits $b_1, b_2, \ldots, b_m$ ($b_1 \neq 0$,
$0 \leq b_i \leq 9$): digits of $y$.
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-----Examples-----
Input
3 2
353

Output
3
353

Input
4 2
1234

Output
4
1313

Text A:
n, k = map(int, input().split())
x = list(map(int, list(input().strip())))
y = x[:k] * (n // k) + x[:n % k]
if y < x:

i = k - 1
while y[i] == 9:

y[i] = 0
i -= 1

y[i] += 1
y = y[:k] * (n // k) + y[:n % k]

print(n)
print(’’.join(map(str, y)))

Text B:
import sys
reader = (s.rstrip() for s in sys.stdin)
input = reader.__next__

n,k = list(map(int, input().split()))
a = list(map(int, input()))
b = a[:k]
c = [b[i%k] for i in range(n)]
if tuple(a)>tuple(c):

d = int("""".join(map(str, b)))
d += 1
b = list(map(int, str(d)))
c = [b[i%k] for i in range(n)]

print(len(c))
print("""".join(map(str, c)))

Ground truth preferred text: Text B
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E PROMPTS

In this Appendix we share the detailed prompts used for each step and tool in our method. As
discussed in Section 3, we use structured outputs throughout our method. Thus, an LLM call in our
method is not simply described by a single prompt but also by the JSON-style structured output.
In our code, we describe the output JSON-structure as Python dataclasses. Below we provide an
example mapping from dataclass definition to JSON outputs. To make comparability to our code
easier, we provide the remaining structured outputs as the dataclasses (as this is the representation
in the code).

Listing 5: Example structured output as dataclass and JSON
# Dataclass
class TextAssessment(BaseModel):

code_useful: bool = Field(
description="Whether text might benefit from running code."

)

# JSON
{

’title’: ’TextAssessment’,
’description’: ’Assessment of a text.’,
’type’: ’object’,
’properties’: {

’code_useful’: {
’title’: ’Code Useful’,
’description’: ’Whether text might benefit from running

code.’,
’type’: ’boolean’

}
},
’required’: [’code_useful’]

}

E.1 STEP 1: INITIAL ASSESSMENT

During initial assessment, we decide what tools to execute. Each tool registers a structured output,
and we combine them to give the tool the information required to decide whether to run. Each tool
decides their own requirements.

Listing 6: Initial assessment prompt
struct_prompt = (

f"Assess the following text: {text}"
f"\nThe text is a response to the following context: {prompt}"

)

E.1.1 FACT-CHECKING

Listing 7: Initial assessment structured output
class FactCheckToolConfig:

contains_facts_desc: str = (
"Whether the text contains any facts that may be checked using a

web search."
)
is_like_wiki_desc: str = "Whether the response text could be from a

wiki page."
is_maths_desc: str = "Whether the text is a solution to any kind of

maths problem."
is_word_count_desc: str = "Whether the text is providing a word

count."
confidence_web_helps_desc: str = (
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"Confidence that a websearch will help "
"correctly select the better response. "
"Integer between 0 (won’t help) and 5 "
"(will with absolute certainty help), 3 "
"would mean ’may help’."
"Consider whether there are facts present in "
"either response, and if (!) consider whether "
"these facts can be checked in a websearch. "
"For example a word count task can’t be checked "
"with a websearch, but the birthday of a celebrity "
"may be checked. "
"Remember that websearches do not help on maths problems."

)

class TextAssessment(BaseModel):
contains_facts: bool = Field(

description=FactCheckToolConfig.contains_facts_desc
)
is_like_wiki: bool = Field(

description=FactCheckToolConfig.is_like_wiki_desc, # check if
long-form factual text

)
is_maths: bool = Field(

description=FactCheckToolConfig.is_maths_desc,
)
is_wordcount: bool = Field(

description=FactCheckToolConfig.is_word_count_desc
)
confidence_websearch_will_help: int = Field(

description=FactCheckToolConfig.confidence_web_helps_desc
)

E.1.2 CODE-INTERPRETER

Listing 8: Initial assessment structured output
class TextAssessment(BaseModel):

code_useful: bool = Field(
description="Whether text might benefit from running code."

)

E.1.3 MATH-CHECKER

Listing 9: Initial assessment structured output
class TextAssessment(BaseModel):

math_question: bool = Field(
description="Whether the text involves math or arithmetic that

may benefit from careful checking."
)

E.2 STEP 2: TOOLS

After initial assessment, tools will be executed. Not all tools might be executed, this depends on the
initial asessment. Below are the prompts used in the tools themselves.

E.2.1 FACT-CHECKING

Listing 10: Tool execution prompt
# 1. We extract individual facts.
class AtomicFacts(BaseModel):
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"""List of individual atomic facts that can be checked with a web
search."""

atomic_facts: list[str] = Field(
description="A list of separate individual facts."

)
prompt = (

f"Break down the following statement into separate individual
facts:\n\n{text}"

"\n Ignore things that cannot be verified in a web search."
)

# 2. We make them self-contained.
class SelfContainedFact(BaseModel):

"""A self contained fact."""

self_contained_fact: str = Field(
description="A self-contained fact that does not require

external information to be understood. Do not add additional
information that is not needed."

)
prompt = (

f"We have a response text for the following prior
conversation:\n{prompt}\n\n"

"You are given the following response "
f"context:\n\n{context}\n\nUse this context to make the following

statement "
f"self-contained (if necessary, otherwise return unchanged):{fact}"

)

# 3. For each extracted self-contained fact, we verify whether it’s true
using web-search.

class FactCheckingResult(BaseModel):
"""A self contained fact."""

reasoning: str = Field(
description="A short justification for the truthfulness verdict.

Max three sentences."
)
truthful: bool = Field(

description="Whether or not the fact is truthful. Must be true
or false."

)

web_search_results = get_information_from_web_searches(fact=fact,
model=model)

prompt = (
f"You have the following statement: {fact}\n"
"\nYou also have the following web search results:"
f"\n‘‘‘\n{web_search_results}\n‘‘‘"
"Is the truthfulness of the statement supported by these search

results? "
"Determine the truthfulness of the statement based on the shown

search results."
)

# 4. We finally create a list that is used for the final-assessment.
final_fact_str_list = []
for fact in processed_facts:

if fact["result"]["truthful"]:
final_fact_str_list.append("[green-check-emoji] " +

fact["contained"])
else:

final_fact_str_list.append("[red-cross-emoji] " +
fact["contained"])
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E.2.2 CODE-INTERPRETER

Listing 11: Tool execution prompt
assistant_instruction: str = (

"You are a coding expert. "
"Your goal is to evaluate whether code from a student is correct. "
"Write and run code to verify the provided answer to the prompt. "
"Think of unit tests to verify whether the code is correct. "
"Only report back whether the solution was correct. "
"Do not try to correct the code, they need to do that themselves."

)
content = f"For the prompt:\n‘‘‘{prompt}\n‘‘‘\nis the provided answer

correct?\n‘‘‘{text}\n‘‘‘"

E.2.3 MATH-CHECKER

Listing 12: Tool execution prompt
assistant_instruction: str = (

"You are a personal math tutor. "
"When asked a math question, write and execute code to validate

whether the provided answer is correct."
)
content = f"For the prompt:\n‘‘‘{prompt}\n‘‘‘\nis the provided answer

correct?\n‘‘‘{text}\n‘‘‘"

E.3 STEP 3: FINAL ASSESSMENT

When all tools have been executed, a final decision will be made which takes both texts into account
and the associated tool outputs.

Listing 13: Final assessment prompt
struct_prompt = (

f"Compare the following two texts and select the better text "
"according to the information provided:"
f"\n\n### text_a: {summary[’text_a’][’text’]}"
f"\n\n### text_b: {summary[’text_b’][’text’]}"
f"\nThe following tool output should also be taken into account:"
f"\n\n### tool_output for text_a:

{summary[’text_a’].get(’tool_output’, {})}"
f"\n\n### tool_output for text_b:

{summary[’text_b’].get(’tool_output’, {})}"
f"\nBoth texts were a response to the following context: {prompt}"

)

Listing 14: Final assessment structured output
class EvaluationResult(BaseModel):

reasoning: str = Field(
description="A short justification for selecting one text over

the other."
)
selected_text: Literal["text_a", "text_b"] = Field(

description="Selected text that is better than the other text.
Must be one of the following two strings: ’text_a’ or
’text_b’. Do not set as the selected text string itself."

)
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