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ABSTRACT

We propose HIGH-Avatar, a novel one-shot method that leverages a HIerarchical
representation for animatable 3D Gaussian Head reconstruction from a single im-
age. In contrast to existing approaches with a fixed number of Gaussians, our
method enables multi-LOD (Level-of-Detail) head avatar modeling using a uni-
fied model. To capture both global and local facial characteristics, we employ a
transformer-based architecture for global feature extraction and projection-based
sampling for local feature acquisition. These features are effectively fused under
the guidance of a depth buffer, ensuring occlusion plausibility. A coarse-to-fine
learning strategy is introduced to enhance training stability and improve the per-
ception of hierarchical details. To address the limitations of 3DMMs in modeling
non-head regions such as the shoulders, we introduce a multi-region decompo-
sition scheme, where the head and shoulders are predicted separately and then
integrated through cross-region combination. Extensive experiments demonstrate
that HIGH-Avatar outperforms state-of-the-art methods in terms of reconstruction
quality, reenactment performance, and computational efficiency.

1 INTRODUCTION

Reconstructing an animatable 3D head avatar from a single image is a crucial and rapidly evolving
research area in computer vision and graphics. This technology has great potential for applica-
tions across various domains, including the game and video production industries, virtual meetings,
and the emerging Metaverse. To facilitate the widespread adoption of this technology, several key
features are essential: high-efficiency reconstruction and inference, rich facial details, and precise
controllability over expressions and head poses. In recent years, numerous methods have been de-
veloped to tackle this task, which can be divided into 2D-based and 3D-based approaches.

Early 2D-based methods (Siarohin et al., 2019; Wang et al., 2021; Guo et al., 2024) predict deforma-
tion flows to warp the latent features of a source portrait and employ GANs (Generative Adversarial
Networks) (Goodfellow et al., 2014) to synthesize the reenacted output. With the rise of latent dif-
fusion models (Rombach et al., 2022), recent approaches (Tian et al., 2024; Jiang et al., 2024) have
adopted cross-attention mechanisms conditioned on driving signals, achieving superior image qual-
ity and better appearance preservation. However, both GAN-based and diffusion-based methods
require substantial computational resources, limiting their applicability in real-time scenarios. Fur-
thermore, due to the lack of 3D constraints, these approaches often struggle to maintain multi-view
consistency under large pose or viewpoint variations.

In the 3D avatar domain, NeRF and Gaussian Splatting have emerged as prominent approaches
due to their high-quality representation and rendering capabilities. Compared to NeRF-based meth-
ods (Bai et al., 2023a; Gafni et al., 2021; Ki et al., 2024; Li et al., 2023a; Ma et al., 2023; Park
et al., 2021a; Yu et al., 2023; Zheng et al., 2023), 3D Gaussian Splatting has become the prevailing
choice owing to its significantly fast rendering speed. Unlike early Gaussian-based approaches (Xu
et al., 2024b; Wu et al., 2024; Tang et al., 2025) that require extensive per-individual optimiza-
tion, recent methods like GAGAvatar (Chu & Harada, 2024) and LAM (He et al., 2025) propose
a one-shot head avatar reconstruction framework, improving generalization capabilities. Despite
these advancements, key challenges persist in scalability, efficiency, and modeling completeness.
For instance, GAGAvatar primarily utilizes Gaussian points sampled from the image plane, which
makes it less of a true 3D head model. Additionally, many of these Gaussian points correspond

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to background regions, leading to redundancy and inefficiency. Conversely, LAM adopts subdi-
vided FLAME vertices as queries for image features extraction via a cross-attention mechanism, but
its computational complexity grows exponentially with subdivision times, limiting its scalability.
Moreover, its performance degrades sharply as the number of points decreases, making it unsuitable
for level-of-detail (LOD) rendering. Lastly, the reliance on the FLAME head model constrains its
representation ability for non-head areas, such as shoulders.

To address these challenges, we propose a novel one-shot method for generating 3D Gaussian head
avatars with hierarchical representation. Rather than performing 2D-to-3D feature mapping on high-
resolution meshes, which is computationally expensive, our approach extracts both global and local
features from low-resolution meshes and progressively refines them to high-resolution representa-
tions through subdivision operations during the training phase, this also enables dynamic multi-LOD
rendering at runtime. By leveraging an effective occlusion-aware feature fusion mechanism, our
model delivers superior reconstruction quality while significantly reducing computational cost and
the number of Gaussians compared to existing methods. Additionally, to improve representation in
non-head regions, we independently model the head and shoulders based on shared features, greatly
improving the completeness of the generated avatars.

The main contributions of our work are summarized as follows:

• We present a novel hierarchical framework for one-shot Gaussian head modeling, enabling
dynamic multi-LOD rendering while achieving superior reconstruction quality and infer-
ence speed with significantly reduced computational cost and less number of Gaussians.

• To better capture facial details and improve training efficiency, we propose a coarse-to-
fine learning strategy that progressively refines both transformer-based global features
and projection-sampled local features through multi-level subdivisions, followed by an
occlusion-aware feature fusion mechanism guided by the depth buffer.

• We propose a multi-region decomposition scheme to model heads and shoulders separately,
significantly enhancing the fidelity and completeness of generated avatars.

2 RELATED WORK

2D Talking Head Generation Early 2D approaches (Zakharov et al., 2019; Burkov et al., 2020;
Zhou et al., 2021; Wang et al., 2023) employ generative adversarial networks (GANs) (Goodfellow
et al., 2014; Isola et al., 2017; Karras et al., 2020) and incorporate driving expression features for
controllable portrait synthesis. Subsequent methods (Siarohin et al., 2019; Ren et al., 2021; Droby-
shev et al., 2022; Hong et al., 2022; Zhang et al., 2023; Guo et al., 2024) adopt deformation-based
frameworks, representing expressions and poses as warping fields to deform the source image. Re-
cent diffusion-based approaches (Cui et al., 2024; Tian et al., 2024; Xu et al., 2024a) further improve
visual quality and temporal coherence, but their high computational cost limits real-time perfor-
mance. Despite these advances, 2D methods struggle with large pose and expression variations due
to a lack of 3D awareness. To address this, some (Nef, 1999; Paysan et al., 2009; Li et al., 2017;
Gerig et al., 2018) integrate 3D Morphable Models (3DMMs) into 2D pipelines, but they still lack
support for viewpoint control and free-viewpoint rendering.

3D Head Avatar Generation Traditional 3D head avatars typically rely on 3D Morphable Models
(3DMMs) for mesh reconstruction (Xu et al., 2020; Khakhulin et al., 2022), which often fail to
capture fine geometric details. In contrast, NeRF-based approaches (Kirschstein et al., 2023; Athar
et al., 2022; Bai et al., 2023b; Gafni et al., 2021; Gao et al., 2022; Guo et al., 2021; Ki et al., 2024;
Park et al., 2021a;b; Tretschk et al., 2021; Zhang et al., 2024; Zhao et al., 2023; Zheng et al., 2023;
Zielonka et al., 2023) have significantly improved reconstruction accuracy and detail representation,
and several efficient one-shot NeRF methods have also been proposed (Yu et al., 2023; Li et al.,
2023a; Yang et al., 2024; Chu et al., 2024; Ma et al., 2024). However, these NeRF-based methods
still face challenges in achieving real-time rendering performance. This limitation is addressed by
3D Gaussian Splatting (Kerbl et al., 2023), which offers faster rendering while maintaining high
visual quality. Unlike earlier Gaussian-based methods (Xu et al., 2024b; Wu et al., 2024; Tang et al.,
2025) that rely on extensive individual-specific optimization, recent works such as GAGAvatar (Chu
& Harada, 2024) and LAM (He et al., 2025) propose one-shot reconstruction frameworks for head
avatars. However, these methods still face challenges such as inefficient and redundant Gaussian
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Figure 1: The overall pipeline of HIGH-Avatar framework. Our method extracts global features via
cross-attention and local details via projection-based sampling, which are fused under the guidance
of depth buffers. A coarse-to-fine strategy is proposed to facilitate hierarchical detail perception. The
head and shoulder are predicted separately using shared features and then combined for rendering.

utilization, excessive computational demands, and incomplete head representation, which we aim to
address in this paper.

Hierarchical Gaussian Representation The hierarchical representation has been widely applied
for efficiently modeling multi-scale or structured data. HiSplat (Tang et al., 2024) introduces a
hierarchical Gaussian splatting framework for sparse-view reconstruction, utilizing coarse-grained
Gaussians for large-scale structures and fine-grained Gaussians for texture details. Dongye et al.
(2024) integrates LOD into Gaussian avatars via hierarchical embedding, achieving a balance be-
tween visual quality and computational costs. Teotia et al. (2024) takes a hierarchical representation
to capture the complex dynamics of facial expressions and head movements. In our work, we employ
hierarchical representation to support efficient modeling and dynamic LOD rendering at runtime.

3 METHOD

Figure 1 illustrates the overall pipeline of our method. Given a source image, we first extract both
local and identity features using DINOv2 (Oquab et al., 2023) and estimate the 3D head mesh
via a 3DMM modeler. The Hierarchical Projection-based Feature Sampling (HPFS) module then
projects the head mesh onto the image plane to sample local features at corresponding coordinates.
Concurrently, the global feature is obtained through cross-attention, where FLAME positional em-
beddings serve as queries. Subsequently, the Occlusion-Aware Feature Fusion(OAFF) module fuses
the global and local features under the guidance of depth buffers, ensuring spatial coherence and oc-
clusion plausibility. Features from non-head regions are further integrated with head-related features
to jointly predict Gaussian attributes for splatting rendering. Finally, a neural renderer generates a
refined output image based on the coarse splatted feature maps. During training, we progressively
subdivide the meshes along with their corresponding features, enabling the network to capture hier-
archical details in a coarse-to-fine manner, which enhances both training stability and reconstruction
accuracy. The details of each module are explained in the subsequent sections.

3.1 HIERARCHICAL GLOBAL-LOCAL FEATURE EXTRACTION

For the task of generating a 3D head model from a single image, the core objective is to establish a
2D-to-3D feature mapping mechanism that transforms image features into 3D spatial features. To
incorporate statistical priors on head geometry, we employ the FLAME (Li et al., 2017) model as
the 3D head representation, which comprises N0 = 5023 vertices. We leverage DINOv2 (Oquab
et al., 2023) to extract both local features Flocal and identity features Fid from the source image
Is following Chu & Harada (2024). For the Fid, we assign a learnable positional encoding to each
vertex of FLAME as a query, and employ multiple cross-attention blocks to extract global features
FGS0

global. The FGS0

global is then used to predict vertex offsets via a MLP Φoffset to improve the precision

3
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Input Image Head Points Shoulder PointsSub #0 Sub #1 Sub #2 Side View of Sub #2

Figure 2: As the subdivision level increases, the resolution of head meshes and features are progres-
sively refined. The Gaussians for the head and shoulders are predicted separately and integrated via
cross-region combination. The head Gaussian counts for Sub #0, Sub #1, and Sub #2 are 5K, 20K,
and 80K, respectively. See Table 5 in the appendix for more details.

of the estimated head mesh Tp via 3DMM modeler:

Tp(β⃗, θ⃗, ψ⃗) = T +BS(β⃗;S) +BP (θ⃗;P ) +BE(ψ⃗;E) + Φoffset(F
GS0

global) (1)

where T is the template mesh, and BS , BP and BE represent shape, pose, and expression blend-
shapes respectively. The initial head vertices V0 are obtained using a standard skinning function
W :

V0 =W (Tp(β⃗, θ⃗, ψ⃗),J(β⃗), θ⃗,W) (2)
where W rotates the morphed mesh Tp around joints J and smooths it using blendweights W . We
project V0 into the image space to obtain the corresponding pixel coordinates for each vertex, and
perform look-up sampling on Flocal to extract per-vertex features, denoted as FGS0

local. As noted in
LAM (He et al., 2025), the original number of V0 is insufficient for detailed modeling, so we in-
troduce a coarse-to-fine strategy that progressively subdivides the mesh Vk and its associated global
features FGSk

global during training:

F
GSk+1

global , Vk+1 = ∆(Φk(F
GSk

global), Vk), 0 ≤ k ≤ K (3)

where ∆ denotes the mesh subdivision operation, Φk is an MLP network, and k indicates the subdi-
vision level. With the refined vertices Vk, the corresponding local feature can be obtained as:

FGSk

local = Sampling(P(Vk), Flocal), 0 ≤ k ≤ K (4)

where P is the camera projective transformation. As k increases, the resolution of head meshes and
features are continuously refined. Figure 2 shows the subdivided vertices. To balance quality and
efficiency, we set the maximum subdivision level to K = 2, resulting in 79, 936 vertices.

Notably, unlike LAM which performs costly cross-attention across all 80K vertices, our method
computes cross-attention at the initial level withN0 = 5K vertices. High-resolution geometry is then
incrementally refined through efficient subdivision and sampling, significantly reducing computa-
tional and memory costs while maintaining reconstruction quality.

3.2 OCCLUSION-AWARE FEATURE FUSION

Once hierarchical global and local features are extracted, we propose an occlusion-aware fusion
strategy guided by the depth buffer to ensure robust feature integration. During the rasterization of
the 3D mesh, occlusion culling is applied to invisible vertices. Consequently, local features sampled
via projection are accurate for visible vertices but may be ambiguous for occluded ones, as their
corresponding 2D image features are absent. On the other hand, the global features contain high-
level semantic information from the input image, allowing them to infer plausible representations for
occluded regions but lacking high-frequency details. Building upon this observation, we leverage
the depth buffer to identify and retain only high-confidence local features from visible vertices,
selectively fusing them with global features. Specifically, when each vertex is projected into the
image space, its depth value is compared with the depth buffer at the corresponding pixel location.
Based on this comparison, a binary visibility mask MGSk ∈ {0, 1}Nk is constructed. Formally, for
each vertex vi ∈ Vk, let zi be its depth in camera space, and ẑi be the depth value recorded in the
depth buffer. The mask MGSk ∈ {0, 1}Nk is defined as:

MGSk
i =

{
1, if zi = ẑi
0, if zi > ẑi

, ∀ i = 1, 2, . . . , Nk (5)

4
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Here, MGSk
i = 1 indicates that the vertex vi is visible, while MGSk

i = 0 identifies occluded vertices.
The final fused head feature FGSk

h is computed as:

FGSk

h = FGSk

global + FGSk

local ⊙MGSk , 0 ≤ k ≤ K (6)

By effectively combining the strengths of global and local features, we achieve a more robust repre-
sentation of the head vertices. A set of MLPs Φ are then employed to regress the Gaussian attributes
for each head vertex, including color ch, opacity oh, scale sh, and rotation rh:

ch, oh, sh, rh = Φc,o,s,r(F
GSK

h ) (7)

The positions ph are directly derived from the subdivided mesh VK , resulting in a full set of Gaussian
parameters H that describe the head model:

H = {ch, oh, sh, rh, ph = VK} (8)

3.3 MULTI-REGION MODELING AND INTEGRATION

The FLAME model lacks sufficient vertex coverage in the shoulder region, resulting in coarse and
blurry reconstructions in prior methods. To address this limitation, inspired by Wu et al. (2024),
we perform image segmentation on the source image to obtain a shoulder mask Ms. The extracted
local features Flocal are passed through a convolutional neural network to generate a feature plane,
where separate channels encode the Gaussian rendering attributes. The shoulder-relevant region is
then isolated using the mask, obtaining the corresponding parameters as follows:

cs, os, ss, rs, Os = Flatten(Conv(FGS
local)⊙Ms) (9)

where Os represents the offset for shoulder points. For position estimation, we generate the 3D
shoulder points p̂s on an image-aligned plane in world space based on the given camera transforma-
tion and feature plane resolution. These points are paired with their corresponding direction vectors
ns. The final shoulder points are then calculated as:

S = {cs, os, ss, rs, ps = p̂s +Os · ns} (10)

Finally, we concatenate the head and shoulder parameter sets along the attribute dimensions to form
a complete Gaussian parameter set G that covers both head and shoulder regions:

G = H⊕ S (11)

3.4 REENACTMENT AND RENDERING

After reconstructing the Gaussian head avatar G, our framework enables efficient reenactment, al-
lowing the model to mimic facial expressions and head movements observed in a target video. As
shown in Figure 1, given a driving image Id, the expression and pose parameters are extracted using
a 3DMM estimator. These driving parameters are then combined with the identity-related param-
eters derived from Is to generate novel FLAME vertices. The FLAME vertices are further refined
via subdivisions, resulting in the final head positions ph used for Gaussian rendering. Notably, the
reenactment process only needs to update the positional component ph in the Gaussian parame-
ter set G (the red dashed line in Figure 1), enabling real-time rendering of avatar animations. To
enhance the expressiveness of the Gaussian representation, we adopt a rendering pipeline inspired
by Chu & Harada (2024). Specifically, instead of rendering RGB values, we predict multi-channel
feature maps, where the first three channels encode a coarse RGB image Ic. The feature maps are
subsequently refined by a UNet-based neural refiner to produce the final high-quality output Ir.

3.5 LEARNING STRATEGY

The training process is conducted on a large-scale human video dataset in a self-supervised manner.
For each video, we randomly sample two frames and assign one as the source image Is and the
other as the driving image Id. The objective is to train the network to generate an output image that
closely resembles the driving image in both appearance and motion.

To achieve this, we employ a multi-component loss function, combining L2 loss, SSIM loss, and
perceptual loss, applied to both the coarse and refined output images. Additionally, to constrain the
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displacement of FLAME model vertices, we impose a regularization term on the vertex offsets. The
total loss is defined as:

L = λ1L2(Id, Ic&Ir) + λ2LSSIM(Id, Ic&Ir) + λ3Lpercep(Id, Ic&Ir) + λ4Lreg (12)
where L(A,B&C) denotes L(A,B) + L(A,C), L2, LSSIM, and Lpercep are computed on both the
Ic and refined Ir, and Lreg = ∥offset∥2 penalizes large vertex displacements.

4 EXPERIMENT

4.1 DATASETS AND SETTINGS

Datasets. Our model is trained on the VFHQ (Xie et al., 2022) dataset, which contains video clips
from a variety of interview scenarios. To ensure temporal diversity, we uniformly sample frames
from each video following previous works (Chu & Harada, 2024; He et al., 2025), leading to a total
of 766, 263 frames across 15, 204 video clips. All images are cropped to focus on the head re-
gion, resized to 512× 512 pixels for consistency, and further processed with camera pose tracking,
FLAME parameter estimation, and background removal as described in prior works (Chu & Harada,
2024; Chu et al., 2024). For evaluation, we adopt the official test split of the VFHQ dataset, compris-
ing 2, 500 frames from 50 videos. The first frame of each video is used as the source image, while
the remaining frames serve as driving and target images for reenactment. Additionally, we validate
our method on the HDTF dataset (Zhang et al., 2021) using the standard test split introduced in Ma
et al. (2023) and Li et al. (2023b), which includes 19 video sequences.

Implementation Details. Our transformer network for extracting global features consists of two
decoder layers, each with 8 attention heads. The dimension of the FLAME positional encoding is
set to 256. Rather than relying on an external semantic segmentation model, we derive the shoulder
region mask by calculating the difference between the portrait mask at the bottom of the image and
the depth buffer mask in a straightforward manner. The average number of Gaussian points in the
shoulder region is 9K (see Table 5 in the appendix). During training, the weights of the DINOv2
and 3DMM estimator modules are frozen. We train the entire model on a single NVIDIA A100
GPU for 6 epochs using the Adam optimizer with a learning rate of 1× 10−4 and a batch size of 8.
The subdivide levels are gradually increased based on the training stage. We set the loss parameters
λ1 = 10, λ2 = 1, and λ3 = λ4 = 0.1. More details are provided in the appendix B.

Evaluation Metrics. To comprehensively evaluate the performance of both self- and cross-identity
reenactment, we employ a multi-faceted assessment framework that incorporates a variety of quan-
titative metrics. For self-reenactment scenarios where ground-truth data is available, we assess the
quality of generated images using three widely adopted objective measures: Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018). These metrics provide reliable comparisons between synthesized out-
puts and reference ground-truth images. To evaluate identity preservation, we compute the cosine
distance between face recognition features extracted from the source and reenacted images, follow-
ing the methodology proposed in Deng et al. (2019a). For assessing the accuracy of expression and
pose transfer, we utilize a 3D Morphable Model (3DMM) estimator (Deng et al., 2019b) to calculate
the Average Expression Distance (AED) and Average Pose Distance (APD). Additionally, we use
facial landmark detection (Bulat & Tzimiropoulos, 2017) to measure the Average Keypoint Distance
(AKD), which provides further insight into the precision of motion control during animation. In the
case of cross-identity reenactment, where ground-truth data is not available, we adopt an evalua-
tion protocol based on Consistency of Identity Similarity (CSIM), AED, and APD—metrics aligned
with those used in recent studies (Chu & Harada, 2024; He et al., 2025). This ensures comparability
across different methods and enables meaningful analysis.

4.2 BASELINE METHODS

We conduct a comprehensive comparison between our method and state-of-the-art 3D avatar ap-
proaches, including ROME (Khakhulin et al., 2022), StyleHeat (Yin et al., 2022), OTAvatar (Ma
et al., 2023), HideNeRF (Li et al., 2023a), GOHA (Li et al., 2023b), CVTHead (Ma et al., 2024),
GPAvatar (Chu et al., 2024), Real3DPortrait (Ye et al., 2024), Portrait4D (Deng et al., 2024a),
Portrait4D-v2 (Deng et al., 2024b), GAGAvatar (Chu & Harada, 2024), and LAM (He et al., 2025).
For each baseline, we utilize its official implementation to produce results.
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Source Driven GPAvatar Real3DPortrait Portrait4D Portrait4Dv2 GAGAvatar LAM Ours (Sub#1)Ours (Sub#2)

Figure 3: Cross-identity reenactment results on VFHQ and HDTF datasets.

4.3 QUALITATIVE EVALUATION

We compare our method with baseline approaches on the VFHQ and HDTF datasets, the visual
results are presented in Figure 3. Our method demonstrates superior performance over existing ap-
proaches in terms of reconstruction detail, identity preservation, and reenactment consistency. Com-
pared with recently Gaussian-based works, our approach outperforms He et al. (2025) in capturing
facial details (e.g., the mouth) and expression-dependent dynamic textures (e.g., forehead wrinkles)
thanks to the hierarchical presentation and neural rendering strategy. Additionally, we achieve higher
reconstruction quality than Chu & Harada (2024) while using significantly fewer Gaussian points. In
contrast to the unrealistic tilt and blur in the shoulder region observed in He et al. (2025) and Chu &
Harada (2024), our multi-region modeling strategy effectively improves the quality of the shoulder
area. Moreover, our low-resolution results (Sub #1 with ∼29K Gaussian points) shown in the last
column of Figure 3 maintain comparable visual quality, making them well-suited for deployment in
high-speed applications or on hardware with limited computational resources.

4.4 QUANTITATIVE EVALUATION

We report the quantitative results in Table 1 and Table 2. Our method (Sub #2) outperforms existing
approaches across all reconstruction metrics (PSNR, SSIM, and LPIPS), as well as identity, ex-
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Table 1: Quantitative results on the VFHQ dataset. The first , second , and third best-
performing methods are highlighted. The Sub # indicates the subdivision level for inference.

Method Self Reenactment Cross Reenactment
PSNR↑ SSIM↑ LPIPS↓ CSIM↑ AED↓ APD↓ AKD↓ CSIM↑ AED↓ APD↓

StyleHeat 19.95 0.726 0.211 0.537 0.199 0.385 7.659 0.407 0.279 0.551
ROME 19.96 0.786 0.192 0.701 0.138 0.186 4.986 0.530 0.259 0.277
OTAvatar 17.65 0.563 0.294 0.465 0.234 0.545 18.19 0.364 0.324 0.678
HideNeRF 19.79 0.768 0.180 0.787 0.143 0.361 7.254 0.514 0.277 0.527
GOHA 20.15 0.770 0.149 0.664 0.176 0.173 6.272 0.518 0.274 0.261
CVTHead 18.43 0.706 0.317 0.504 0.186 0.224 5.678 0.374 0.261 0.311
GPAvatar 21.04 0.807 0.150 0.772 0.132 0.189 4.226 0.564 0.255 0.328
Real3DPortrait 20.88 0.780 0.154 0.801 0.150 0.268 5.971 0.663 0.296 0.411
Portrait4D 20.35 0.741 0.191 0.765 0.144 0.205 4.854 0.596 0.286 0.258
Portrait4D-v2 21.34 0.791 0.144 0.803 0.117 0.187 3.749 0.656 0.286 0.273
GAGAvatar 21.83 0.818 0.122 0.816 0.111 0.135 3.349 0.633 0.253 0.247
LAM 22.65 0.829 0.109 0.822 0.102 0.134 2.059 0.651 0.250 0.356

Ours (Sub #2) 22.72 0.831 0.091 0.869 0.088 0.111 2.045 0.660 0.235 0.257
Ours (Sub #1) 22.68 0.830 0.094 0.858 0.089 0.112 2.055 0.644 0.233 0.260
Ours (Sub #0) 22.18 0.817 0.102 0.855 0.134 0.142 2.790 0.616 0.254 0.279

Table 2: Quantitative results on the HDTF dataset.

Method Self Reenactment Cross Reenactment
PSNR↑ SSIM↑ LPIPS↓ CSIM↑ AED↓ APD↓ AKD↓ CSIM↑ AED↓ APD↓

StyleHeat 21.41 0.785 0.155 0.657 0.158 0.162 4.585 0.632 0.271 0.239
ROME 20.51 0.803 0.145 0.738 0.133 0.123 4.763 0.726 0.268 0.191
OTAvatar 20.52 0.696 0.166 0.662 0.180 0.170 8.295 0.643 0.292 0.222
HideNeRF 21.08 0.811 0.117 0.858 0.120 0.247 5.837 0.843 0.276 0.288
GOHA 21.31 0.807 0.113 0.725 0.162 0.117 6.332 0.735 0.277 0.136
CVTHead 20.08 0.762 0.179 0.608 0.169 0.138 4.585 0.591 0.242 0.203
GPAvatar 23.06 0.855 0.104 0.855 0.114 0.135 3.293 0.842 0.268 0.219
Real3DPortrait 22.82 0.835 0.103 0.851 0.138 0.137 4.640 0.903 0.299 0.238
Portrait4D 20.81 0.786 0.137 0.810 0.134 0.131 4.151 0.793 0.291 0.240
Portrait4D-v2 22.87 0.860 0.105 0.860 0.111 0.111 3.292 0.857 0.262 0.183
GAGAvatar 23.13 0.863 0.103 0.862 0.110 0.111 2.985 0.851 0.231 0.181
LAM 23.43 0.873 0.097 0.865 0.101 0.093 1.965 0.849 0.230 0.229

Ours (Sub #2) 24.14 0.875 0.061 0.943 0.080 0.064 1.806 0.886 0.226 0.155
Ours (Sub #1) 24.06 0.874 0.063 0.937 0.081 0.066 1.834 0.881 0.227 0.155
Ours (Sub #0) 23.85 0.868 0.067 0.942 0.121 0.085 2.381 0.872 0.246 0.156

pression, and pose consistency. Remarkably, our low-resolution LOD Sub #1 surpasses LAM (80K
Gaussians) and GAGAvatar (180K Gaussians) on both datasets using only 29K Gaussian points,
demonstrating the effectiveness of our hierarchical feature extraction and fusion strategy. Further
information can be found in Figure 8 of the appendix.

We further report the inference efficiency in Table 3. Our method achieves an inference speed of 85
FPS on an A100 GPU and 126 FPS on the consumer-grade RTX 4090 GPU, using the native PyTorch
framework and the official implementation of 3D Gaussian Splatting. Compared to existing neural-
rendering-based methods, our approach attains the highest inference speed. Moreover, our method
outperforms LAM (280 FPS on A100 GPU without neural rendering) in terms of geometric details
and dynamic textures, achieving an optimal balance between efficiency and visual quality.

4.5 ABLATION STUDIES

Subdivision Times. To evaluate the effect of subdivision levels, we compare the results of our
model with varying subdivision levels. The visual results are presented in Figure 5. Our obser-
vations indicate that higher subdivision levels capture more high-frequency details, such as hair
and wrinkles, leading to improved reconstruction quality. Quantitative comparisons are provided
in Table 1 and Table 2, which further validate this trend. Additionally, increasing the number of
subdivisions enhances the reconstruction quality at the cost of reduced inference speed, as shown in
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Table 3: The reenactment speed of neural-rendering-based methods measured in FPS, averaged over
100 frames. Driving parameters estimation time is excluded as they can be precomputed.

A100 GPU RTX 4090 GPU
Methods StyleHeat ROME HideNeRF CVTHead Real3D P4D-v2 GAGavatar Ours (Sub #2) Sub #2 Sub #1 Sub #0

FPS 19.82 11.21 9.73 18.09 4.55 9.62 67.12 85.94 126.44 148.04 152.57

Source Driven (GT)

w/o Neural Refinerw/o OAFF w/o Shoulder Ours (Sub #2)

Sub #0 Sub #1

Table 4: Ablation results on the VFHQ dataset.

Methods PSNR↑ SSIM↑ LPIPS↓ CSIM↑
w/o OAFF 21.21 0.802 0.128 0.429
w/o Refiner 21.42 0.809 0.115 0.842
w/o Shoulder 22.42 0.828 0.099 0.867

Ours 22.72 0.831 0.091 0.869

Figure 5: Our local-global feature fusion (OAFF) and multi-region fusion strategy significantly im-
prove identity consistency and completeness in non-head regions. The neural refiner further boosts
visual fidelity, especially for dynamic facial expressions.

Table 3. Notably, even our low-resolution LOD demonstrates competitive performance compared to
existing methods, highlighting the effectiveness of our framework.

Local-Global and Multi-Region Feature Fusion. We conduct an ablation study by removing the
global-local feature fusion in the OAFF module and using only global features. As shown in Figure 5
and Table 4, the absence of sampled local features significantly impacts identity consistency. Fur-
thermore, when the shoulder region is excluded during rendering, the results display an incomplete
and blurry appearance of the shoulder, as illustrated in Figure 5.

Neural Rendering. We evaluate the effectiveness of the neural refiner module. As shown in Table 4,
the neural refiner contributes to improvements in both visual fidelity and identity consistency. The
last two images in Figure 5 further demonstrate that the neural refiner enhances fine details such as
teeth and plays a key role in capturing expression-dependent features, including forehead wrinkles
during eyebrow raising.

5 CONCLUSION

In this paper, we present a novel hierarchical framework for Gaussian head avatar reconstruction in
a feed-forward manner. Our method enables dynamic level-of-detail (LOD) rendering at runtime,
offering flexibility to accommodate varying device capabilities and inference speed requirements.
Our model exhibits superior reconstruction and reenactment performance with significantly reduced
computational cost. This is achieved by an efficient multi-level global and local feature extraction
and a coarse-to-fine refinement strategy, as well as an occlusion-aware fusion mechanism. Moreover,
our multi-region modeling scheme effectively enhances the visual fidelity of shoulder areas. Exten-
sive experiments on two public datasets demonstrate that our approach outperforms state-of-the-art
methods in terms of reconstruction quality, reenactment performance, and computational efficiency.

Limitations and Future Work. Despite achieving strong results, our approach has two main lim-
itations. First, the 3D Gaussian head model relies on the FLAME prior and accurate 3D mor-
phable model (3DMM) tracking. However, FLAME does not capture fine facial dynamics—such
as tongue motion, hair deformation, and subtle expressions—limiting the expressiveness of the gen-
erated avatars. Second, training solely on monocular videos reduces robustness to large viewpoint
changes, leading to appearance inconsistencies and identity drift when the driving and source views
differ significantly. To address these issues, we plan to incorporate multi-view datasets for training,
which will enhance spatial understanding and improve robustness across varying viewpoints.
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6 REPRODUCIBILITY STATEMENT

We provide the code in the supplementary material. Our implementation partially builds upon
FLAME and GAGAvatar, and we sincerely appreciate the authors for sharing their valuable re-
sources. To ensure anonymity during submission, we have temporarily removed the header com-
ments from certain code files, which will be included in the final public release. In the appendix B,
we provide further details on the model implementation and data preprocessing pipeline.

7 ETHICAL DISCUSSION

Our method enables high-fidelity, animatable 3D head avatar generation with potential applications
in video production, digital communication, and other domains. However, like other advanced gen-
erative models, it could be misused to create deceptive or non-consensual synthetic content (com-
monly known as ”deepfakes”) that may mislead, manipulate, or infringe on personal privacy. We
firmly oppose such misuse and emphasize that our work is intended solely for legitimate, consent-
based applications. To mitigate potential risks, we propose the following safeguards:

Figure 6: Visible watermarks will be embedded in all generated images and videos, clearly indicat-
ing that the content is AI-generated.

• Visible and invisible watermarking. We integrate visible watermarking mechanisms into
our released code, as shown in Figure 6. Visible watermarks will be embedded in all
generated images and videos, clearly indicating that the content is AI-generated, enabling
viewers to easily distinguish synthetic media from authentic recordings. In addition, we
plan to adopt robust invisible watermarking techniques (Tancik et al., 2020) that embed
and reliably decode arbitrary data (e.g., hyperlinks) in a perceptually invisible manner,
while remaining resilient to real-world distortions such as compression, printing, and re-
photography. These watermarks are designed to be difficult to remove without degrading
visual quality.

• Strict licensing. Our code and models will be released under a restrictive license that pro-
hibits the creation of avatars based on real individuals without explicit consent, particularly
for commercial purposes. The license further restricts usage to ethical and non-deceptive
applications, and any violation can be traced through the embedded watermarking system.

To summarize, while our method advances the state of animatable head generation, we acknowledge
its dual-use potential. Through technical measures like watermarking and policy-level controls via
licensing, we aim to minimize the risk of abuse. As technology developers, we have the responsibil-
ity to build safeguards into our systems. However, preventing misuse requires broader efforts, from
platform policies, legal frameworks, and user awareness. We call on researchers, developers, and
content creators to exercise ethical judgment and social responsibility when deploying generative
avatar systems. With appropriate oversight and responsible use, our work can contribute positively
to immersive communication and other beneficial applications.
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Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. First order
motion model for image animation. Advances in neural information processing systems, 32, 2019.

Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical pho-
tographs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 2117–2126, 2020.

Jiapeng Tang, Davide Davoli, Tobias Kirschstein, Liam Schoneveld, and Matthias Niessner. Gaf:
Gaussian avatar reconstruction from monocular videos via multi-view diffusion. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 5546–5558, 2025.

Shengji Tang, Weicai Ye, Peng Ye, Weihao Lin, Yang Zhou, Tao Chen, and Wanli Ouyang. Hisplat:
Hierarchical 3d gaussian splatting for generalizable sparse-view reconstruction. arXiv preprint
arXiv:2410.06245, 2024.

Kartik Teotia, Hyeongwoo Kim, Pablo Garrido, Marc Habermann, Mohamed Elgharib, and Chris-
tian Theobalt. Gaussianheads: End-to-end learning of drivable gaussian head avatars from coarse-
to-fine representations. ACM Transactions on Graphics (TOG), 43(6):1–12, 2024.

Linrui Tian, Qi Wang, Bang Zhang, and Liefeng Bo. Emo: Emote portrait alive generating ex-
pressive portrait videos with audio2video diffusion model under weak conditions. In European
Conference on Computer Vision, pp. 244–260, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and
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A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Throughout the paper writing process, we leveraged advanced language models such as GPT-5 as
auxiliary tools to assist with language refinement, grammar correction, and stylistic improvement.
These tools were primarily used to enhance the clarity, fluency, and readability of the written content.
However, it is important to emphasize that all research ideas, methodologies, experimental designs,
and analyses presented in this work were independently conceived, developed, and executed by the
research team. The use of AI-assisted tools was strictly limited to post-writing refinement and did
not influence the originality or intellectual contribution of the study.

B REPRODUCIBILITY DETAILS

B.1 DATASET PROCESSING

We construct our training and testing datasets by uniformly sampling frames from the videos in the
VFHQ dataset. Specifically, we use 15, 204 video clips for training and 50 clips for testing. For
the training set, we sample a number of frames N per clip based on the video length, following the
strategy proposed in Chu & Harada (2024):

• N = 25 if the video length is less than 200 frames,

• N = 50 if the video length is between 200 and 300 frames,

• N = 75 if the video length exceeds 300 frames.

This results in a total of 766, 263 training frames. For testing, we sample N = 50 frames per video,
yielding 2, 500 test frames in total.

To evaluate the generalization ability of our model, we directly test it on the HDTF dataset using
weights trained on the VFHQ dataset. We follow the dataset split setting from Ma et al. (2023), and
uniformly sample 100 frames per video, resulting in a total of 1, 900 frames for evaluation.

B.2 MORE IMPLEMENTATION DETAILS

We utilize a frozen DINOv2 model to extract both local and identity features from an input im-
age.The local feature has a size of 256× 296× 296, while the identity feature is of size 1369× 768.
The original FLAME mesh contains 5, 023 vertices, and its positional encoding has a size of 5,
023 × 256. After passing through a two-layer Transformer, we obtain a global feature map with
dimensions 5, 023 × 256. Subdividing the global feature results in hierarchical representations at
level 1 and level 2, with sizes of 20, 018 × 256 and 79, 936 × 256, respectively. The first dimension
of these features corresponds to the number of vertices at each subdivision level. For the shoulder
regions, we compute its mask by taking the difference between the bottom quarter of the portrait
mask and the depth buffer mask, as shown in Figure 7.

During training, the number of subdivisions is progressively increased according to the training
progress. Specifically, no subdivision is applied in the early phase (≤ 10% of total iterations), one
level is used in the intermediate phase (10%–30%), and a random strategy with a bias towards 2
(70% for 2, 20% for 1, and 10% for 0) in the later stage. The model is trained for 6 epochs on
a single NVIDIA A100 GPU using the Adam optimizer and a linear learning rate decay schedule,
with an initial learning rate of 1× 10−4 and a batch size of 8.

C MESH SUBDIVISION

We apply the Loop subdivision algorithm (LOOP, 1987) to perform mesh subdivision on the
FLAME model, utilizing its implementation in PyTorch3D. The Loop subdivision algorithm refines
a triangle mesh by introducing a new vertex at the midpoint of each edge and dividing each triangu-
lar face into four smaller triangles. Additionally, vertex attribute vectors (e.g., FGS

global in Equation 3
) are subdivided by averaging the attribute values of the two vertices that form each edge.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Input Image Portrait Mask Depth Buffer Depth Buffer Mask Shoulder Mask

Figure 7: Instead of relying on an external semantic segmentation model, we derive the shoulder
region mask by calculating the difference between the portrait mask at the bottom of the image and
the depth buffer mask.

In Table 5, we present the number of Gaussian points for different subdivision levels, and the shoul-
der region approximately adds 9K additional points. Moreover, as shown in Figure 8, our method
outperforms LAM-80K and GAGAvatar (180K) using only 29K Gaussian points.

Subdivision
Times Head Only Average Points

on VFHQ Dataset
Average Points

on HDTF Dataset
#0 5, 023 13, 883 14, 466
#1 20, 018 28, 878 29, 461
#2 79, 936 88, 796 89, 379

Shoulder Points +8, 860 +9, 443

Table 5: The number of Gaussian points for different subdivision level. Integrating the shoulder
region leads to an average increase of 8, 860 Gaussian points on the VFHQ dataset and 9, 443 on
the HDTF dataset.

Figure 8: The correlation between Gaussian count and reconstruction performance on the VFHQ
dataset. Our method achieves performance of 22.68 dB using 29K Gaussian points, surpassing
LAM-80K (22.65 dB with 80K Gaussians) and GAGAvatar (21.83 dB with 180K Gaussians).
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D ABOUT BASELINE METHODS

The quantitative performance reported in Table 1 and Table 2 is taken from the respective papers,
particularly Chu & Harada (2024) and He et al. (2025). The qualitative results shown in Figure 3
are generated by running their publicly released models and code. For consistency, we set the
background color to black when rendering Gaussian points for all methods following the setup
in Chu & Harada (2024), except for LAM (He et al., 2025). We found that their results exhibit
noticeable white contours against a black background, as illustrated in Figure 9. To preserve visual
quality and maintain fidelity to the original presentation, we retained the white background as used
in their work. Since LAM only released their LAM-20K model, we additionally present our results
at subdivision level 1 in Figure 3 and Figure 10 for fair comparisons.

Figure 9: Results from LAM (He et al., 2025) exhibit noticeable white contours against a black
background. To preserve visual quality and maintain consistency with the original presentation, we
display their results using a white background.

E COMPUTATIONAL COST ANALYSIS

Similar to our approach, the LAM method also utilizes mesh subdivision to increase the number of
points, thereby improving the Gaussian’s capability to capture fine-grained details. Both methods
set the number of subdivision iterations to 2. However, the computational complexity differs signif-
icantly. Let k denote the subdivision level. After k iterations, the number of vertices in the mesh
is approximately 4kV0, where V0 represents the number of vertices in the original FLAME mesh.
Consequently, the computational complexity of the most expensive module, the cross attention, is:

O(l · h · 4k · V0 ·NDINO · dhead) (13)

where l denotes the number of transformer layers, h is the number of attention heads, NDINO is
the number of DINO features, and dhead is the feature dimension. In our method, cross-attention
is computed at the 0-th level (before any subdivision), while LAM performs it on the finest-level
subdivided mesh, where the computational complexity grows exponentially with the number of
subdivisions k. As a result, the reconstruction cost of our method is only 1/640 that of LAM. As
shown in Table 6, our training GPU-hours are more than 90% lower than LAM’s.

# Transformer # Attention Heads Attention Feature Training
Layers Per Layer Map Size Dimension GPU Hours

LAM 10 16 80k ×NDINO 1024 ∼ 2600 h (2 weeks × 8 GPUs)
Ours 2 8 5k ×NDINO 256 ∼ 200 h

Table 6: Comparison of training configurations for LAM and our High-Avatar.

F MORE QUALITATIVE RESULTS

We present additional cross-reenactment results in Figure 10 and self-reenactment results in Fig-
ure 11. Furthermore, more results on in-the-wild images are provided in Figure 12.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Source Driven GPAvatar Real3DPortrait Portrait4D Portrait4Dv2 GAGAvatar LAM Ours (Sub#1)Ours (Sub#2)

Figure 10: Cross-identity reenactment results on VFHQ and HDTF datasets.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Source Driven GPAvatar Real3DPortrait Portrait4D Portrait4Dv2 GAGAvatar LAM Ours (Sub#2)

Figure 11: Self-identity reenactment results on VFHQ and HDTF datasets.
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Figure 12: Cross-identity reenactment results on in-the-wild images.
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