
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPARSE GRADIENT COMPRESSION
FOR FINE-TUNING LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) for downstream tasks has become
increasingly crucial due to their widespread use and the growing availability of
open-source models. However, the high memory costs associated with fine-tuning
remain a significant challenge, especially as models increase in size. To address
this, parameter efficient fine-tuning (PEFT) methods have been proposed to min-
imize the number of parameters required for fine-tuning LLMs. However, these
approaches often tie the number of optimizer states to dimensions of model param-
eters, limiting flexibility and control during fine-tuning. In this paper, we propose
sparse gradient compression (SGC), a training regime designed to address these
limitations. Our approach leverages inherent sparsity in gradients to compress
optimizer states by projecting them onto a low-dimensonal subspace, with dimen-
sionality independent of the original model’s parameters. By enabling optimizer
state updates in an arbitrary low-dimensional subspace, SGC offers a flexible
tradeoff between memory efficiency and performance. We demonstrate through
experiments that SGC can decrease memory usage in optimizer states more effec-
tively than exising PEFT methods. Furthermore, by fine-tuning LLaMA models
on various downstream tasks, we show that SGC can deliver superior performance
while substantially lowering optimizer state memory requirements, particularly in
both data-limited and memory-limited settings.

1 INTRODUCTION

Large language models (LLMs) are increasingly being used across various disciplines, achieving
remarkable performance in a wide range of natural language processing tasks. With the release of
more open-source models, demand is growing to adapt them to downstream tasks (Touvron et al.,
2023; Dubey et al., 2024). This is typically achieved using full fine-tuning, where all the parameters
of a model are updated. However, as LLMs scale to billions of parameters, fine-tuning all the
parameters of a model becomes increasingly challenging, demanding substantial memory resources.

Full fine-tuning requires not only storing billions of model weights, but also maintaining the gradi-
ents and optimizer states needed during training, which can drastically increase memory consump-
tion (Chowdhery et al., 2022; Bai et al., 2023). For example, the Adam optimizer requires storing
both the first-and second-order moments of the gradients, doubling the memory needed compared to
storing the model’s trainable parameters (Kingma & Ba, 2017). These memory constraints limit the
practical ability to fine-tune LLMs, particularly in resource-constrained environments such as edge
devices or personal computing platforms.

To address this problem, parameter efficient fine-tuning (PEFT) techniques have been introduced, to
train a model using a significantly smaller number of parameters (Ding et al., 2023; Han et al., 2024).
However, many existing methods lack the ability to provide both flexible and granular control over
the number of optimizer states used for fine-tuning. Flexibility refers to the capacity to accommodate
a broad range in the number of optimizer states, while granular control refers to the precision with
which the number of optimizer states can be adjusted in small increments. This limitation may
hinder the realization of a broader range of memory-performance tradeoffs, thereby restricting the
potential of PEFT methods to achieve further efficiency gains.

On one end, we have approaches like BitFit (Zaken et al., 2022), which fine-tune on only the bias
terms, using a minimal number of parameters, but is neither flexible nor offers granular control. On

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Diagram comparing SGC (green) and PEFT methods LoRA and GaLore (blue) in terms of
the dimension of optimizer states compared to full fine-tuning. SGC enables a lower minimum and
finer granularity for the number of optimizer states since it is independent of parameter dimensions.

the other hand, the popular low-rank adaptation (LoRA) is a more flexible approach that provides
some control over the number of trainable parameters (Hu et al., 2021). However, there still exists
limitations to both flexibility and granularity. LoRA reparameterizes the fine-tuned weight matrices
W (1) ∈ Rm×n into W (1) = W (0) +BA, where W (0) ∈ Rm×n is the frozen pre-trained weight
matrix, and A ∈ Rr×n and B ∈ Rm×r are two low-rank matrices of rank r (r ≪ min{m,n}) to
be trained. However, with LoRA, the number of optimizer states is a function of the dimensions
of A and B, which are dependent on n and m, respectively. The minimum number of trainable
parameters (achieved when r = 1) is equal to n+m, limited by the dimensions of W (0). Therefore,
there exists a bound dependent on n+m in which we cannot reduce the number of optimizer states
during fine-tuning any further. Likewise, the granularity over parameters is also a function of n
and m, and notice that both flexibility and granularity are impacted negatively with larger models.
Although a slightly different formulation might be needed, a similar limitation exists with many
other approaches using prefix-tuning (Li & Liang, 2021) and gradient compression approaches,
such as GaLore (Zhao et al., 2024) (see Appendix A).

To address the above limitation, we propose sparse gradient compression (SGC), a training regime
that enables more flexible and granular control over the number of parameters to train during fine-
tuning. SGC updates the optimizer states in a k-dimensional subspace, where k is independent
of the original parameters dimension and represents the number of optimizer states. This allows
SGC to significantly reduce the number of optimizer states, irrespective of the pretrained model’s
size, with k providing flexibility to balance performance and memory efficiency (see Figure 1).
Importantly, this memory saving comes without sacrificing performance, as we will demonstrate in
our experimental results.

The key idea behind SGC is leveraging the inherent sparsity of gradients during fine-tuning. By
linearly projecting the optimizer states onto an arbitrarily lower-dimensional subspace, we can per-
form updates in this compressed space instead of the original space. A sparse recovery algorithm is
then used to project the result of the optimizer function back into the original space, estimating the
full-dimensional sparse vector from its lower dimensional representation, with sparsity originating
from the gradients. By fine-tuning LLaMA2-7B, LLaMA3-8B, and LLaMa2-13B (Touvron et al.,
2023; Dubey et al., 2024) on commonsense reasoning tasks, we show that SGC achieves comparable
or better results than other PEFT methods while using a significantly smaller number of optimizer
states. Additionally, we show that our approach yields improved fine-tuning performance in both
data-limited and memory-limited scenarios.

2 RELATED WORKS

Parameter Efficient Fine-tuning. PEFT methods are used to reduce the expensive memory re-
quirements for fine-tuning large models. Existing techniques can be split into several categories.
Adapter-based methods introduce additional trainable modules that are inserted into the original
frozen model (Houlsby et al., 2019; Pfeiffer et al., 2021; He et al., 2022; Mahabadi et al., 2021).
However, these approaches can introduce latency during inference. Prompt tuning, on the other
hand, adapts a model by adding learnable prefix tokens to the input (Li & Liang, 2021; Lester et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2021; Liu et al., 2022). Despite their simplicity, these methods have structural limitations since they
only train additional input tokens. LoRA is a widely used PEFT method that does not introduce
additional inference latency (Hu et al., 2021). LoRA employs low-rank matrices to approximate
the updates in the parameters during fine-tuning. Several variants of LoRA have been developed
to either improve performance or further reduce the number of trainable parameters (Zhang et al.,
2023; Xia et al., 2024; Liu et al., 2024; Kopiczko et al., 2024). Due to LoRA’s popularity, extensive
research has been conducted on both its theoretical foundations and empirical performance (Jang
et al., 2024; Hayou et al., 2024; Mao et al., 2024). Additionally, quantization-based methods have
been proposed to further reduce memory overhead Dettmers et al. (2023); Qin et al. (2024).

Gradient Compression. An area that has been relatively underexplored but is now gaining attention
is gradient compression (Zhao et al., 2024; Hao et al., 2024; Liang et al., 2024; Wu et al., 2024;
Song et al., 2024). These approaches selectively compress gradient information to reduce the size of
optimizer states during training. One category of methods uses projection matrices to obtain a lower-
rank gradients (Zhao et al., 2024; Hao et al., 2024; Liang et al., 2024). For instance, GaLore uses
singular value decomposition (SVD) to obtain projection matrices (Zhao et al., 2024), while FLoRA
utilizes random projection matrices (Hao et al., 2024). Liang et al. (2024) propose a method that
updates the projection matrix in an online fashion using principal component analysis. Alongside
projection matrices, gradient sparsity is another emerging factor. SIFT shows that gradients are
approximately sparse, and achieves efficient fine-tuning by selecting parameters corresponding to
the largest gradient magnitudes (Song et al., 2024). However, a significant limitation of this approach
is that the selected parameters remain static, failing to fully capture the dynamic nature of gradient
sparsity patterns during training.

3 PROBLEM FORMULATION

We investigate the task of updating the parameters of a neural network, W ∈ Rd, focusing specif-
ically on fine-tuning, and without introducing any new weights into the model’s architecture. The
objective is to adapt pretrained weights W (0) ∈ Rd to W (1) ∈ Rd for a particular task.1 The
transition from W (0) to W (1) is defined as follows:

W (1) = W (0) +∆W . (1)
The parameter update process involves minimizing a loss function L with respect to W as follows:

min
W
L(W (0) +∆W ), (2)

where we change the parameters in W minimizing L to achieve W (1) from W (0). With no closed
form solution, the above problem is solved iteratively using the gradient signal Gt = ∇WtL ∈ Rd

at every time step t, where Wt denotes the parameters in W at time t. Typically, to improve fine-
tuning performance, an optimizer function ρt(·) is applied to the gradient Gt, where ρt requires
storing and updating additional optimizer states, each with the same dimensions as Gt. Therefore,
the computational complexity and the memory requirements of applying the optimizer function is
directly dependent on d, the dimension of Gt.

With emergence of LLMs, d has grown substantially large, making the execution of the optimizer
function ρt(·) highly resource-intensive. To address this, we define a transformation function that
reduces the dimension of Gt before being used in the optimizer function ρt. Specifically, we define
f : Rd → Rk as the transformation function applied to the gradient Gt as Ĝt = f(Gt) for some
k ≪ d. Now we use Ĝt as the input to the optimizer function ρt, reducing the dimension of the
operations in the optimizer from a d-dimensional space to a k-dimensional space. The parameter
update W for a single time step can be written as follows:

Wt+1 = Wt − ηg(ρt(Ĝt)), (3)
where η is the learning rate, and g : Rk → Rd is a transformation function that brings the output of
ρt back into the original d-dimensional space. We then denote the total changes in the parameters
W after T time steps as:

W (1) = W (0) − η
∑
t

g(ρt(Ĝt)). (4)

1Without loss of generality, we represent model parameters as vectors instead of matrices.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 AdamW at timestep t

1: Inputs: Gt, β1, β2, ϵ
2: Mt ← β1Mt−1 + (1− β1)Gt

3: Vt ← β2Vt−1 + (1− β2)G
2
t

4: Mt ← Mt

1−βt
1

5: Vt ← Vt

1−βt
2

6: Nt =
Mt√
Vt+ϵ

7: return Nt

This formulation allows us to perform the optimizer state updates in a smaller subspace Rk instead
of the original space Rd, where k ≪ d. In practice, tracking the optimizer states in ρt can be
memory intensive if k is large. Thus, the goal is to reduce k as much as possible while maintaining
a reasonable performance in minimizing L.

4 METHODOLOGY

In this section, we introduce our proposed method for performing updates on a k-dimensional sub-
space. We begin by motivating our approach with an overview of the well known AdamW optimizer
Kingma & Ba (2017); Loshchilov & Hutter (2019), followed by a detailed description of the gradi-
ent compression and decomposition processes. Additionally, we present two more efficient variants
of the proposed approach, along with an analysis of the memory requirements.

4.1 MOTIVATION

Full fine-tuning model parameters W (0) corresponds to the case where all parameters in W (0) are
updated, i.e., f is the identity function and Ĝt = Gt. If ρt is also the identity function, i.e. we use
no optimizer function, the updates simplify to stochastic gradient descent (SGD), and calculating
∆W requires storing no optimizer states. However, using an optimizer function that makes use
of momentum often yields better performance during fine-tuning. In this paper, we focus on the
popular AdamW optimizer (see Algorithm 1), while both our formulation and proposed approach
can be applied to various other optimizers. For full fine-tuning, AdamW requires storing two states
Mt ∈ Rd and Vt ∈ Rd corresponding to the first and second moments, whose updates are controlled
with hyperparameters β1 ∈ [0, 1] and β2 ∈ [0, 1], respectively. Taking this into consideration, the
parameter update requires 2d memory in total for storing Mt and Vt. We note that (·)2 and

√
·

applied to vectors are elementwise square and square-root operations, and ϵ is a small constant to
ensure numerical stability during division. With g being the identify function, we have

Wt+1 = Wt − ηNt, Nt =
Mt√
Vt + ϵ

. (5)

Optimizer functions like AdamW contribute a large proportion of memory consumption during fine-
tuning, and we will show how our approach aims to tackle this.

4.2 SPARSE GRADIENT COMPRESSION (SGC)

In full fine-tuning, the gradients being used as input in the AdamW algorithm can have a large di-
mension d. We would like to modify Algorithm 1 to update Mt and Vt on a k-dimensional subspace
rather than the d-dimensional space, for some k ≪ d, while retaining performance. This would sig-
nificantly enhance the memory and compute efficiency of the optimizer, improving the efficiency of
fine-tuning. We highlight that Mt and Vt are functions of Gt ∈ Rd and G2

t ∈ Rd, respectively.
Therefore, in order to perform the operations on Mt and Vt in a k-dimensional subspace, we need
to represent Gt and G2

t on that subspace. We make use of the observation that Gt is a quasi-sparse
vector (Song et al., 2024) and can be compressed to a lower dimensional subspace to reduce memory
usage in the optimizer function since both Mt and Vt can also be represented in the lower dimen-
sional subspace. This enables us to conduct fine-tuning with much greater efficiency and control
over the memory usage.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We first sparsify Gt ∈ Rd by keeping only s non-zero elements corresponding to s entries with
largest magnitudes, and set all other elements to zero which is denoted by Sparisfys(·). The sparsi-
fied gradient is then projected onto a lower dimensional subspace of an arbitrary dimension k using
a projection matrix A ∈ Rk×d that is initialized before fine-tuning:

G̃t = Sparsifys(Gt) ∈ Rd, pt = AG̃t ∈ Rk. (6)

To compress G2
t , we use the fact that elementwise squares retain the sparsity pattern of Gt. Thus,

similar to Gt, we can represent G2
t on the k-dimensional subspace through

qt = AG̃2
t ∈ Rk. (7)

With Gt and G2
t represented in a compressed form with dimension k as pt and qt, respectively, we

modify Algorithm 1 by representing Mt and Vt in this k-dimensional subspace as follows:

Mt ← β1Mt−1 + (1− β1)pt, (8)
Vt ← β1Vt−1 + (1− β1)qt. (9)

Accordingly, we can perform the updates on optimizer states Mt and Vt on a k-dimensional sub-
space since pt and qt are k-dimensional. However, we need to go back to the original d-dimensional
space to perform the weight updates from Wt to Wt+1. As indicated in 3, this transform is con-
ducted using the function g : Rk → Rd. Rewriting 4, this problem is equivalent to finding a function
g(·) to perform the update

W (1) = W (0) − η
∑
t

g(ρt(pt, qt)). (10)

Thus, this approach enables performing the updates on a k-dimensional subspace instead of the d-
dimensional space using AdamW. The only missing part is how to define g(·) that enables going
from a k-dimensional subspace back to the original d-dimensional space for the parameter updates.
Next, we introduce an approach to achieve such g(·) functionality.

4.3 COMPRESSED SENSING OF OPTIMIZER STATES

Ideally, we would like to use Gt and G2
t or their respective sparse versions G̃t and G̃2

t for the
optimizer algorithms; however, for enhancing efficiency we instead use pt and qt. We note that
pt and qt are the results of linear projection of sparse vectors G̃t and G̃2

t , respectively, onto a k-
dimensional subspace. Thus, function g(·) should provide a good estimate of G̃t and G̃2

t when
applied to pt and qt, respectively. As a result, the problem is to estimate the sparse vectors G̃t and
G̃2

t from their compressed form pt and qt, respectively, compressed with linear projection.

We use a recovery algorithm from compressive sensing (CS) to achieve the function g(·), which aims
to estimate a sparse vector from its compressed form, compressed through linear projection. CS is
a signal processing technique used to recover signals using fewer measurements than the Nyquist
rate, when the signals are sparse (Candes et al., 2004; Donoho, 2006). Consider an s-sparse signal
x ∈ Rd with s non-zero entries. We can reconstruct x from a set of linear measurements y = Ax, if
the measurement matrix A ∈ Rk×d satisfies the restricted isometry property (RIP) for some number
of measurements k ≤ d (Candes & Tao, 2005; Candes, 2008). The RIP conditions can be satisfied
with high probability if every element of A is independent and identically distributed according to a
zero-mean normal distribution with standard deviation 1/

√
k, and k ≥ κs, where κ is an algorithm

dependent constant (Candes et al., 2004).

There exist various recovery algorithms to recover the d-dimensional s-sparse signal x from mea-
surements y (Marques et al., 2018). In this paper, we use a greedy algorithm named orthogonal
matching pursuit (OMP) (Pati et al., 1993). To enhance efficiency, inspired by Zhu et al. (2020),
we have developed a GPU optimized version of OMP, enabling its seamless integration with fine-
tuning (see Appendix B for details). The OMP algorithm reconstructs an s-sparse vector x from the
measurements y having knowledge about the measurement matrix A denoted as follows:

x̂ = OMPA(y). (11)

We now apply the recovery algorithm OMP to map the updates Mt and Vt, given in equations 8 and
9, respectively, from the k-dimensional subspace back to the original d-dimensional space. With the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 SGC at timestep t

1: Inputs: Gt,A, s, β1, β2, ϵ
2: pt = A Sparsifys(Gt), qt = A Sparsifys(G

2
t )

3: Mt ← β1Mt−1 + (1− β1)pt

4: Vt ← β2Vt−1 + (1− β2)qt
5: Mt ← Mt

1−βt
1

6: Vt ← Vt

1−βt
2

7: Nt = α OMPA(Mt)√
OMPA(Vt)+ϵ

8: return Nt

initialization M0 = 0 and V0 = 0, we can rewrite the updates Mt and Vt as:

Mt = A

t∑
i=1

hi(β1)G̃i, Vt = A

t∑
i=1

hi(β2)G̃2
i (12)

where hi(·) is a constant only a function of β1 or β2. We observe that
∑t

i=1 hi(β1)G̃i and∑t
i=1 hi(β2)G̃2

i are linear combinations of the first and second moments of the sparsified gradi-
ents, respectively. Assuming that the total changes in the sparsity of Gt over all t can be bounded
by some constant s̃ ≪ d, we can use the OMP algorithm as in 11 to almost accurately recover the
original d-dimensional representations of Mt and Vt. After applying OMP to Mt and Vt separately,
we obtain Nt as follows:

Nt = α
OMPA(Mt)√
OMPA(Vt) + ϵ

, (13)

where α is a scaling factor. We note that the feasibility of obtaining Nt, as in 13, is ensured by the
fact that G̃t and G̃2

t , and thus Mt and Vt, share the same sparsity pattern. Consequently, the indices
of the non-zero entries in OMPA(Mt) and OMPA(Vt) are identical. Furthermore, the sparsity
level s provides a tradeoff between performance and efficiency. Clearly, a larger s leads to better
performance since G̃t provides a better estimate for Gt; however, it increases the computational
overhead with the OMP algorithm in recovering an s-sparse vector.

Following compression, the optimizer states Mt and Vt are now k-dimensional vectors. Setting
k = κs leads to a reasonable recovery of

∑t
i=1 hi(β1)G̃i and

∑t
i=1 hi(β2)G̃2

i from Mt and Vt in
12, using OMP. Now, the size of the optimizer states in AdamW becomes purely a function of k,
and can be controlled at a granular level.

We refer to our proposed method as SGC, which uses the AdamW optimizer and is presented in
Algorithm 2. For ease of presentation, we represent this algorithm with Nt = SGC(Gt), which
takes the gradient vector Gt ∈ Rd as the input and outputs Nt ∈ Rd, while the optimizer states Mt

and Vt are k-dimensional. Incorporating this into our formulation in 4 yields:

W (1) = W (0) − η
∑
t

SGC(Gt). (14)

4.4 EFFICIENT SGC

Here, we propose two efficient alternatives of the SGC algorithm.

Memory Efficient SGC (MESGC). Based on our observations, size of the projection matrix A ∈
Rk×d may significantly contribute to the computation overhead. Although it is initialized only once
before fine-tuning, the memory requirements can become substantial depending on the value of s,
the sparsity level of G̃t, particularly when applying the OMP algorithm. To address this issue, we
introduce the idea of chunking the gradient signals prior to applying a projection matrix. Specifically,
we split Gt into c equal sized chunks before sparsifying and projecting each chunk. This enables
the projection matrix A to be much smaller in size from k× d to (k× d)/c. We split Gt to c equal-
size chunks Gt =

[
G1

t , . . . ,G
c
t

]
and apply the SGC algorithm to each Gi

t. Accordingly, we have
N i

t = SGC(Gi
t) ∈ R d

c , and we concatenate all these outputs to obtain Nt as Nt =
[
N1

t , . . . ,N
c
t

]
.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison between our approach, GaLore, and LoRA for storing the trainable parameters
during fine-tuning with AdamW. For simplicity, assume weight dimensions d can be reshaped to 2D
matrix of size

√
d ×
√
d, r ≪ d is the chosen rank, k ≪ d is the dimension we want to compress

each optimizer state to. The projection matrices refer to the costs of storing Bt during fine-tuning.

MESGC CESGC GaLore LoRA

Weights d d d d+ 2r
√
d

Optimizer States 2k 2k 2r
√
d 4r

√
d

Projection Matrices - r
√
d r

√
d -

We select sc = s/c non-zero elements per chunk to ensure s non-zero entries overall. Since the
projection matrix A is the same for each chunk, we obtain efficiency by a factor of c for storing A.
However, we may not achieve an exact estimate of G̃t and G̃2

t when sparsifying and concatenating
Gi

t’s because the sparsity pattern in Gt is not truly uniform. This performance loss would be more
severe with increasing c, while it enhances efficiency by reducing the dimension of the projection
matrix A. We note that the chunking technique introduces more flexibility with the proposed SGC
approach in realizing a more diverse spectrum of performance-efficiency tradeoff.

Compute Efficient SGC (CESGC). The main tradeoff for our memory efficient approach is in-
creased runtime attributed to OMP, which scales with d, the size of gradients Gt. Here, we present
a computationally efficient alternative at the expense of slightly increased memory usage. For ease
of presentation here, consider Gt ∈ Rm×n to be in a matrix form. The main idea is to perform
double compression, where we first compress Gt once using a projection matrix Bt ∈ Rr×m, and
then apply SGC to this compressed gradient of dimension (r × n) ≪ d, therefore reducing time
complexity. The intuition behind this approach is that the resultant vector after the first compression
is still quasi-sparse. The projection matrix Bt should be selected such that as much information is
retained after projection. For this purpose, we use the fact that SGC is orthogonal to many PEFT
methods. Thus, we apply one of these methods, GaLore, to obtain Bt, which reduces the dimension
of the vector entering the SGC algorithm. Specifically, we initialize the projection matrix Bt every
fixed number of iterations by applying truncated SVD on Gt:

U ,Λ,V = SVD(Gt), Bt = U [:, : r] ∈ Rr×m,

where Bt is set to be the first r columns of the left-singular vectors of SVD of Gt. We then project
the gradients Gt using Bt and apply SGC to the resultant vector, i.e., SGC(BtGt). Finally, we
project back the resultant updates from SGC(BtGt) onto the original d-dimensional space using
BT

t to update the parameters in W . Incorporating this into our formulation in 4 yields:

W (1) = W (0) − η
∑
t

BT
t SGC(BtGt). (15)

We note that the dimension of the vector entering SGC is r × n rather than d, thus improving the
compute efficiency with OMP. CESGC can be combined with our memory efficient implementation,
where chunking is performed after the projection of Gt, and we assume this is performed by default
for experiments using CESGC. In Appendix C, we discuss some further extensions of SGC.

4.5 MEMORY ANALYSIS

Here, we analyze the memory requirements of our efficient SGC implementations and compare
it with popular PEFT methods, specifically GaLore and LoRA. The memory requirements of our
approach, Galore, and LoRA to perform weight updates for a single vector are shown in Table 1.
Observe that the number of optimizer states in both Galore and LoRA are a function of d. On the
other hand, the size of optimizer states for our memory efficient approach is independent of the
weight dimensions, and only depends on k = κcsc, where sc is sparsity per chunk, c is the number
of chunks, and the constant κ is to satisfy the RIP conditions for the OMP algorithm. This enables
our approach to be significantly more memory efficient in the optimizer states.

To ensure a fair comparison, we analyze the total memory consumption for optimizer states across
the entire model and include discussion on how the size of the projection matrix A can impact
these numbers. For the following analysis, we will be considering the memory efficient approach

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: LLaMA2-7B, LLaMA3-8B, and LLaMA2-13B on fine-tuning eight commonsense bench-
marks (5 shots) using various PEFT methods. Average accuracy is reported in the final column.
Note that # Params refers to percentage of optimizer states, Mt and Vt, relative to full fine-tuning.

Model Method # Params (%) ARC-e ARC-c BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Average

LLaMA2-7B

Full Fine-tuning 100 82.5 55.4 83.8 77.8 45.8 80.1 55.4 77.8 69.8
CESGC 0.08 82.9 53.9 82.9 77.5 44.8 79.9 54.2 74.5 68.7
GaLore 0.10 82.3 54.1 81.7 78.2 45.8 80.6 53.5 75.3 68.9
LoRA 0.20 82.1 53.2 84.3 76.2 44.0 80.4 54.0 76.5 68.8

LLaMA3-8B

Full Fine-tuning 100 85.8 62.5 86.6 81.2 51.4 82.3 59.5 81.9 73.9
CESGC 0.08 83.9 57.8 85.2 81.0 46.2 82.0 53.4 77.8 70.9
GaLore 0.10 84.3 57.2 82.6 81.2 46.2 82.3 52.9 78.0 70.6
LoRA 0.20 82.3 56.2 83.8 79.5 48.0 81.7 52.8 74.4 69.9

LLaMA2-13B

Full Fine-tuning 100 86.2 60.9 87.4 81.0 51.8 82.0 60.3 82.9 74.1
CESGC 0.07 84.1 57.2 85.3 80.0 49.4 82.0 54.6 78.6 71.4
GaLore 0.08 83.8 56.2 85.3 81.2 47.4 81.7 55.5 79.0 71.3
LoRA 0.16 83.4 57.1 86.3 81.3 48.0 81.7 56.5 79.6 71.7

MESGC only. Assume that we have a model loaded using precision p, with L layers and H attention
heads, and we are interested in applying PEFT techniques to the query and value attentions each of
size d. The total memory usage of optimizer states for our approach then becomes MMESGC =
κscdp

c + 4LHκcscp, where we rewrite k = κcsc. The first term of MMESGC is the memory required
to store the projection matrix A ∈ R(k×d)/c, and the second term is the total memory requirements
for the attention across the entire model.

To demonstrate that our approach can be more memory efficient than any approach that is a function
of d, assume that there exists a class of solutions DMIN such that the total number of optimizer states
required for AdamW is 2

√
d, where we reshape the d-dimensional vector to a

√
d×
√
d matrix. This

is achieved by setting the rank r = 1 for such methods. We present the theoretical minimum for
these solutions as MDMIN = 4LH

√
dp. Finding a set of parameters such that our approach consumes

less total memory will require satisfying the inequality of MMESGC < MDMIN . We will see in the
next section that, by assigning values to each of the variables L,H, κ, and d, there exists a set of
solutions for sc and c such that the inequality is satisfied.

5 EXPERIMENTS

We evaluate our approach on fine-tuning languages models using the LLaMA family, specifically
on LLaMA2-7B, LLaMA3-8B, and LLaMA2-13B. The results are compared with full fine-tuning,
LoRA, and GaLore as baseline for all the setups. In addition, we demonstrate the memory savings
of the proposed MESGC algorithm and perform a set of ablation studies to illustrate the tradeoff
between chunk size c and sparsity s. The results demonstrate how our approach can enable more
granular control over the number of optimizer states and achieve comparable accuracy to LoRA and
GaLore while using a significantly smaller number of optimizer states.

5.1 COMMONSENSE REASONING

We evaluate LLaMA2-7B, LLaMA3-8B, and LLaMA2-13B on a set of commonsense reasoning
tasks to demonstrate CESGC’s effectiveness in fine-tuning. Commonsense reasoning tasks involve 8
subtasks and we follow Hu et al. (2023) to combine the training sets into a single dataset and evaluate
on each of the individual tasks separately. Details of hyperparameters and training settings can be
found in Appendix D.1. Results from Table 2 show that our approach achieves a comparable average
accuracy compared to both GaLore and LoRA, while using a smaller number of optimizer state
parameters. Notably, in the LLaMA3-8B model, CESGC performs the best, achieving a superior
accuracy of 1% over LoRA, while using less than half the number of optimizer state parameters.

5.2 MEMORY EFFICIENCY

We evaluate the memory efficiency of MESGC when fine-tuning a LLaMA2-7B model. Substituting
values into the inequality MMESGC < MDMIN with d = 40962, L = 32, H = 32, κ = 7, and
rearranging we get:

7c2sc
4096

+ 7sc < c ⇒ sc <
4096c

7(c2 + 4096)
.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: MESGC is more memory efficient in regions high-
lighted in blue compared to DMIN. The red dotted lines show
the valid assignments for positive integers sc.

Table 3: MESGC achieves supe-
rior average accuracy when fine-
tuning LLaMA2-7B on common-
sense reasoning while pushing to-
wards a minimum number of op-
timizer states. MESGC conducted
with c = 256, sc = 1, κ = 8,
while both GaLore and LoRA use
rank r = 1.

Method # Params Accuracy

MESGC 4096 68.0
GaLore 8192 67.4
LoRA 16384 67.7

Figure 2 shows the region such that this inequality is satisfied, and we can select a valid combination
of sc and c to achieve lower memory usage than any other PEFT approach dependent on d.

To find the minimum memory usage of MMESGC, set sc = 1, and find the critical point by calculating
c for ∂MMESGC/∂c = 0:

−κd
c2

+ 4LHκc = 0 ⇒ c = 64.

Consider r = 1, the minimum rank used for GaLore and LoRA. Based on Table 1, we can calculate
that GaLore and LoRA require 8192 and 16384 optimizer states, respectively. With sc = 1, c =
64, and κ = 7, MESGC requires only 896 optimizer states, reducing the number of parameters
by around 10 times. To demonstrate how MESGC performs using a significantly lower number
of optimizer states, we fine-tune LLaMA2-7B on a subset of the commonsense reasoning dataset,
setting k = 2048 (see Appendix D.2 for details). Table 3 shows that our approach achieves 0.6%
higher average accuracy than GaLore while using only half the number of optimizer states.

Figure 3: CESGC outperforms both GaLore and LoRA when fine-tuning with limited data on boolQ.

5.3 FINE-TUNING ON SMALL DATASETS

To evaluate our approach’s effectiveness on small datasets, we focus on fine-tuning LLaMA2-7B on
subsets of the boolQ (Clark et al., 2019) dataset while using a minimal number of optimizer states.
Specifically, we split the full dataset into multiple subsets ranging from 500 to 2000 samples, and
use an equal number of optimizer states across all methods (further details can be found in Appendix
D.3). From Figure 3, it can be seen that CESGC performs strictly better using small dataset sizes.
We observe that this may be task dependent, but for tasks such as boolQ that rely on leveraging the
pre-trained knowledge about facts and entities, our approach can provide a more targeted method for

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Number of chunks study (b) Sparsity study (c) κ study

Figure 4: Ablation study for effects of number of chunks c, sparsity s, and constant κ. (a). Average
accuracy with varying c and constant s. (b). Average accuracy with varying s and constant c. (c).
Average accuracy with varying κ.

fine-tuning by greedily adjusting based on largest gradient magnitudes. On the other hand, LoRA
at the lowest rank (r = 1) struggles to learn under the limited dataset scenario, while GaLore with
r = 1 underperforms CESGC.

5.4 ABLATION STUDY

Here, we investigate the effects of number of chunks c, total sparsity s, and the constant κ on fine-
tuning performance (details in Appendix D.4). First, we set the total sparsity s, to be constant and
vary c. Figure 4(a) shows that increasing the number of chunks, while keeping the total s con-
stant decreases average accuracy across the commonsense reasoning evaluation. We attribute this
to the uniform chunking, where the number of non-zero elements selected per chunk is sc = s/c.
However, in practice, the sparsity pattern of gradients may vary across the chunks, with certain pa-
rameter regions potentially requiring more attention than others. Therefore, we see higher accuracy
corresponding to smaller chunk sizes.

For sparsity, there is a general increasing trend, as seen in Figure 4(b). As the number of non-
zero elements selected increases, so does the number of optimizer states k, we expect the accuracy
to improve until s is equal to the number of parameters, as in full fine-tuning. We observe that
increasing s after a certain point results in diminished returns seeing as the slope is most steep when
s is increased initially and is less steep afterwards. This can be explained by how a small percentage
of parameters account for the majority of the gradient norms during fine-tuning, which is supported
by the observations in Song et al. (2024).

Finally, we investigate the effect of κ, the constant to satisfy the RIP condition, with the goal of
finding a lower bound such that performance is not negatively affected. Based on Figure 4(c), we
see that if κ is set to 6, performance drops significantly. However, there is minimal gain from
increasing κ from 7 to 8, indicating a κ value of 7 should be sufficient.

6 CONCLUSION

In this work, we proposed a novel fine-tuning method, SGC, that enables flexible and granular con-
trol over the number of optimizer states. The key idea, leveraging the sparsity of the gradients, is
to compress them through a linear projection onto a subspace of an arbitrary dimension k, which
is independent of the original parameter dimensions. The updates are performed within this lower-
dimensional subspace, and the results are projected back into the original d-dimensional space,
effectively utilizing the gradient sparsity. This allows SGC to have significantly smaller and more
granular number of parameters to train during fine-tuning compared to other PEFT approaches. We
also provided two efficient implementations of SGC, MESGC and CESGC, and show through exper-
iments that our approach can achieve comparable accuracy while being more memory efficient than
other PEFT methods. Notably, we demonstrated that our approach achieves superior performance in
both data-limited and memory-limited settings, achieving higher accuracy than LoRA and GaLore.
Our approach is orthogonal to many gradient compression methods, opening opportunities for future
work to integrate them and explore SGC’s generalizability in domains like vision and audio.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, and et. al. Qwen technical report, 2023. URL https://arxiv.org/
abs/2309.16609.

Emmanuel Candes and Terence Tao. Decoding by linear programming, 2005. URL https://
arxiv.org/abs/math/0502327.

Emmanuel Candes, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information, 2004. URL https://arxiv.
org/abs/math/0409186.

Emmanuel J Candes. The restricted isometry property and its implications for compressed sensing.
Comptes rendus. Mathematique, 346(9-10):589–592, 2008.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, and et. al. Palm:
Scaling language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.
02311.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–
1306, 2006.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, and et. al. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey, 2024. URL https://arxiv.org/abs/2403.
14608.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors, 2024. URL https://arxiv.org/abs/2402.03293.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models,
2024. URL https://arxiv.org/abs/2402.12354.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning, 2022. URL https://arxiv.org/
abs/2110.04366.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models, 2023. URL https://arxiv.org/abs/2304.01933.

11

https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/math/0502327
https://arxiv.org/abs/math/0502327
https://arxiv.org/abs/math/0409186
https://arxiv.org/abs/math/0409186
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.12354
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2304.01933


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Uijeong Jang, Jason D. Lee, and Ernest K. Ryu. Lora training in the ntk regime has no spurious
local minima, 2024. URL https://arxiv.org/abs/2402.11867.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation, 2024. URL https://arxiv.org/abs/2310.11454.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning, 2021. URL https://arxiv.org/abs/2104.08691.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.
URL https://arxiv.org/abs/2101.00190.

Kaizhao Liang, Bo Liu, Lizhang Chen, and Qiang Liu. Memory-efficient llm training with online
subspace descent, 2024. URL https://arxiv.org/abs/2408.12857.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024. URL
https://arxiv.org/abs/2402.09353.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks,
2022. URL https://arxiv.org/abs/2110.07602.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks, 2021. URL https:
//arxiv.org/abs/2106.04489.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, Zhonghao Hu, and Yunjun Gao. A survey
on lora of large language models, 2024. URL https://arxiv.org/abs/2407.11046.

Elaine Crespo Marques, Nilson Maciel, Lirida Naviner, Hao Cai, and Jun Yang. A review of sparse
recovery algorithms. IEEE access, 7:1300–1322, 2018.

Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad. Orthogonal
matching pursuit: Recursive function approximation with applications to wavelet decomposition.
In Proceedings of 27th Asilomar conference on signals, systems and computers, pp. 40–44. IEEE,
1993.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning, 2021. URL https://arxiv.
org/abs/2005.00247.

Haotong Qin, Xudong Ma, Xingyu Zheng, Xiaoyang Li, Yang Zhang, Shouda Liu, Jie Luo, Xian-
glong Liu, and Michele Magno. Accurate lora-finetuning quantization of llms via information
retention, 2024. URL https://arxiv.org/abs/2402.05445.

Weixi Song, Zuchao Li, Lefei Zhang, Hai Zhao, and Bo Du. Sparse is enough in fine-tuning pre-
trained large language models, 2024. URL https://arxiv.org/abs/2312.11875.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and et al. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Huiwen Wu, Xiaohan Li, Deyi Zhang, Xiaogang Xu, Jiafei Wu, Puning Zhao, and Zhe Liu. Cg-
fedllm: How to compress gradients in federated fune-tuning for large language models, 2024.
URL https://arxiv.org/abs/2405.13746.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning, 2024. URL https://arxiv.org/abs/2401.04151.

12

https://arxiv.org/abs/2402.11867
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2408.12857
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2106.04489
https://arxiv.org/abs/2106.04489
https://arxiv.org/abs/2407.11046
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2402.05445
https://arxiv.org/abs/2312.11875
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2405.13746
https://arxiv.org/abs/2401.04151


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models, 2022. URL https://arxiv.org/
abs/2106.10199.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning, 2023. URL https://arxiv.org/abs/2303.10512.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024. URL
https://arxiv.org/abs/2403.03507.

Hufei Zhu, Wen Chen, and Yanpeng Wu. Efficient implementations for orthogonal matching pursuit.
Electronics, 9(9):1507, 2020.

13

https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2403.03507


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A GALORE ANALYSIS

Rather than operating on the parameter space, GaLore saves memory by reducing the number of
parameters in the optimizer states (Zhao et al., 2024). Specifically, it projects the gradient Gt ∈
Rm×n at each time step t to a lower-dimensional representation Ĝt = PtGt ∈ Rr×n by using a
projection matrix Pt ∈ Rr×m that is set to the first r columns of the left singular vectors of SVD
of Gt. The size of the optimizer states, which are equal to the dimensions of the projected gradient
Ĝt is then reduced, providing memory savings. However, observe that Ĝt is still dependent on
n, meaning that, similar to LoRA, there exists a bound dependent on n that we cannot reduce the
number of optimizer states any further. Likewise, granularity over parameters is a function of n, and
tied to the model’s weight dimensions.

B EFFICIENT ORTHOGONAL MATCHING PURSUIT

Our implementation of OMP is based on the inverse Cholesky factorization method (Zhu et al.,
2020), see Algorithm 3. We perform pre-calculation of the gram matrix G, to reduce computational
costs, but at the same time introduce additional implementation memory requirements. For pure
memory efficiency, G should not be pre-computed or alternatively, it is possible to implement a
more memory efficient Algorithm 3 at the expense of additional runtime.

Algorithm 3 OMP by Inverse Cholesky Factorization

Inputs: measurements y, projection matrix A, sparsity value s
Initialize: Λ0 = ∅, the residual r(0) = y, gram matrix G = AHA, and the iteration counter
k = 1.
while k ≤ s do

Projection: if k = 1, compute p0 = AHr0, else

p(k−1) = p(k−2) − b:(k−1)ak−1,

where b:(k−1) is the (k − 1)-th column of Bk−1, and ak−1 is the (k − 1)-th entry of ak−1.

Select i(k) = argmaxi=1,2,...,d

(
|p(k−1)

i |
∥A:i∥

)
, where p

(k−1)
i is the i-th entry of p(k−1).

Let Λk = Λk−1 ∪ {i(k)}, i.e., λk = i(k) is the k-th entry of the set Λk.

Obtain
ck−1 =

(
bHλk,1:Λk−1

)H

,

where bλk,1:Λk−1
is the λk-th row of Bk−1. Then compute γk = 1√

gλk,λk
−cH

k−1ck−1

,

ak = γkp
k−1
λk

,

ak =
[
aT
k−1 a:k

]T
,

b:k = γk (g:λk
−Bk−1ck−1) ,

Bk =
[
BT

k−1 b:k
]
,

where pk−1
λk

is the λk-th entry of pk−1, gk
:λk

is the λk-th column of G, and c0 = B0 = a0 = ∅
is assumed for k = 1. Finally, if k = 1, compute F1 =

√
gλ1,λ1

, else

Fk =

[
Fk−1 −γkFk−1ck−1

0k−1 γk

]
,

k := k + 1.
end while
Output: Compute x̂s = Fsas, r(s) = y −AΛs

x̂s, and return r(s),Λs, x̂s.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C EXTENSIONS OF SGC

In practice, having a static projection matrix A is heavily dependent on the initialization, and can
potentially lead to slower convergence. To address this, we can adjust A every T iterations, and
modify SGC to obtain SGCA outlined in Algorithm 4. Lines 9 initializes a new random projection
matrix A′ to enable future gradients Gt to be projected into another subspace. Lines 10 − 11 are
necessary to ensure the current Mt and Vt terms are re-aligned using A′ such that we can perform
OMP at the next time step. Algorithm 4 can improve performance but comes at a cost of increased
runtime, since we need to run OMP two more times. Alternatively, it can be possible to store the
results from first call but requires additional memory requirements.

Algorithm 4 SGCA at timestep t

1: Inputs: Gt,A, s, β1, β2, ϵ
2: pt = A Sparsifys(Gt), qt = A Sparsifys(G

2
t )

3: Mt ← β1Mt−1 + (1− β1)pt

4: Vt ← β2Vt−1 + (1− β2)qt
5: Mt ← Mt

1−βt
1

6: Vt ← Vt

1−βt
2

7: Nt = α OMPA(Mt)√
OMPA(Vt)+ϵ

8: if t mod T = 0 then
9: A′ ∼ N

(
0, 1√

k
1
)

10: Mt = A′OMPA(Mt)
11: Vt = A′OMPA(Vt)
12: A = A′

13: end if
14: return Nt

D FINE-TUNING EXPERIMENTS

D.1 COMMONSENSE REASONING

We fine-tune pretrained LLaMA2-7B, LLaMA2-13B, and LLaMA3-8B models obtained from Hug-
ging Face. We trained each model for 1 epoch on the full commonsense dataset consisting of 170k
examples. For consistency, we used a batch size of 16 across all experiments and train for 1 epoch.
Since the goal is to observe performance improvements with only training a limited number of pa-
rameters, we only fine-tune on two of the attention matrices, keeping everything else frozen. For
LlaMA2-7B and LLaMA-2-13B, we target the query and value matrices, whilst for LLaMA3-8B,
we targeted the query output matrices. For LLaMA3-8B, we select the output matrix instead of the
value matrix to keep the dimensions consistent for comparison. Full details of hyperparameters can
be found in Table 4.

D.2 MEMORY EFFICIENCY

For this experiment, we apply the MESGC algorithm. First, we select a subset of 10k examples from
the full commonsense dataset and fine-tune the LLaMA2-7B model, evaluating on all commonsense
reasoning tasks. We used a batch size of 16 across all experiments and train for 1 epoch is used. The
full results can be found in Table 5 and hyperparameters in Table 6.

D.3 FINE-TUNING ON SMALL DATASETS

We first obtain a subset consisting of 2000 samples from the boolQ dataset. We then create four par-
titions of data ranging in size from 500 to 2000 examples, in increments of 500. For this experiment,
we are interested in comparing performance between our approach and baselines given equal opti-
mizer state sizes. Thus, we set the total number of optimizer states to 8192, and perform fine-tuning
with batch size 16 over 2 epochs using LLaMA2-7B based on the settings shown in Table 7.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameters used for commonsense reasoning experiments.

Model Method learning rate rank r num. chunks c sparsity s κ α

LLaMA2-7B

Full Finetuning 1e-5 - - - - -
CESGC 2e-5 32 64 1984 7 2
GaLore 2e-5 4 - - - 2
LoRA 1e-4 4 - - - -

LLaMA3-8B

Full Finetuning 1e-5 - - - - -
CESGC 2e-5 32 64 1984 7 2
GaLore 2e-5 4 - - - -
LoRA 1e-4 4 - - - -

LLaMA2-13B

Full Finetuning 1e-5 - - - - -
CESGC 3e-5 32 64 2496 7 2
GaLore 3e-5 4 - - - 2
LoRA 1e-4 4 - - - -

Table 5: LLaMA2-7B results on commonsense reasoning for MESGC.

Method ARC-e ARC-c BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Average
CESGC 80.9 53.4 82.4 78.4 43.8 79.9 52.3 73.2 68.0
GaLore 80.2 52.2 79.0 78.4 43.0 80.5 51.6 74.0 67.4
LoRA 80.9 52.2 79.5 78.5 44.6 80.0 51.7 73.9 67.7

Table 6: Hyperparameters used for commonsense reasoning for MESGC.

Method learning rate rank r num. chunks c sparsity s κ α

MESGC 2e-5 - 256 256 8 2
GaLore 2e-5 1 - - - 2
LoRA 1e-4 1 - - - -

Table 7: Hyperparameters used for fine-tuning boolQ.

Method learning rate rank r num. chunks c sparsity s κ α

CESGC 2e-5 8 64 64 8 2
GaLore 2e-5 1 - - - 2
LoRA 1e-4 1 - - - -

Table 8: Hyperparameters used for ablation study.

Study Method rank r num. chunks c sparsity s κ

Chunks c MESGC - 256, 512, 1024, 2048, 4096 4096 7
Sparsity s CESGC 32 64 64, 4096, 16384, 32768, 65536 7
Kappa κ CESGC 32 64 1984 6, 7, 8

D.4 ABLATION STUDY

For chunks c and sparsity s studies, we fine-tuned on the LLaMA2-7B model fine-tuned on a subset
of 30k examples using commonsense reasoning dataset. For the chunk size study, we performed the
experiment based on our MESGC approach, while for sparsity, we used CESGC. Finally, different
values of κ was tested on the full commonsense dataset using CESGC. The same batch size of 16,
training epochs of 1, learning rate, η = 2e−5 and alpha, α = 2 is used for all three studies. Other
hyperparameter details are shown in Table 8.

16


	Introduction
	Related Works
	Problem Formulation
	Methodology
	Motivation
	Sparse Gradient Compression (SGC)
	Compressed Sensing of Optimizer States
	Efficient SGC
	Memory Analysis

	Experiments
	Commonsense Reasoning
	Memory Efficiency
	Fine-tuning on Small Datasets
	Ablation Study

	Conclusion
	GaLore Analysis
	Efficient Orthogonal Matching Pursuit
	Extensions of SGC
	Fine-Tuning Experiments
	Commonsense Reasoning
	Memory Efficiency
	Fine-tuning on Small Datasets
	Ablation Study


