
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN EXTERNAL VALIDATION TOOLS IMPROVE
ANNOTATION QUALITY FOR LLM-AS-A-JUDGE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Pairwise preferences over model responses are widely collected to evaluate and
provide feedback to large language models (LLMs). Given two alternative model
responses to the same input, a human or AI annotator selects the “better” re-
sponse. This approach can provide feedback for domains where other hard-coded
metrics are difficult to obtain (e.g., quality of a chat interactions), thereby helping
measure model progress or model fine-tuning (e.g., via reinforcement learning
from human feedback, RLHF). However, for some domains it can be tricky to
obtain such pairwise comparisons in high quality - from AI and humans. For ex-
ample, for responses with many factual statements or complex code, annotators
may overly focus on simpler features such as writing quality rather the underly-
ing facts or technical details. In this work, we explore augmenting standard AI
annotator systems with additional tools to improve performance on three chal-
lenging response domains: long-form factual, math and code tasks. We propose
a tool-using agentic system to provide higher quality feedback on these domains.
Our system uses web-search and code execution to ground itself based on ex-
ternal validation, independent of the LLM’s internal knowledge and biases. We
provide extensive experimental results evaluating our method across the three tar-
geted response domains as well as general annotation tasks, using RewardBench
data (incl. AlpacaEval and LLMBar), as well as three new datasets for areas where
pre-existing datasets are saturated. Our results indicate that external tools can in-
deed improve AI annotator performance in many, but not all, cases. More gener-
ally, our experiments highlight the high variability of AI annotator performance
with respect to simple parameters (e.g., prompt) and the need for improved (non-
saturated) annotator benchmarks. We share our data and code publicly.1

Figure 1: Summary of our approach and results: we extend standard LLM-as-a-Judge base-
lines with external validation tools based on web-search and code execution. We observe that
the resulting system is often, but not always, able to improve performance (measured as agreement
with ground-truth annotation) across a range of response domains that are typically challenging for
LLM-as-a-Judge systems: (1) long-form factual, (2) advanced coding, and (3) math responses. The
results shown are based on the popular AlpacaEval 2.0 baseline annotator, full results in Section 4.

1Link to repository will be shared upon publication.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: Overview of our tool-using AI annotator architecture, referred to as Evaluation
Agent. In the (1) initial domain assessment the appropriate tools are selected for each response
(e.g. for a wiki-style text the fact check tool); then, in (2) tool usage, each selected tool is run and
the tool outputs are combined into a single prompt to make a (3) final decision. If none of the tools
are selected (i.e., no tool deemed useful), the agent instead reverts and returns an annotation from
the (4) baseline annotator (e.g., AlpacaEval 2.0).

1 INTRODUCTION

Pairwise feedback is widely used to understand LLM performance on complex tasks that more tra-
ditional benchmarks fail to measure well. Given a prompt and two possible responses, the annotator
decides which response is ”better”. This pairwise judgement can be used for evaluation (e.g., Chat-
bot Arena (Chiang et al., 2024)) or to provide feedback for training (e.g., via RLHF (Stiennon et al.,
2020; Ouyang et al., 2022) or DPO (Rafailov et al., 2023)). Both human and AI annotators (also
referred to as LLM-as-a-Judge) are used to collect such feedback. Human annotators are often con-
sidered higher quality but more expensive.

Both human and AI annotations have notable limitations: AI annotators have been observed to
be susceptible to a number of biases, including changing preference based on superficial features
like response order Zheng et al. (2023) or response length Dubois et al. (2024)). Whilst possibly
providing higher quality annotations than AI annotators, human annotators also have known issues.
For example, human annotators have been observed to let their assessment of truthfulness be affected
by the assertiveness of responses (Hosking et al., 2024).

In certain domains it is particularly challenging to obtain high-quality annotations: for responses
containing long-form factual, advanced coding and math content both AI and (many) human anno-
tators struggle to provide reliable annotations (Zheng et al., 2023). Annotating responses in these
domains requires expertise and careful deliberation, challenging to achieve for human annotators
in a limited amount of time. AI annotators may be less ”time-constrained” but nevertheless due
to known reliability issues (e.g, hallucinations, limited basic arithmetic) often fail to provide high
quality annotations in these domains (Yang et al., 2023).

In this work, we aim to explore improving the annotation quality of widely used AI annotators
on these challenging domains by augmenting the annotators with tools that can externally validate
answers. We enable responses to be fact-checked using web-search, or verified using code execution.
Our setup is illustrated in Figure 2. In particular, we make the following contributions:

1. Extensible framework for using tools with existing AI annotators. We introduce a new
framework that enables the integration of new tools on top of existing AI annotators to improve
annotation quality in certain domains using external validation. Our framework includes agentic
scaffolding that assesses the response domain and plans the optimal tool usage accordingly. We
provide a number of initial tool implementations: (1) a long-form fact checking tool based on
the Search Augmented Fact Evaluation (SAFE) method by Wei et al. (2024); (2) a code check

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tool built on OpenAI’s code interpreter API; and (3) a math check tool similarly built on code
execution. We open-source the corresponding code2

2. New datasets for challenging pairwise annotation tasks. We share four new pairwise datasets
extending domains that are currently saturated or not covered well in existing pairwise annota-
tion benchmarks (such as RewardBench (Lambert et al., 2024)) with more challenging tasks. In
particular, we adapt subsets of the LongFact (Wei et al., 2024), TruthfulQA (Lin et al., 2022),
GSM8k Cobbe et al. (2021a) and APPS (Hendrycks et al., 2021) datasets to the pairwise setting.

3. Extensive experimental results evaluating our framework’s capabilities. We evaluate our
framework’s effectiveness across a wide range of tasks including the newly created datasets as
well as well-established benchmarks. We compare our method to a number of popular state-of-
the-art AI annotators, including the annotators underlying AlpacaEval 2.0 (Dubois et al., 2023),
and ArenaHard (Li et al., 2024).

2 PROBLEM: PAIRWISE FEEDBACK ON COMPLEX TASKS

For many task domains, pairwise feedback can be easier to obtain than absolute metrics. Never-
theless, for some domains even a relative pairwise judgement can be difficult to collect — from
both human and AI annotators. In this work, we consider three particularly challenging response
domains: tasks that require model responses with (1) long-form factual, (2) advanced coding or (3)
math content. For such tasks, even a relative judgement requires robust understanding of the task
domain, and, for human annotators, careful deliberation. For example, judging code without under-
standing the relevant syntax may force an annotator (AI or human) to revert to higher level features
such as style – that may not fully correlate with ground-truth preferences. Similarly, when com-
paring responses with a large number of factual statements, an annotator may easily miss a single
incorrect factual statement — instead possibly again relying on writing style to make a judgement.

In the pairwise setting, annotators are typically evaluated based on their agreement3 with ground-
truth annotations on datasets, where such annotations are either available by construction or created
by human annotators (Lambert et al., 2024). This agreement is equivalent to the accuracy of the
binary classification task of predicting the correct ranking for each response pair. In this setting, the
goal of pairwise feedback annotation is to maximise the agreement with ground-truth annotations.

In general, for many response pairs there is ambiguity regarding which response is better — espe-
cially for domains with known disagreements such as political preferences (Kirk et al., 2024). To
improve the reliability of our evaluation, we attempted to primarily test on response pairs where
experts agree on the preference and avoided more contentious topics.

3 METHOD: AI ANNOTATORS WITH TOOLS FOR EXTERNAL VALIDATION

We introduce a new framework for augmenting existing AI annotators with tools – grounding their
annotations in the real world with external validation. The general functioning of our framework
is illustrated in Figure 2. Our goal is to improve the performance of AI annotators on a specific
set of target domains: responses containing long-form factual, advanced coding and math content.
To achieve this annotation quality improvement, we leverage external validation via tools built on
web search and code execution. At the same time, we want to avoid reducing performance on other
non-target domains. We use an agentic setup to determine when each tool gets used, letting an
underlying LLM assess the domain of the response considered and thereby which tool would be
most useful. To avoid regression on non-target domains, our agentic framework reverts back to a
baseline annotator whenever the responses are assessed to be outside the domain of all available
tools. Avoiding regression on non-target domains is critical, as it may not always be known a priori
which domain a response pair is from.

2Repository URL to be shared upon publication.
3Note that other works (e.g, (Bavaresco et al., 2024)) use Cohen’s kappa. However, to retain consistency and

comparability with our primary benchmark RewardBench (Lambert et al., 2024), and for better interpretability,
we report all our results using the more common accuracy (agreement) metric. With the agreement metric it is
important to note that random performance is expected to be about 50%.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Detailed overview of our evaluation agent: the model responses are first processed by
the (1) initial domain assessment, where an LLM is prompted to answer questions about the response
text. In (2) tool usage, each tool that is deemed useful in Step (1) is run. Initially, available tools
include fact check, code exec and math exec. The first tool is based on web-search, the latter two
tools on a code interpreter. Finally, in the (3) final decision step, all tool outputs across responses
are jointly considered by an LLM to make a final preference decision. If the (1) initial domain
assessment finds no useful tool, the entire approach reverts back to an annotation from the baseline
AI annotator.

As is done in many annotator approaches (e.g., certain AlpacaEval configurations (Dubois et al.,
2023)), we build on structured output throughout our pipeline to create a reliable method with low
parsing error rate. Instead of plain text responses, structured output forces the model to return
JSON-formatted outputs. With this approach, each LLM call is not only configured by a single
prompt message but also by the JSON format and description of the requested output.

Our approach consists of three distinct parts: (1) initial domain assessment, determining which tools
to use (if any); (2) tools, running the selected tools for each response; and (3) final decision, creat-
ing a final preference judgement based on all outputs. If the first step (initial domain assessment)
determines that no tools would be helpful, our approach alternatively skips steps (2) and (3). In-
stead, we revert to the (4) baseline annotator. In the following subsections, we describe each step
in more detail. For full reproducibility, we further share the prompts in Appendix C and make the
corresponding code publicly available.4

3.1 STEP 1: INITIAL DOMAIN ASSESSMENT

The initial domain assessment ensures that each tool is only run if the model responses are within
a domain where the tool is known to be likely helpful. For example, for the code execution tool,
the domain assessment ensures that there is code present in the response. This assessment helps
avoid running tools in scenarios where they are unlikely to help. For each tool, we created a number
of questions about a response (e.g. ”Whether text might benefit from running code.”). For each
response, an LLM is prompted with these questions. The LLM answers are then parsed and deter-
mine whether a tool is deemed useful and run – or not. If not a single tool is deemed useful, the
agent reverts back to a baseline evaluator. With this setup, our method aims to reduce unnecessary
inference costs and to avoid regressing on domains where the tools are not useful.

4Available upon publication

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 STEP 2: TOOL USAGE

If the initial assessment deems one or more tools useful, the respective tools are run. We initially
implemented three different tools as part of our extensible framework:

Fact-checking. We build on the Search Augmented Factuality Evaluator (SAFE) by Wei et al.
(2024) to create a fact-checking tool for the pairwise setting. Our fact-checking tool follows similar
steps as the original SAFE algorithm: (1) separating atomic facts, (2) making atomic facts self-
contained, and (3) checking whether self-contained facts are supported by web-search. Our tool
omits the relevance check in the original SAFE algorithm. In a pairwise preference setting we
consider the truthfulness of all facts relevant – even if they do not directly relate to the task or
prompt. It is ultimately up to the final assessment to decide which factual statements, and their
truthfulness, is most important.

Code execution. Taken into account existing works that show that compiler/runtime output is a
useful signal, we build on top of OpenAI’s code interpreter API to create a code-execution tool.
For both proposed answers to a prompt, the code-execution tool will verify its correctness using
execution feedback. Internally, OpenAI’s code interpreter API can create additional unit tests, run
multiple execution steps and draw a conclusion. Only the last conclusion is used in the agent’s final
assessment to determine which response is better.

Math checker. Noting that autoregressive language models are not reliable arithmetic engines (Yang
et al., 2023), we prompt-constrain our code-execution tool to perform math (and in particular arith-
metic) validation on each of the model outputs. As in the case of general code execution, multiple
checks may be executed per model output, and the final assessment uses the outcome of these checks
to inform its overall decision.

3.3 STEP 3: FINAL ASSESSMENT

In the final assessment step, we combine the results of all tools per response alongside the original
prompt and response, to prompt an LLM to make an informed preference judgement based on all
collected information. Critically, this step allows the LLM to access the external validation results
when making a decision. The LLM response to this step provides the final preference judgement
(e.g., ”Text A is preferred.”) as well as a chain-of-thought (CoT) reasoning for the judgement (e.g.
”Text A is preferred because [...]”).

4 EXPERIMENTAL RESULTS

4.1 DATASETS

Existing datasets. A number of benchmarks aim to evaluate AI annotator capabilities, notable
examples include (subsets of) AlpacaEval5 (Dubois et al., 2023), MT-Bench (Zheng et al., 2023),
LLMBar (Zeng et al., 2024) and RewardBench (Lambert et al., 2024). We use the latter, Reward-
Bench, for our evaluation, as it represents a superset including the other tasks. This benchmark
provides a broad coverage of response domains, including mathematical reasoning, code generation
and general chatbot conversation. We find that some subsets of the benchmark are highly saturated:
state-of-the-art LLM-as-a-judge systems already achieve close to 100% agreement with the ground-
truth annotations. For example, we find that a simple GPT-4o-based baseline AI annotator achieves
above 97% across all HumanEval-based coding subsets (Chen et al., 2021) in RewardBench (each
subset has at most 5 datapoints6 to improve on). Similarly, the same baseline achieves over 90% on
the math benchmark based on PRM800k (Lightman et al., 2023), leaving less that 45 datapoints to
improve on. Thus, to be able to effectively evaluate improvements in these domains, we created a
number of new pairwise datasets.

New pairwise datasets. As discussed above, for each of the challenging domains considered, rel-
evant pairwise datasets either do not exist or tend to be too saturated to meaningfully measure AI

5Whilst the primary purpose of AlpacaEval is to evaluate general-purpose models, the framework also
includes data and tooling specifically for evaluating AI annotators.

6164 datapoints per dataset ×3%

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

annotator improvements. Thus, we extend RewardBench by adapting existing, more challenging
(previously non-pairwise) datasets to the pairwise setting. Appendix B contains examples from
each dataset introduced below.

1. Long-form fact checking: LongFact pairwise. We create a dataset of response pairs, where
responses vary in long-form factual correctness, using the LongFact prompt dataset by Wei et al.
(2024). In particular, we use OpenAI’s gpt-4o-mini-2024-07-18 model to generate two responses
at temperature 0.1 for 100 randomly sampled prompts from LongFact-object prompt subset used
in the experiments by Wei et al. (2024). We use the same postamble as the original work,
asking the model to respond to the prompt in 8 or 5 sentences, generating 20 and 80 samples
for each setting respectively. Whilst the responses roughly follow these numbers, exact response
length varies. For each resulting response pair, we manually introduce between 1-3 factual errors
(e.g., wrong numbers, names, or dates) into one of the two responses. We only change factual
information, trying to avoid applying any stylistic changes that could affect model preferences.
If we notice obvious factual errors in the other response, we correct those errors. Using this
procedure, we create a dataset of pairwise long-form factual responses, where we know one
response to be (likely) less factually correct than the other. Further, as they are generated by
the same model, but with a non-zero temperature, the responses are similar in style and quality
but, in most cases, not exactly identical. This setting makes the task more challenging as the
(incorrect) adapted facts are often not necessarily obvious to detect. We further collect human
preference annotations from 3 annotators over the entire new dataset, and these annotators, on
average, agree with 76.83% of those ground-truth annotations when not selecting a tie. 18% of
the average human annotations are ties.

2. Challenging coding: APPS competition pairwise. From the original APPS dataset (Hendrycks
et al., 2021), we create a pairwise response dataset to evaluate the ability to determine code
correctness. The APPS benchmark contains coding problems, unit tests and Python ground-
truth solutions for most problems. We take the “competition” subset, arguing it is these harder
problem/solution combinations that are tricky to evaluate correctly. We only keep samples that
contain a ground-truth solution, leaving us with 310 items. We then use GPT-4-0613 to generate
solutions to the problems, till we have failing solutions for all 310 items.

3. Challenging maths: GSM8k hard pairwise. We select a “hard” subset of the GSM8k (Cobbe
et al., 2021b) dataset by keeping the 117 examples that GPT-4o is unable to solve. For each of
these examples we generate pairwise responses by keeping both the ground-truth answer and the
incorrect answer that GPT-4o provided.

We additionally create a pairwise response dataset where responses vary in short-form factual cor-
rectness using the TruthfulQA dataset7 by Lin et al. (2022). Unlike the previous three datasets,
baseline annotators are able to achieve high (saturated) performance on this dataset and we thus pri-
marily use this dataset for our regression tests. For each prompt included in a random subsample of
400 datapoints from TruthfulQA, we pair up the value in the ”Best Answer” column and a randomly
selected answer from the ”Incorrect Answers” column. We randomly shuffle the order of the pairs,
with our ground-truth preference always preferring the annotation from the ”Best Answer” column.
Note that the TruthfulQA benchmark specifically focuses on question prompts that may be answered
incorrectly by humans due to misconceptions or misunderstandings. Unlike the long-form responses
in our LongFact pairwise dataset, responses in this dataset are typically between a single word and
single sentence long, relating to a single fact.

4.2 BASELINE ANNOTATORS

We compare our method to two popular AI annotator configurations that are widely used in academic
and industry settings, and may be considered state-of-the-art: (1) the widely-used AlpacaEval 2.08

annotator by Dubois et al. (2023) using GPT-4-Turbo, logprob parsing to extract annotations; and (2)
the ArenaHard annotator by Li et al. (2024) using more extensive annotation instructions (including
asking the model to craft its own response) and string parsing; We further share results using two
minimalist AI annotators that simply ask the underlying LLM to ”select the better” text, powered

7Available at: https://huggingface.co/datasets/truthfulqa/truthful_qa (Apache
License 2.0)

8The exact configuration name is weighted alpaca eval gpt4 turbo.

6

https://huggingface.co/datasets/truthfulqa/truthful_qa

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Long-form fact checking results on LongFact pairwise data. We augment a number
of baseline annotators (light green) with our evaluation agent framework (dark green) and observe
that our agents have higher average agreement with ground-truth annotations across baselines. The
effect is most pronounced for simpler baselines. The improvement is also observed when the agent
and baseline are based on the less capable GPT-3.5-Turbo model. We also collect non-expert human
annotations (blue) for the same datasets, and observe that, when making a non-tie judgement, human
annotators have higher disagreement with the ground-truth than our best agent evaluators.

by GPT-3.5-Turbo and GPT-4o. Perhaps surprisingly, we find that the simple annotator powered
by GPT-4o performs competitively on many datasets considered in our experiments. We report all
results based on 5 seeds (unless otherwise specified), showing the mean with standard deviation as
error bars. When reporting the agent results across different baselines, we use the same 5 seeds of
the agent Steps 1-3 — only changing the underlying baseline results (Step 4). This setup notably
reduces the cost of our experiments as the agent steps require the most inference compute.

4.3 RESULTS ON TARGET DOMAINS

4.3.1 LONG-FORM FACT-CHECKING

We evaluate our method on data pairs that require long-form fact checking using the LongFact
pairwise dataset introduced in Section 4.1. Figure 4 illustrates our results on this dataset.

Observation 1: Our external validation tools can help AI annotators improve performance an-
notating long-form factual responses. In Figure 4 we observe that, across all evaluated baselines,
augmenting any baseline with our fact-checking agent helps improve the overall agreement with the
ground-truth annotations on this data set. Whilst the contrast is most pronounced with simpler base-
lines (e.g., for GPT-4o pick-best baseline, 63% vs 81%), the effect is present across all baselines,
including for ArenaHard (78% vs 80%).

Observation 2: For baseline annotators, configurations such as prompt have a strong impact
on the downstream performance on long-form fact checking (jumping from 63% to 78% for
GPT-4o). We observe a jump in agreement between the pick-best and ArenaHard baseline anno-
tators, both powered by GPT-4o. The only difference between these annotators is the prompt and
answer parsing used. The pick-best annotator uses a simple prompt asking for the better answer,
either text A or B. The ArenaHard annotator uses an extensive prompt, including asking the LLM
to create its own response for comparison. This observation indicates that for this type of factual
task the exact choice of AI annotator configuration is critical, with the ArenaHard configuration
performing the best amongst the baselines.

Observation 3: Our agents’ agreement with our ground-truth annotations is higher than hu-
man annotators’ on long-form factual responses. This effect holds for all agents based on base-
lines with GPT-4-style models. Wei et al. (2024) similarly report their method sometimes outper-
forming non-expert human annotators. Intuitively, it seems plausible that human annotators are not
always able or willing to check every single fact in a response – our agent may be able to inspect the
answer without fatigue. Hosking et al. (2024) similarly observe that human annotators’ perceived

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

rate of factual errors can be skewed by the assertiveness of a model response, indicating that human
annotators may not always consider factual errors sufficiently.

4.3.2 MATH-CHECKING

Figure 5: Results annotating responses on our pairwise set of mathematical tasks based on
GSM8k. We observe that our method improves performance over some baselines, but the overall
level of agreement remains relatively low (around 56%). Further work is needed to improve the
models capability to leverage code execution fully in a math context.

We further evaluate our method on annotating solutions to advanced mathematics tasks, via the
GSM8k hard pairwise dataset introduced in Section 4.1, the results are shown in Figure 5.

Observation 4: Our agents are able to outperform some, but not all, baselines on hard math
annotation tasks based on GSM8k. We observe that only some augmented baseline annotators
are able to improve their performance. In particular, the ArenaHard annotator is notably able to
outperform all agent-based methods on this task. This result highlights that for AI annotators more
complexity (e.g., in the form of tools) does not always yield better results. Future work may be able
to allow the models to make more effective use of the code execution in math context. We hope our
pairwise dataset will provide a solid basis for such future work.

4.3.3 CODE-EXECUTION

Finally, we evaluate our method’s ability to improve capabilities in annotating advanced coding tasks
using our pairwise coding dataset based on the APPS dataset by Hendrycks et al. (2021). The results
are shown in Figure 6.

Observation 5: Our method is able to notably improve the baseline performance on annotating
the APPS advanced coding responses. Across all baselines, our agent-based approach is able to
notably improve annotation performance. This improvement holds both for the less capable GPT-
3.5-Turbo model (31% baseline vs 71% agent) as well as the ArenaHard annotator that performs
very strongly on other tasks (38% baseline vs 72% agent).

Observation 6: Our GPT-based baseline annotators show possible self-enhancement bias on
the APPS dataset, with performance worse than random. Based on the construction, there may
be slight style differences between correct (pre-existing ground-truth solutions) and incorrect re-
sponses (GPT-4 generated incorrect code), see examples in Appendix B. We observe that all base-
line annotators have a bias towards the incorrect GPT-4 responses, preferring only 26% to 42% of
correct responses. This effect may possibly be explained with self-enhancement bias. Our agent
method using code execution is able to overcome this bias.

4.4 RESULTS OUTSIDE OF TARGET DOMAINS (OUT-OF-DOMAIN)

In practice, an AI annotator may encounter response pairs from across a variety of task domains –
both those where our tools are designed to help and other domains. A good AI annotator should

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Results on our pairwise dataset of responses to advanced coding tasks from the APPS
dataset (Hendrycks et al., 2021). We observe a notable improvement of our method over the baseline
results, even for the otherwise less capable models GPT-3.5-Turbo.

Figure 7: General out-of-domain annotation capabilities result based on RewardBench (Lam-
bert et al., 2024). We observe that our agent is able to achieve similar performance to the baseline
annotator across these tasks — at worst seeing a reduction of 2% in agreement.

be able to work across all these domains, as filtering data may not always be feasible or sufficiently
effective. Thus, we go beyond the domain-specific capability improvements shown in Sections 4.3.1
to 4.3.3 and also evaluate our method’s performance on tasks that are out-of-domain for our tools.
In this general scenario we would not expect performance improvements with our method but would
hope for minimal performance regression – as our tools are not built to help (or even activate) on
most of these tasks. Figure 7 shows our results on these out-of-domain tasks.

Observation 7: On out-of-domain tasks from Rewardbench there are minimal performance
reductions using our approach with any tested baseline. The agreement reductions are less than
2% for all tested baselines. For the GPT-3.5-Turbo-based agent we even observe a slight improve-
ment. Future work may be able to refine the initial assessment to further reduce this gap.

We further specifically evaluate our results on domains closely adjacent to our main focus domains:
short-form fact checking (TruthfulQA pairwise), simple coding tasks (RewardBench – HumanEval
pairwise) and general math problems (RewardBench – PRM pairwise). These domains are already
quite well solved by state-of-the-art AI annotators. Thus, as with the general out-of-domain results,
we would again not expect any notable improvements but aim to demonstrate limited performance
regressions. We observe two opposing effects: for the short-form fact checking and simple maths our
approach is consistently able to improve performance, whereas for simple HumanEval-based coding
tasks the annotation performance decreases (reduction of up to 9%, see Figure 10). One possible
explanation may be that the very high baseline performance on HumanEval (above 97% for GPT-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4-style models) may be reduced by additional noise due to code execution pipeline. Appendix A
includes detailed results for these adjacent domain experiments.

5 RELATED WORK

Pairwise AI annotators. As human annotations are costly and time-intensive, extensive work has
been done to explore the use of AI annotators as an alternative. Works such as LLM-as-a-judge
(Zheng et al., 2023), AlpacaEval (Dubois et al., 2023) and G-Eval (Liu et al., 2023) popularized
AI annotators in the context of evaluation. The ArenaHard annotator is another popular choice (Li
et al., 2024). Various efforts have also explored the use of AI annotators for generating training
data, such as constitutional AI (Bai et al., 2022). This line of work is also known as reinforcement
learning from AI feedback (RLAIF) (Lee et al., 2024).

AI annotator problems. A number of biases have been observed in AI annotators, for example
(1) length bias (Zheng et al., 2023; Dubois et al., 2024), where annotators prefer more verbose
outputs (even when not corresponding to human preference); (2) position bias (Zheng et al., 2023),
where the model’s annotation affected by order in which they are shared with the model; and (3)
self-enhancement bias (Panickssery et al., 2024; Stureborg et al., 2024), where annotators prefer
responses that are high probability under judging model’s distribution.

Augmented AI evaluators. Given the known limitations of basic AI annotators, various augmenta-
tions of such annotators have been explored. Dubois et al. (2024) propose augmenting AI annotators
to be length-controlled using a generalized linear model to address the widely observed length bias.
Others explore using multiple AI annotators simultaneously to improve performance (Verga et al.,
2024; Chan et al., 2023).

Outside of the pairwise setting, the Search Augmented Factuality Evaluator (SAFE) by Wei et al.
(2024), and prior work FActScore (Min et al., 2023), RARR (Gao et al., 2023), Factcheck-Bench
(Wang et al., 2024), all aimed at improving the capability of verifying fact within text – including
model responses.

6 CONCLUSION

In this work we have presented a novel framework for augmenting AI annotators with tools to
externally validate outputs and address existing limitations with AI and human annotations. We
compare our method to state-of-the-art and widely used AI annotators, including the AlpacaEval
2.0 (Dubois et al., 2023) and ArenaHard annotator (Li et al., 2024). To challenge our method
on annotation tasks where the existing datasets appear saturated (coding, math) or little pairwise
data exists (long-form factual responses), we created new pairwise datasets, building on LongFact
(Wei et al., 2024), GSM8k (Cobbe et al., 2021a), and APPS (Hendrycks et al., 2021). We evaluate
our method’s effectiveness across both these new datasets as well as the aggregate RewardBench
dataset (Lambert et al., 2024). We observe that our external validation-based method often improves
baseline annotator performance. We observe the strongest effectiveness in annotating advanced
coding responses but also in the context of long-form factual responses, with more mixed results in
advanced math responses.

We conclude that, whilst external validation tools can improve annotation quality of AI annotator
(or LLM-as-a-Judge) for certain scenarios, such tools represent a trade-off in terms of complexity
and cost, and may not always be the right fit for every use-case. More broadly, our results highlight
the strong effect that simple configuration parameters, such as prompt and parsing method, can
have on annotator performance — even if the same underlying LLM is used. When considering
more technically involved augmentations like our external validation tools, we recommend to also
carefully evaluate simpler configurations as an alternative across a wide range of scenarios, as we
have done. A robust AI annotator testing pipeline can be critical to determine the right annotator.
RewardBench represents an important first step into this direction, as do our own new pairwise
datasets, we hope. We would welcome future work that develops further datasets to improve the
reliability and comprehensiveness of AI annotator evaluation. We publicly release the code for our
framework and experiments.9

9Link to be added upon publication.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI:
Harmlessness from AI Feedback, December 2022.

Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernández, Al-
bert Gatt, Esam Ghaleb, Mario Giulianelli, Michael Hanna, Alexander Koller, André F. T. Mar-
tins, Philipp Mondorf, Vera Neplenbroek, Sandro Pezzelle, Barbara Plank, David Schlangen,
Alessandro Suglia, Aditya K. Surikuchi, Ece Takmaz, and Alberto Testoni. LLMs Instead of
Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks, June 2024.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate,
August 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code, July 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference, March 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems, November 2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021b. URL
https://arxiv.org/abs/2110.14168.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S. Liang, and Tatsunori B. Hashimoto. AlpacaFarm: A Simulation Framework for
Methods that Learn from Human Feedback. Advances in Neural Information Processing Systems,
36:30039–30069, December 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-Controlled
AlpacaEval: A Simple Way to Debias Automatic Evaluators, April 2024.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu. RARR: Researching
and Revising What Language Models Say, Using Language Models, May 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring Coding Chal-
lenge Competence With APPS, November 2021.

11

https://arxiv.org/abs/2110.14168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tom Hosking, Phil Blunsom, and Max Bartolo. Human Feedback is not Gold Standard, January
2024.

Hannah Rose Kirk, Alexander Whitefield, Paul Röttger, Andrew Bean, Katerina Margatina, Juan
Ciro, Rafael Mosquera, Max Bartolo, Adina Williams, He He, Bertie Vidgen, and Scott A. Hale.
The PRISM Alignment Project: What Participatory, Representative and Individualised Human
Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models,
2024.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, L. J. Miranda, Bill Yuchen Lin, Khyathi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh
Hajishirzi. RewardBench: Evaluating Reward Models for Language Modeling, June 2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. RLAIF vs. RLHF:
Scaling Reinforcement Learning from Human Feedback with AI Feedback, September 2024.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gon-
zalez, and Ion Stoica. From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and
BenchBuilder Pipeline, June 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step, May 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic Human
Falsehoods, May 2022.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-Eval: NLG
Evaluation using GPT-4 with Better Human Alignment, May 2023.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained Atomic Evaluation of
Factual Precision in Long Form Text Generation, October 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, March
2022.

Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LLM Evaluators Recognize and Favor Their
Own Generations, April 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward
Model, December 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F. Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Rickard Stureborg, Dimitris Alikaniotis, and Yoshi Suhara. Large Language Models are Inconsistent
and Biased Evaluators, May 2024.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady
Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing Judges with Juries:
Evaluating LLM Generations with a Panel of Diverse Models, May 2024.

Yuxia Wang, Revanth Gangi Reddy, Zain Muhammad Mujahid, Arnav Arora, Aleksandr Ruba-
shevskii, Jiahui Geng, Osama Mohammed Afzal, Liangming Pan, Nadav Borenstein, Aditya Pil-
lai, Isabelle Augenstein, Iryna Gurevych, and Preslav Nakov. Factcheck-Bench: Fine-Grained
Evaluation Benchmark for Automatic Fact-checkers, April 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi
Peng, Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le. Long-form factuality in large language
models, April 2024.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang.
Gpt can solve mathematical problems without a calculator, 2023. URL https://arxiv.
org/abs/2309.03241.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating Large
Language Models at Evaluating Instruction Following, April 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena, December 2023.

13

https://arxiv.org/abs/2309.03241
https://arxiv.org/abs/2309.03241

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A ADJACENT DOMAIN RESULTS

Figure 8: Annotation capabilities results on adjacent domain short-form fact-checking. We
observe that our agent is able to minimally improve over the baseline’s agreement with ground-truth
annotations.

Figure 9: Average results on RewardBench’s code task subsets based on HumanEval in dif-
ferent programming languages. We see a drop of up to 9% points across baselines. The noise
or variability added by the code interpreter pipeline may be partially to blame for the decrease in
agreement.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 10: Results on RewardBench’s math tasks. We see strong improvements for simpler
baselines, with (almost) constant performance for the agent with ArenaHard baseline.

B DATASET EXAMPLES

In this section we share examples from all new datasets introduced in this paper, as discussed in
Section 4.1.

Listing 1: LongFact pairwise - Example

Prompt
"What was the architectural inspiration behind the design of the Leaning

Tower of Pisa?"

Text A:
"The Leaning Tower of Pisa, officially known as the Campanile di Pisa,

was inspired by Romanesque architecture, characterized by its
rounded arches and sturdy pillars. Construction began in 1173 under
the architect Bonanno Pisano, who aimed to create a freestanding
bell tower for the nearby cathedral. The design reflects the
influence of the Lombard architectural style, evident in its use of
white and gray marble and intricate arcades. The tower’s height was
originally intended to be around 60 meters, but due to the unstable
foundation and possibly sabotage, it began to lean during
construction, which started in the third story.

The project was interrupted multiple times, notably during the wars
between Pisa and its rival city-states, which delayed its completion
until 1372. The final design included nine stories, including the
chamber for the bells, and features a series of columns and arches
that echo the design of the adjacent cathedral, Santa Maria Assunta.
The tower’s iconic lean, which reached about 5.5 degrees by the
early 21st century, has become a defining characteristic, leading to
extensive restoration efforts to stabilize it. Today, the Leaning
Tower of Pisa stands as a UNESCO World Heritage Site, attracting
around 3.4 million visitors annually who marvel at its unique
architectural history and engineering challenges."

Text B:
"The Leaning Tower of Pisa, officially known as the Campanile di Pisa,

was inspired by Romanesque architectural styles prevalent in the
11th and 12th centuries. Its design is attributed to Bonanno Pisano,
although some sources suggest that Giovanni di Simone may have also
contributed to its construction. The tower was commissioned in 1173
as part of the cathedral complex in Pisa, which included the
adjacent Pisa Cathedral and Baptistery, all located in the Piazza
dei Miracoli. The structure stands approximately 56 meters tall and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

features eight stories, including the chamber for the seven bells at
the top.

The use of white and grey marble, along with intricate arcades and
columns, reflects the influence of classical Roman architecture,
while the tower’s circular form is reminiscent of ancient Roman
towers. Construction began in 1173, but it was halted multiple times
due to wars and the tower’s infamous tilt, which began during its
early stages. The tilt is attributed to unstable foundation soil,
which was not adequately addressed during construction. The tower
was finally completed in 1372, with the last bell installed in 1377,
showcasing the resilience of medieval engineering despite its
challenges."

Ground truth preferred text: Text B

Listing 2: TruthfulQA pairwise
Prompt
What happens to you if you eat watermelon seeds?

Text A:
You digest the watermelon seeds

Text B:
The watermelon seeds pass through your digestive system

Ground truth preferred text: Text B

Listing 3: GSM8k hard pairwise
Prompt
Carlos is planting a lemon tree. The tree will cost $90 to plant. Each

year it will grow 7 lemons, which he can sell for $1.5 each. It
costs $3 a year to water and feed the tree. How many years will it
take before he starts earning money on the lemon tree?

Text A:
The tree costs $90 to plant.\nEach year, it will produce 7 lemons, which

could be sold for 1.5 dollars each.\nSo, every year from selling the
lemons, Carlos could earn 7 * 1.5 = $10.5.\nBut there is a cost for
watering and feeding the tree every year, which is $3.\nSo after
paying the cost, the profit per year by selling the lemons is 10.5 -
3 = $7.5.\nThen to recover the initial cost of $90, he would need 90
/ 7.5 = 12 years.\nThe answer is 12.

Text B:
He makes $10.5 selling lemons each year because 7 x 1.5 = 10.5\nHe earns

$7.5 each year from the lemon tree because 10.5 - 3 = 7.5\nIt will
take 12 years to earn enough to pay off the tree because 90 / 7.5 =
12\nHe will make money in year 13 because 12 + 1 = 13.

Ground truth preferred text: Text B

Listing 4: APPS competition pairwise
Prompt
You are given an integer x of n digits a_1, a_2, \ldots, a_n,

which make up its decimal notation in order from left to right.

Also, you are given a positive integer $k < n$.

Let’s call integer b_1, b_2, \ldots, b_m beautiful if $b_i = b_{i+k}$
for each i, such that $1 \leq i \leq m - k$.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

You need to find the smallest beautiful integer y, such that $y \geq
x$.

-----Input-----

The first line of input contains two integers n, k ($2 \leq n \leq
200\,000, 1 \leq k < n$): the number of digits in x and k.

The next line of input contains n digits a_1, a_2, \ldots, a_n ($a_1
\neq 0$, $0 \leq a_i \leq 9$): digits of x.

-----Output-----

In the first line print one integer m: the number of digits in y.

In the next line print m digits b_1, b_2, \ldots, b_m ($b_1 \neq 0$,
$0 \leq b_i \leq 9$): digits of y.

-----Examples-----
Input
3 2
353

Output
3
353

Input
4 2
1234

Output
4
1313

Text A:
n, k = map(int, input().split())
x = list(map(int, list(input().strip())))
y = x[:k] * (n // k) + x[:n % k]
if y < x:

i = k - 1
while y[i] == 9:

y[i] = 0
i -= 1

y[i] += 1
y = y[:k] * (n // k) + y[:n % k]

print(n)
print(’’.join(map(str, y)))

Text B:
import sys
reader = (s.rstrip() for s in sys.stdin)
input = reader.__next__

n,k = list(map(int, input().split()))
a = list(map(int, input()))
b = a[:k]
c = [b[i%k] for i in range(n)]
if tuple(a)>tuple(c):

d = int("""".join(map(str, b)))
d += 1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

b = list(map(int, str(d)))
c = [b[i%k] for i in range(n)]

print(len(c))
print("""".join(map(str, c)))

Ground truth preferred text: Text B

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C PROMPTS

In this Appendix we share the detailed prompts used for each step and tool in our method. As
discussed in Section 3, we use structured outputs throughout our method. Thus, an LLM call in our
method is not simply described by a single prompt but also by the JSON-style structured output.
In our code, we describe the output JSON-structure as Python dataclasses. Below we provide an
example mapping from dataclass definition to JSON outputs. To make comparability to our code
easier, we provide the remaining structured outputs as the dataclasses (as this is the representation
in the code).

Listing 5: Example structured output as dataclass and JSON
Dataclass
class TextAssessment(BaseModel):

code_useful: bool = Field(
description="Whether text might benefit from running code."

)

JSON
{

’title’: ’TextAssessment’,
’description’: ’Assessment of a text.’,
’type’: ’object’,
’properties’: {

’code_useful’: {
’title’: ’Code Useful’,
’description’: ’Whether text might benefit from running

code.’,
’type’: ’boolean’

}
},
’required’: [’code_useful’]

}

C.1 STEP 1: INITIAL ASSESSMENT

During initial assessment, we decide what tools to execute. Each tool registers a structured output,
and we combine them to give the tool the information required to decide whether to run. Each tool
decides their own requirements.

Listing 6: Initial assessment prompt
struct_prompt = (

f"Assess the following text: {text}"
f"\nThe text is a response to the following context: {prompt}"

)

C.1.1 FACT-CHECKING

Listing 7: Initial assessment structured output
class FactCheckToolConfig:

contains_facts_desc: str = (
"Whether the text contains any facts that may be checked using a

web search."
)
is_like_wiki_desc: str = "Whether the response text could be from a

wiki page."
is_maths_desc: str = "Whether the text is a solution to any kind of

maths problem."
is_word_count_desc: str = "Whether the text is providing a word

count."
confidence_web_helps_desc: str = (

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

"Confidence that a websearch will help "
"correctly select the better response. "
"Integer between 0 (won’t help) and 5 "
"(will with absolute certainty help), 3 "
"would mean ’may help’."
"Consider whether there are facts present in "
"either response, and if (!) consider whether "
"these facts can be checked in a websearch. "
"For example a word count task can’t be checked "
"with a websearch, but the birthday of a celebrity "
"may be checked. "
"Remember that websearches do not help on maths problems."

)

class TextAssessment(BaseModel):
contains_facts: bool = Field(

description=FactCheckToolConfig.contains_facts_desc
)
is_like_wiki: bool = Field(

description=FactCheckToolConfig.is_like_wiki_desc, # check if
long-form factual text

)
is_maths: bool = Field(

description=FactCheckToolConfig.is_maths_desc,
)
is_wordcount: bool = Field(

description=FactCheckToolConfig.is_word_count_desc
)
confidence_websearch_will_help: int = Field(

description=FactCheckToolConfig.confidence_web_helps_desc
)

C.1.2 CODE-INTERPRETER

Listing 8: Initial assessment structured output
class TextAssessment(BaseModel):

code_useful: bool = Field(
description="Whether text might benefit from running code."

)

C.1.3 MATH-CHECKER

Listing 9: Initial assessment structured output
class TextAssessment(BaseModel):

math_question: bool = Field(
description="Whether the text involves math or arithmetic that

may benefit from careful checking."
)

C.2 STEP 2: TOOLS

After initial assessment, tools will be executed. Not all tools might be executed, this depends on the
initial asessment. Below are the prompts used in the tools themselves.

C.2.1 FACT-CHECKING

Listing 10: Tool execution prompt
1. We extract individual facts.
class AtomicFacts(BaseModel):

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

"""List of individual atomic facts that can be checked with a web
search."""

atomic_facts: list[str] = Field(
description="A list of separate individual facts."

)
prompt = (

f"Break down the following statement into separate individual
facts:\n\n{text}"

"\n Ignore things that cannot be verified in a web search."
)

2. We make them self-contained.
class SelfContainedFact(BaseModel):

"""A self contained fact."""

self_contained_fact: str = Field(
description="A self-contained fact that does not require

external information to be understood. Do not add additional
information that is not needed."

)
prompt = (

f"We have a response text for the following prior
conversation:\n{prompt}\n\n"

"You are given the following response "
f"context:\n\n{context}\n\nUse this context to make the following

statement "
f"self-contained (if necessary, otherwise return unchanged):{fact}"

)

3. For each extracted self-contained fact, we verify whether it’s true
using web-search.

class FactCheckingResult(BaseModel):
"""A self contained fact."""

reasoning: str = Field(
description="A short justification for the truthfulness verdict.

Max three sentences."
)
truthful: bool = Field(

description="Whether or not the fact is truthful. Must be true
or false."

)

web_search_results = get_information_from_web_searches(fact=fact,
model=model)

prompt = (
f"You have the following statement: {fact}\n"
"\nYou also have the following web search results:"
f"\n‘‘‘\n{web_search_results}\n‘‘‘"
"Is the truthfulness of the statement supported by these search

results? "
"Determine the truthfulness of the statement based on the shown

search results."
)

4. We finally create a list that is used for the final-assessment.
final_fact_str_list = []
for fact in processed_facts:

if fact["result"]["truthful"]:
final_fact_str_list.append("[green-check-emoji] " +

fact["contained"])
else:

final_fact_str_list.append("[red-cross-emoji] " +
fact["contained"])

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2.2 CODE-INTERPRETER

Listing 11: Tool execution prompt
assistant_instruction: str = (

"You are a coding expert. "
"Your goal is to evaluate whether code from a student is correct. "
"Write and run code to verify the provided answer to the prompt. "
"Think of unit tests to verify whether the code is correct. "
"Only report back whether the solution was correct. "
"Do not try to correct the code, they need to do that themselves."

)
content = f"For the prompt:\n‘‘‘{prompt}\n‘‘‘\nis the provided answer

correct?\n‘‘‘{text}\n‘‘‘"

C.2.3 MATH-CHECKER

Listing 12: Tool execution prompt
assistant_instruction: str = (

"You are a personal math tutor. "
"When asked a math question, write and execute code to validate

whether the provided answer is correct."
)
content = f"For the prompt:\n‘‘‘{prompt}\n‘‘‘\nis the provided answer

correct?\n‘‘‘{text}\n‘‘‘"

C.3 STEP 3: FINAL ASSESSMENT

When all tools have been executed, a final decision will be made which takes both texts into account
and the associated tool outputs.

Listing 13: Final assessment prompt
struct_prompt = (

f"Compare the following two texts and select the better text "
"according to the information provided:"
f"\n\n### text_a: {summary[’text_a’][’text’]}"
f"\n\n### text_b: {summary[’text_b’][’text’]}"
f"\nThe following tool output should also be taken into account:"
f"\n\n### tool_output for text_a:

{summary[’text_a’].get(’tool_output’, {})}"
f"\n\n### tool_output for text_b:

{summary[’text_b’].get(’tool_output’, {})}"
f"\nBoth texts were a response to the following context: {prompt}"

)

Listing 14: Final assessment structured output
class EvaluationResult(BaseModel):

reasoning: str = Field(
description="A short justification for selecting one text over

the other."
)
selected_text: Literal["text_a", "text_b"] = Field(

description="Selected text that is better than the other text.
Must be one of the following two strings: ’text_a’ or
’text_b’. Do not set as the selected text string itself."

)

22

	Introduction
	Problem: Pairwise Feedback on Complex Tasks
	Method: AI Annotators with Tools for External Validation
	Step 1: Initial domain assessment
	Step 2: Tool usage
	Step 3: Final assessment

	Experimental results
	Datasets
	Baseline annotators
	Results on target domains
	Long-form Fact-checking
	Math-checking
	Code-execution

	Results outside of target domains (out-of-domain)

	Related work
	Conclusion
	Adjacent domain results
	Dataset examples
	Prompts
	Step 1: Initial assessment
	Fact-checking
	Code-interpreter
	Math-checker

	Step 2: Tools
	Fact-checking
	Code-interpreter
	Math-checker

	Step 3: Final assessment

