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ABSTRACT

Federated Semi-Supervised Learning (FSSL) aims to collaboratively train a global
model by leveraging unlabeled data and limited labeled data across clients in a
privacy-preserving manner. In FSSL, data heterogeneity is a challenging issue,
which exists both across clients (external heterogeneity) and within clients (inter-
nal heterogeneity). Most FSSL methods typically design fixed or dynamic weight
aggregation strategies on the server (for external) or filter out low-confidence un-
labeled samples directly by an empirical threshold to reduce mistakes in local
client (for internal). But, the former is hard to precisely fit the real global category
distribution due to external heterogeneity, and the latter results in fewer training
participation of available samples in FL. To address these issues, we propose a
proxy-guided framework called ProxyFL that focuses on simultaneously mitigat-
ing external and internal heterogeneity via a unified proxy. Le., we consider the
learnable weights of classifier as proxy to simulate the category distribution both
locally and globally. For external, we explicitly optimize global proxy to better
fit the category distribution across clients; for internal, we include the discarded
samples together with other samples into training based upon a positive-negative
proxy pool without compromising wrong pseudo-labels. Insight experiments &
theoretical analysis show that ProxyFL significantly boost the FSSL performance
and convergence.

1 INTRODUCTION

The rapid advancement of edge devices and the Internet of Things (IoT) has led to a pressing need
for decentralized training paradigms (Hoofnagle et al.[(2019); Lim et al.|(2020)). Federated learning
(FL), a distributed machine-learning paradigm, facilitates multi-device collaborative learning with-
out compromising data privacy, which shares only model updates rather than raw data (McMahan
et al.| (2017)). Most existing FL works assume that local data in clients are fully labeled, but this
assumption does not hold in practical scenarios when data annotation is laborious, time-consuming,
or expensive. To remedy these issues, Federated Semi-Supervised Learning (FSSL) has emerged,
enabling clients to train models leveraging both limited labeled data and a large amount of unlabeled
data, thereby improving the performance of global model. In FSSL, data heterogeneity exists both
across clients (external heterogeneity) and within clients (internal heterogeneity). The former refers
to the distribution discrepancy across different clients, while the latter arises from the local mis-
match due to (1) imbalanced samples sizes across different categories and (2) distribution imbalance
between labeled & unlabeled data.

Existing FSSL works primarily rely on consistency regularization between model prediction and
pseudo-labels: To handle internal heterogeneity, most methods such as FedLabel (Cho et al.[(2023))),
FedDB (Zhu et al.[(2024)) and SAGE (Liu et al.| (2025))) typically filter high-confidence unlabeled
samples for training, while excluding low-confidence ones to avoid introducing bias. FedDure (Bai
et al. (2024)) leverages low-confidence samples by dynamically assigning them a smaller weight.
However, the first three methods (FedLabel, FedDB and SAGE) lead to fewer data participation
due to discarding low-confidence unlabeled data directly, while FedDure compromises incorrect
pseudo-labels by setting smaller weights; For external heterogeneity, as the server has no access to
local samples for data privacy, the aggregation weights are often calculated based on local dataset
sizes (Bai et al.| (2024); [Liu et al.| (2025)) or some implicit statistics of local samples (Cho et al.
(2023));|Zhu et al.| (2024))), which may deviate from the global distribution across clients. These mo-
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Figure 1: (a-b) Differences of test accuracy and pseudo-labeling accuracy under varying levels of heterogeneity
(smaller «v indicates greater heterogeneity). During each communication round, all clients are trained based on
FedSGD (McMahan et al.| (2017)) for one local epoch w/ and w/o low-confidence samples, respectively. (c)
[lustration of centralized learning and averaging-based decentralized FL approaches.

tivate us to pose the following questions: @ Can the local model leverage low-confidence unlabeled
samples without compromising the wrong pseudo-labels? @ Is it possible to explicitly fit the global
distribution across clients in a privacy-preserving manner?

To this end, we first conduct ablation experiments to study Question @. Fig.[T{a-b) show test accu-
racy and pseudo-labeling accuracy under different levels of heterogeneity. We observe that simply
discarding low-confidence samples and directly incorporating them with pseudo-labels exhibit op-
posite trends to model performance as heterogeneity varies. Specifically, with greater heterogeneity
(e.g., a = 0.1), the model’s pseudo-labeling ability is very limited, so including low-confidence
samples may degrade performance due to a larger number of wrong pseudo-labels. But, when the
labeling ability of the model is more reliable under lower heterogeneity (e.g., & = 1 or 10), simply
discarding them may also miss a lot of correctly-labeled samples, leading to inferior performance.
In short, the performance of the two methods is inconsistent across varying levels of data hetero-
geneity, and neither method shows clear superiority over the other. For Question @, as illustrated
in Fig.[T[c), the averaging-based parameter aggregation may deviate from the global category space
due to the distribution discrepancy across clients.

To tackle the problems of FSSL with the above observations, we propose a new method called
ProxyFL (Proxy-Guided Federated Semi-Supervised Learning), leveraging a unified proxy to si-
multaneously mitigate both internal and external heterogeneity. /.e., we consider the learnable
weights of the classifier as proxy to model the category distribution both locally and globally. Proxy
does not compromise data privacy or bring extra communication costs since the proxy itself is part of
the model parameters in FL. Firstly, we introduce a Global Proxy-Tuning (GPT) mechanism. This
approach explicitly defines a global optimization objective to fit the category distribution across
clients, mitigating distribution shift from external heterogeneity. Secondly, to compensate for the
scarcity of local data, we incorporate low-confidence unlabeled samples via a dynamic Indecisive-
Categories Proxy Learning (ICPL) mechanism. For each low-confidence sample, we propose an
indecisive-categories set to represent its several possible categories instead of a single pseudo-label;
For high-confidence unlabeled samples or labeled samples, we utilize the pseudo-label or ground-
truth, respectively. Then we propose a relationship pool between unlabeled and labeled samples,
and effectively train all samples based on the pool to mitigate internal heterogeneity. Experiments
show that ProxyFL can significantly boost the performance and convergence of the FSSL model.

The main contributions of our paper are summarized as follows: @ To our best knowledge, this
paper is the first to propose a unified proxy to mitigate both internal and external heterogeneity in
FSSL. Note that our proxy does not compromise data privacy or bring extra communication costs.
@ This paper proposes an FSSL method, ProxyFL, that can not only reduce the bias of averaging-
based global parameters via an explicit optimization objective, but also precisely build the category
relationship between all samples to facilitate more data participation, without compromising incor-
rect pseudo-labels. @ This paper outperforms existing FSSL methods across multiple datasets and
provides comprehensive experimental results. Our empirical & theoretical analysis also demonstrate
our effectiveness and convergence under different levels of heterogeneity.

2 PROBLEM STATEMENT

This paper focuses on Federated Semi-Supervised Learning (FSSL) with both external and internal
data heterogeneity. Specifically, we assume that a federation system C consists of K clients, denoted



Under review as a conference paper at ICLR 2026

as C = {Cy,...,Ck}. Each client C; maintains a private partially-labeled dataset Dy, including

labeled samples D; = {xk,i,ym}?g and unlabeled samples D} = {uk,i}fvz’“l, where N <
N For each Cy, its local model is parameterized by ©;,, which comprises a feature extractor fj,
parameterized by 6y, projecting local data x € R” to an embedding space R, and a classifier A,
parameterized by wy,, mapping the embedding space to category space R”, where C' indicates total
category number. Le., @) = 0 Uwy. Let P(Y) represent label distribution, and we formally define
data heterogeneity in FSSL as follows:

Definition 1 (External Heterogeneity in FSSL) External heterogeneity refers to the distribution
discrepancy between Dy, across different clients {C1, . ..,Ck}, i.e., for any two different clients Cy,,

and Cr,, Pr,(Y) # Pr,(Y).

Definition 2 (Internal Heterogeneity in FSSL) Internal heterogeneity exists within local clients,
embodied in: (1) class imbalance, arising from unequal sample sizes across different categories
within client Cy, i.e., for any two categories c1 and ca, Pr(Y (c1)) # Pr(Y(c)); (2) distribution
imbalance between labeled and unlabeled data, denoted as P (Y) # PE(Y).

The objective of FSSL is to train a shared global model parameterized by ®¢. During each commu-
nication round, a subset of online clients Cp; C C is randomly selected for local training (Liu et al.
(2025))). On the central server, FSSL methods typically aggregate the uploaded local parameters
{®mn}ec,.ec,, as the global parameters ©g = > . ¢ Ym®y,, Where the aggregation weight vy,
of C,, is empirically set by the proportion of its local dataset size relative to the total samples across
all participating clients.

3 METHOD

3.1 PRELIMINARY STUDY

In this study, our goal is to simultaneously tackle both internal and external heterogeneity in FSSL.
We conduct some exploratory experiments shown in Fig.[2] First, to explore external heterogene-
ity, we attempt to model the global category distribution under FedSGD on the central server. As
shown in|Yao et al.[(2022), the weight parameters of the network classifier have a certain ability to
differentiate categories. Thus, we extract the weight parameters {w, }¢,.eCpy> Wm € RE*? of the
uploaded local classifiers and slice them by class to generate a t-SNE plot, thereby visually showing
the global category distribution across clients. As shown in Fig.[J[(a), each pentagram represents the
centroid of one category cluster, e.g., the simple average of weight parameters {w¢, }¢, ec,, for the
c-th category. We observe that directly using centroids may not accurately fit the global category
distribution across clients. Due to data heterogeneity, the category distribution of some clients ex-
hibits significant discrepancies from others, causing some points to be outliers, e.g., the red and blue
categories in the upper of Fig. 2[a) with outliers pointed out. The simple-averaging method (pen-
tagram) is affected by these outliers, positioning the centroid outside most points of the cluster for
that category. So this method is hard to fit the real global distribution of per-class classifier weights
across clients. We summarize as follows:

Observation 1 Simply averaging classifier weights is prone to skew towards outliers, thus failing
to effectively capture the global category distribution across clients.

For internal heterogeneity, most FSSL methods follow FixMatch (Sohn et al.| (2020)) to assign
pseudo-label only to high-confident unlabeled samples (i.e., their prediction scores exceed a pre-
defined threshold 7), while excluding low-confident ones from training. This allows the model to
heavily rely on limited easy-to-judge unlabeled samples and exacerbates internal heterogeneity. We
examine internal heterogeneity in FSSL using FedSGD (McMahan et al.| (2017)) in Fig. 2[b-c) and
observe that:

Observation 2 As data heterogeneity increases, more unlabeled samples will be excluded from lo-
cal training; Appropriately including the discarded samples could improve test performance.

Therefore, it is crucial to effectively include these discarded samples into training for mitigating
internal heterogeneity. Based on the above observations, it is expected to address the data hetero-
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Figure 2: (a) t-SNE visualization of classifier weights from local clients (circle) during the initial round.
Different colors means different categories. Pentagram denotes the simple average of weight parameters by
category. (b) Number of excluded unlabeled samples under different levels of heterogeneity. As heterogene-
ity increases, more unlabeled samples are excluded from training. (c) Test accuracy curves of ‘SGD-FSSL”
and ‘SGD-FSSL w/ correct label’ under o = 0.1, where the latter denotes incorporating the excluded samples
into training with GT labels. We find that those excluded samples have the potential to improve performance.

geneity in FSSL from two perspectives, i.e., how to fit a global category distribution robustly against
outliers (for external), and how to effectively leverage low-confidence unlabeled samples (for inter-
nal). To this end, based upon the learnable weights of the model classifier, we propose Global Proxy
Tuning (GPT) and Indecisive-Categories Proxy Learning (ICPL), globally improving global cate-
gory distribution in a learnable manner, and locally enhancing unsupervised data utilization while
mitigating the impact of incorrect pseudo-labels.

3.2 PROXY-GUIDED FEDERATED SEMI-SUPERVISED LEARNING

The goal of FL is to train a shared global model with a well-separated category distribution. To
this end, previous FL approaches (Tan et al.|(2022); Huang et al.| (2023)) typically employ class
prototypes to refine the category distribution, where global prototypes serve as the global category
representations to regularize the local distribution. However, the main drawbacks of prototypes in
FL are two-fold: 1) local prototypes are derived from sample features, posing a potential risk of
feature leakage when uploaded to the server and subsequently re-distributed to other clients; 2) local
prototypes need to be uploaded as additional burdens to the server, introducing extra communication
costs. Inspired by [Yao et al.| (2022), we consider the learnable weights of model classifier as
proxy for modeling category distribution instead of prototypes. I.¢., for client C,,, we define the
proxy vectors €2, as {w¢,}$_; in final FC layer to represent the c-th category, where w¢, € R%.
As illustrated in Sec. [3.1] the proxy exhibits certain category-discriminative ability, since it could
determine the category of a sample based on its features. Moreover, compared to sample features,
the proxy serves as a natural component of model parameters, which communicate between local
clients and the server without raising privacy concerns and avoiding extra communication overheads.

3.2.1 GLOBAL PROXY TUNING

In FSSL, external heterogeneity refers to the label distribution discrepancy across clients. To miti-
gate its impact, we propose to model the global category distribution Pg(Y') on the central server via
learning a set of global proxies 2g = {wg}cczl, called Global Proxy Tuning (GPT). In each com-
munication round, the server receives model parameters from each client, thus a straight-forward
idea to obtain Qg is Qg = {d>_¢ ¢, Tmws, o, where C denotes the total category number, Qg
means the average operation, ,, denotes the aggregation weight of C,,, based on the amount of data
like FedAvg (McMabhan et al.| (2017))), and C,, is a subset of all clients C as Sec. @ However, as
summarized in Observation[I} simply averaging the local proxies is prone to be affected by the out-
liers such that the centroids show the discrepancy from the distribution of local proxies. Therefore,
we propose to first initialize the global proxies £2g with €2 and further fine-tune €25 by leveraging
the off-the-shelf uploaded local proxies {w¢, }< |, ¥ C,, € Cps on the server. More concretely, for
the global proxy €2 of category ¢, our objective is to pull it closer to all local proxies belonging to
category c and push it away from local proxies of other classes. The training objective of {2 can be
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Figure 3: (a) Examples of the indecisive-categories in two groups. (b-c) Illustration of our
Indecisive-Categories Proxy Learning (ICPL).
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where ¢ (-, -) refers to the distance metric. Given the training objective, we formulate the loss func-
tion for Global Proxy Tuning (GPT) as follows:

< EMZ (92, w5)
Lepr = E —log . @)
— c c C — - o
TAT e @) 50 e Y )

The entire learning process of GPT module is conducted on the server. Then, the well-optimized
global proxies €2¢ are sent to M clients together with other global parameters, as the parametric
initialization for the next round of local training.

3.2.2 INDECISIVE-CATEGORIES PROXY LEARNING

In FSSL, internal heterogeneity exists not only across different categories but also between labeled
and unlabeled samples (as discussed in Deﬁnition|2|). Current FSSL approaches (Jeong et al.|(2020);
Cho et al.| (2023)); |[Zhu et al.| (2024)) either empirically set a fixed threshold (e.g., 0.95 or 0.85) or
design a dynamic threshold (Bai et al.|(2024))) to filter out low-confidence unlabeled samples. These
samples are directly excluded from local training. As noted in Observation 2} internal heterogeneity
degrades model performance due to limited data participation. To this end, we propose Indecisive-
Categories Proxy Learning (ICPL) to incorporate low-confidence samples into training. Specifically,
for an unlabeled sample u;|'|from D} in client Cy, its local feature z;, local logits y; and global logits
Y, via ©, can be calculated as:

zi = fi (Tw(Wi)0k) , ¥i = i (zi5w1) , ¥ = hg((fg(Tw(ws):0g)); Qg), 3)

where 7., (u;) denotes the weakly-augmented version of u; and y;,y, € RC. If max(y;) > 7, u; is
a high-confidence sample (denoted as ul’©) and its pseudo-label y; = arg max(yi)ﬂ otherwise, u;
is regarded as a low-confidence sample (denoted as ujc) . In this case, it may affect model perfor-
mance to directly assign category via arg max due to potentially incorrect pseudo-labels. Prior study
(Chen et al.[(2022)) has shown the effectiveness of assigning more than one category labels to low-
confidence unlabeled samples. As illustrated in Fig. [B(a), datasets often contain some fine-grained
classes that are difficult to distinguish, especially when two classes belong to the same superclass,
e.g., mouse & hamster, oak & pine. For a mouse-like hamster image, the model is uncertain whether
the object is a mouse or a hamster during the pseudo-labeling process, but typically will not associate
it with irrelevant categories such as a truck. Thus, for u’°, we define the several categories among
which the model hesitates as its indecisive-categories set &;, e.g., {mouse, hamster} in Fig. b). To
design &, we are inspired by the category imbalance issue in FSSL, i.e., leveraging the per-category
number of labeled data across clients to simulate a global category prior P;(Y) and then define the
indecisive-categories set &; for a low-confidence sample u;< based on the prior:

K
Pe(Y) = Y Ni(e)ylys & = {e| e € [L,CIAFi(e) > PG(Y (o))}, )
k=1

"Note that in this section, we drop the client subscript & in data samples for symbolic simplicity.
’To be clear, we re-claim that for an unlabeled sample u;, ¥; and ¥, respectively denotes the local logits
from local model and the global logits from global model, while y; represents the pseudo-labels.
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where N} denotes the number of labeled samples of client Cj,. So for a low-confidence sample u; <,
any category ¢ with corresponding logits y;(c) exceeding P (Y (c)) will be considered as indecisive
category. P;(Y) acts as a dynamic threshold for different classes by setting a higher threshold for
the majority classes and lower for the minority. Then, we leverage Contrastive Learning (CL) to
address internal heterogeneity (Definition [2)) in FSSL since CL directly reflects the relationships
between samples. To this end, we first construct a Positive-Negative Proxy Pool for all unlabeled
data in a batch and we remark the pool as follows:

Remark 1 (Positive-Negative Proxy Pool) For an unlabeled batch B" from D}, we construct
the Positive-Negative Proxy Pool without excluding any of the samples. To be clear, we re-view
several notations: for any u; from D}, its local feature z;, local logits y; and global logits
y,; are calculated as Eq. E} If max(y;) > 7, w; is a high-confidence sample with it pseudo-
label y; = argmax(y,); otherwise, u; is a low-confidence sample with its indecisive-categories
set &. Thus, for a high-confidence sample u’<, its positive proxy wh¢ is the weight W)’ of
argmax-derived category y;, i.e., wi° = wZ Its negative proxies are a set of feature vectors
REe = {zj|zj = fr(Tw(u;); 0k) Au; € pi<}, where @b is a set of unlabeled samples meeting
certain conditions:

¢ ={u; | u; € BYA ((max(y;) > 7 AY: #¥;) V (max(y;) <TAY: €6)} (5)
For a low-confidence sample ul’, its positive proxy is derived from &;, i.e.,
wi®= Y yild) xwp, (6)
Vel €€,
where w}° is designed to the weighted sum of proxy weights, based on the categories within the

indecisive-categories set &;. ¥;(c') denotes the prediction score of u; for the ¢'-th class. The negative

proxy of ui° is also a set R}° = {zj‘zj = fiu(Tw(w)); 0x) Au; € i}, where @}° is a set of

unlabeled samples meeting certain conditions: '
0i¢ ={u; |u; € BYA ((max(y;) > 7 Ay; ¢ &)V (max(y;) <TAENEG =0)). (D)

According to the above equations, we establish category relationships among all unlabeled samples
while reducing potential errors of pseudo-labels. The objective of ICPL can be formulated as:

u,he . u,lc
1 [B*2] o7t wie 1 B oo Wit
Licrr =— | 05— E log + Z log
Bu,hc z: - whe ) 2i ez Bu,1lc z: - wic 2oz
| | — €5 4 Y, egpe €5 | | <= e+ ), epic €T

®)

where |B*2¢| and |B**¢| denotes the number of high-confidence samples and low-confidence sam-
ples in batch BY, respectively. Remark s discussion about u’€ is further visualized in Fig. c) for
better understanding. Given a low-confidence sample u;, we take a weighted average of category
proxies from &; as its positive proxy w?°, and pull u}€ closer to w;° to prevent u;© biasing towards
potentially-incorrect class from pseudo-label; Concurrently, two types of negative samples are se-
lected to be pushed away: @ high-confidence samples in 5% whose top predicted class is not in &;.
@ other low-confidence samples in B" whose indecisive-categories set do not overlap with &;. This
strategy avoids incorrect sample-to-sample relationships as much as possible.

As illustrated in Definition[2] we know that internal heterogeneity exists not only in class imbalance
but also in distribution imbalance between labeled and unlabeled data. Thus, we expand the
negative proxy set of unlabeled samples R”< and R¢ through including labeled samples into the
pool. For one labeled data x; € Dy, the ground-truth label y; can directly represent its category.
Thus we re-define R and R for u; as follows:

Remark 2 Assume that there is a batch B, consisting of labeled batch B® and unlabeled batch B*.
For a high-confidence unlabeled sample ul°, its negative proxies R° set can be expanded as:

RIC =R U {zlz; = fu(x;;06) Ax; € B5 Ny, # ¥} ©)
Likewise, for a low-confidence unlabeled sample u}°, R1° will be:
RfCZRQZC U {Zj|Zj:fk(Xj;9k)/\XjEBS/\Yj¢§Z‘}. (10)

After expanding R?° and R}, we compute L 157, (Eq.[8) by replacing RS, R} with R, R1°.



Under review as a conference paper at ICLR 2026

3.3 Loss FUNCTIONS

We summarize the entire training process of our method. In local training, we follow previous
studies (L1 et al.| (2023)) to assign ground-truth y for labeled data and pseudo-label y for high-
confidence unlabeled data, respectively. Following SAGE (Liu et al.| (2025)), the local losses are:

j32nne| 5]
1 . 1
o= [Bune] > KL(Ae(fi (To(wi); ) swr) || 93), £ = B2 > Les((hr(fi (xi; 0x) s wi), y),
i=1 =1

1)

where KL denotes Kullback-Leibler divergence loss, 7;(+) denotes the strong-augmentation, Lo g
denotes cross-entropy loss. Based on this, our approach effectively leverages a unified proxy to
locally incorporate low-confidence unlabeled samples u’€ for training via £ ;-p;, and improve the
global category distribution via L7 on the server. Thus, our final total objective is:

L=Ls+aly,+ BLrcpr+ Lopr, (12)
——
local global

where «, § are empirically set to 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We strictly follow the FSSL experimental setting of SAGE method (Liu et al.| (2025)).
Our method is evaluated on the CIFAR10, CIFAR-100, SVHN, and CINIC-10 datasets (Darlow!
et al.| (2018)); Krizhevsky et al.| (2009); [Netzer et al.|(2011)). We partition the labeled and unlabeled
samples per category with label proportions of 10% for each dataset. Following previous FSSL
works (Zhu et al. (2024); |Bai et al.|(2024); |Cho et al.|(2023)), we simulate internal and external het-
erogeneity by sampling labeled & unlabeled data from a Dirichlet distribution Dir(«) and allocate
them to local clients with three levels of Dir(«): o = {0.1,0.5,1}. The smaller «, the higher FL
data heterogeneity. We visualize the specific data distribution in Fig. f{a).

Implementation Details Following SAGE (Liu et al.| (2025)), we configure 20 clients for all set-
tings, with 8 clients randomly sampled each round to participate in the federated training. ResNet-8
(He et al.|(2016)) serves as the local backbone, with the number of local epochs set to 5, local learn-
ing rate set to 0.1 and the confidence threshold 7 for pseudo-labeling set to 0.95. For global proxy
tuning process, the learning rate is 0.005, and the number of server epochs is set to 10 for CIFAR-
100 and 100 for the other datasets. Unless otherwise specified, the experimental setup of ProxyFL
is consistent with SAGE (Li1u et al.| (2025))).

4.2 PERFORMANCE COMPARISON

Tab. [T]reports the overall results of our ProxyFL and other state-of-the-art methods across different
datasets under different Non-IID (Non-Independent and Identical Distribution) scenarios with 10%
label. We compare the following methods in our experiments like SAGE (Liu et al.| (2025)): @ FL
methods For FedAvg (McMabhan et al.|(2017)) and FedProx (L1 et al.|(2020)), all clients are trained
via supervised federated learning only on labeled data part; For FedAvg-SL, local data are all fully-
labeled datasets, which denotes the ideal upper-bound based on standard fully-supervised FedAvg.
@ Vanilla combinations (FL + SSL methods) Here, each method denotes a simple combination
of SSL methods and FL. methods. Note that FixMatch-LPL and FixMatch-GPL are both FixMatch-
based frameworks, but pseudo-labels (PL) are derived from different models, i.e., local model for
LPL and global model for GPL, respectively. © FSSL methods We compare ProxyFL with previous
state-of-the-art federated semi-supervised learning (FSSL) methods, including FedMatch (Jeong
et al.| (2020)), FedLabel (Cho et al.| (2023)), FedLoke (Zhang et al.| (2023)), FedDure (Bai et al.
(2024)), FedDB (Zhu et al.| (2024)) and SAGE (Liu et al.| (2025))).

In Tab. [T} ProxyFL achieves state-of-the-art performances on all datasets with significant improve-
ments under different levels of data heterogeneity «. To the best of our knowledge, we are the



Under review as a conference paper at ICLR 2026

Methods CIFAR-10 CIFAR-100 SVHN CINIC-10
a=01a=05a=1la=01a=05a=1la=01a=05a=1la=01a=05a=1
FL Methods
FedAvg 69.60 6888 6939 [ 3408 3321 3531 8240 8340 7860 5717 6009 6154
FedProx 68.58  69.53  68.00 | 3420  34.07 3488 | 81.67 8377 8377 | 5805 6071 62.82
FedAvg-SL 9046 9124 9132 | 67.98 6883  69.10 | 94.11 9441 9440 | 77.82 8042 81.29
FL+SSL Methods

FixMatch-LPL 82.98 84.36  84.69 | 49.32 49.67 49.55 | 89.68 91.33 9191 | 68.02 70.67  72.69
FixMatch-GPL 84.56 86.05  86.66 | 48.96 51.80  52.19 | 90.50 91.94 9231 | 71.67 7326  74.80
FedProx+FixMatch | 84.60 8549  86.95 | 4842 48.51 4933 | 90.46 9136 91.25 | 68.62 70.67  72.69
FedAvg+FlexMatch | 84.21 86.00  86.57 | 49.91 51.39  51.79 | 52.58 55.59  60.50 | 69.20 71.87  73.42

FSSL Methods

FedMatch 75.35 77.86  78.00 | 32.23 3149 3575 | 88.63 89.20  89.23 | 51.94 56.27  70.22
FedLabel 62.85 79.46  79.17 | 50.88 5221 5238 | 89.31 91.51  91.16 | 67.64 70.56  72.80
FedLoke 83.32 8222  81.87 | 39.29 4046 3996 | 89.94 90.00 89.45 | 59.03 61.60  63.21
FedDure 84.60 85.88  87.34 | 4827 51.09  50.79 | 92.87 93.49  94.19 | 70.86 7337  74.89
FedDB 83.99 85.28  87.49 | 4843 50.11  51.55 | 92.56 93.00 93.14 | 69.44 72.60  73.61
SAGE 87.05 88.05 89.08 | 54.18 5582  56.06 | 93.85 94.27  94.65 | 74.59 75.74  76.68

88.56 90.00 89.96 | 57.50 58.75 5824 | 95.09 95.18 9526 | 77.98 78.96  79.59

ProxyFL (ours) | 751 1005 4+088| 1332 1293 1218| 1124 1091 1061 | 1339 1322 1291

Table 1: Experimental results on CIFAR-10, CIFAR-100, SVHN and CINIC-10 under 10% label. Bold text
indicates the best result, and the last row presents the improvement of ProxyFL over the second best method.

CIFARI0 CIFAR100 CINIC10 SVHN

GPT ICPL| 4, =01 0=05 a=1]a=01 a=05 a=1]a=01 a=05 a=1][a=01 a=05 a=1

84.56 86.05 86.66 48.96 51.80 52.19 90.50 91.94 92.31 71.67 73.26 74.80
87.59 89.23 89.71 54.86 56.58 57.09 94.29 94.49 94.53 77.15 79.03 79.31
. . . 57.21 57.98 57.74 94.82 94.69 95.15 77.80 78.04 78.57
88.56 90.00 89.96 57.50 58.75 58.24 95.09 95.18 95.26 77.98 78.96 79.59
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Table 2: Module ablation studies on GPT and ICPL of our method.

first in FSSL to propose category proxy for mitigating both internal and external heterogene-
ity. Notably, our ProxyFL even achieves comparable performance to that of FedAvg-SL on SVHN
dataset and CINIC-10 when o = 0.1. We attribute this improvement to the generalization of the
enhanced category distribution from our proxy-guided FSSL framework.

4.3 ABLATION STUDIES

In this section, we conduct an in-depth investigation to validate the contributions of our GPT and
ICPL in ProxyFL.

Effectiveness of Modules We first validate the contributions of GPT and ICPL through ablation
experiments and set FedAvg+FixMatch-GPL as our baseline model. We conduct ablation studies
under different level of heterogeneity « = {0.1, 0.5, 1} to assess the effectiveness of each module.
As shown in Tab. |2} In our framework, each module could individually enhance model performance
and their combination of GPT & ICPL achieves the best results.

Convergence Analysis Fig. [[(b) and Tab. [3] demonstrate that ProxyFL substantially improves the
convergence speed and test accuracy on the CIFAR-100 dataset. ProxyFL outperforms baseline and
current FSSL methods, achieving better performance with greater communication efficiency. Most
existing FSSL methods (Jeong et al. (2020); (Cho et al.|(2023)); [Zhu et al.| (2024)) only retain high-
confidence samples for training while discarding the low-confidence ones, leading to slower model
convergence due to fewer training samples under non-1ID scenarios. In contrast, ProxyFL effectively
incorporates low-confidence samples and leverages category proxies to address both internal and
external heterogeneity, thereby accelerating model convergence especially during the initial training
stages. In addition, we also provide some theoretical proofs for convergence in Appendix [C|

Analysis of Global Proxy Tuning We explore the effect of our GPT module by visualizing the
proxy distribution across clients in a t-SNE plot. As observed in Fig. f{c), the squares (the proxies
after tuning) fit more accurately the proxy distribution across clients than the pentagram centroids
(the directly-averaging proxies), showing better robustness to outliers. By explicitly defining an
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Acc. 30% 40% 50% Methods CIFAR-10 CIFAR-100 SVHN CINIC-10
Method Round| Speedupt Round] Speedup? Round| Speedupt FedAvg-SL 90.46 67.08 0411 77.82
LPL 119 x1.00 242 % 1.00 562 % 1.00 GPL 84.56 48.96 90.50 71.67
GPL 114 % 1.04 226 x1.07 524 x1.07 GPL-ALL 85.38 50.34 93.31 75.83
FedLabel 94 x1.27 175 x1.38 429 x1.31 LPL 82.98 49.32 89.68 68.02
FedDB 103 x1.16 206 x1.17 - - LPL-ALL 87.18 53.28 83.99 73.39
FedDure 114 x1.04 234 x1.03 542 x1.04 ICPL-Top1 87.13 55.66 94.56 77.01
SAGE 60 x1.98 124 x1.95 267 x2.10 ICPL-Top5 87.77 56.58 94.71 77.65
ProxyFL 45 x2.64 89 x2.72 177 x3.18 ICPL—’P’Q (Y) 87.81 57.21 94.82 77.80

Table 3: Comparison of convergence rates between Prox- Table 4: Ablation of design choices between ICPL

yFL and other baselines with v = 0.1 on CIFAR-100. and other methods with oo = 0.1.
50 ; N RV *
. . Sk T #
£40 Lo
>
@ 0 ° i
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< FIXMATCH-GPL = &
B20 FedLabel bl *n
—— FedDB . (]
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Communication Rounds -6 -4 -2 0 2 4 6
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Figure 4: (a) Distribution of labeled and unlabeled data across clients under @ = 0.1 taking CIFAR-10 as an
example. (b) Convergence curves of ProxyFL and other baselines on CIFAR-100 with o« = 0.1. (c) Distribution
of global category proxies before-and after-tuning visualized in a t-SNE plot.

optimization objective for global category distribution, our method can fit the real global distribution
of per-class classifier weights across clients.

Analysis of Indecisive-Categories Proxy Learning We analyze the effectiveness of ICPL. An in-
tuitive idea to include low-confidence samples is to directly assign pseudo-labels for them like high-
confidence samples, abbreviated as Fixmatch-LPL-ALL and Fixmatch-GPL-ALL. And FedAvg-SL,
the standard fully-labeled FedAvg, serves as an upperbound with correct labels. As shown in Tab. 4]
in most cases, directly including all unlabeled samples could bring slight improvements compared to
simply-discarding, suggesting that low-confidence samples contain valuable information for train-
ing. So simply discarding them may exclude some correctly-labeled samples from training; But,
directly including them sometimes leads to performance degradation, e.g., LPL & LPL-ALL on
SVHN dataset and underperforms FedAvg-SL due to incorrect pseudo-labels. Compared to dis-
carding or directly including low-confidence samples, our proposed ICPL module achieves the best
performance across all datasets by more accurately constructing the relationships between samples
in the positive-negative pool of ICPL. Moreover, ICPL even reaches the performance of FedAvg-SL
on certain datasets.

Design of Indecisive-Categories Set £ We discuss the design of indecisive-categories set & for low-
confidence samples u'®. We compare our strategy of federated global prior P;(Y) for £ with the
commonly-used designs that selects the categories from Top-1 or Top-5 confidence scores. As shown
in Tab. 4] our method consistently yields better performance than other designs, which validates the
effectiveness of P;(Y) that sets different thresholds for different categories.

5 CONCLUSION

Our paper presents a new Federated Semi-Supervised Learning (FSSL) method called ProxyFL,
leveraging a unified proxy to simultaneously mitigate external and internal heterogeneity. We model
the category distribution both locally and globally. Firstly, we define a global optimization objective
to fit the category distribution across clients, mitigating distribution shift from external heterogene-
ity. Secondly, we incorporate low-confidence unlabeled samples via the proposed dynamic indeci-
sive categories proxy learning mechanism to mitigate internal heterogeneity. Experiments show that
ProxyFL can ignificantly boost the performance and convergence of the FSSL model.
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A PSEUDO-CODE

To facilitate a clearer understanding of our approach, we present the pseudo-code of ProxyFL in

Algorithm

Algorithm 1: Proxy-Guided Federated Semi-Supervised Learning (ProxyFL)

Input: Set of clients C; number of online clients M ; number of communication rounds 7’;
number of local epochs E; number of server epochs (); weak augmentation 7, (+);
strong augmentation 7(-); confidence threshold 7; local learning rate 7);; server
learning rate 7g; loss weights a;, 3.

ServerExecutes:

Randomly initialize global model parameters ©% = {65, 2%}

fort =0to7" — 1do

Randomly select a subset of online clients Cy; C C

foreach client C,,, € C), in parallel do

| ©Lr! «+ ClientUpdate (©));
end

gtg+1 D cneCar Yl Qg 2 oComeCn Tmwht 1.
// Global Proxy Tuning (GPT)
Initialize Qg by the average of local proxies: Qg + Qg.
fore =1to Q do
Compute Lgpr with local proxies {w¢,}< 1, V¥ C € Cyy.
Tune global proxies Qg < Qg — ngVa,Lepr in Eq.
end
Q!+ Qg

end

return ©F = 6% U QY

ClientUpdate (©):

Initialize local model parameters ©], = 0} U wj, via 0], < 0} and wj, < Qf

fore =1to E do

Compute supervised loss L as Eq. 11| for labeled samples x € Dy};

Compute consistency loss £, as Eq.[11|for high-confidence unlabeled samples u”c € DF;

// Indecisive-Categories Proxy Learning (ICPL)

Calculate L 1¢p;, for all unlabeled samples from D" by constructing a positive-negative
proxy pool (Remarks & and using Eq.

Clocal — »Cs + aﬁu + ﬂ ICPL-

O < O, — Ve, Liocar-

end
return ©! " = {0, w;}

B RELATED WORK

B.1 FEDERATED LEARNING

Federated learning (FL) is a distributed machine learning approach that focus on safeguarding data
privacy. With the development of FedAvg (McMahan et al.| (2017))) as the pioneer FL algorithm,
researchers have delved into the study of FL. One of the most significant challenges is data hetero-
geneity, meaning that the distributions among different clients are non-i.i.d, i.e., non-independent
and identically distributed. FedProx (Li et al.| (2020)) requires each client to regularize with the
global model parameters during local training to prevent the impact of local bias. A large amount of
works have been proposed to address this challenge with approaches such as additional data shar-
ing, regularization, aggregation strategies, and personalization (Li et al.| (2021); [Tan et al.| (2022);
Li et al.| (2024); Shi et al.| (2025)). However, these fully-supervised FL approaches struggle to gen-
eralize well under the scenarios of annotation scarcity. To this end, Federated Semi-Supervised

13
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Learning (FSSL) has emerged, enabling clients to train models leveraging both limited labeled data
and a large amount of unlabeled data, thereby improving the performance of global model. Our
work mainly targets on federated semi-supervised learning, where a small fraction of samples has
ground-truth labels in each client (Bai et al.|(2024)); Liu et al.|(2025))).

B.2 SEMI-SUPERVISED LEARNING

Semi-Supervised Learning (SSL) aims to effectively leverage both limited labeled data and a large
amount of unlabeled data to improve model performance. Two commonly-used strategies in SSL are
consistency regularization and pseudo-labeling, respectively. Consistency regularization is based on
the assumption that a model’s prediction should remain consistent despite diverse perturbations to
the inputs or model (Chen et al.[(2021); |Yun et al.| (2019); (Olsson et al.[(2021))). Another common
strategy is pseudo-labeling, which determines pseudo-labels for unlabeled samples based on the
high-confidence predictions of the model trained by labeled data and filter high-confidence unlabeled
samples as training samples (Sohn et al.|(2020); Zhang et al.[(2021); Wang et al.[|(2022)). However,
pseudo-label generation in self-training based methods heavily depends on prediction confidence
score, and if these methods are simply transferred to the field of FL, the number of local data will
further decline due to the exclusion of low-confidence unlabeled samples.

B.3 FEDERATED SEMI-SUPERVISED LEARNING

Federated Semi-Supervised Learning (FSSL) addresses the challenge of training models on decen-
tralized data where labels are scarce. The field is often categorized into three distinct scenarios:
@ Labels-at-Server, where clients only have unlabeled data and a central server holds labeled data
(D1ao et al.| (2022); He et al.[(2021); Jeong et al.| (2020); |[Kim et al.| (2023)); Yang et al.| (2024))). @
Label-at-All-Client, where every client has a small fraction of labeled data and a large amount of
unlabeled data (Jeong et al.| (2020); Zhao et al.| (2022)). @ Labels-at-Partial-Clients, where a few
clients are fully labeled while others are unlabeled (Li et al.| (2023); Liang et al. (2022); |Liu et al.
(20215 2024); |[Zhang et al.|(2024)). Our work focuses on the Label-at-All-Client setting. Recent re-
search (Cho et al.|(2023)); Zhang et al.|(2023)); Bai et al.[(2024)); Zhu et al.| (2024); [Liu et al.| (2025))
builds on FixMatch (Sohn et al.|(2020)), focusing on pseudo-label selection, debiasing or combina-
tion. However, with both internal and external heterogeneity, these methods cannot avoid fewer data
participation since they discard low-confidence samples as FixMatch and are also hard to fit the real
global distribution by the indirect statistics.

C THEORETICAL PROOFS

In this section, we provide the convergence analysis for the bi-level optimizations of ProxyFL:
Global Proxy Tuning (GPT) and Indecisive-Categories Proxy Learning (ICPL). Our proofs are based
on the standard assumptions in the non-convex optimization.

C.1 CONVERGENCE OF GLOBAL PROXY TUNING

Our GPT module is a global optimization process executed on the server. In each communication
round, the server collects the local proxies {w,, }}_, from clients and then optimizes the global
proxies £2g by minimizing the loss function Lspr. First, we give:

Theorem 1 (Convergence of Global Proxy Tuning) Assume that the loss function Lcpr is L-
Lipschitz and bounded below, where Lspr is related to Qg. By optimizing the global proxies Qg via

gradient descent with learning rate ng such that 0 < ng < i the optimization process converges
to a stationary point. Le.,

Q—o0

Q-1

. 1 2

lim 5 > E [ Vag £eer (28)]°] =0, (13)
q=0

where Q) is the number of optimization steps on the server.
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Then we provide a specific proof for Theorem [T} According to the descent lemma for L-smooth
functions, we have:

L
Lorr(QF) < Lapr () + (Vag Larr(Q4), QT — Q) + NG - QEIP. (4)

Agcording to the gradient-descent formula Qg’l = Qg —ngVay, LGPT(Qg), Eq. [14{ can be re-
written as:

Lgng
ﬁspr(ﬂé“) <Lopr(%) — 77§||VQQ£GPT(95)||2 + g =9 HVQQLGPT(Q‘I)W (15)

L
= Lopx(2)) = no(1 — ZZ)|Vaag Leor ()]

Let the learning rate ng < +—, such that 1 — L =gl > 1 . Thus, Eq. .can be simplified to:
ﬁm(ng“) < Loer(24) = “Zl|Vag Loer (24)1 (16)
Rearranging the terms, we get:
2
IVag Lae (I < L (Laer(€2) — Leer(RG) (17
Summing both the left and right sides of Eq.[I7|from ¢ = 0 to @ — 1, we have:
Q-1 9 Q-1
> IVagLepr ()] < o > (Lorr(Q) — Lepr(QE)) (18)
q=0 q=0

_ %(/;GPT(Qg) ~ Leer(29))

Since we adopt InfoNCE loss (Oord et al.| (2018))) for Lspr (See Sec.[3.2.1) with its lowerbound 0,
we thus have:

Q-1 9
> IVagLepr ()] < %cm(ng) (19)

q=0

Dividing both sides by () and taking the limit, we have:

Q 1 0
2L (029)

oL Z 'NEPE cpr(dég
lim Q ||vﬂg£GPT(Q )|| Q—)Oo 7779'62

Q—o0

=0 (20)

Since the squared norm of the gradient (i.e., the left-hand side of Eq. is non-negative, hence we
have proven Theorem [T}

C.2 CONVERGENCE OF LoCAL TRAINING WITH ICPL

The ICPL module is executed during the local training on each client. The total local loss is denoted
as Liocar = Ls + aLl, + BL1cpr, with optimization parameters @ = 0y, U wy.

Theorem 2 (Convergence of Local Training with ICPL) Suppose that the total local loss function
Ly, for client k is L-smooth and bounded below, where Ly, is related to ©y. By optimizing the local
model parameters Oy, via gradient descent with learning rate n; such that 0 < m < L% , the
optimization process converges to a stationary point. l.e.,

E—-1
1 e
Jim ZO]E Ve, Lk(©F)]%] = @D

where E is the number of local training epochs.
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Similar to Sec. [C.1] following the descent lemma and the gradient-descent update formula, we can
similarly derive:

Lkm

Lr(OF) < L(0F) = m(1 = = 7) Ve, Li(O7)* (22)
By setting a local learning rate n; < Lik, we obtain:
E-1 9 9
> Ve, Le(®F)|? < E(L’,k(@%) - L,(07)) < Eﬁk(gg) (23)
e=0

Taking the limit to Eq.[23]and knowing that the squared norm is non-negative, we have:

E—-1
1 2
< lim — 912 < lim — 0y —
of,;ggoE;Hv@kck(@k)H < Jim o L(©F) =0 (24)
Thus,
1 E—-1
Jim Ollvekﬁk((az)lwzzo (25)
p

So we have proven Theorem [2|

D LLM USAGE CLAIM

We only utilize Large Language Models (LLMs) to polish a few sentences in this manuscript. More
importantly, all these sentences have been subsequently revised manually by us.
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