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Abstract

Natural language explanations represent a001
proxy for evaluating explainable and multi-002
step Natural Language Inference (NLI) models.003
However, assessing the validity of explanations004
for NLI is challenging as it typically involves005
the crowd-sourcing of apposite datasets, a pro-006
cess that is time-consuming and prone to logi-007
cal errors. To address existing limitations, this008
paper investigates the verification and refine-009
ment of natural language explanations through010
the integration of Large Language Models011
(LLMs) and Theorem Provers (TPs). Specifi-012
cally, we present a neuro-symbolic framework,013
named Explanation-Refiner, that integrates TPs014
with LLMs to generate and formalise explana-015
tory sentences and suggest potential inference016
strategies for NLI. In turn, the TP is employed017
to provide formal guarantees on the logical va-018
lidity of the explanations and to generate feed-019
back for subsequent improvements. We demon-020
strate how Explanation-Refiner can be jointly021
used to evaluate explanatory reasoning, auto-022
formalisation, and error correction mechanisms023
of state-of-the-art LLMs as well as to automat-024
ically enhance the quality of explanations of025
variable complexity in different domains.1026

1 Introduction027

A recent line of research in Natural Language Infer-028

ence (NLI) focuses on developing models capable029

of generating natural language explanations in sup-030

port of their predictions (Thayaparan et al., 2021;031

Chen et al., 2021; Valentino et al., 2022; Bostrom032

et al., 2022; Weir et al., 2023). Since natural lan-033

guage explanations can be used as a proxy to evalu-034

ate the underlying reasoning process of NLI models035

(Kumar and Talukdar, 2020; Zhao and Vydiswaran,036

2021; Chen et al., 2021), researchers have proposed037

different methods for assessing their intrinsic qual-038

ity (Wiegreffe and Marasovic, 2021; Camburu et al.,039

2020; Valentino et al., 2021; Atanasova et al., 2023;040

1Code and data are available at: Anonymous github link

Quan et al., 2024; Dalal et al., 2024), including the 041

adoption of language generation metrics for a direct 042

comparison between models’ generated explana- 043

tions and human-annotated explanations. 044

However, this process is subject to different 045

types of limitations. First, the use of language gen- 046

eration metrics requires the crowd-sourcing of ex- 047

planation corpora to augment existing NLI datasets 048

(Wiegreffe and Marasovic, 2021), a process that 049

is time-consuming and susceptible to errors (Liu 050

et al., 2022; Zhao et al., 2023; Valentino et al., 051

2021). Second, language generation metrics have 052

been shown to fail capturing fine-grained proper- 053

ties that are fundamental for NLI such as logical 054

reasoning, faithfulness, and robustness (Atanasova 055

et al., 2023; Camburu et al., 2020; Chan et al., 2022; 056

Quan et al., 2024). Third, human explanations in 057

NLI datasets tend to be incomplete and contain 058

logical errors that could heavily bias the evaluation 059

(Elazar et al., 2021; Valentino et al., 2021). 060

In this paper, we investigate the integration of 061

state-of-the-art LLM-based explanation generation 062

models for NLI with external logical solvers to 063

jointly evaluate explanatory reasoning (Pan et al., 064

2023a; Olausson et al., 2023; Jiang et al., 2024b) 065

and enhance the quality of crowd-sourced explana- 066

tions. In particular, we present a neuro-symbolic 067

framework, named Explanation-Refiner, that in- 068

tegrates a Theorem Prover (TP) with Large Lan- 069

guage Models (LLMs) to investigate the following 070

research questions: RQ1: “Can the integration of 071

LLMs and TPs provide a mechanism for automatic 072

verification and refinement of natural language ex- 073

planations?”; RQ2: “Can the integration of LLMs 074

and TPs improve the logical validity of human- 075

annotated explanations?”; RQ3: “To what extent 076

are state-of-the-art LLMs capable of explanatory 077

reasoning, autoformalisation, and error correction 078

for NLI in different domains?”. To answer these 079

questions, Explanation-Refiner employs LLMs to 080

generate and formalise explanatory sentences and 081
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to suggest potential inference strategies for build-082

ing non-redundant, complete, and logically valid083

explanations for NLI. In turn, the TP is adopted to084

verify the validity of the explanations through the085

construction of deductive proofs and the generation086

of fine-grained feedback for LLMs.087

We instantiate Explanation-Refiner with state-of-088

the-art LLMs (i.e., GPT-4 (OpenAI, 2023), GPT-089

3.5 (Brown et al., 2020), LLama (Touvron et al.,090

2023), and Mistral (Jiang et al., 2024a)) and the091

Isabelle/HOL theorem prover (Nipkow et al., 2002)092

utilising Neo-Davidsonian event semantics (Par-093

sons, 1990) coupled with First-Order Logic (FOL)094

to effectively and systematically translate natural095

language sentences into logical forms.096

Our empirical analysis carried out on three NLI097

datasets of variable complexity (i.e., e-SNLI (Cam-098

buru et al., 2018), QASC (Khot et al., 2019), and099

WorldTree (Jansen et al., 2018)) reveals that ex-100

ternal feedback from TPs is effective in improv-101

ing the quality of natural language explanations,102

leading to an increase in logical validity using103

GPT-4 from 36% to 84%, 12% to 55%, and 2%104

to 37% (on e-SNLI, QASC, and WorldTree respec-105

tively). At the same time, the results demonstrate106

that integrating external TPs with LLMs can re-107

duce errors in autoformalisation, with an average108

reduction of syntax errors of 68.67%, 62.31%, and109

55.17%. Finally, we found notable differences in110

performance across LLMs and NLI datasets, with111

closed-sourced LLMs (i.e., GPT-4 and GPT-3.5)112

significantly outperforming open-source models113

(i.e., Mistral and LLama) on both explanatory rea-114

soning and autoformalisation, along with a shared115

tendency of LLMs to struggle with increasing ex-116

planation complexity.117

To summarise, the main contributions of this118

paper are:119

1. We introduce Explanation-Refiner, a novel120

neuro-symbolic framework that integrates121

LLMs with an external theorem prover. This122

framework automatically verifies and refines123

explanatory sentences in NLI tasks using an124

objective external feedback.125

2. We utilise Neo-Davidsonian event semantics126

coupled with FOL to effectively translate nat-127

ural language sentences into logical forms to128

minimise semantic information loss. Addi-129

tionally, we introduce a novel method that130

leverages a theorem prover and a proof as-131

sistant for verifying NLI explanations and a132

syntactic refiner to minimise syntax errors in 133

responses generated by LLMs. 134

3. We conduct a comprehensive series of exper- 135

iments with Explanation-Refiner across five 136

LLMs and three datasets, including 1 to 16 137

explanatory sentences, covering tasks from 138

textual entailment to complex multiple-choice 139

question answering in various domains. 140

4. We perform extensive analyses to explore the 141

explanation refinement process, delving into 142

the LLMs’ inference capabilities and reveal- 143

ing the strengths and limitations of different 144

models in producing verifiable, explainable 145

logical reasoning for NLI. 146

2 Explanation Verification and 147

Refinement 148

Explanation-based NLI is widely adopted to eval- 149

uate the reasoning process of multi-step inference 150

models via the construction of natural language 151

explanations. In this work, we refer to the fol- 152

lowing formalisation for Explanation-based NLI: 153

given a premise sentence pi, a hypothesis sentence 154

hi, and an explanation Ei consisting of a set of 155

facts {f1, f2, ..., fn}, the explanation Ei is logi- 156

cally valid if and only if the entailment pi∪Ei |= hi 157

holds. This entailment is considered verifiable if 158

{pi, Ei, hi} can be translated into a set of logical 159

formulae Φ that compose a theory Θ. The validity 160

of the theory Θ is subsequently determined by a 161

theorem prover, verifying whether Θ ⊨ ψ, where 162

ψ represents a logical consequence derived from 163

the logical form of hi. 164

In this paper, we aim to automatically verify the 165

logical validity of an explanation Ei. To this end, if 166

Θ ⊨ ψ is rejected by the theorem prover, a further 167

refinement stage should be initiated to refine the 168

facts {f1, f2, ..., fn} based on external feedback, 169

resulting in an updated explanation E′
i. Thus, an 170

explanation is accepted if all the facts are logically 171

consistent, complementary and non-redundant to 172

support the derivation. 173

3 Explanation-Refiner 174

To verify the logical validity and refine any logical 175

errors in explanatory sentences for NLI tasks, we 176

present a neuro-symbolic framework, Explanation- 177

Refiner, to iteratively check and refine the expla- 178

nation Ei based on external feedback. Figure 1 179

shows an overview of our proposed framework. 180
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(b) Inference, Verification and Refinement

(a) Axiomatisation and Theoremisation
Premise: A man gives a speech
at an ornate costume party.

Hypothesis: A man is public 
 speaking.

Initial Explanation: 
If someone gives a speech that 
 means that they are speaking.

LLM

Autoformalisation
axiom_1: "∀x y e1 e2. Someone x ∧ Speech y ∧ Gives

e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ Speaking e2 ∧ Agent

e2 x"

Theorem hypothesis:
assumes asm: "Man x ∧ Speech y ∧ Party z ∧ Ornate z ∧
Costume z ∧ Gives e ∧ Agent e x ∧ Patient e y ∧ At x z"

shows "∃x e. Man x ∧ Speaking e ∧ Agent e x"

Neo-Davidsonian Event Semantics

LLM

LLM
Rough 

Inference

    1. To infer the hypothesis, we need to find the   
        information of a man and the action of           
        public speaking.
     ....
     5. By combining these steps, we can infer the 
         hypothesis by satisfying the information of   
         man (from premise) and public speaking     
        (from premise and explanation 1).

   There are no redundant or not directly related   
   explanation sentences. The proof steps use       
   explanation 1 and the premise sentence.

Proof Strategy

LLM

Autoformalise 
Proof Methods

proof -

    from asm have "Man x ∧ Speech y ∧ Gives 
    e ∧ Agent e x ∧ Patient e y" by blast
    then have "Man x ∧ Speaking e ∧ Agent e   
    x" using explanation_1 by blast
    then show ?thesis using asm by blast
qed

Solvable

Valid Explanation

Drop irrelevant facts and 
Refine based on the feedback 

from the theorem prover

Failed at then have "Man x ∧
Speaking e ∧ Agent e x" using

explanation_1 by blast

Unsolvable. Feedback on
invalid steps

LLM

 Refined Explanation: 
 If a man gives a speech, that 
 means he is public speaking.

Theorem 
Prover

No Syntax Error

Syntax Error

Step (1)

Step (2)

Step (3)

Step (4)

Step (5)

Step (6)

Theorem
Prover

Refine
Syntax

Verification

New 
Iteration

Figure 1: The overall pipeline of Explanation-Refiner: An NLI problem is converted into axioms and theorems for a
theorem prover, along with some proof steps derived from a preliminary inference. In case the proof fails (logically
invalid), the erroneous steps along with the constructed proof strategy are used as feedback to refine the explanation
in a new iteration.

Given an NLI task, to evaluate the logical validity181

of the entailment, the LLM is prompted to per-182

form an autoformalisation process that transforms183

natural language sentences into formal language184

represented in the form of an Isabelle/HOL the-185

ory. Each fact f ∈ Ei is converted into an ax-186

iom ai, where each ai is an element of the set187

A = {a1, a2, ..., an}. The premise pi and corre-188

sponding hypothesis hi, is converted into a theo-189

rem for proving pi ∧ B → hi, where B ⊆ A. A190

syntax refinement mechanism is subsequently ap-191

plied to the previously transferred symbolic forms.192

The theorem prover is implemented as a checker to193

identify any syntax errors and provide these error194

details as feedback to an LLM, enabling the LLM195

to iteratively correct the syntax errors over a fixed196

number of iterations, denoted by t.197

We can then perform automated reasoning via198

the theorem prover. To this end, in step 3 we use199

the LLM to generate a rough inference that states a200

preliminary proof strategy in natural language and201

elicit the facts f ∈ Ei which are sufficient and nec-202

essary for entailing the hypothesis hi. Based on this203

preliminary proof strategy, the LLM is prompted to204

construct and formalise the proof steps for proving205

the theorem. In step 5, the theorem prover will ver-206

ify the constructed theory by attempting to prove 207

the theorem. If it is solvable, we consider it a logi- 208

cally valid explanation. If the prover failed at one 209

of the proof steps, we adopt the failed steps along 210

with the applied axiomsB ⊆ A as an external feed- 211

back for the LLM. This feedback is used to refine 212

the logical errors and consequently refine the facts 213

f ∈ Ei. 214

3.1 Autoformalisation 215

In order to formally verify the logical validity of the 216

explanations, we adopted Neo-Davidsonian event- 217

based semantics and FOL. 218

Neo-Davidsonian Event Semantics Preventing 219

the loss of semantic information during the repre- 220

sentation of natural language sentences in logical 221

forms, such as FOL, poses significant challenges 222

when using LLMs, particularly with long and com- 223

plex sentences that are crucial for logical reasoning 224

(Olausson et al., 2023). Neo-Davidsonian event se- 225

mantics (Parsons, 1990) utilises event variables to 226

represent the verb predicates and their correspond- 227

ing object arguments as semantic roles. This ap- 228

proach establishes a predicate-argument structure 229

that preserves the information content and faithful- 230

ness of complex sentences, closer to the surface 231
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theorem hypothesis:
(* Premise: A smiling woman is playing the violin in front of a turquoise background. *)
assumes asm: "Woman x ∧ Violin y ∧ Background z ∧ Turquoise z ∧ Smiling x ∧ Playing e ∧ Agent e

x ∧ Patient e y ∧ InFrontOf x z"
(* Hypothesis: A woman is playing an instrument. *)
shows "∃ x y e. Woman x ∧ Instrument y ∧ Playing e ∧ Agent e x ∧ Patient e y"

proof -
from asm have "Woman x ∧ Violin y ∧ Playing e ∧ Agent e x ∧ Patient e y" by blast
then have "Woman x ∧ Instrument y ∧ Playing e ∧ Agent e x ∧ Patient e y" using explanation_1 by

blast
then show ?thesis using asm by blast

qed

Figure 2: An example of representing the premise and hypothesis sentences in Isabelle/HOL theorem includes a
proof constructed by the LLM for verifying the hypothesis.

form of the sentence (Quan et al., 2024). For ex-232

ample, the sentence ‘A wolf eating a sheep is an233

example of a predator hunting prey’ can be for-234

malised as follows:235

∀xye1(wolf(x) ∧ sheep(y) ∧ eating(e1)

∧ agent(e1, x) ∧ patient(e1, y)→
(∃e2 predator(x) ∧ prey(y)∧
hunting(e2) ∧ agent(e2, x)∧
patient(e2, y) ∧ example(e1, e2)))

(1)236

In 1, the verbs are represented as the events ‘eating’237

and ‘hunting,’ where the agent and patient argu-238

ments correspond to the entities performing and239

receiving the actions within these events, respec-240

tively. The logical form example(e1, e2) explicitly241

captures the semantic meaning of this sentence:242

the event of a wolf eating a sheep as an exemplar243

of a predator hunting prey. Similarly, whenever244

there are no action verbs involved in a sentence,245

we utilise FOL to represent the static or descriptive246

aspects. For instance:247

∀x(gravity(x)→ force(x)) (2)248

∀xy(greater(x, y)→ larger(x, y)) (3)249

The above logical forms correspond to the sen-250

tences ‘gravity is a kind of force’ and ‘greater251

means larger’.252

Isabelle/HOL Theory Construction A theory253

script for the Isabelle/HOL theorem prover contains254

theorems that need to be proven from some axioms.255

Therefore, we adopt the sentences in an explanation256

to construct the set of axioms. For instance:257
258

(* Explanation 1: A violin is an instrument. *)259
axiomatization where260

explanation_1: "∀x. Violin x −→ Instrument x"261262

In addition, as illustrated in Figure 2, both the 263

premise and the hypothesis constitute parts of the 264

theorem to be proven. In particular, the ‘assumes 265

asm’ clause includes unquantified, specific propo- 266

sitions or conjunctions of propositions which are 267

recognised as known truths (i.e., premises). On the 268

other hand, the ‘show’ clause denotes the conclu- 269

sion (i.e., hypothesis) for which we seek to build 270

a proof through logical deductions based on the 271

assumed propositions and axioms. 272

Syntax Error Refiner Recent studies (Gou et al., 273

2024; Olausson et al., 2023) have revealed per- 274

sistent syntax errors when prompting LLMs for 275

code and symbolic form generation tasks. We cat- 276

egorised the syntax errors into two distinct sub- 277

domains based on feedback from Isabelle: type 278

unification errors and other syntax errors. Type 279

unification errors primarily arise from mismatches 280

between declared and actual argument types in log- 281

ical clauses. Other syntax errors typically involve 282

missing brackets, undefined entity names, or in- 283

valid logical symbols. Our process involves using 284

Isabelle to identify syntax errors in the transferred 285

theory, extracting these error messages, and then 286

prompting the LLM with these messages along 287

with few-shot examples. This guides the model 288

on how to correct each type of syntax error over a 289

series of iterations, allowing for continuous verifi- 290

cation and refinement. Details of the autoformali- 291

sation prompts are described in Appendix A.4.1. 292

3.2 Proof Construction 293

A proof provides a detailed, step-by-step strategy 294

that elucidates the logical connections and unifica- 295

tion among axioms to support the reasoning process 296

aimed at achieving the solver’s goal. Initially, we 297

prompt the LLM to create a preliminary proof in 298
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natural language to assess how it infers the hypoth-299

esis and to identify which explanatory sentences300

are relevant, redundant, or unrelated. Based on this301

initial inference, we then guide the LLM to develop302

a formal proof (figure 2) that utilises Isabelle/HOL303

to verify the explanatory sentences (axioms) that304

are required to derive the hypothesis. The general305

proof steps generated by an LLM are in the format306

’show X using Y by Z’, where the theorem prover307

is asked to prove X given the assumptions Y , us-308

ing the automated proof tactic Z. The proof tactic309

often applied is ’blast’, which is one of Isabelle’s310

powerful FOL theorem proving tactics, enabling311

efficient and automated proof discovery across a312

range of logical forms (Paulson, 1999). Additional313

details of the proof construction process and the314

prompts used to guide the LLMs are described in315

Appendix A.4.2.316

3.3 Verification and Refinement317

Finally, the constructed theory, which includes ax-318

ioms, theorems, and proof steps, is submitted to319

the theorem prover for verification. If the theory is320

validated, it outputs a logically sound explanation.321

If the proof fails or timeouts, we extract the first322

error from the solver’s error message, identify the323

corresponding proof step, and locate the related ex-324

planatory sentences (axioms) from the theory. We325

begin by removing redundant and irrelevant facts326

that are not present in the preceding Isabelle/HOL327

proof steps or are declared as such in the text infer-328

ence strategy. Then, we prompt the LLM to refine329

the explanatory sentences by providing it with the330

error message, the failed proof step, the associated331

proof strategy, and the relevant explanatory sen-332

tences for further iteration. This process is iterative333

and progressive; with each iteration, the framework334

addresses one or more logical errors, continually re-335

fining the explanatory sentences to ultimately yield336

a logically valid and verifiable explanation. Addi-337

tional details on the prompts used for refinement338

are described in Appendix A.4.3.339

4 Empirical Evaluation340

4.1 Datasets341

We adopted three different NLI datasets for eval-342

uation: e-SNLI, QASC, and WorldTree, using a343

total of 300 samples selected via the sampling strat-344

egy defined in (Valentino et al., 2021), which max-345

imises representativeness and mutual exclusivity346

across syntactic and semantic features expressed in347

the datasets. For multiple-choice question answer- 348

ing, the task includes a question q accompanied 349

by a set of candidate answers C = {c1, c2, ..., cn}, 350

with ci identified as the correct answer. To cast 351

this problem into NLI, we simply convert q and the 352

correct answer ci into a hypothesis hi. On the other 353

hand, the question’s context, if present, is used to 354

build the premise pi. 355

4.2 Models 356

To integrate Isabelle/HOL as a real-time verifi- 357

cation tool with LLMs, we employ a Python 358

client (Shminke, 2022) as TCP (Transmission Con- 359

trol Protocol) client to configure Isabelle/HOL 360

as a server. This enables the communication of 361

the constructed theory files and the extraction of 362

the response messages from Isabelle. We con- 363

ducted experiments using five LLMs within the 364

proposed framework. The models include two 365

open-sourced models: Llama2-70b (Touvron et al., 366

2023) and Mixtral-8x7b (Jiang et al., 2024a), as 367

well as Mistral-small (mistral-small-latest) (Mistral 368

AI, 2024), GPT-3.5 (gpt-3.5-turbo) (Brown et al., 369

2020), and GPT-4 (gpt-4-0613) (OpenAI, 2023). 370

4.3 Results 371

Detailed feedback from an external theorem 372

prover effectively guides LLMs in verifying and 373

refining explanations for NLI. To assess the 374

effectiveness of employing an external theorem 375

prover to verify and refine explanations in NLI 376

tasks, we conducted a comparative analysis across 377

various LLMs (Figure 3). The initially valid ex- 378

planations represent the percentage of explanations 379

that can be verified as logically valid without any 380

further iteration. Although the initial verification 381

results varied among different models, all LLMs 382

demonstrated a consistent improvement in refining 383

the logical validity of the explanations. This pro- 384

cess highlights the positive impact of the external 385

feedback but also shows significant differences be- 386

tween models. We found that lower rates of initial 387

valid explanations often resulted from syntactic er- 388

rors, which impeded the theorem prover’s ability 389

to generate proofs. Despite this initial variability, 390

all models demonstrate a consistent improvement 391

in the refinement process across the datasets. No- 392

tably, GPT-4 outperformed other models, improv- 393

ing the validity of explanations by 48%, 43%, and 394

35% across the three datasets, respectively, within 395

a maximum number of ten iterations (Figure 3). 396

Figure 4 shows the number of explanations refined 397
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Figure 3: The initial and final number of logically valid explanations, along with the average iteration times required
to refine an explanation for each LLM
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Figure 4: Number of successfully refined explanations at each iteration step.

at each iteration across the e-SNLI, QASC, and398

WorldTree datasets. On average, we found that an399

increasing number of iterations leads to increasing400

refinement, with models requiring an average of401

five iterations across the datasets.402

Explanation length/complexity impacts formal-403

isation and verification. The e-SNLI dataset,404

which includes only a single explanatory sentence405

per example, shows the best overall performance.406

In contrast, the multiple-choice question answering407

datasets, QASC and WorldTree, exhibit compara-408

tively lower performance. QASC typically contains409

2 explanatory sentences, while WorldTree ranges410

from 1 to 16 sentences. As the number of explana-411

tory sentences increases, so does the complexity412

of the logical reasoning required. The WorldTree413

dataset, in particular, poses the greatest challenge414

due to its demand for multi-hop inference strate-415

gies. Models show lower refining performance in416

WorldTree when compared to e-SNLI and QASC,417

with only 3%, 5%, and 5% of Llama-70b, Mixtral-418

8x7b, and Mistral-small explanations being refined419

in WorldTree. Meanwhile, 29% and 35% of ex-420

planations are refined by GPT-3.5 and GPT-4 in421

WorldTree, respectively. This process involves syn-422

thesising multiple explanatory sentences to fulfill423

sub-goals, which must then be integrated to meet424

the overall hypothesis goal.425

Iterative and categorical refinement can mono- 426

tonically reduce syntax errors in responses gen- 427

erated by LLMs. To evaluate the syntax error 428

refinement stage, we quantified the presence of 429

syntax errors in the Isabelle theories both before 430

and after the iterative refinement process. After a 431

maximum of three iterations, all models showed 432

significant reductions, with maximum reductions 433

of 68.67%, 62.31%, and 55.17% from 7.82 to 2.45, 434

20.27 to 7.64, and 22.91 to 10.27 across the three re- 435

spective datasets (see Figure 5). While models like 436

Llama2-70b and Mixtral-8x7b still exhibit some 437

syntax errors in the refined theories’ code, this is 438

primarily due to their inability to perform complex 439

autoformalisation, especially for multiple and more 440

complex explanatory sentences such as those in the 441

WorldTree dataset. This result is consistent with 442

the percentage of explanations that were success- 443

fully refined across the models, which suggests that 444

the autoformalisation process plays a critical role 445

in the models’ logical reasoning capability. 446

4.4 Ablation Study 447

We conducted an ablation study to further evaluate 448

and disentangle the impact of autoformalisation on 449

performance. To this end, we adopted GPT-4 exclu- 450

sively for the autoformalisation component, while 451

retaining the original models for explanation refine- 452
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Figure 5: The average number of theories containing syntactic errors before and after the syntax refinement process
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Figure 6: AF represents the autoformalisation components, and TI represents the textual inference components.
TI+AF (Base Model) indicates the use of the base model for both the autoformalisation and textual inference
components. TI+AF (GPT-4) indicates the use of GPT-4 for the autoformalisation components, while the base
model is used for textual inference.
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Figure 7: Average of proof steps processed by the proof
assistant against the total proof steps suggested by the
LLMs in refined and unrefined explanations.

ment and proof strategy generation. As shown in453

Figure 6, integrating GPT-4 for autoformalisation454

led to a significant increase in the number of expla-455

nations successfully refined across all models. For456

instance, Llama2-70b with GPT-4 as the formali-457

sation component refined explanations from 7% to458

65% in the e-SNLI dataset. For the multiple-choice459

question answering dataset, GPT-3.5 showed a rela-460

tively smaller increase from 44% to 48% and from461

29% to 34%. Despite these improvements, a perfor-462

mance gap persists between GPT-4 and the other463

models, which is attributed to GPT-4’s superior464

symbolic reasoning capabilities required for expla-465

nation refinement from the identified logical errors. 466

Explanations are progressively made more com- 467

plete and consistent through iterative refine- 468

ment. In order to deliver step-wise logical consis- 469

tency, explanations need to be made complete and 470

self-contained, leading to the introduction of addi- 471

tional explanatory sentences, leading to an increase 472

in the total number of suggested proof steps. There- 473

fore, we further evaluated how the proof steps vary 474

when the total number of suggested proof steps 475

increases contrasting both refined and unrefined 476

cases. Figure 7 illustrates this trend. In general, 477

all models show a positive trend, as the total sug- 478

gested proof steps increase, the average number of 479

proof steps processed by the proof assistant also 480

increases. Models like Mistral-small and GPT-3.5 481

tend to suggest more proof steps to accomplish the 482

logical goal, which can result in some redundant 483

steps, such as the significant pulse shown in Figure 484

7c. For unrefined explanations, as shown in Fig- 485

ure 7d, 7e and 7f, the progression is steadier but 486

retains a positive trend, where the models gener- 487

ally suggest more proof steps in response to the 488

additional explanatory sentences introduced to cor- 489

rect a logical error identified from the erroneous 490

step. We analysed the correlation between average 491

successful explanatory sentences and total planned 492

sentences in proofs, detailed in Appendix A.3. Ex- 493
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Figure 8: Human evaluation of refined explanations in terms of factuality and triviality.

amples of refined and unrefined explanations are in494

Appendix A.5.495

4.5 Factual Errors and Trivial Explanations496

In addition to evaluating the logical validity of ex-497

planations, we also conducted a human evaluation498

of the refined explanations considering factual cor-499

rectness and explanation triviality for the two best-500

performing models (GPT-3.5 and GPT-4). This501

evaluation focused on two questions: “Are the502

refined explanatory sentences factually correct?”503

and “Is the explanation trivial, merely repeating504

or paraphrasing the content of the premise and505

hypothesis to achieve logical validity?”. As illus-506

trated in Figure 8, our findings indicate that all507

refined explanations in the e-SNLI and WorldTree508

datasets are consistent with commonsense knowl-509

edge. In the QASC dataset, 2.27% and 1.82% of the510

explanation refined by GPT-3.5 and GPT-4 contain511

sentences misaligned with true world knowledge.512

We found that the majority of these errors result513

from over-generalisation, such as the sentence All514

tetrapods are defined to have four limbs, which515

inaccurately includes snakes.516

Finally, we found a relatively low number of ex-517

planations that repeat or paraphrase the content of518

premise and hypothesis. This phenomenon is ab-519

sent in e-SNLI and becomes more evident when the520

explanatory sentences increase in complexity (i.e.,521

WorldTree), leading models sometimes to gener-522

ate explanations that do not include any additional523

information for the entailment to hold.524

5 Related Work525

5.1 LLMs Self-Refinement from External526

Feedback527

Self-refinement of LLMs has demonstrated promis-528

ing effectiveness in generating faithful and trust-529

worthy responses (Pan et al., 2023b). The use of530

external feedback to guide LLMs has been exten-531

sively studied (Olausson et al., 2024a; Yu et al., 532

2023; Akyurek et al., 2023). Previous work such 533

as Peng et al. (2023) have employed facts retrieved 534

from external knowledge bases as sources of feed- 535

back, while Paul et al. (2024) developed a critic 536

model to provide feedback for reasoning refine- 537

ment. Additionally, Nathani et al. (2023) have ex- 538

plored the use of feedback models for automated 539

feedback generation. Various works have also in- 540

vestigated tasks related to code generation (Chen 541

et al., 2023; Olausson et al., 2024b) and the creation 542

of either synthetic or expert-written logical natural 543

language expressions (Olausson et al., 2023). Quan 544

et al. (2024) use a differentiable logic reasoner for 545

verifying and refining explanations via abductive 546

reasoning, improving logical consistency in ethical 547

NLI tasks. This paper focuses on the automated 548

refinement of natural language sentences created 549

by human annotators, which can identify the exact 550

erroneous steps to effectively refine logical errors 551

in the explanatory sentences. 552

6 Conclusion 553

In this work, we present a novel neuro-symbolic 554

framework, Explanation-Refiner, which utilises 555

LLMs and theorem provers for automatic verifi- 556

cation and refinement of natural language expla- 557

nations through iterative cycles. Extensive exper- 558

iments on textual entailment and multiple-choice 559

question tasks showed improved logical validity 560

of human-annotated explanations. We investigated 561

the model’s performance from simple to complex 562

explanatory/sentence structures and introduced a 563

method to prevent the loss of semantic information 564

in autoformalisation tasks with error correction. 565

In future work, we aspire to enhance the frame- 566

work’s robustness towards complex and unstruc- 567

tured explanations with fewer iterations required to 568

improve the model’s efficiency. 569
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7 Limitations570

While this work have demonstrated significant im-571

provements in terms of enhancing the logical con-572

sistency of explanations, the connection between573

improved logical consistency and AI safety still574

needs further investigation. While the concept of575

using formal solvers in conjunction with LLMs576

delivers a promise avenue to improve the consis-577

tency of reasoning within LLMs, these method-578

ologies needs to be further developed and critically579

assessed as a mechanism which can provide guaran-580

tees of correctness, consistency and completeness581

within critical application domains.582
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A Appendix 850

A.1 Algorithm 851

Algorithm 1 shows the overall framework of 852

Explanation-Refiner. 853

A.2 Scalability 854

Figure 9 shows the average Isabelle/HOL solving 855

time against the number of planned explanatory 856

sentences in a proof and the length of suggested 857

proof steps, including theories that have syntax 858

errors, respectively. In some cases, the theorem 859

prover may get stuck on a proof step, and we have 860

set a termination time if the solving time exceeds 861

65 seconds. 862

A.3 Average Processed vs. Planned 863

Explanatory Sentences per Proof 864

Figure 10 and Figure 11 shows experiments on 865

average number of successfully processed explana- 866

tory sentences in one proof against total planned 867

explanatory sentences in a suggest proof. Figure 868

12 also shows the comparison of average processed 869

proof steps against total suggested proof steps in 870

all dataset. 871

A.4 Prompts 872

Temperature settings were adjusted to 0 for GPT- 873

3.5 and GPT-4, and to 0.01 for Llama2-70b, 874

Mixtral-8x7b, and Mistral-small, aiming to achieve 875

both determinism in the output and effective code 876

generation for theorem prover. 877

A.4.1 Autoformalisation 878

Figure 13 displays the prompts used to identify ac- 879

tion verbs (events) within the premise, explanation, 880

and hypothesis sentences, representing events in 881

Davidsonian-event semantics. Figure 14 displays 882

the prompts used to transfer natural language to 883

logical forms based on the identified events verbs. 884

Figure 15 shows how to convert logical forms into 885

Isabelle/HOL code (axioms and type declaration). 886

Figure 16 shows how to convert the premise and hy- 887

pothesis sentences into the Isabelle/HOL theorem 888

code, based on the previously constructed axioms 889

code. Figure 17 shows how to refine the syntax 890

errors based on the types of errors, the provided 891

code, the error messages, and the locations of the 892

errors within the code. 893
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Figure 9: (a) Average Isabelle/HOL solving time against number of explanatory sentences planned in a proof. (b)
Average Isabelle/HOL solving time against number of suggested proof steps in a proof.

A.4.2 Proof Construction894

Figure 18 shows the prompts for making a pre-895

liminary inference strategy, which also identifies896

redundant and related explanatory sentences that897

will be used for proof generation. Figure 19 shows898

the prompts for building the proof steps used for899

Isabelle/HOL Proof assistant based on the provided900

inference strategy.901

A.4.3 Explanation Refinement902

Figure 20 shows how to refine the explanatory sen-903

tences based on the provided information.904

A.5 Examples of Explanation Refinement905

A.5.1 e-SNLI Refined Examples906

Table 1 shows an example from the e-SNLI dataset907

of how the explanation changes after each iteration.908

Figures 21, 22, and 23 illustrate the Isabelle/HOL909

theory code changes during the refinement process.910

Green code indicates the proof steps that have suc-911

cessfully progressed, while red code shows where912

the proof failed at that step.913

Table 2 along with Figures 24 and 25, and Ta-914

ble 3 with Figures 26, 27, and 28 are two more915

examples.916

A.5.2 QASC Refined Examples917

Table 4 shows an example from the QASC dataset918

of how the explanation changes after each iteration.919

Figures 29, 30 illustrate the Isabelle/HOL theory920

code changes during the refinement process. Green921

code indicates the proof steps that have successfully922

progressed, while red code shows where the proof923

failed at that step.924

Table 5 along with Figures 31 and 32, and Table925

6 with Figures 33, 34 are two more examples.926

A.5.3 WorldTree Refined Examples 927

Table 7 shows an example from the WorldTree 928

dataset of how the explanation changes after each 929

iteration. Figures 35, 36, 37, 38, 39, 40, 41 and 930

42 illustrate the Isabelle/HOL theory code changes 931

during the refinement process. Green code indi- 932

cates the proof steps that have successfully pro- 933

gressed, while red code shows where the proof 934

failed at that step. 935

Table 8 and Figures 43, 45, 46 and 47, as well 936

as Table 9 with Figures 48, 49, 50, and 51, provide 937

two more examples. 938

A.5.4 Unrefined Example 939

Table 10 and Table 11 shows an example from the 940

WorldTree dataset that does not refine within 10 941

iterations and is not caused by a syntax error. The 942

figures that follow show the detailed Isabelle/HOL 943

theory code of the related iterations. 944

A.6 Datasets and Theorem Prover 945

The datasets used in our experiments, including 946

samples from e-SNLI (Camburu et al., 2018), 947

QASC (Khot et al., 2019), and WorldTree (Jansen 948

et al., 2018), are all sourced from open academic 949

works. We employed Isabelle as the theorem 950

prover, which is distributed under the revised BSD 951

license. Additionally, the TCP client used for the 952

Isabelle server (Shminke, 2022) is licensed under 953

Apache-2.0. 954
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Figure 10: Average Progressed Explanations against Number of Planned Explanations in Refined and Unrefined
e-SNLI, QASC and WorldTree Dataset
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Figure 11: Average Progressed Explanations against Number of Planned Explanations for Refined, Unrefined, and
Combined Across All Datasets
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Figure 12: Average Processed Proof Steps against Total Suggested Proof Steps for Refined, Unrefined, and Combined
Across All Datasets
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Algorithm 1: Explanation-Refiner
Input :Premise p, Explanation E, Hypothesis h, Isabelle//HOL server isabelle,

Autoformalisation model ma, Isabelle syntax refinement model msr, Rough inference
model mri, Proof step build model mpr, Facts filter model mf , Explanation refinement
model me

Output :Updated Explanation E
1 valid← false
2 isabelle_theory← [ ]
3 iterations← 0
4 max_iterations← 11
5 has_syntax_error← false
6 while not valid and iterations < max_iterations do
7 session_id← session_build(HOL, isabelle)
8 isabelle.start(session_id)
9 isabelle_theory← transfer_to_symbolic(p,E, h, ma)

10 messages, error_content, error_code← isabelle.check(isabelle_theory)
11 if syntax_errors in messages then
12 has_syntax_error← true
13 it← 0
14 while has_syntax_error and it < 3 do
15 isabelle_theory = refine_syntax(messages, error_content, error_code, isabelle_theory,

msr)
16 messages, error_content, error_code← isabelle.check(isabelle_theory)
17 if syntax_errors in messages then
18 has_syntax_error← true
19 it← it+ 1

20 else
21 break
22 end if
23 end while
24 end if
25 rough_inference← make_rough_inference(p,E, h,mri)
26 proof_steps← build_proof(rough_inference, mpr)
27 isabelle_theory← isabelle_theory + proof_steps
28 messages, error_content, error_code← isabelle.check(isabelle_theory)
29 if messages is not empty then
30 message← messages[0]
31 E ← filter(E, rough_inference, proof_steps, mf )
32 E ← refine_explanation(message, error_content, error_code, rough_inference, proof_steps,

p,E,H,me)
33 else
34 valid← true
35 break
36 end if
37 iterations← iterations+ 1
38 isabelle.shutdown()
39 end while
40 return E
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SYSTEM: You are an expert in linguistics. You will be provided 
with some sentences, find any action verbs of these sentences.
You need to ignore auxiliary verbs and modal verbs. 
Some instructions:
1. You must give me the answer for all provided sentences.
2. Do not add any notes.
3. If no premise sentence provided, include it in the answer 
as none. 
4. Retain the answer words in their original form within the 
provided sentence.
USER: 
Here are some examples:
###
Hypothesis Sentence: 
1. A woman is playing an instrument.
Has action: Yes
Actions: 1. playing

Explanation Sentence: 
1. A violin is an instrument.
Has action: No
Actions: none

Premise Sentence: 
1. A smiling woman is playing the violin in front of a 
turquoise background.
Has action: Yes
Actions: 1. playing
###
...
###
<<<<<<<<<<<<<<<<<<<<<<<
Strictly follow the instructions that I have claimed.

Provided sentences:
{{input_sentence}}

Answer:

Figure 13: Prompts for detecting event-related words in
the given sentences

SYSTEM: You are an expert in semantics, formal language and 
neo-davidsonian event semantics. You will be provided with 
some sentences and the action verbs involved in those 
sentences. You need to transfer the sentences into symbolic 
language. If the sentence has no action, transfer it into 
formal language using first-order language. If the sentence 
has one action, transfer it using first-order language and 
davidsonian event semantics within one event. If the sentence 
has two more actions, transfer it using first-order language 
and davidsonian event semantics within at most two events.
Some instructions:
1. Capture All Information: Ensure the logical form reflects 

every detail from the sentence.
2. Use '⟶' for Certain Verbs: Represent actions like 'cause', 
'lead', 'help' that represent an implication, causal relation 
with '⟶' for clarity.
3. Event Variable 'e': Use 'e' for events, actions, with 
action predicates having 'e' as their sole argument.
...
USER: Here are some examples:
###
Sentence: Grass is a kind of plant.
Has action: No
Actions: 
Logical form: ∀x. Grass(x) ⟶ Plant(x)
###
Sentence: Squirrels typically eat nuts for energy.
Has action: Yes
Actions: 1. eat
Logical form: ∀x y z. Squirrels(x) ∧ Nuts(y) ⟶ (∃e. Eat(e) ∧ 
Agent(e, x) ∧ Patient(e, y) ∧ ForEnergy(y, x))
###
...
<<<<<<<<<<<<<<<<<<<<<<<
Strictly followed the instructions that I have claimed.

Provided sentences:
{{input_sentence}}

Answer:

Figure 14: Prompts for converting natural language
sentences into logical form representations
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SYSTEM: You are an expert in Isabelle theorem prover, first-
order logic and Davidsonian event semantics. You will be 
provided with some sentences and corresponding logical forms 
(first-order logic and davidsonian event semantics) of those 
sentences. You need to transfer such logical forms into 
Isabelle axioms code and define the consts and of the symbolic 
forms.
Some instructions:
1. Isabelle axioms code use ∧, ∨, ∀, ∃, ¬, ⟷, ⟶ as logic 
symbols. Please write the axiom code with these logic symbols.
2. Isabelle consts code use ⇒ as logic symbols. Please define
...
The code structure for axioms is:
```
begin

typedecl entity
typedecl event
consts
  [define the consts here]

(* Explanation 1: [provided sentence 1 in natural language] *)
axiomatization where
  explanation_1: [Transfer the logical form into isabelle code 
here, non-bracketed of the predicate-argument form]
...
```
USER: Here are some examples:
###
Provided sentences:

Explanation Sentence: 
1. If the infant is crying, it can be assumed that they are 
unhappy.
Logical form: ∀x e. Infant(x) ∧ Crying(e) ∧ Agent(e, x) ⟶ 
Unhappy(x)

Answer:
```
begin
typedecl entity
typedecl event

consts
  Unhappy :: "entity ⇒ bool"
  Infant :: "entity ⇒ bool"
  Crying :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"

(* Explanation 1: If the infant is crying, it can be assumed 
that they are unhappy. *)
axiomatization where
  explanation_1: "∀x e. Infant x ∧ Crying e ∧ Agent e x ⟶ 
Unhappy x"

```
###
...
###
<<<<<<<<<<<<<<<<<<<<<<<
Strictly follow the instructions that I have claimed.

Provided sentences:
{{explanatory_sentences}}

Answer:

```
answer goes here
```

Figure 15: Prompts for converting logical form into
Isabelle/HOL code format for building the axioms and
type declaration

SYSTEM: You are an expert in Isabelle theorem prover, first-
order logic and Davidsonian event semantics. You will be 
provided with a Hypothesis sentence and a Premise sentence 
with their corresponding logical forms (first-order logic and 
davidsonian event semantics). 
...
Some instructions:
1. Isabelle code use ∧, ∨, ∀, ∃, ¬, ⟷, ⟶ as logic symbols. 
Please write the code with these logic symbols.
...
The code structure for theorem hypothesis is:
```
theorem hypothesis:
  (* Premise: [provided premise sentence in natural language] 
*)
...
end
```
USER: Here are some examples:
###
Provided sentences:
...
Provided code:
...
Answer:
```
imports Main

begin

typedecl entity
typedecl event

consts
  AdultSponges :: "entity ⇒ bool"
  Eggs :: "entity ⇒ bool"
  Sperm :: "entity ⇒ bool"
  Gametes :: "entity ⇒ bool"
  Produce :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"

(* Explanation 1: Adult sponges produce eggs and sperm. *)
axiomatization where
  explanation_1: "∀x. AdultSponges x ⟶ (∃e y z. Eggs y ∧ 
Sperm z ∧ Produce e ∧ Agent e x ∧ Patient e y ∧ Patient e z)"

(* Explanation 2: Sperm and eggs are cells known as gametes. 
*)
axiomatization where
  explanation_2: "∀x y. Sperm x ∧ Eggs y ⟶ Gametes x ∧ 
Gametes y"

theorem hypothesis:
  (* Premise: Students are studying adult sponges. *)
  assumes asm: "Students x ∧ AdultSponges y ∧ Studying e ∧ 
Agent e x ∧ Patient e y"
  (* Hypothesis: Adult sponges produce gametes. *)
  shows "∃x y e. AdultSponges x ∧ Gametes y ∧ Produce e ∧ 
Agent e x ∧ Patient e y"
proof -

qed

end

```
###
...
###
<<<<<<<<<<<<<<<<<<<<<<<
Strictly follow the instructions that I have claimed. 

Provided sentences:
{{input_sentence}}

Provided code:
{{axiom_code}}

Answer:

```
answer code goes here (complete isabelle code )
```

Figure 16: Prompts for building the theorem code part
of the Isabelle/HOL theory
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SYSTEM: You are an expert in the Isabelle theorem prover and 
familiar with HOL session syntax and Davidsonian event 
semantics. You will be provided with Isabelle code containing 
some syntax errors, along with details of the errors and their 
locations in the code. You need to fix the code (logical form) 
of the related error.
Some instructions:
1. Do not change code structure, you just need to fix the 
syntax error.
2. Type unification failed errors indicates the defined consts 
and the acutal preidcates are not consistent. There are only 
two types: event and entity. The type defined in the consts 
should be same as the type represented in the logical form 
codes.
...
USER: Here are some examples:
###
Provided code:
...
Error Identified: 

1. Error on line 15: Type unification failed: Clash of types 
"entity" and "event"

Type error in application: incompatible operand type

...
Code Cause This Error: 

explanation_1: "∀x c. Cute x ∧ Couple x ∧ Club c ∧ At x c ⟶ 
(∃y. Couple y ∧ Club c ∧ At y c)"
...

Answer:
From the error found, the error type is type unification 
failed, which means the operand type defined in consts is not 
consistent with the operand in the code.
As the error indicates the Operator 'At' in code is defined as 
At :: "event ⇒ entity ⇒ bool" but in the code it is stated as 
At x c where x is defined as entity. That's the reason cause 
type unification failed.
It should have the same type which can be refined as:
```
...
Couple :: "entity ⇒ bool"
  Club :: "entity ⇒ bool"
  At :: "entity ⇒ entity ⇒ bool"
  Cute :: "entity ⇒ bool"

(* Explanation 1: A cute couple at a club means a couple is at 
a club. *)
axiomatization where
  explanation_1: "∀x c. Cute x ∧ Couple x ∧ Club c ∧ At x c ⟶ 
(∃y. Couple y ∧ Club c ∧ At y c)"

theorem hypothesis:
  (* Premise: A cute couple at a club *)
  assumes asm: "Cute x ∧ Couple x ∧ Club c ∧ At x c"
  (* Hypothesis: The couple is at a club. *)
  shows "∃x. Couple x ∧ Club c ∧ At x c"
proof -
 
qed

end
```
The At :: "event ⇒ entity ⇒ bool" has been refined as At :: 
"eneity ⇒ entity ⇒ bool", then the types are consistent for 
both consts and following logical code.
###

<<<<<<<<<<<<<<<<<<<<<<<
Strictly follow the instructions that I have claimed. 
Provided code:
{{code}}

Error Identified:
{{error_detail}}

Code Cause This Error:
{{code_cause_error}}

Answer:

``` 
answer code goes here (complete refined isabelle code)
```

Figure 17: Prompts for how to refine the identified
syntax errors in the constructed code

SYSTEM: You are an expert in natural language inference, 
textual entailment and linguistic semantics. You will be 
provided with a premise sentence, some explanatory sentences 
and a hypothesis sentence. The premise sentence and 
explanatory sentences should entail the hypothesis sentence.
You need to write a step-by-step natural language inference to 
state how the explanatory sentences will entail the hypothesis 
sentence from the premise sentences.
Instructions:
1. You must elicit the explanatory sentences which are 
redundant and not directly related (if there are no redundant 
or all related state it as no).
2. You must state on which step of the proof each explanatory 
sentence is used. 
3. You must elicit the used explanatory sentences in the 
natural language inference steps.
USER: Here are some examples:
###
Provided Premise Sentence:
A group of students are studying non-contact force.

Provided Explanation Sentences:
1. Non-contact forces can affect objects that are not 
touching. 
2. A magnet attracts magnetic and ferromagnetic metals through 
magnetism.
3. Magnetism does not require contact between objects to act.
4. A paper clip is a kind of object.
5. A magnet is a kind of object.
6. Magnetism is a kind of force.
7. A kind of something is an example of that something. 

Provided Hypothesis Sentence:
A paper clip attracted to a magnet is an example of a non-
contact force acting on an object.

Natural Language Inference Steps:
1. As we need to infer the hypothesis, we need to find the 
information of paper clip, magnet, non-contact force and 
object. The action event of attracted and acting. The 
relationship of is an example of.
2. From the premise, we can get the information of non-contact 
force.
3. From explanation 4 and 5, we deduce that both a paper clip 
and a magnet are objects.
4. Explanation 2 establishes that a magnet can attract certain 
metals through magnetism, which is a force (due to explanation 
6).
...

Explanation 1 is redundant. There is no not directly related 
explanation sentence.
The proof steps use explanation 2, explanation 3, explanation 
4, explanation 5, explanation 6, explanation 7. 

###
...
###

<<<<<<<<<<<<<<<<<<<<<<<
Strictly follow the instructions that I have claimed.

Provided Premise Sentence:
{{premise}}

Provided Explanation Sentences:
{{explanation}}

Provided Hypothesis Sentence:
{{hypothesis}}

Natural Language Inference Steps:

Figure 18: Prompts for how to make a step-by-step
preliminary inference strategy
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SYSTEM: You are an expert in Isabelle theorem prover, first-
order logic and Davidsonian event semantics. You will be 
provided with an Isabelle code which consistent of some 
axioms, a theorem hypothesis that needs to be proven. The 
logical form of axioms indicates some explanatory sentences, 
the logical form after "assume asm:" indicates a premise 
sentence and the logical form after "shows" indicates a 
hypothesis sentence. 
...
Some instructions:
1. 'sorry' and ‘fix’ command is not allowed. 
...
USER: Here are some examples:
###
Provided Isabelle Code:
```
...
begin
typedecl entity
typedecl event
consts
  PlantReproduction :: "entity ⇒ bool"
...
(* Explanation 1: Plant reproduction often requires pollen. *)
axiomatization where
  explanation_1: "∀x y e. PlantReproduction x ∧ Pollen y ∧ 
Require e ∧ Agent e x ∧ Patient e y"

theorem hypothesis:
  (* Premise: Students are studying plant reproduction 
process. *)
  assumes asm: "Students x ∧ PlantReproduction y ∧ Studying e 
∧ Agent e x ∧ Patient e y"
  (* Hypothesis: Plant reproduction often requires bees. *)
  shows "∃x y e. PlantReproduction x ∧ Bee y ∧ Require e ∧ 
Agent e x ∧ Patient e y"
proof -
 
qed

end
```
Provided Natural Language Inference Strategy:

1. As we need to infer the hypothesis, we need to find the 
information of plant, reproduction process, requires action 
and bees.
2. From explanation 1, we get the information of plant 
reproduction, which requires pollen.
...
Explanation 3 and 4 is not related and Explanation 5 is 
redundant.
The proof steps use explanation 1 and explanation 2.

Answer: 
```
proof -
  from asm have "PlantReproduction x" by simp
  then obtain e1 where e1: "Require e1 ∧ Agent e1 x ∧ Patient 
e1 y" using explanation_1 by blast
  then have "Bee y" using explanation_2 by blast
  have conclusion: "Require e1 ∧ Agent e1 x ∧ Patient e1 y" 
using e1 by simp
  show ?thesis using asm conclusion `Bee y` by blast
qed
```
###
...
<<<<<<<<<<<<<<<<<<<<<<<
Strictly follow the instructions that I have claimed.

Provided Isabelle Code:
{{isabelle_code}}

Provided Natural Language Inference Strategy:
{{rough_inference}}

Answer:

Figure 19: Prompts for how to build a proof for Is-
abelle/HOL proof assistant

SYSTEM: You are an expert in Isabelle theorem prover, first-
order, Davidsonian event semantics and natural language 
inference. You will be provided with three types of sentences: 
Premise Sentence, Explanation Sentence and Hypothesis 
sentence. 
...
Some instructions:
1. Only refine the related axioms/explanatory sentence in 
natural language sentences.
...
USER: Here are some examples:
###
Provided Premise Sentence:
...
Natural Language Inference steps:
1. To infer the hypothesis, we need to identify the 
information related to a tennis ball, water, and the action of 
floating. The relationship of "will" indicates a future or 
potential action.
...

Isabelle code:
...

(* Explanation 5: water is a kind of liquid. *)
axiomatization where
  explanation_5: "∀x. Water x ⟶ Liquid x"  

...
proof -
  from asm have "TableTennisBall x " by simp
  then have "Object x" using explanation_1 by blast
  then obtain e1 where e1: "Contains e1 ∧ Agent e1 x ∧ Patient 
e1 y" using explanation_2 by blast
...
qed
...

Proof failed at:
then have "Object x" using explanation_1 by blast

Refine strategy:
From the provided error location, it failed at the step of 
"then have "Object x" using explanation_1 by blast" using 
explanation 1. 
...
Updated explanatory sentences:
1. a table tennis ball is a kind of object.
2. a tennis ball contains air.
3. something that contains air is usually buoyant.
4. buoyant means able to float in a liquid or gas.
5. water is a kind of liquid. 
###
...
<<<<<<<<<<<<<<<<<<<<<<<
Strictly follow the instructions that I have claimed.

Provided Premise Sentence:
{{premise}}

Provided Explanation Sentences:
{{explanation}}

Provided Hypothesis Sentence:
{{hypothesis}}

Natural Language Inferece steps:
{{rough_inference}}

Isabelle code:
{{isabelle_code}}

Proof failed at:
{{error_code}}

Refine strategy:

Updated explanatory sentences:

Figure 20: Prompts for how to refine the explanatory
sentences
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Dataset Sentences Explanation Iteration Validity

e-SNLI Premise: A woman in black framed glasses pe-
ruses a photo album while sitting in a red wicker
chair.
Hypothesis: There is a lady with a book.

The lady is looking through a photo album which
is a type of book.

0 Invalid

e-SNLI Premise: A woman in black framed glasses pe-
ruses a photo album while sitting in a red wicker
chair.
Hypothesis: There is a lady with a book.

A woman can be referred to as a lady. A photo
album is a type of book.

1 Invalid

e-SNLI Premise: A woman in black framed glasses pe-
ruses a photo album while sitting in a red wicker
chair.
Hypothesis: There is a lady with a book.

A woman can be referred to as a lady. A photo
album is a type of book. If a woman is perusing
a photo album, then the woman is with a book.

2 Valid

Table 1: An example of how the explanation sentences in e-SNLI can be refined with Explanation-Refiner

theory question_28_0

imports Main

begin
typedecl entity
typedecl event

consts
  Lady :: "entity ⇒ bool"
  PhotoAlbum :: "entity ⇒ bool"
  Book :: "entity ⇒ bool"
  Looking :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Woman :: "entity ⇒ bool"
  Glasses :: "entity ⇒ bool"
  BlackFramed :: "entity ⇒ bool"
  Chair :: "entity ⇒ bool"
  Red :: "entity ⇒ bool"
  Wicker :: "entity ⇒ bool"
  Peruses :: "event ⇒ bool"
  Sitting :: "entity ⇒ entity ⇒ bool"
  With :: "entity ⇒ entity ⇒ bool"

(* Explanation 1: The lady is looking through a photo album which is a type of book. *)
axiomatization where
    explanation_1: "∃x y e. Lady x ∧ PhotoAlbum y ∧ Book y ∧ Looking e ∧ Agent e x ∧ Patient e y"

theorem hypothesis:
(* Premise: A woman in black framed glasses peruses a photo album while sitting in a red wicker chair. *)
assumes asm: "Woman x ∧ Glasses x ∧ BlackFramed x ∧ PhotoAlbum y ∧ Chair z ∧ Red z ∧ Wicker z ∧ Peruses e ∧ Agent e 
x ∧ Patient e y ∧ Sitting x z"
(* Hypothesis: There is a lady with a book. *)
shows "∃x y. Lady x ∧ Book y ∧ With x y"
proof -
  from asm have "Woman x ∧ PhotoAlbum y" by blast
  from this have "Lady x ∧ Book y" using explanation_1 by blast
  then show ?thesis using `Lady x` `Book y` by blast
qed

end

Figure 21: The Isabelle theory code for table 1 iteration 0
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theory question_28_1

imports Main

begin
typedecl entity
typedecl event

consts
  Woman :: "entity ⇒ bool"
  Lady :: "entity ⇒ bool"
  PhotoAlbum :: "entity ⇒ bool"
  Book :: "entity ⇒ bool"
  Glasses :: "entity ⇒ bool"
  BlackFramed :: "entity ⇒ bool"
  Peruses :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Chair :: "entity ⇒ bool"
  Red :: "entity ⇒ bool"
  Wicker :: "entity ⇒ bool"
  SittingIn :: "entity ⇒ entity ⇒ bool"
  With :: "entity ⇒ entity ⇒ bool"

(* Explanation 1: A woman can be referred to as a lady. *)
axiomatization where
    explanation_1: "∀x. Woman x ⟶ Lady x"

(* Explanation 2: A photo album is a type of book. *)
axiomatization where 
    explanation_2: "∀x. PhotoAlbum x ⟶ Book x"

theorem hypothesis:
(* Premise: A woman in black framed glasses peruses a photo album while sitting in a red wicker chair. *)
assumes asm: "Woman x ∧ Glasses x ∧ BlackFramed x ∧ PhotoAlbum y ∧ Peruses e ∧ Agent e x ∧ Patient e y ∧ Chair z ∧ 
Red z ∧ Wicker z ∧ SittingIn x z"
(* Hypothesis: There is a lady with a book. *)
shows "∃x y. Lady x ∧ Book y ∧ With x y”
proof -
  from asm have "Woman x" by blast
  then have "Lady x" using explanation_1 by blast
  from asm have "PhotoAlbum y" by blast
  then have "Book y" using explanation_2 by blast
  show ?thesis using `Lady x` `Book y` by blast
qed

end

Figure 22: The Isabelle theory code for table 1 iteration 1
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theory question_28_2

imports Main

begin
typedecl entity
typedecl event

consts
  Woman :: "entity ⇒ bool"
  Lady :: "entity ⇒ bool"
  PhotoAlbum :: "entity ⇒ bool"
  Book :: "entity ⇒ bool"
  Perusing :: "event ⇒ bool"
...

(* Explanation 1: A woman can be referred to as a lady. *)
axiomatization where
    explanation_1: "∀x. Woman x ⟶ Lady x"

(* Explanation 2: A photo album is a type of book. *)
axiomatization where
    explanation_2: "∀x. PhotoAlbum x ⟶ Book x"

(* Explanation 3: If a woman is perusing a photo album, then the woman is with a book. *)
axiomatization where
    explanation_3: "∀x y e. Woman x ∧ PhotoAlbum y ∧ Perusing e ∧ Agent e x ∧ Patient e y ⟶ With x y"

theorem hypothesis:
(* Premise: A woman in black framed glasses peruses a photo album while sitting in a red wicker chair. *)
assumes asm: "Woman x ∧ Glasses x ∧ BlackFramed x ∧ PhotoAlbum y ∧ Chair z ∧ RedWicker z ∧ Perusing e ∧ Agent e x ∧ 
Patient e y ∧ SittingIn x z"
(* Hypothesis: There is a lady with a book. *)
shows "∃x y. Lady x ∧ Book y ∧ With x y"
proof -
  from asm have "Woman x ∧ PhotoAlbum y ∧ Perusing e ∧ Agent e x ∧ Patient e y" by blast
  then have "With x y" using explanation_3 by blast
  from asm have "Woman x" by blast
  then have "Lady x" using explanation_1 by blast
  from asm have "PhotoAlbum y" by blast
  then have "Book y" using explanation_2 by blast
  show ?thesis using `Lady x` `Book y` `With x y` by blast
qed

end

Figure 23: The Isabelle theory code for table 1 iteration 2
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Dataset Sentences Explanation Iteration Validity

e-SNLI Premise: A couple being romantic under the
sunset.
Hypothesis: People are enjoying sundown.

A couple consists of people. Sunset is sundown. 0 Invalid

e-SNLI Premise: A couple being romantic under the
sunset.
Hypothesis: People are enjoying sundown.

A couple consists of people. Sunset is sundown.
Being romantic under the sunset implies enjoy-
ing the sundown.

1 Valid

Table 2: An example of how the explanation sentences in e-SNLI can be refined with Explanation-Refiner

theory question_38_0

imports Main

begin
typedecl entity
typedecl event

consts
Couple :: "entity ⇒ bool"
People :: "entity ⇒ bool"
Sunset :: "entity ⇒ bool"
Sundown :: "entity ⇒ bool"
Romantic :: "event ⇒ bool"
Enjoying :: "event ⇒ bool"
Agent :: "event ⇒ entity ⇒ bool"
Patient :: "event ⇒ entity ⇒ bool"
Under :: "entity ⇒ entity ⇒ bool"

(* Explanation 1: A couple consists of people. Sunset is sundown. *)
axiomatization where

explanation_1: "∀x y. Couple x ⟶ People x ∧ Sunset y ⟶ Sundown y"

theorem hypothesis:
(* Premise: A couple being romantic under the sunset. *)
assumes asm: "Couple x ∧ Sunset y ∧ Romantic e ∧ Agent e x ∧ Under x y"
(* Hypothesis: People are enjoying sundown. *)
shows "∃x y e. People x ∧ Sundown y ∧ Enjoying e ∧ Agent e x ∧ Patient e y"
proof -

from asm have "Couple x ∧ Sunset y" by blast
then have "People x ∧ Sundown y" using explanation_1 by blast
then show ?thesis using asm by blast

qed

end

 

Figure 24: The Isabelle theory code for table 2 iteration 0
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theory question_38_1

imports Main

begin

typedecl entity
typedecl event

consts
Couple :: "entity ⇒ bool"
People :: "entity ⇒ bool"
Sunset :: "entity ⇒ bool"
Sundown :: "entity ⇒ bool"
Romantic :: "entity ⇒ bool"
Under :: "entity ⇒ entity ⇒ bool"
Enjoying :: "event ⇒ bool"
Agent :: "event ⇒ entity ⇒ bool"
Patient :: "event ⇒ entity ⇒ bool"
Being :: "event ⇒ bool"

(* Explanation 1: A couple consists of people. *)
axiomatization where

explanation_1: "∀x. Couple x ⟶ People x"

(* Explanation 2: Sunset is sundown. *)
axiomatization where

explanation_2: "∀x. Sunset x ⟶ Sundown x"

(* Explanation 3: Being romantic under the sunset implies enjoying the sundown. *)
axiomatization where

explanation_3: “∀x y z e. People x ∧ Romantic x ∧ Sunset y ∧ Under x y ⟶ Enjoying e ∧ Agent e x ∧ Sundown z ∧ 
Patient e z"

theorem hypothesis:
(* Premise: A couple being romantic under the sunset. *)
assumes asm: "Couple x ∧ Sunset y ∧ Being e ∧ Agent e x ∧ Under x y ∧ Romantic x"
(* Hypothesis: People are enjoying sundown. *)
shows "∃x y e. People x ∧ Sundown y ∧ Enjoying e ∧ Agent e x ∧ Patient e y"
proof -

from asm have "Couple x ∧ Sunset y ∧ Being e ∧ Agent e x ∧ Under x y ∧ Romantic x" by blast
then have "People x ∧ Sunset y ∧ Being e ∧ Agent e x ∧ Under x y ∧ Romantic x" using explanation_1 by blast
then have "People x ∧ Sundown y ∧ Enjoying e ∧ Agent e x ∧ Patient e y" using explanation_3 by blast
then show ?thesis using asm by blast

qed

end

Figure 25: The Isabelle theory code for table 2 iteration 1
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Dataset Sentences Explanation Iteration Validity

e-SNLI Premise: A male bartender dressed in all black
with his sleeves rolled up to elbow height making
a drink in a martini glass.
Hypothesis: A person in black

A bartender, who is a person, is wearing black. 0 Invalid

e-SNLI Premise: A male bartender dressed in all black
with his sleeves rolled up to elbow height making
a drink in a martini glass.
Hypothesis: A person in black

A bartender is a person. If a person is wearing
black, then the person is in black.

1 Invalid

e-SNLI Premise: A male bartender dressed in all black
with his sleeves rolled up to elbow height making
a drink in a martini glass.
Hypothesis: A person in black

A bartender is a person. If a person is dressed in
black, then the person is in black.

2 Valid

Table 3: An example of how the explanation sentences in e-SNLI can be refined with Explanation-Refiner

theory question_66_0

imports Main

begin
typedecl entity
typedecl event

consts
  Bartender :: "entity ⇒ bool"
  Person :: "entity ⇒ bool"
  Black :: "entity ⇒ bool"
  Wearing :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Male :: "entity ⇒ bool"
  Drink :: "entity ⇒ bool"
  MartiniGlass :: "entity ⇒ bool"
  Making :: "event ⇒ bool"
  In :: "entity ⇒ entity ⇒ bool"

(* Explanation 1: A bartender, who is a person, is wearing black. *)
axiomatization where
    explanation_1: "∃x e. Bartender x ∧ Person x ∧ Black x ∧ Wearing e ∧ Agent e x ∧ Patient e x"

theorem hypothesis:
(* Premise: A male bartender dressed in all black with his sleeves rolled up to elbow height making a drink in a 
martini glass. *)
assumes asm: "Bartender x ∧ Male x ∧ Black x ∧ Drink y ∧ MartiniGlass z ∧ Making e ∧ Agent e x ∧ Patient e y ∧ In z 
y"
(* Hypothesis: A person in black *)
shows "∃x. Person x ∧ Black x"
proof -
  from asm have "Bartender x ∧ Black x" by blast
  from this have "Person x ∧ Black x" using explanation_1 by blast
  then show ?thesis by blast
qed

end

Figure 26: The Isabelle theory code for table 3 iteration 0
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theory question_66_1

imports Main

begin
typedecl entity
typedecl event

consts
  Bartender :: "entity ⇒ bool"
  Person :: "entity ⇒ bool"
  Wearing :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Black :: "event ⇒ bool"
  InBlack :: "entity ⇒ bool"
  Male :: "entity ⇒ bool"
  Dress :: "event ⇒ bool"
  Sleeves :: "entity ⇒ bool"
  RolledUp :: "event ⇒ bool"
  ElbowHeight :: "event ⇒ bool"
  Drink :: "entity ⇒ bool"
  MartiniGlass :: "entity ⇒ bool"
  Making :: "event ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  In :: "entity ⇒ entity ⇒ bool"

(* Explanation 1: A bartender is a person. *)
axiomatization where
    explanation_1: "∀x. Bartender x ⟶ Person x"

(* Explanation 2: If a person is wearing black, then the person is in black. *)
axiomatization where
    explanation_2: "∀x e. Person x ∧ Wearing e ∧ Agent e x ∧ Black e ⟶ InBlack x"

theorem hypothesis:
(* Premise: A male bartender dressed in all black with his sleeves rolled up to elbow height making a drink in a 
martini glass. *)
assumes asm: "Bartender x ∧ Male x ∧ Black e1 ∧ Dress e1 ∧ Agent e1 x ∧ Sleeves x ∧ RolledUp e2 ∧ Agent e2 x ∧ 
ElbowHeight e2 ∧ Drink y ∧ MartiniGlass z ∧ Making e3 ∧ Agent e3 x ∧ Patient e3 y ∧ In z y"
(* Hypothesis: A person in black *)
shows "∃x. Person x ∧ InBlack x"
proof -
  from asm have "Bartender x" by blast
  then have "Person x" using explanation_1 by blast
  from asm have "Black e1 ∧ Dress e1 ∧ Agent e1 x" by blast
  then have "InBlack x" using `Person x` explanation_2 by blast
  show ?thesis using `Person x` `InBlack x` by blast
qed

end

Figure 27: The Isabelle theory code for table 3 iteration 1
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theory question_66_2

imports Main

begin
typedecl entity
typedecl event

consts
  Bartender :: "entity ⇒ bool"
  Person :: "entity ⇒ bool"
  DressedInBlack :: "entity ⇒ bool"
  InBlack :: "entity ⇒ bool"
  Male :: "entity ⇒ bool"
  SleevesRolledUpToElbowHeight :: "entity ⇒ bool"
  Drink :: "entity ⇒ bool"
  MartiniGlass :: "entity ⇒ bool"
  Making :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  In :: "entity ⇒ entity ⇒ bool"

(* Explanation 1: A bartender is a person. *)
axiomatization where
    explanation_1: "∀x. Bartender x ⟶ Person x"

(* Explanation 2: If a person is dressed in black, then the person is in black. *)
axiomatization where 
    explanation_2: "∀x. Person x ∧ DressedInBlack x ⟶ InBlack x"

theorem hypothesis:
(* Premise: A male bartender dressed in all black with his sleeves rolled up to elbow height making a drink in a 
martini glass. *)
assumes asm: "Male x ∧ Bartender x ∧ DressedInBlack x ∧ SleevesRolledUpToElbowHeight x ∧ Drink y ∧ MartiniGlass z ∧ 
Making e ∧ Agent e x ∧ Patient e y ∧ In z y"
(* Hypothesis: A person in black *)
shows "∃x. Person x ∧ InBlack x"
proof -
  from asm have "Bartender x ∧ DressedInBlack x" by blast
  then have "Person x ∧ DressedInBlack x" using explanation_1 by blast
  then have "Person x ∧ InBlack x" using explanation_2 by blast
  then show ?thesis by blast
qed

end

Figure 28: The Isabelle theory code for table 3 iteration 2
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Dataset Sentences Explanation Iteration Validity

QASC Hypothesis: Meiosis is the type of cell division
that produces haploid cells.

Meiosis is the type of cell division that produces
gametes. Gametes are haploid egg or sperm that
fuse to form a zygote.

0 Invalid

QASC Hypothesis: Meiosis is the type of cell division
that produces haploid cells.

Meiosis is the type of cell division that produces
gametes. Gametes are haploid cells. Haploid
cells are either egg or sperm that fuse to form a
zygote.

1 Valid

Table 4: An example of how the explanation sentences in QASC can be refined with Explanation-Refiner

theory question_67_0

imports Main

begin

typedecl entity
typedecl event

consts
  Meiosis :: "entity ⇒ bool"
  Gametes :: "entity ⇒ bool"
  Produces :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  HaploidEggOrSperm :: "entity ⇒ bool"
  Zygote :: "entity ⇒ bool"
  Fuse :: "event ⇒ bool"
  Form :: "event ⇒ bool"
  HaploidCells :: "entity ⇒ bool"

(* Explanation 1: Meiosis is the type of cell division that produces gametes. *)
axiomatization where
    explanation_1: "∀x y e. Meiosis x ∧ Gametes y ∧ Produces e ∧ Agent e x ∧ Patient e y"

(* Explanation 2: Gametes are haploid egg or sperm that fuse to form a zygote. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. Gametes x ∧ HaploidEggOrSperm y ∧ Zygote z ∧ Fuse e1 ∧ Agent e1 y ∧ Patient e1 x   
∧ Form e2 ∧ Agent e2 y ∧ Patient e2 z" 

theorem hypothesis:
assumes asm: "Meiosis x"
(* Hypothesis: Meiosis is the type of cell division that produces haploid cells. *)
shows "∃x y e. Meiosis x ∧ HaploidCells y ∧ Produces e ∧ Agent e x ∧ Patient e y"
proof -
  from asm have "Meiosis x" by simp
  then obtain y e where e: "Gametes y ∧ Produces e ∧ Agent e x ∧ Patient e y" using explanation_1 by blast
  then have "HaploidCells y" using explanation_2 by blast
  have conclusion: "Produces e ∧ Agent e x ∧ Patient e y" using e by simp
  show ?thesis using asm conclusion `HaploidCells y` by blast
qed

end

Figure 29: The Isabelle theory code for table 4 iteration 0
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theory question_67_1

imports Main

begin

typedecl entity
typedecl event

consts
  Meiosis :: "entity ⇒ bool"
  CellDivision :: "entity ⇒ bool"
  Gametes :: "entity ⇒ bool"
  Produces :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  HaploidCells :: "entity ⇒ bool"
  Egg :: "entity ⇒ bool"
  Sperm :: "entity ⇒ bool"
  Fuse :: "event ⇒ bool"
  Form :: "event ⇒ bool"
  Zygote :: "entity ⇒ bool"

(* Explanation 1: Meiosis is the type of cell division that produces gametes. *)
axiomatization where
    explanation_1: "∀x y e. Meiosis x ∧ CellDivision x ∧ Gametes y ∧ Produces e ∧ Agent e x ∧ Patient e y"

(* Explanation 2: Gametes are haploid cells. *)
axiomatization where
    explanation_2: "∀x. Gametes x ⟶ HaploidCells x" 

(* Explanation 3: Haploid cells are either egg or sperm that fuse to form a zygote. *)
axiomatization where
    explanation_3: "∀x y z e1 e2. HaploidCells x ∧ Egg y ∧ Sperm z ∧ Fuse e1 ∧ Agent e1 y ∧ Agent e1 z ⟶ Form e2 ∧ 
Patient e2 x ∧ Zygote x"

theorem hypothesis:
assumes asm: "Meiosis x ∧ CellDivision x"
(* Hypothesis: Meiosis is the type of cell division that produces haploid cells. *)
shows "∃x y e. Meiosis x ∧ CellDivision x ∧ HaploidCells y ∧ Produces e ∧ Agent e x ∧ Patient e y"
proof -
  from asm have "Meiosis x ∧ CellDivision x" by simp
  then obtain y e where e: "Gametes y ∧ Produces e ∧ Agent e x ∧ Patient e y" using explanation_1 by blast
  then have "HaploidCells y" using explanation_2 by blast
  have conclusion: "Produces e ∧ Agent e x ∧ Patient e y" using e by simp
  show ?thesis using asm conclusion `HaploidCells y` by blast
qed

end

Figure 30: The Isabelle theory code for table 4 iteration 1
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Dataset Sentences Explanation Iteration Validity

QASC Hypothesis: Antigens are found on cancer cells
and the cells of transplanted kidneys.

Antigens are found on cancer cells and the cells
of transplanted organs. Examples of animal or-
gans are kidneys and hearts.

0 Invalid

QASC Hypothesis: Antigens are found on cancer cells
and the cells of transplanted kidneys.

Antigens are found on cancer cells and the cells
of transplanted organs. Kidneys are examples
of animal organs. Transplanted organs include
kidneys.

1 Valid

Table 5: An example of how the explanation sentences in QASC can be refined with Explanation-Refiner

theory question_36_0

imports Main

begin

typedecl entity
typedecl event

consts
  Antigens :: "entity ⇒ bool"
  CancerCells :: "entity ⇒ bool"
  TransplantedOrgans :: "entity ⇒ bool"
  Found :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Kidneys :: "entity ⇒ bool"
  Hearts :: "entity ⇒ bool"
  AnimalOrgans :: "entity ⇒ bool"
  TransplantedKidneys :: "entity ⇒ bool"

(* Explanation 1: Antigens are found on cancer cells and the cells of transplanted organs. *)
axiomatization where
    explanation_1: "∀x y z e. Antigens x ∧ CancerCells y ∧ TransplantedOrgans z ∧ Found e ∧ Agent e x ∧ Patient e y 
∧ Patient e z"

(* Explanation 2: Examples of animal organs are kidneys and hearts. *)
axiomatization where
    explanation_2: "∀x y. Kidneys x ∧ Hearts y ⟶ AnimalOrgans x ∧ AnimalOrgans y" 

theorem hypothesis:
assumes asm: "Antigens x ∧ CancerCells y ∧ TransplantedKidneys z"
(* Hypothesis: Antigens are found on cancer cells and the cells of transplanted kidneys. *)
shows "∃x y z e. Antigens x ∧ CancerCells y ∧ TransplantedKidneys z ∧ Found e ∧ Agent e x ∧ Patient e y ∧ Patient e 
z"
proof -
  from asm have "Antigens x ∧ CancerCells y ∧ TransplantedKidneys z" by simp
  then obtain e where e: "Found e ∧ Agent e x ∧ Patient e y ∧ Patient e z" using explanation_1 by blast
  have "Kidneys z" using explanation_2 by blast
  have conclusion: "Found e ∧ Agent e x ∧ Patient e y ∧ Patient e z" using e by simp
  show ?thesis using asm conclusion `Kidneys z` by blast
qed

end

Figure 31: The Isabelle theory code for table 5 iteration 0
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theory question_36_1

imports Main

begin

typedecl entity
typedecl event

consts
  Antigens :: "entity ⇒ bool"
  CancerCells :: "entity ⇒ bool"
  TransplantedOrgans :: "entity ⇒ bool"
  Found :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Kidneys :: "entity ⇒ bool"
  AnimalOrgans :: "entity ⇒ bool"
  Include :: "event ⇒ bool"
  TransplantedKidneys :: "entity ⇒ bool"

(* Explanation 1: Antigens are found on cancer cells and the cells of transplanted organs. *)
axiomatization where
    explanation_1: "∀x y z e. Antigens x ∧ CancerCells y ∧ TransplantedOrgans z ∧ Found e ∧ Agent e x ∧ Patient e y 
∧ Patient e z"

(* Explanation 2: Kidneys are examples of animal organs. *)
axiomatization where
    explanation_2: "∀x. Kidneys x ⟶ AnimalOrgans x" 

(* Explanation 3: Transplanted organs include kidneys. *)
axiomatization where
    explanation_3: "∀x y e. TransplantedOrgans x ∧ Kidneys y ∧ Include e ∧ Agent e x ∧ Patient e y" 

theorem hypothesis:
assumes asm: "Antigens x ∧ CancerCells y ∧ TransplantedKidneys z"
(* Hypothesis: Antigens are found on cancer cells and the cells of transplanted kidneys. *)
shows "∃x y z e. Antigens x ∧ CancerCells y ∧ TransplantedKidneys z ∧ Found e ∧ Agent e x ∧ Patient e y ∧ Patient e 
z"
proof -
  from asm have "Antigens x ∧ CancerCells y ∧ TransplantedKidneys z" by simp
  then obtain e1 where e1: "Found e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Patient e1 z" using explanation_1 by blast
  then have "Kidneys z" using explanation_3 by blast
  have conclusion: "Found e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Patient e1 z" using e1 by simp
  show ?thesis using asm conclusion `Kidneys z` by blast
qed

end

Figure 32: The Isabelle theory code for table 5 iteration 1

30



Dataset Sentences Explanation Iteration Validity

QASC Hypothesis: Azathioprine interferes with the
assembly of proteins.

DNA contains genetic instructions for proteins,
and RNA helps assemble the proteins. Azathio-
prine interferes with DNA and RNA synthesis

0 Invalid

QASC Hypothesis: Azathioprine interferes with the
assembly of proteins.

DNA contains genetic instructions for proteins,
and RNA, synthesized from DNA, helps assem-
ble the proteins. The assembly of proteins is
dependent on the synthesis of DNA and RNA.
Azathioprine interferes with DNA and RNA syn-
thesis.

1 Valid

Table 6: An example of how the explanation sentences in QASC can be refined with Explanation-Refiner

theory question_92_0

imports Main

begin

typedecl entity
typedecl event

consts
  DNA :: "entity ⇒ bool"
  GeneticInstructions :: "entity ⇒ bool"
  Proteins :: "entity ⇒ bool"
  Contains :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  RNA :: "entity ⇒ bool"
  Helps :: "entity ⇒ bool"
  Assemble :: "event ⇒ bool"
  HelpsAssemble :: "entity ⇒ event ⇒ bool"
  Azathioprine :: "entity ⇒ bool"
  Interferes :: "event ⇒ bool"
  Synthesis :: "event ⇒ bool"
  InterferesWith :: "event ⇒ event ⇒ bool"
  Assembly :: "event ⇒ bool"

(* Explanation 1: DNA contains genetic instructions for proteins, and RNA helps assemble the proteins. *)
axiomatization where
    explanation_1: "∀x y z e1 e2 e3. DNA x ∧ GeneticInstructions y ∧ Proteins z ∧ Contains e1 ∧ Agent e1 x ∧ 
Patient e1 y ∧ RNA e2 ∧ Helps e2 ∧ Assemble e3 ∧ Agent e3 e2 ∧ Patient e3 z ⟶ HelpsAssemble e2 e3"

(* Explanation 2: Azathioprine interferes with DNA and RNA synthesis. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. Azathioprine x ∧ DNA y ∧ RNA z ∧ Interferes e1 ∧ Agent e1 x ∧ Synthesis e2 ∧ 
Patient e2 y ∧ Patient e2 z ⟶ InterferesWith e1 e2" 

theorem hypothesis:
assumes asm: "Azathioprine x ∧ Proteins y"
(* Hypothesis: Azathioprine interferes with the assembly of proteins. *)
shows "∃x y e1 e2. Azathioprine x ∧ Proteins y ∧ Interferes e1 ∧ Agent e1 x ∧ Assembly e2 ∧ Patient e2 y ∧ 
InterferesWith e1 e2"
proof -
  from asm have "Azathioprine x ∧ Proteins y" by simp
  then obtain e1 e2 where e1: "DNA x ∧ GeneticInstructions y ∧ Proteins z ∧ Contains e1 ∧ Agent e1 x ∧ Patient e1 y 
∧ RNA e2 ∧ Helps e2 ∧ Assemble e3 ∧ Agent e3 e2 ∧ Patient e3 z" using explanation_1 by blast
  then obtain e3 where e3: "Azathioprine x ∧ DNA y ∧ RNA z ∧ Interferes e3 ∧ Agent e3 x ∧ Synthesis e2 ∧ Patient e2 
y ∧ Patient e2 z" using explanation_2 by blast
  have conclusion: "Interferes e3 ∧ Agent e3 x ∧ Assembly e2 ∧ Patient e2 y ∧ InterferesWith e3 e2" using e3 by 
simp
  show ?thesis using asm conclusion by blast
qed

end

Figure 33: The Isabelle theory code for table 6 iteration 0
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theory question_92_1
imports Main

begin

typedecl entity
typedecl event

consts
  DNA :: "entity ⇒ bool"
  Proteins :: "entity ⇒ bool"
  GeneticInstructions :: "entity ⇒ bool"
  Contains :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Synthesized :: "event ⇒ bool"
  RNA :: "entity ⇒ bool"
  Helps :: "event ⇒ bool"
  Assemble :: "event ⇒ bool"
  Assembly :: "entity ⇒ bool"
  Synthesis :: "event ⇒ entity ⇒ bool"
  Dependent :: "event ⇒ bool"
  Azathioprine :: "entity ⇒ bool"
  Interferes :: "event ⇒ bool"

(* Explanation 1: DNA contains genetic instructions for proteins, and RNA, synthesized from DNA, helps assemble the 
proteins. *)
axiomatization where
    explanation_1: "∀x y z e1 e2 e3. DNA x ∧ Proteins y ∧ GeneticInstructions z ∧ Contains e1 ∧ Agent e1 x ∧ 
Patient e1 z ∧ Synthesized e2 ∧ Agent e2 x ∧ RNA x ∧ Helps e3 ∧ Agent e3 x ∧ Assemble e3 ∧ Patient e3 y"

(* Explanation 2: The assembly of proteins is dependent on the synthesis of DNA and RNA. *)
axiomatization where
    explanation_2: "∀x y e1 e2. Proteins x ∧ DNA y ∧ RNA y ∧ Assembly x ∧ Synthesis e1 y ∧ Agent e1 y ∧ Dependent 
e2 ∧ Agent e2 x ∧ Patient e2 x"

(* Explanation 3: Azathioprine interferes with DNA and RNA synthesis. *)
axiomatization where
    explanation_3: "∀x y z e. Azathioprine x ∧ DNA y ∧ RNA z ∧ Synthesis e y ∧ Synthesis e z ∧ Interferes e ∧ Agent 
e x ∧ Patient e y ∧ Patient e z"

theorem hypothesis:
assumes asm: "Azathioprine x ∧ Proteins y"
(* Hypothesis: Azathioprine interferes with the assembly of proteins. *)
shows "∃x y e. Azathioprine x ∧ Proteins y ∧ Interferes e ∧ Agent e x ∧ Patient e y"
proof -
  from asm have "Azathioprine x ∧ Proteins y" by simp
  then obtain e1 where e1: "Contains e1 ∧ Agent e1 x ∧ Patient e1 z ∧ Synthesized e2 ∧ Agent e2 x ∧ RNA x ∧ Helps 
e3 ∧ Agent e3 x ∧ Assemble e3 ∧ Patient e3 y" using explanation_1 by blast
  then obtain e2 where e2: "Assembly x ∧ Synthesis e1 y ∧ Agent e1 y ∧ Dependent e2 ∧ Agent e2 x ∧ Patient e2 x" 
using explanation_2 by blast
  then have "Interferes e ∧ Agent e x ∧ Patient e y" using explanation_3 by blast
  have conclusion: "Interferes e ∧ Agent e x ∧ Patient e y" using e1 e2 `Interferes e ∧ Agent e x ∧ Patient e y` by 
simp
  show ?thesis using asm conclusion by blast
qed

end

Figure 34: The Isabelle theory code for table 6 iteration 1
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Dataset Sentences Explanation Iteration Validity

WorldTree Hypothesis: Plugging many appliances into one
outlet is not a way to stay safe around electricity.

when an electrical conductor is plugged into
an outlet , a circuit is completed. a complete
electrical circuit is a source of electrical energy.
electricity means electrical energy. safe is the
opposite of harm; danger. plugging many ap-
pliances into one outlet is dangerous. to be in
danger means to be around; to be near some-
thing dangerous. electrocution causes harm to
an organism. if electricity flows through; is trans-
ferred through the body of an animal then that
animal is electrocuted. an animal is a kind of
organism.

0 Invalid

WorldTree Hypothesis: Plugging many appliances into one
outlet is not a way to stay safe around electricity.

if an event is dangerous, it is not safe. plugging
many appliances into one outlet is dangerous.

1 Invalid

WorldTree Hypothesis: Plugging many appliances into one
outlet is not a way to stay safe around electricity.

if an event is dangerous, it is not safe. plugging
many appliances into one outlet is dangerous.
An event is considered safe around electricity if
it is safe.

2 Invalid

WorldTree Hypothesis: Plugging many appliances into one
outlet is not a way to stay safe around electricity.

if an event is dangerous, it is not safe. plugging
many appliances into one outlet is dangerous.
An event is considered not safe around electricity
if it is not safe.

3 Invalid

WorldTree Hypothesis: Plugging many appliances into one
outlet is not a way to stay safe around electricity.

if an event is dangerous, it is not safe. plugging
many appliances into one outlet is dangerous.
If an event is not safe, it is considered not safe
around electricity.

4 Invalid

WorldTree Hypothesis: Plugging many appliances into one
outlet is not a way to stay safe around electricity.

if an event is dangerous, it is not safe. plugging
many appliances into one outlet is dangerous. If
an event related to electricity is not safe, it is
considered not safe around electricity.

5 Invalid

WorldTree Hypothesis: Plugging many appliances into one
outlet is not a way to stay safe around electricity.

if an event is dangerous, it is not safe. plugging
many appliances into one outlet is dangerous.
Plugging many appliances into one outlet is an
event related to electricity. If an event related to
electricity is not safe, it is considered not safe
around electricity.

6 Invalid

WorldTree Hypothesis: Plugging many appliances into one
outlet is not a way to stay safe around electricity.

if an event is dangerous, it is not safe. plugging
many appliances into one outlet is dangerous.
Plugging many appliances into one outlet is an
event related to electricity. If an event related to
electricity is not safe, it is considered not safe
around electricity. If an event is not safe around
electricity, it is not a way to stay safe around
electricity.

7 Valid

Table 7: An example of how the explanation sentences in WorldTree can be refined with Explanation-Refiner
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theory question_11_0

imports Main

begin

typedecl entity
typedecl event

consts
  ElectricalConductor :: "entity ⇒ bool"
  Outlet :: "entity ⇒ bool"
  Circuit :: "entity ⇒ bool"
  Plugged :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
...
(* Explanation 1: when an electrical conductor is plugged into an outlet , a circuit is completed. *)
axiomatization where
    explanation_1: "∀x y z e1 e2. ElectricalConductor x ∧ Outlet y ∧ Circuit z ∧ Plugged e1 ∧ Agent e1 x ∧ Patient 
e1 y ⟶ Completed e2 ∧ Agent e2 z"

(* Explanation 2: a complete electrical circuit is a source of electrical energy. *)
axiomatization where
    explanation_2: "∀x y. CompleteElectricalCircuit x ⟶ SourceOfElectricalEnergy y"

(* Explanation 3: electricity means electrical energy. *)
axiomatization where
    explanation_3: "∀x y. Electricity x ⟷ ElectricalEnergy y"

(* Explanation 4: safe is the opposite of harm; danger. *)
axiomatization where
    explanation_4: "∀x y z. Safe x ⟷ ¬Harm y ∧ ¬Danger z"

(* Explanation 5: plugging many appliances into one outlet is dangerous. *)
axiomatization where
    explanation_5: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Dangerous e"

(* Explanation 6: to be in danger means to be around; to be near something dangerous. *)
axiomatization where
    explanation_6: "∀x y. InDanger x ⟷ AroundDangerous y"

(* Explanation 7: electrocution causes harm to an organism. *)
axiomatization where
    explanation_7: "∀x y e. Electrocution x ∧ Organism y ∧ Causes e ∧ Agent e x ∧ Patient e y"

(* Explanation 8: if electricity flows through; is transferred through the body of an animal then that animal is 
electrocuted. *)
axiomatization where
    explanation_8: "(∃e1 e2 x y. Electricity x ∧ BodyOfAnimal y ∧ Flows e1 ∧ Agent e1 x ∧ Patient e1 y ∧ 
Transferred e2 ∧ Agent e2 x ∧ Patient e2 y) ⟶ (∃e3 z. Animal z ∧ Electrocuted e3 ∧ Agent e3 z)"

(* Explanation 9: an animal is a kind of organism. *)
axiomatization where
    explanation_9: "∀x. Animal x ⟶ Organism x"

theorem hypothesis:
assumes asm: "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y"
(* Hypothesis: Plugging many appliances into one outlet is not a way to stay safe around electricity. *)
shows "¬SafeAround e z"
proof -
  from asm have "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y" by simp 
  then have "Dangerous e" using explanation_5 by blast
  then have "¬Safe e" using explanation_4 by blast
  show ?thesis using asm `¬Safe e` by blast
qed

end

Figure 35: The Isabelle theory code for table 7 iteration 0
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theory question_11_1

imports Main

begin

typedecl entity
typedecl event

consts
  Dangerous :: "event ⇒ bool"
  Safe :: "event ⇒ bool"
  Appliances :: "entity ⇒ bool"
  Outlet :: "entity ⇒ bool"
  Plugging :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Electricity :: "entity ⇒ bool"
  SafeAround :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an event is dangerous, it is not safe. *)
axiomatization where
    explanation_1: "∀e. Dangerous e ⟶ ¬Safe e"

(* Explanation 2: plugging many appliances into one outlet is dangerous. *)
axiomatization where
    explanation_2: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Dangerous e" 

theorem hypothesis:
assumes asm: "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y"
(* Hypothesis: Plugging many appliances into one outlet is not a way to stay safe around electricity. *)
shows "¬SafeAround e z"
proof -
  from asm have "Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y" by simp
  then have "Dangerous e" using explanation_2 by blast
  then have "¬Safe e" using explanation_1 by blast
  then show ?thesis using asm `¬Safe e` by blast
qed

end

Figure 36: The Isabelle theory code for table 7 iteration 1
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theory question_11_2

imports Main

begin

typedecl entity
typedecl event

consts
  Dangerous :: "event ⇒ bool"
  Safe :: "event ⇒ bool"
  Appliances :: "entity ⇒ bool"
  Outlet :: "entity ⇒ bool"
  Plugging :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Event :: "event ⇒ bool"
  Electricity :: "entity ⇒ bool"
  SafeAround :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an event is dangerous, it is not safe. *)
axiomatization where
    explanation_1: "∀e. Dangerous e ⟶ ¬Safe e"

(* Explanation 2: plugging many appliances into one outlet is dangerous. *)
axiomatization where
    explanation_2: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Dangerous e"

(* Explanation 3: An event is considered safe around electricity if it is safe. *)
axiomatization where
    explanation_3: "∀e z. Event e ∧ Electricity z ∧ Safe e ⟶ SafeAround e z"

theorem hypothesis:
assumes asm: "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y"
(* Hypothesis: Plugging many appliances into one outlet is not a way to stay safe around electricity. *)
shows "¬SafeAround e z"
proof -
  from asm have "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y" by simp
  then have "Dangerous e" using explanation_2 by blast
  then have "¬Safe e" using explanation_1 by blast
  then show ?thesis using explanation_3 `Electricity z` by blast
qed

end

Figure 37: The Isabelle theory code for table 7 iteration 2
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theory question_11_3

imports Main

begin

typedecl entity
typedecl event

consts
  Dangerous :: "event ⇒ bool"
  Safe :: "event ⇒ bool"
  Appliances :: "entity ⇒ bool"
  Outlet :: "entity ⇒ bool"
  Plugging :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Event :: "event ⇒ bool"
  Electricity :: "entity ⇒ bool"
  SafeAround :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an event is dangerous, it is not safe. *)
axiomatization where
    explanation_1: "∀e. Dangerous e ⟶ ¬Safe e"

(* Explanation 2: plugging many appliances into one outlet is dangerous. *)
axiomatization where
    explanation_2: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Dangerous e"

(* Explanation 3: An event is considered not safe around electricity if it is not safe. *)
axiomatization where
    explanation_3: "∀e z. Event e ∧ Electricity z ∧ ¬Safe e ⟶ ¬SafeAround e z"

theorem hypothesis:
assumes asm: "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y"
(* Hypothesis: Plugging many appliances into one outlet is not a way to stay safe around electricity. *)
shows "∃x y z e. Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y ∧ ¬SafeAround e z"
proof -
from asm have "Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y" by simp
then have "Dangerous e" using explanation_2 by blast
then have "¬Safe e" using explanation_1 by blast
then have "¬SafeAround e z" using explanation_3 asm by blast
show ?thesis using asm `¬SafeAround e z` by blast
qed

end

Figure 38: The Isabelle theory code for table 7 iteration 3
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theory question_11_4

imports Main

begin

typedecl entity
typedecl event

consts
  Dangerous :: "event ⇒ bool"
  Safe :: "event ⇒ bool"
  Appliances :: "entity ⇒ bool"
  Outlet :: "entity ⇒ bool"
  Plugging :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Electricity :: "entity ⇒ bool"
  SafeAround :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an event is dangerous, it is not safe. *)
axiomatization where
    explanation_1: "∀e. Dangerous e ⟶ ¬Safe e"

(* Explanation 2: plugging many appliances into one outlet is dangerous. *)
axiomatization where
    explanation_2: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Dangerous e"

(* Explanation 3: If an event is not safe, it is considered not safe around electricity. *)
axiomatization where
    explanation_3: "∀e z. ¬Safe e ∧ Electricity z ⟶ ¬SafeAround e z"

theorem hypothesis:
assumes asm: "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y"
(* Hypothesis: Plugging many appliances into one outlet is not a way to stay safe around electricity. *)
shows "¬SafeAround e z"
proof -
  from asm have "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y" by simp
  then have "Dangerous e" using explanation_2 by blast
  then have "¬Safe e" using explanation_1 by blast
  then show ?thesis using explanation_3 `Electricity z` by blast
qed

end

Figure 39: The Isabelle theory code for table 7 iteration 4
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theory question_11_5

imports Main

begin

typedecl entity
typedecl event

consts
  Dangerous :: "event ⇒ bool"
  Safe :: "event ⇒ bool"
  Appliances :: "entity ⇒ bool"
  Outlet :: "entity ⇒ bool"
  Plugging :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Event :: "event ⇒ bool"
  RelatedTo :: "event ⇒ entity ⇒ bool"
  Electricity :: "entity ⇒ bool"
  SafeAround :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an event is dangerous, it is not safe. *)
axiomatization where
    explanation_1: "∀e. Dangerous e ⟶ ¬Safe e"

(* Explanation 2: plugging many appliances into one outlet is dangerous. *)
axiomatization where
    explanation_2: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Dangerous e"

(* Explanation 3: If an event related to electricity is not safe, it is considered not safe around electricity. *)
axiomatization where
    explanation_3: "∀e z. Event e ∧ RelatedTo e z ∧ Electricity z ∧ ¬Safe e ⟶ ¬SafeAround e z"

theorem hypothesis:
assumes asm: "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y"
(* Hypothesis: Plugging many appliances into one outlet is not a way to stay safe around electricity. *)
shows "∃x y z e. Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y ∧ ¬SafeAround e z"
proof -
  from asm have "Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y" by simp
  then have "Dangerous e" using explanation_2 by blast
  then have "¬Safe e" using explanation_1 by blast
  then have "¬SafeAround e z" using explanation_3 asm by blast
  show ?thesis using asm `¬SafeAround e z` by blast
qed

end

Figure 40: The Isabelle theory code for table 7 iteration 5
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theory question_11_6

imports Main

begin

typedecl entity
typedecl event

consts
  Dangerous :: "event ⇒ bool"
  Safe :: "event ⇒ bool"
  Appliances :: "entity ⇒ bool"
  Outlet :: "entity ⇒ bool"
  Plugging :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Related :: "event ⇒ entity ⇒ bool"
  Electricity :: "entity"
  SafeAround :: "event ⇒ entity ⇒ bool"
  StaySafe :: "event ⇒ bool"
  Around :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an event is dangerous, it is not safe. *)
axiomatization where
    explanation_1: "∀e. Dangerous e ⟶ ¬Safe e"

(* Explanation 2: plugging many appliances into one outlet is dangerous. *)
axiomatization where
    explanation_2: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Dangerous e"

(* Explanation 3: Plugging many appliances into one outlet is an event related to electricity. *)
axiomatization where
    explanation_3: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Related e 
Electricity"

(* Explanation 4: If an event related to electricity is not safe, it is considered not safe around electricity. *)
axiomatization where
    explanation_4: "∀e. Related e Electricity ∧ ¬Safe e ⟶ ¬SafeAround e Electricity"

theorem hypothesis:
assumes asm: "Appliances x ∧ Outlet y ∧ Plugging e1 ∧ Agent e1 x ∧ Patient e1 y"
(* Hypothesis: Plugging many appliances into one outlet is not a way to stay safe around electricity. *)
shows "∃x y e1 e2. Appliances x ∧ Outlet y ∧ Plugging e1 ∧ Agent e1 x ∧ Patient e1 y ∧ ¬StaySafe e2 ∧ Around e2 
Electricity"
proof -
  from asm have "Appliances x ∧ Outlet y ∧ Plugging e1 ∧ Agent e1 x ∧ Patient e1 y" by simp
  then have "Dangerous e1" using explanation_2 by blast
  then have "¬Safe e1" using explanation_1 by blast
  then have "Related e1 Electricity" using explanation_3 asm by blast
  then have "¬SafeAround e1 Electricity" using explanation_4 `¬Safe e1` by blast
  then have "¬StaySafe e2 ∧ Around e2 Electricity" by simp
  show ?thesis using asm `¬StaySafe e2 ∧ Around e2 Electricity` by blast
qed

end

Figure 41: The Isabelle theory code for table 7 iteration 6
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theory question_11_7

imports Main

begin

typedecl entity
typedecl event

consts
Dangerous :: "event ⇒ bool"
Safe :: "event ⇒ bool"
Appliances :: "entity ⇒ bool"
Outlet :: "entity ⇒ bool"
Plugging :: "event ⇒ bool"
Agent :: "event ⇒ entity ⇒ bool"
Patient :: "event ⇒ entity ⇒ bool"
Electricity :: "entity ⇒ bool"
RelatedTo :: "event ⇒ entity ⇒ bool"
SafeAround :: "event ⇒ entity ⇒ bool"
WayToStaySafe :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an event is dangerous, it is not safe. *)
axiomatization where
    explanation_1: "∀e. Dangerous e ⟶ ¬Safe e"

(* Explanation 2: plugging many appliances into one outlet is dangerous. *)
axiomatization where
    explanation_2: "∀x y e. Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ Dangerous e"

(* Explanation 3: Plugging many appliances into one outlet is an event related to electricity. *)
axiomatization where
    explanation_3: "∀x y z e. Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y ⟶ 
RelatedTo e z"

(* Explanation 4: If an event related to electricity is not safe, it is considered not safe around electricity. *)
axiomatization where
    explanation_4: "∀e z. RelatedTo e z ∧ ¬Safe e ⟶ ¬SafeAround e z"

(* Explanation 5: If an event is not safe around electricity, it is not a way to stay safe around electricity. *)
axiomatization where
    explanation_5: "∀e z. ¬SafeAround e z ⟶ ¬WayToStaySafe e z"

theorem hypothesis:
assumes asm: "Appliances x ∧ Outlet y ∧ Electricity z ∧ Plugging e ∧ Agent e x ∧ Patient e y"
(* Hypothesis: Plugging many appliances into one outlet is not a way to stay safe around electricity. *)
shows "¬SafeAround e z"
proof -
  from asm have "Appliances x ∧ Outlet y ∧ Plugging e ∧ Agent e x ∧ Patient e y" by simp
  then have "Dangerous e" using explanation_2 by blast
  then have "¬Safe e" using explanation_1 by blast
  have "RelatedTo e z" using asm explanation_3 by blast
  then have "¬SafeAround e z" using `¬Safe e` explanation_4 by blast
  show ?thesis using `¬SafeAround e z` by simp
qed

end

Figure 42: The Isabelle theory code for table 7 iteration 7
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Dataset Sentences Explanation Iteration Validity

WorldTree Hypothesis: Sound energy can travel by vibrat-
ing particles of air.

sound is a kind of energy. sound is a kind of
air vibration. sound can travel through air. form
means kind.

0 Invalid

WorldTree Hypothesis: Sound energy can travel by vibrat-
ing particles of air.

Sound energy is a kind of energy. Sound is a
kind of air vibration. Sound can travel through
air. Form means kind.

1 Invalid

WorldTree Hypothesis: Sound energy can travel by vibrat-
ing particles of air.

Sound energy is the energy that sound carries.
Sound is a kind of air vibration. Sound can travel
through air by vibrating particles of air.

2 Invalid

WorldTree Hypothesis: Sound energy can travel by vibrat-
ing particles of air.

Sound energy is the energy that sound carries.
Sound energy is a kind of air vibration. Sound
can travel through air by vibrating particles of
air.

3 Invalid

WorldTree Hypothesis: Sound energy can travel by vibrat-
ing particles of air.

Sound energy is the energy that sound carries.
Sound energy can cause air vibration. Sound can
travel through air by vibrating particles of air.

4 Valid

Table 8: An example of how the explanation sentences in WorldTree can be refined with Explanation-Refiner
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theory question_59_0

imports Main

begin

typedecl entity
typedecl event

consts
  Sound :: "entity ⇒ bool"
  Energy :: "entity ⇒ bool"
  AirVibration :: "entity ⇒ bool"
  Air :: "entity ⇒ bool"
  Travel :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Through :: "event ⇒ entity ⇒ bool"
  Form :: "entity ⇒ bool"
  Kind :: "entity ⇒ bool"
  SoundEnergy :: "entity ⇒ bool"
  ParticlesOfAir :: "entity ⇒ bool"
  Vibrating :: "event ⇒ bool"
  Patient :: "event ⇒ event ⇒ bool"

(* Explanation 1: sound is a kind of energy. *)
axiomatization where
    explanation_1: "∀x. Sound x ⟶ Energy x"

(* Explanation 2: sound is a kind of air vibration. *)
axiomatization where
    explanation_2: "∀x. Sound x ⟶ AirVibration x"

(* Explanation 3: sound can travel through air. *)
axiomatization where
    explanation_3: "∀x y e. Sound x ∧ Air y ∧ Travel e ∧ Agent e x ∧ Through e y"

(* Explanation 4: form means kind. *)
axiomatization where
    explanation_4: "∀x y. Form x ⟷ Kind y"

theorem hypothesis:
assumes asm: "SoundEnergy x ∧ ParticlesOfAir y"
(* Hypothesis: Sound energy can travel by vibrating particles of air. *)
shows "∃x y e1 e2. SoundEnergy x ∧ ParticlesOfAir y ∧ Travel e1 ∧ Agent e1 x ∧ Vibrating e2 ∧ Agent e2 y ∧ Patient 
e1 e2"
proof -
  from asm have "SoundEnergy x" by simp
  then have "Energy x" using explanation_1 by blast
  then have "AirVibration x" using explanation_2 by blast
  from asm have "ParticlesOfAir y" by simp
  then obtain e1 where e1: "Travel e1 ∧ Agent e1 x ∧ Through e1 y" using explanation_3 by blast
  then obtain e2 where e2: "Vibrating e2 ∧ Agent e2 y" using explanation_3 by blast
  have conclusion: "Travel e1 ∧ Agent e1 x ∧ Vibrating e2 ∧ Agent e2 y ∧ Patient e1 e2" using e1 e2 by simp
  show ?thesis using asm conclusion by blast
qed

end

Figure 43: The Isabelle theory code for table 8 iteration 0
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theory question_59_1
imports Main
begin

typedecl entity
typedecl event

consts
  SoundEnergy :: "entity ⇒ bool"
  Energy :: "entity ⇒ bool"
  Sound :: "entity ⇒ bool"
  AirVibration :: "entity ⇒ bool"
  Air :: "entity ⇒ bool"
  Travel :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Form :: "entity ⇒ entity ⇒ bool"
  Kind :: "entity ⇒ entity ⇒ bool"
  ParticlesOfAir :: "entity ⇒ bool"
  Vibrating :: "event ⇒ bool"

(* Explanation 1: Sound energy is a kind of energy. *)
axiomatization where
    explanation_1: "∀x. SoundEnergy x ⟶ Energy x"

(* Explanation 2: Sound is a kind of air vibration. *)
axiomatization where
    explanation_2: "∀x. Sound x ⟶ AirVibration x"

(* Explanation 3: Sound can travel through air. *)
axiomatization where
    explanation_3: "∀x y e. Sound x ∧ Air y ∧ Travel e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: Form means kind. *)
axiomatization where
    explanation_4: "∀x y. Form x y ⟷ Kind x y"
 
theorem hypothesis:
assumes asm: "SoundEnergy x ∧ ParticlesOfAir y"
(* Hypothesis: Sound energy can travel by vibrating particles of air. *)
shows "∃x y e1 e2. SoundEnergy x ∧ ParticlesOfAir y ∧ Travel e1 ∧ Agent e1 x ∧ Vibrating e2 ∧ Agent e2 y ∧ Patient 
e1 y"
proof -
  from asm have "SoundEnergy x" by simp
  then have "Energy x" using explanation_1 by blast
  then have "Sound x" using explanation_2 by blast
  then obtain e1 where e1: "Travel e1 ∧ Agent e1 x ∧ Patient e1 y" using explanation_3 by blast
  then have "ParticlesOfAir y" using asm by simp
  then obtain e2 where e2: "Vibrating e2 ∧ Agent e2 y" using explanation_3 by blast
  show ?thesis using asm e1 e2 by blast
qed

end

Figure 44: The Isabelle theory code for table 8 iteration 1
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theory question_59_2

imports Main

begin

typedecl entity
typedecl event

consts
  Sound :: "entity ⇒ bool"
  Energy :: "entity ⇒ bool"
  SoundEnergy :: "entity ⇒ bool"
  Carries :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  AirVibration :: "entity ⇒ bool"
  Air :: "entity ⇒ bool"
  ParticlesOfAir :: "entity ⇒ bool"
  Travel :: "event ⇒ bool"
  Vibrating :: "event ⇒ bool"

(* Explanation 1: Sound energy is the energy that sound carries. *)
axiomatization where
    explanation_1: "∀x y e. Sound x ∧ Energy y ∧ SoundEnergy x ∧ Carries e ∧ Agent e x ∧ Patient e y"

(* Explanation 2: Sound is a kind of air vibration. *)
axiomatization where
    explanation_2: "∀x. Sound x ⟶ AirVibration x"

(* Explanation 3: Sound can travel through air by vibrating particles of air. *)
axiomatization where
    explanation_3: "∀x y z e1 e2. Sound x ∧ Air y ∧ ParticlesOfAir z ∧ Travel e1 ∧ Agent e1 x ∧ Patient e1 y ∧ 
Vibrating e2 ∧ Agent e2 z ∧ Patient e2 x"

theorem hypothesis:
assumes asm: "SoundEnergy x ∧ ParticlesOfAir y"
(* Hypothesis: Sound energy can travel by vibrating particles of air. *)
shows "∃x y e1 e2. SoundEnergy x ∧ ParticlesOfAir y ∧ Travel e1 ∧ Agent e1 x ∧ Vibrating e2 ∧ Agent e2 y ∧ Patient 
e2 x"
proof -
  from asm have "SoundEnergy x ∧ ParticlesOfAir y" by simp
  then obtain e where e: "Carries e ∧ Agent e x ∧ Patient e y" using explanation_1 by blast
  then have "AirVibration x" using explanation_2 by blast
  then obtain e1 e2 where e1e2: "Travel e1 ∧ Agent e1 x ∧ Vibrating e2 ∧ Agent e2 y ∧ Patient e2 x" using   
explanation_3 by blast
  show ?thesis using asm e1e2 by blast
qed

end

Figure 45: The Isabelle theory code for table 8 iteration 2
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theory question_59_3

imports Main

begin

typedecl entity
typedecl event

consts
  Sound :: "entity ⇒ bool"
  Energy :: "entity ⇒ bool"
  SoundEnergy :: "entity ⇒ bool"
  Carries :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  AirVibration :: "entity ⇒ bool"
  Air :: "entity ⇒ bool"
  ParticlesOfAir :: "entity ⇒ bool"
  Travel :: "event ⇒ bool"
  Through :: "event ⇒ entity ⇒ bool"
  Vibrating :: "event ⇒ bool"
  By :: "event ⇒ event ⇒ bool"

(* Explanation 1: Sound energy is the energy that sound carries. *)
axiomatization where
    explanation_1: "∀x y e. Sound x ∧ Energy y ∧ SoundEnergy x ∧ Carries e ∧ Agent e x ∧ Patient e y"

(* Explanation 2: Sound energy is a kind of air vibration. *)
axiomatization where
    explanation_2: "∀x. SoundEnergy x ⟶ AirVibration x"

(* Explanation 3: Sound can travel through air by vibrating particles of air. *)
axiomatization where
    explanation_3: "∀x y z e1 e2. Sound x ∧ Air y ∧ ParticlesOfAir z ∧ Travel e1 ∧ Agent e1 x ∧ Through e1 y ∧ 
Vibrating e2 ∧ Agent e2 z ∧ By e1 e2"

theorem hypothesis:
assumes asm: "SoundEnergy x ∧ ParticlesOfAir y"
(* Hypothesis: Sound energy can travel by vibrating particles of air. *)
shows "∃x y e1 e2. SoundEnergy x ∧ ParticlesOfAir y ∧ Travel e1 ∧ Agent e1 x ∧ Vibrating e2 ∧ Agent e2 y ∧ By e1 
e2"
proof -
  from asm have "SoundEnergy x" and "ParticlesOfAir y" by simp+
  then obtain e where e: "Carries e ∧ Agent e x" using explanation_1 by blast
  then have "AirVibration x" using explanation_2 by blast
  then obtain e1 e2 where e1e2: "Travel e1 ∧ Agent e1 x ∧ Vibrating e2 ∧ Agent e2 y ∧ By e1 e2" using explanation_3 
by blast
  show ?thesis using asm e e1e2 by blast
qed

end

Figure 46: The Isabelle theory code for table 8 iteration 3
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theory question_59_4

imports Main

begin

typedecl entity
typedecl event

consts
  Sound :: "entity ⇒ bool"
  Energy :: "entity ⇒ bool"
  Carries :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  SoundEnergy :: "entity ⇒ bool"
  AirVibration :: "entity ⇒ bool"
  Cause :: "event ⇒ bool"
  Air :: "entity ⇒ bool"
  ParticlesOfAir :: "entity ⇒ bool"
  Travel :: "event ⇒ bool"
  Vibrating :: "event ⇒ bool"

(* Explanation 1: Sound energy is the energy that sound carries. *)
axiomatization where
    explanation_1: "∀x y e. Sound x ∧ Energy y ∧ Carries e ∧ Agent e x ∧ Patient e y"

(* Explanation 2: Sound energy can cause air vibration. *)
axiomatization where
    explanation_2: "∀x y e. SoundEnergy x ∧ AirVibration y ∧ Cause e ∧ Agent e x ∧ Patient e y"

(* Explanation 3: Sound can travel through air by vibrating particles of air. *)
axiomatization where
    explanation_3: "∀x y z e1 e2. Sound x ∧ Air y ∧ ParticlesOfAir z ∧ Travel e1 ∧ Agent e1 x ∧ Patient e1 y ∧ 
Vibrating e2 ∧ Agent e2 z ∧ Patient e2 x"

theorem hypothesis:
assumes asm: "SoundEnergy x ∧ ParticlesOfAir y"
(* Hypothesis: Sound energy can travel by vibrating particles of air. *)
shows "∃x y e1 e2. SoundEnergy x ∧ ParticlesOfAir y ∧ Travel e1 ∧ Agent e1 x ∧ Vibrating e2 ∧ Agent e2 y ∧ Patient 
e2 x"
proof -
  from asm have "SoundEnergy x ∧ ParticlesOfAir y" by simp
  then obtain e1 where e1: "Carries e1 ∧ Agent e1 x ∧ Patient e1 y" using explanation_1 by blast
  then obtain e2 where e2: "Cause e2 ∧ Agent e2 x ∧ Patient e2 y" using explanation_2 by blast
  then obtain e3 where e3: "Travel e3 ∧ Agent e3 x ∧ Vibrating e2 ∧ Agent e2 y ∧ Patient e2 x" using explanation_3 
by blast
  show ?thesis using asm e1 e2 e3 by blast
qed

end

Figure 47: The Isabelle theory code for table 8 iteration 4
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Dataset Sentences Explanation Iteration Validity

WorldTree Premise: most birds sit on their eggs until they
hatch.
Hypothesis: The reason why birds sit on their
eggs is to keep the eggs warm.

an egg requires warmth to survive; hatch; de-
velop. sitting on something provides warmth
to that something. providing warmth is synony-
mous with keeping warm. form means kind.

0 Invalid

WorldTree Premise: most birds sit on their eggs until they
hatch.
Hypothesis: The reason why birds sit on their
eggs is to keep the eggs warm.

Eggs require warmth to survive, hatch, and de-
velop. Sitting on something provides warmth
to that something. Providing warmth is synony-
mous with keeping warm.

1 Invalid

WorldTree Premise: most birds sit on their eggs until they
hatch.
Hypothesis: The reason why birds sit on their
eggs is to keep the eggs warm.

Birds sitting on their eggs provides warmth to
the eggs. Providing warmth is synonymous with
keeping warm.

2 Invalid

WorldTree Premise: most birds sit on their eggs until they
hatch.
Hypothesis: The reason why birds sit on their
eggs is to keep the eggs warm.

Birds sit on their eggs to provide warmth to the
eggs. Providing warmth is synonymous with
keeping warm.

3 Valid

Table 9: An example of how the explanation sentences in WorldTree can be refined with Explanation-Refiner

theory question_92_0

imports Main

begin

typedecl entity
typedecl event

consts
  Egg :: "entity ⇒ bool"
  RequireWarmth :: "event ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Survive :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Hatch :: "event ⇒ bool"
  Develop :: "event ⇒ bool"
  Something :: "entity ⇒ bool” d
  Warmth :: "entity ⇒ bool"
  Sit :: "event ⇒ bool"
  Provide :: "event ⇒ bool"
  KeepWarm :: "event ⇒ bool"
  Birds :: "entity ⇒ bool"
  Eggs :: "entity ⇒ bool"

(* Explanation 1: An egg requires warmth to survive; hatch; develop. *)
axiomatization where
    explanation_1: "∀x e1 e2 e3 e4. Egg x ⟶ (RequireWarmth e1 ∧ Patient e1 x) ∧ (Survive e2 ∧ Agent e2 x) ∧ (Hatch 
e3 ∧ Agent e3 x) ∧ (Develop e4 ∧ Agent e4 x)"

(* Explanation 2: Sitting on something provides warmth to that something. *)
axiomatization where
    explanation_2: "∀x y e1 e2. Something x ∧ Warmth y ∧ Sit e1 ∧ Agent e1 x ⟶ Provide e2 ∧ Agent e2 x ∧ Patient 
e2 y"

(* Explanation 3: Providing warmth is synonymous with keeping warm. *)
axiomatization where
    explanation_3: "∀x y e. Warmth x ∧ Provide e ∧ Agent e x ⟶ KeepWarm e ∧ Agent e x"

theorem hypothesis:
(* Premise: Most birds sit on their eggs until they hatch. *)
assumes asm: "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Hatch e2 ∧ Agent e2 y"
(* Hypothesis: The reason why birds sit on their eggs is to keep the eggs warm. *)
shows "∃x y e1 e2. Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ KeepWarm e2 ∧ Agent e2 x ∧ Patient e2 y"
proof -
  from asm have "Eggs y" by simp 
  then obtain e1 e2 e3 e4 where e1e2e3e4: "(RequireWarmth e1 ∧ Patient e1 y) ∧ (Survive e2 ∧ Agent e2 y) ∧ (Hatch 
e3 ∧ Agent e3 y) ∧ (Develop e4 ∧ Agent e4 y)" using explanation_1 by blast
  then obtain e2 where e2: "Provide e2 ∧ Agent e2 x ∧ Patient e2 y" using explanation_2 by blast
  then have "KeepWarm e2 ∧ Agent e2 x" using explanation_3 by blast
  show ?thesis using asm `KeepWarm e2 ∧ Agent e2 x` by blast
qed

end

Figure 48: The Isabelle theory code for table 9 iteration 0
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theory question_92_1
imports Main
begin

typedecl entity
typedecl event

consts
  Eggs :: "entity ⇒ bool"
  Require :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Warmth :: "entity ⇒ bool"
  Survive :: "event ⇒ bool"
  Hatch :: "event ⇒ bool"
  Develop :: "event ⇒ bool"
  Something :: "entity ⇒ bool"
  Sit :: "event ⇒ bool"
  Provide :: "event ⇒ bool"
  KeepWarm :: "event ⇒ bool"
  Birds :: "entity ⇒ bool"

(* Explanation 1: Eggs require warmth to survive, hatch, and develop. *)
axiomatization where
    explanation_1: "∀x e1 e2 e3 e4 e5. Eggs x ∧ Require e1 ∧ Agent e1 x ∧ Warmth e5 ∧ Patient e1 e5 ⟶ Survive e2 ∧ 
Agent e2 x ∧ Hatch e3 ∧ Agent e3 x ∧ Develop e4 ∧ Agent e4 x"

(* Explanation 2: Sitting on something provides warmth to that something. *)
axiomatization where
    explanation_2: "∀x y e1 e2. Something x ∧ Warmth y ∧ Sit e1 ∧ Agent e1 x ⟶ Provide e2 ∧ Agent e2 x ∧ Patient 
e2 y"

(* Explanation 3: Providing warmth is synonymous with keeping warm. *)
axiomatization where
    explanation_3: "∀x y e. Warmth x ∧ Provide e ∧ Agent e x ⟷ KeepWarm e ∧ Agent e x"

theorem hypothesis:
(* Premise: Most birds sit on their eggs until they hatch. *)
assumes asm: "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Hatch e2 ∧ Agent e2 y"
(* Hypothesis: The reason why birds sit on their eggs is to keep the eggs warm. *)
shows "∃x y e1 e2. Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ KeepWarm e2 ∧ Agent e2 x ∧ Patient e2 y"
proof -
  from asm have "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y" by simp
  then obtain e2 where e2: "Provide e2 ∧ Agent e2 x ∧ Patient e2 y" using explanation_2 by blast
  then have "KeepWarm e2 ∧ Agent e2 x ∧ Patient e2 y" using explanation_3 by blast
  show ?thesis using asm `KeepWarm e2 ∧ Agent e2 x ∧ Patient e2 y` by blast
qed

end

Figure 49: The Isabelle theory code for table 9 iteration 1
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theory question_92_2

imports Main

begin

typedecl entity
typedecl event

consts
  Birds :: "entity ⇒ bool"
  Eggs :: "entity ⇒ bool"
  Sitting :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  ProvidesWarmth :: "event ⇒ bool"
  KeepWarm :: "event ⇒ bool"
  Hatch :: "event ⇒ bool"
  Sit :: "event ⇒ bool"

(* Explanation 1: Birds sitting on their eggs provides warmth to the eggs. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Birds x ∧ Eggs y ∧ Sitting e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ ProvidesWarmth e2 ∧ 
Agent e2 x ∧ Patient e2 y"

(* Explanation 2: Providing warmth is synonymous with keeping warm. *)
axiomatization where
    explanation_2: "∀e1 e2. ProvidesWarmth e1 ⟷ KeepWarm e2" 

theorem hypothesis:
(* Premise: Most birds sit on their eggs until they hatch. *)
assumes asm: "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Hatch e2 ∧ Patient e2 y"
(* Hypothesis: The reason why birds sit on their eggs is to keep the eggs warm. *)
shows "∃x y e1 e2. Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ KeepWarm e2 ∧ Agent e2 x ∧ Patient e2 y"
proof -
  from asm have "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y" by simp
  then obtain e2 where e2: "ProvidesWarmth e2 ∧ Agent e2 x ∧ Patient e2 y" using explanation_1 by blast
  then have "KeepWarm e2" using explanation_2 by blast
  have conclusion: "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ KeepWarm e2 ∧ Agent e2 x ∧ Patient e2 
y" using asm e2 `KeepWarm e2` by simp
  show ?thesis using conclusion by blast
qed

end

Figure 50: The Isabelle theory code for table 9 iteration 2
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theory question_92_3

imports Main

begin

typedecl entity
typedecl event

consts
  Birds :: "entity ⇒ bool"
  Eggs :: "entity ⇒ bool"
  Sit :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  ProvideWarmth :: "event ⇒ bool"
  KeepWarm :: "event ⇒ bool"
  Hatch :: "event ⇒ bool"

(* Explanation 1: Birds sit on their eggs to provide warmth to the eggs. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ ProvideWarmth e2 ∧ Agent 
e2 x ∧ Patient e2 y"

(* Explanation 2: Providing warmth is synonymous with keeping warm. *)
axiomatization where
    explanation_2: "∀e1 e2. ProvideWarmth e1 ⟷ KeepWarm e2" 

theorem hypothesis:
(* Premise: Most birds sit on their eggs until they hatch. *)
assumes asm: "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Hatch e2 ∧ Patient e2 y"
(* Hypothesis: The reason why birds sit on their eggs is to keep the eggs warm. *)
shows "∃x y e1 e2. Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ KeepWarm e2 ∧ Agent e2 x ∧ Patient e2 y"
proof -
  from asm have "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y" by simp
  then obtain e2 where e2: "ProvideWarmth e2 ∧ Agent e2 x ∧ Patient e2 y" using explanation_1 by blast
  then have "KeepWarm e2" using explanation_2 by blast
  have conclusion: "Birds x ∧ Eggs y ∧ Sit e1 ∧ Agent e1 x ∧ Patient e1 y ∧ KeepWarm e2 ∧ Agent e2 x ∧ Patient e2 
y" using asm e2 `KeepWarm e2` by simp
  show ?thesis using conclusion by blast
qed

end

Figure 51: The Isabelle theory code for table 9 iteration 3
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Dataset Sentences Explanation Iteration Validity

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

reflecting light; sound is the opposite of absorb-
ing light; sound. if an object; a substance ab-
sorbs solar energy then that object; that sub-
stance will increase in temperature. if an object;
something is in the sunlight then that object; that
something will absorb solar energy. shiny things;
objects reflect light. keeping cool means not in-
creasing temperature. a car is a kind of object.

0 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

if an object; a substance absorbs solar energy
then that object; that substance will increase in
temperature. if an object; something is in the
sunlight then that object; that something will ab-
sorb solar energy. shiny things; objects reflect
light. keeping cool means not increasing temper-
ature. a parked car is a kind of object.

1 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

if an object; a substance absorbs solar energy
then that object; that substance will increase in
temperature. if an object; something is in the
sunlight and it does not reflect light, then that
object; that something will absorb solar energy.
shiny things; objects reflect light. keeping cool
means not increasing temperature. a parked car
is a kind of object. A shiny aluminum screen is
a kind of shiny object.

2 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

if an object; a substance absorbs solar energy
then that object; that substance will increase in
temperature. if an object; something is in the
sunlight and it reflects light, then that object; that
something will not absorb solar energy. shiny
things; objects reflect light. keeping cool means
not increasing temperature. A shiny aluminum
screen is a kind of shiny object.

3 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

if an object; a substance absorbs solar energy
then that object; that substance will increase in
temperature. if an object; something is in the
sunlight and it reflects light, then that object;
that something will not absorb solar energy. A
shiny aluminum screen reflects light. keeping
cool means not increasing temperature. A shiny
aluminum screen is a kind of shiny object.

4 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

if an object; a substance absorbs solar energy
then that object; that substance will increase in
temperature. if an object; something reflects
light, then that object; that something will not
absorb solar energy. A shiny aluminum screen
reflects light. keeping cool means not increasing
temperature.

5 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

if an object; a substance absorbs solar energy
then that object; that substance will increase in
temperature. if an object; something reflects
light, then that object; that something will not
absorb solar energy. A shiny aluminum screen
reflects sunlight. keeping cool means not in-
creasing temperature.

6 Invalid

Table 10: An example of an explanation in WorldTree that does not refine within 10 iterations using Explanation-
Refiner
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Dataset Sentences Explanation Iteration Validity

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

If a shiny aluminum screen absorbs solar energy
then that shiny aluminum screen will increase in
temperature. If a shiny aluminum screen reflects
light, then that shiny aluminum screen will not
absorb solar energy. A shiny aluminum screen
reflects sunlight. Keeping cool means not in-
creasing temperature.

7 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

If a shiny aluminum screen absorbs solar energy
then that shiny aluminum screen will increase
in temperature. If a shiny aluminum screen re-
flects sunlight, then that shiny aluminum screen
will not absorb solar energy. A shiny aluminum
screen reflects sunlight. Keeping cool means not
increasing temperature.

8 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

If a shiny aluminum screen absorbs solar energy
then that shiny aluminum screen will increase
in temperature. A shiny aluminum screen that
reflects sunlight does not absorb solar energy. A
shiny aluminum screen reflects sunlight. Keep-
ing cool means not increasing temperature.

9 Invalid

WorldTree Premise: A shiny aluminum screen can be
placed on the windshield of a parked car.
Hypothesis: The screen helps to keep the car
cool because it reflects the sunlight.

If a shiny aluminum screen absorbs solar energy
then that shiny aluminum screen will increase
in temperature. A shiny aluminum screen that
reflects sunlight does not absorb any energy. A
shiny aluminum screen reflects sunlight. Keep-
ing cool means not increasing temperature.

10 Invalid

Table 11: An example of an explanation in WorldTree that does not refine within 10 iterations using Explanation-
Refiner
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theory question_45_0

imports Main

begin

typedecl entity
typedecl event

consts
  Light :: "entity ⇒ bool"
...
(* Explanation 1: reflecting light; sound is the opposite of absorbing light; sound. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Light x ∧ Sound y ∧ Reflecting e1 ∧ Agent e1 x ⟶ ¬Absorbing e2 ∧ Agent e2 y"

(* Explanation 2: if an object; a substance absorbs solar energy then that object; that substance will increase in 
temperature. *)
axiomatization where
    explanation_2: "∀x y e1 e2. Object x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 3: if an object; something is in the sunlight then that object; that something will absorb solar 
energy. *)
axiomatization where
    explanation_3: "∀x y e1 e2. Object x ∧ Sunlight y ∧ IsIn e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ Absorb e2 ∧ Agent e2 
x ∧ Patient e2 y"

(* Explanation 4: shiny things; objects reflect light. *)
axiomatization where
    explanation_4: "∀x y e. ShinyThings x ∧ Light y ∧ Reflect e ∧ Agent e x ∧ Patient e y"

(* Explanation 5: keeping cool means not increasing temperature. *)
axiomatization where
    explanation_5: "∀x e1 e2. Object x ∧ KeepingCool e1 ∧ Agent e1 x ⟶ ¬IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 6: a car is a kind of object. *)
axiomatization where
    explanation_6: "∀x. Car x ⟶ Object x" 

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ CanBePlaced e ∧ Agent e x ∧ Patient e y ∧ 
Location e z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Reflects e1 ∧ Agent e1 x ∧ Patient e1 z ∧ Helps e2 ∧ Agent 
e2 x ∧ Patient e2 y ∧ KeepCool e3 ∧ Agent e3 x ∧ Patient e3 y"
proof -
  from asm have "Object z" using explanation_6 by blast
  then have "Absorb e ∧ Agent e z ∧ Patient e y" using explanation_3 by blast
  then have "¬IncreaseInTemperature e ∧ Agent e z" using explanation_2 by blast
  then have "KeepingCool e ∧ Agent e z" using explanation_5 by blast
  have "Reflect e ∧ Agent e x ∧ Patient e y" using explanation_4 by blast
  show ?thesis using asm `Object z` `Absorb e ∧ Agent e z ∧ Patient e y` `¬IncreaseInTemperature e ∧ Agent e z` 
`KeepingCool e ∧ Agent e z` `Reflect e ∧ Agent e x ∧ Patient e y` by blast
qed

end

Figure 52: The Isabelle theory code for table 10 iteration 0
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theory question_45_1

imports Main

begin

typedecl entity
typedecl event

consts
  Object :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  IncreaseInTemperature :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  IsIn :: "event ⇒ bool"
  Absorb :: "event ⇒ bool"
  ShinyThings :: "entity ⇒ bool"
  Light :: "entity ⇒ bool"
  Reflect :: "event ⇒ bool"
  KeepingCool :: "entity ⇒ bool"
  ParkedCar :: "entity ⇒ bool"
  Screen :: "entity ⇒ bool"
...
(* Explanation 1: if an object; a substance absorbs solar energy then that object; that substance will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Object x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 2: if an object; something is in the sunlight then that object; that something will absorb solar 
energy. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. Object x ∧ Sunlight y ∧ IsIn e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ Absorb e2 ∧ Agent 
e2 x ∧ Patient e2 y"

(* Explanation 3: shiny things; objects reflect light. *)
axiomatization where
    explanation_3: "∀x y e. ShinyThings x ∧ Light y ∧ Reflect e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e. KeepingCool x ⟶ ¬IncreaseInTemperature e ∧ Agent e x"

(* Explanation 5: a parked car is a kind of object. *)
axiomatization where
    explanation_5: "∀x. ParkedCar x ⟶ Object x" 

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ CanBePlaced e ∧ Agent e x ∧ Patient e y ∧ 
Location e z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Reflects e1 ∧ Agent e1 x ∧ Patient e1 z ∧ Helps e2 ∧ Agent 
e2 x ∧ Patient e2 y ∧ KeepCool e3 ∧ Agent e3 x ∧ Patient e3 y"
proof -
  from asm have "Object z" using explanation_5 by blast
  then have "Absorb e ∧ Agent e z ∧ Patient e y" using explanation_2 by blast
  then have "¬IncreaseInTemperature e ∧ Agent e z" using explanation_1 explanation_4 by blast
  then have "Reflect e ∧ Agent e x ∧ Patient e y" using explanation_3 by blast
  then have "Helps e2 ∧ Agent e2 x ∧ Patient e2 y" by simp
  then have "KeepCool e3 ∧ Agent e3 x ∧ Patient e3 y" using explanation_4 by blast
  show ?thesis using asm `Object z` `Absorb e ∧ Agent e z ∧ Patient e y` `¬IncreaseInTemperature e ∧ Agent e z` 
`Reflect e ∧ Agent e x ∧ Patient e y` `Helps e2 ∧ Agent e2 x ∧ Patient e2 y` `KeepCool e3 ∧ Agent e3 x ∧ Patient e3 
y` by blast
qed

end

Figure 53: The Isabelle theory code for table 10 iteration 1

55



theory question_45_2

imports Main

begin

typedecl entity
typedecl event

consts
  Object :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  IncreaseInTemperature :: "event ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Light :: "entity ⇒ bool"
  Reflect :: "event ⇒ bool"
  In :: "entity ⇒ entity ⇒ bool"
  AbsorbSolarEnergy :: "event ⇒ bool"
  ShinyThings :: "entity ⇒ bool"
  KeepingCool :: "entity ⇒ bool"
  ParkedCar :: "entity ⇒ bool"
...

(* Explanation 1: if an object; a substance absorbs solar energy then that object; that substance will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Object x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 2: if an object; something is in the sunlight and it does not reflect light, then that object; that 
something will absorb solar energy. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. Object x ∧ Sunlight y ∧ Light z ∧ ¬Reflect e1 ∧ Agent e1 x ∧ Patient e1 z ∧ In x 
y ⟶ AbsorbSolarEnergy e2 ∧ Agent e2 x"

(* Explanation 3: shiny things; objects reflect light. *)
axiomatization where
    explanation_3: "∀x y e. ShinyThings x ∧ Light y ∧ Reflect e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: keeping cool means not increasing temperature. *)
axiomatization where
explanation_4: "∀x e. KeepingCool x ⟶ ¬IncreaseInTemperature e ∧ Agent e x"

(* Explanation 5: a parked car is a kind of object. *)
axiomatization where
    explanation_5: "∀x. ParkedCar x ⟶ Object x"

(* Explanation 6: A shiny aluminum screen is a kind of shiny object. *)
axiomatization where
    explanation_6: "∀x. ShinyAluminumScreen x ⟶ ShinyObject x"

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar y ∧ Placed e ∧ Agent e x ∧ Patient e y"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Helps e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Keep e2 ∧ Agent e2 x 
∧ Patient e2 y ∧ Reflects e3 ∧ Agent e3 x ∧ Patient e3 z "
proof -
  from asm have "ShinyObject x" using explanation_6 by simp
  then obtain e1 where e1: "Reflect e1 ∧ Agent e1 x ∧ Patient e1 y" using explanation_3 by blast
  then have "¬AbsorbSolarEnergy e2 ∧ Agent e2 x" using explanation_2 by blast
  then have "¬IncreaseInTemperature e3 ∧ Agent e3 x" using explanation_1 by blast
  then have "KeepingCool x" using explanation_4 by blast
  have conclusion: "Reflect e1 ∧ Agent e1 x ∧ Patient e1 y" using e1 by simp
  show ?thesis using asm conclusion `KeepingCool x` by blast
qed

end

Figure 54: The Isabelle theory code for table 10 iteration 2

56



theory question_45_3

imports Main

begin

typedecl entity
typedecl event

consts
  Object :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Increase :: "event ⇒ bool"
  Temperature :: "event ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Light :: "entity ⇒ bool"
  Is :: "event ⇒ entity ⇒ entity ⇒ bool"
  Reflects :: "event ⇒ bool"
  Absorb :: "event ⇒ entity ⇒ entity ⇒ bool"
  ShinyThings :: "entity ⇒ bool"
  Reflect :: "event ⇒ bool"
...

(* Explanation 1: if an object; a substance absorbs solar energy then that object; that substance will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Object x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ Increase e2 ∧ 
Agent e2 x ∧ Temperature e2"

(* Explanation 2: if an object; something is in the sunlight and it reflects light, then that object; that 
something will not absorb solar energy. *)
axiomatization where
    explanation_2: "∀x y z e1 e2 e3. Object x ∧ Sunlight y ∧ Light z ∧ Is e1 x y ∧ Reflects e2 ∧ Agent e2 x ∧ 
Patient e2 z ⟶ ¬Absorb e3 x y"

(* Explanation 3: shiny things; objects reflect light. *)
axiomatization where
    explanation_3: "∀x y e. ShinyThings x ∧ Light y ⟶ Reflect e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e. KeepingCool x ⟶ ¬Increase e ∧ Temperature e"

(* Explanation 5: A shiny aluminum screen is a kind of shiny object. *)
axiomatization where
    explanation_5: "∀x. ShinyAluminumScreen x ⟶ ShinyObject x" 

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ Placed e ∧ Agent e x ∧ Patient e y ∧ Location e 
z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Helps e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Keep e2 ∧ Agent e2 x 
∧ Patient e2 y ∧ Reflects e3 ∧ Agent e3 x ∧ Patient e3 z "
proof -
  from asm have "ShinyObject x" using explanation_5 by simp
  then obtain e1 where e1: "Reflect e1 ∧ Agent e1 x ∧ Patient e1 y" using explanation_3 by blast
  then have "¬Absorb e3 x y" using explanation_2 by blast
  then have "¬Increase e2 ∧ Temperature e2" using explanation_1 by blast
  then have "KeepingCool x" using explanation_4 by blast
  have conclusion: "Reflect e1 ∧ Agent e1 x ∧ Patient e1 y" using e1 by simp
  show ?thesis using asm conclusion `KeepingCool x` by blast
qed

end

Figure 55: The Isabelle theory code for table 10 iteration 3
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theory question_45_4

imports Main

begin

typedecl entity
typedecl event

consts
  Object :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Increase :: "event ⇒ bool"
  Temperature :: "entity ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Light :: "entity ⇒ bool"
  Is :: "event ⇒ entity ⇒ entity ⇒ bool"
  Reflects :: "event ⇒ bool"
  ShinyAluminumScreen :: "entity ⇒ bool"
  Cool :: "entity ⇒ bool"
  ShinyObject :: "entity ⇒ bool"
  Screen :: "entity ⇒ bool"
  Car :: "entity ⇒ bool"
...

(* Explanation 1: if an object; a substance absorbs solar energy then that object; that substance will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Object x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ Increase e2 ∧ 
Agent e2 x ∧ Temperature x"

(* Explanation 2: if an object; something is in the sunlight and it reflects light, then that object; that 
something will not absorb solar energy. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. Object x ∧ Sunlight y ∧ Light z ∧ Is e1 x y ∧ Reflects e1 ∧ Agent e1 x ∧ Patient 
e1 z ⟶ ¬Absorbs e2 ∧ Agent e2 x ∧ SolarEnergy y"

(* Explanation 3: A shiny aluminum screen reflects light. *)
axiomatization where
    explanation_3: "∀x y e. ShinyAluminumScreen x ∧ Light y ∧ Reflects e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e. Cool x ⟶ ¬Increase e ∧ Temperature x"

(* Explanation 5: A shiny aluminum screen is a kind of shiny object. *)
axiomatization where
    explanation_5: "∀x. ShinyAluminumScreen x ⟶ ShinyObject x" 

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ Placed e ∧ Agent e x ∧ Patient e y ∧ Location e 
z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2. Screen x ∧ Car y ∧ Sunlight z ∧ Reflects e1 ∧ Agent e1 x ∧ Patient e1 z ∧ Helps e2 ∧ Agent e2 
x ∧ Patient e2 y ∧ Cool y"
proof -
  from asm have "ShinyAluminumScreen x" by simp
  then have "Reflects e ∧ Agent e x ∧ Patient e y" using explanation_3 by blast
  then have "¬Absorbs e ∧ Agent e x ∧ SolarEnergy y" using explanation_2 by blast
  then have "¬Increase e ∧ Temperature x" using explanation_1 by blast
  then have "Cool x" using explanation_4 by blast
  show ?thesis using asm `Cool x` `Reflects e ∧ Agent e x ∧ Patient e y` by blast
qed

end

Figure 56: The Isabelle theory code for table 10 iteration 4

58



theory question_45_5

imports Main

begin

typedecl entity
typedecl event

consts
  Object :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  IncreaseInTemperature :: "event ⇒ bool"
  Light :: "entity ⇒ bool"
  Reflects :: "event ⇒ bool"
  ShinyAluminumScreen :: "entity ⇒ bool"
  Cool :: "entity ⇒ bool"
  Screen :: "entity ⇒ bool"
  Car :: "entity ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Helps :: "event ⇒ bool"
  Windshield :: "entity ⇒ bool"
  ParkedCar :: "entity ⇒ bool"
  Placed :: "event ⇒ bool"
  Location :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an object; a substance absorbs solar energy then that object; that substance will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Object x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 2: if an object; something reflects light, then that object; that something will not absorb solar 
energy. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. Object x ∧ Light y ∧ SolarEnergy z ∧ Reflects e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
¬Absorbs e2 ∧ Agent e2 x ∧ Patient e2 z"

(* Explanation 3: A shiny aluminum screen reflects light. *)
axiomatization where
    explanation_3: "∃x y e. ShinyAluminumScreen x ∧ Light y ∧ Reflects e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e. Cool x ⟷ ¬IncreaseInTemperature e ∧ Agent e x"

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ Placed e ∧ Agent e x ∧ Patient e y ∧ Location e 
z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2. Screen x ∧ Car y ∧ Sunlight z ∧ Helps e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Cool y ∧ Reflects e2 ∧ 
Agent e2 x ∧ Patient e2 z "
proof -
  from asm have "ShinyAluminumScreen x" by simp
  then obtain y e where e: "Light y ∧ Reflects e ∧ Agent e x ∧ Patient e y" using explanation_3 by blast
  then have "¬Absorbs e ∧ Agent e x ∧ Patient e y" using explanation_2 by blast
  then have "¬IncreaseInTemperature e ∧ Agent e x" using explanation_1 by blast
  then have "Cool x" using explanation_4 by blast
  have conclusion: "Reflects e ∧ Agent e x ∧ Patient e y" using e by simp
  show ?thesis using asm conclusion `Cool x` by blast
qed

end

Figure 57: The Isabelle theory code for table 10 iteration 5
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theory question_45_6

imports Main

begin

typedecl entity
typedecl event

consts
  Object :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  Increase :: "event ⇒ bool"
  Temperature :: "entity ⇒ bool"
  Light :: "entity ⇒ bool"
  Reflects :: "event ⇒ bool"
  ShinyAluminumScreen :: "entity ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Cool :: "entity ⇒ bool"
  Screen :: "entity ⇒ bool"
  Car :: "entity ⇒ bool"
  Helps :: "event ⇒ bool"
  Keep :: "event ⇒ bool"
  Windshield :: "entity ⇒ bool"
  ParkedCar :: "entity ⇒ bool"
  Placed :: "event ⇒ bool"
  Location :: "event ⇒ entity ⇒ bool"

(* Explanation 1: if an object; a substance absorbs solar energy then that object; that substance will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. Object x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ Increase e2 ∧ 
Agent e2 x ∧ Temperature x"

(* Explanation 2: if an object; something reflects light, then that object; that something will not absorb solar 
energy. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. Object x ∧ Light y ∧ SolarEnergy z ∧ Reflects e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
¬Absorbs e2 ∧ Agent e2 x ∧ Patient e2 z"

(* Explanation 3: A shiny aluminum screen reflects sunlight. *)
axiomatization where
    explanation_3: "∃x y e. ShinyAluminumScreen x ∧ Sunlight y ∧ Reflects e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e. Cool x ⟷ ¬Increase e ∧ Temperature x"

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ Placed e ∧ Agent e x ∧ Patient e y ∧ Location e 
z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Reflects e1 ∧ Agent e1 x ∧ Patient e1 z ∧ Helps e2 ∧ Agent 
e2 x ∧ Patient e2 y ∧ Keep e3 ∧ Agent e3 x ∧ Patient e3 y ∧ Cool y"
proof -
  from asm have "ShinyAluminumScreen x" by simp
  then obtain e1 where e1: "Reflects e1 ∧ Agent e1 x ∧ Patient e1 y" using explanation_3 by blast
  then have "¬Absorbs e2 ∧ Agent e2 x ∧ Patient e2 z" using explanation_2 by blast
  then have "¬Increase e2 ∧ Temperature x" using explanation_1 by blast
  then have "Cool x" using explanation_4 by blast
  have conclusion: "Reflects e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Helps e2 ∧ Agent e2 x ∧ Patient e2 y ∧ Keep e3 ∧ 
Agent e3 x ∧ Patient e3 y ∧ Cool y" using e1 `Cool x` by simp
  show ?thesis using asm conclusion by blast
qed

end

Figure 58: The Isabelle theory code for table 10 iteration 6
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theory question_45_7

imports Main

begin

typedecl entity
typedecl event

consts
  ShinyAluminumScreen :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  IncreaseInTemperature :: "event ⇒ bool"
  Light :: "entity ⇒ bool"
  Reflects :: "event ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Cool :: "entity ⇒ bool"
  Means :: "event ⇒ bool"
  IncreasingTemperature :: "event ⇒ bool"
  Screen :: "entity ⇒ bool"
  Car :: "entity ⇒ bool"
  Helps :: "event ⇒ bool"
  Keep :: "event ⇒ bool"
  Windshield :: "entity ⇒ bool"
  ParkedCar :: "entity ⇒ bool"
  Placed :: "event ⇒ bool"
  Location :: "event ⇒ entity ⇒ bool"

(* Explanation 1: If a shiny aluminum screen absorbs solar energy then that shiny aluminum screen will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. ShinyAluminumScreen x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 2: If a shiny aluminum screen reflects light, then that shiny aluminum screen will not absorb solar 
energy. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. ShinyAluminumScreen x ∧ Light y ∧ SolarEnergy z ∧ Reflects e1 ∧ Agent e1 x ∧ 
Patient e1 y ⟶ ¬(Absorbs e2 ∧ Agent e2 x ∧ Patient e2 z)"

(* Explanation 3: A shiny aluminum screen reflects sunlight. *)
axiomatization where
    explanation_3: "∀x y e. ShinyAluminumScreen x ∧ Sunlight y ∧ Reflects e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: Keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e1 e2. Cool x ⟶ (Means e1 ∧ Agent e1 x ∧ ¬IncreasingTemperature e2)"

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ Placed e ∧ Agent e x ∧ Patient e y ∧ Location e 
z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Helps e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Keep e2 ∧ Agent e2 x 
∧ Patient e2 y ∧ Reflects e3 ∧ Agent e3 x ∧ Patient e3 z "
proof -
  from asm have "ShinyAluminumScreen x" by simp
  then obtain e1 where e1: "Reflects e1 ∧ Agent e1 x ∧ Patient e1 y" using explanation_3 by blast
  then have "¬(Absorbs e2 ∧ Agent e2 x ∧ Patient e2 z)" using explanation_2 by blast
  then have "¬IncreaseInTemperature e2 ∧ Agent e2 x" using explanation_1 by blast
  then have "Cool x" using explanation_4 by blast
  have conclusion: "Helps e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Keep e2 ∧ Agent e2 x ∧ Patient e2 y ∧ Reflects e3 ∧ 
Agent e3 x ∧ Patient e3 z" using e1 by simp
  show ?thesis using asm conclusion `Cool x` by blast
qed

end

Figure 59: The Isabelle theory code for table 11 iteration 7
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theory question_45_8

imports Main

begin

typedecl entity
typedecl event

consts
  ShinyAluminumScreen :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  IncreaseInTemperature :: "event ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Reflects :: "event ⇒ bool"
  Cool :: "entity ⇒ bool"
  Means :: "event ⇒ bool"
  Screen :: "entity ⇒ bool"
  Car :: "entity ⇒ bool"
  Helps :: "event ⇒ bool"
  Keep :: "event ⇒ bool"
  Windshield :: "entity ⇒ bool"
  ParkedCar :: "entity ⇒ bool"
  Placed :: "event ⇒ bool"
  Location :: "event ⇒ entity ⇒ bool"

(* Explanation 1: If a shiny aluminum screen absorbs solar energy then that shiny aluminum screen will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. ShinyAluminumScreen x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 2: If a shiny aluminum screen reflects sunlight, then that shiny aluminum screen will not absorb 
solar energy. *)
axiomatization where
    explanation_2: "∀x y z e1 e2. ShinyAluminumScreen x ∧ Sunlight y ∧ SolarEnergy z ∧ Reflects e1 ∧ Agent e1 x ∧ 
Patient e1 y ⟶ ¬(Absorbs e2 ∧ Agent e2 x ∧ Patient e2 z)"

(* Explanation 3: A shiny aluminum screen reflects sunlight. *)
axiomatization where
    explanation_3: "∀x y e. ShinyAluminumScreen x ∧ Sunlight y ∧ Reflects e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: Keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e1 e2. Cool x ∧ Means e1 ∧ Agent e1 x ⟶ ¬IncreaseInTemperature e2"

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ Placed e ∧ Agent e x ∧ Patient e y ∧ Location e 
z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Helps e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Keep e2 ∧ Agent e2 x 
∧ Patient e2 y ∧ Reflects e3 ∧ Agent e3 x ∧ Patient e3 z "
proof -
  from asm have "ShinyAluminumScreen x" by simp
  then have "∃e. Reflects e ∧ Agent e x ∧ Patient e y" using explanation_3 by blast
  then have "¬(Absorbs e ∧ Agent e x ∧ Patient e y)" using explanation_2 by blast
  then have "¬IncreaseInTemperature e" using explanation_1 by blast
  then have "Cool x" using explanation_4 by blast
  then have "Helps e ∧ Agent e x ∧ Patient e y" by simp
  then have "Keep e ∧ Agent e x ∧ Patient e y" by simp
  show ?thesis using asm `Helps e ∧ Agent e x ∧ Patient e y` `Keep e ∧ Agent e x ∧ Patient e y` `Reflects e ∧ Agent 
e x ∧ Patient e y` by blast
qed

end

Figure 60: The Isabelle theory code for table 11 iteration 8
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theory question_45_9

imports Main

begin

typedecl entity
typedecl event

consts
  ShinyAluminumScreen :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "event ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  IncreaseInTemperature :: "event ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Reflects :: "event ⇒ bool"
  Cool :: "entity ⇒ bool"
  Means :: "event ⇒ bool"
  Screen :: "entity ⇒ bool"
  Car :: "entity ⇒ bool"
  Helps :: "event ⇒ bool"
  Keep :: "event ⇒ bool"
  Windshield :: "entity ⇒ bool"
  ParkedCar :: "entity ⇒ bool"
  Placed :: "event ⇒ bool"
  Location :: "event ⇒ entity ⇒ bool"

(* Explanation 1: If a shiny aluminum screen absorbs solar energy then that shiny aluminum screen will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. ShinyAluminumScreen x ∧ SolarEnergy y ∧ Absorbs e1 ∧ Agent e1 x ∧ Patient e1 y ⟶ 
IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 2: A shiny aluminum screen that reflects sunlight does not absorb solar energy. *)
axiomatization where
    explanation_2: "∀x y z e1. ShinyAluminumScreen x ∧ Sunlight y ∧ SolarEnergy z ∧ Reflects e1 ∧ Agent e1 x ∧ 
Patient e1 y ⟶ ¬(∃e2. Absorbs e2 ∧ Agent e2 x ∧ Patient e2 z)"

(* Explanation 3: A shiny aluminum screen reflects sunlight. *)
axiomatization where
    explanation_3: "∀x y e. ShinyAluminumScreen x ∧ Sunlight y ∧ Reflects e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: Keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e. Cool x ∧ Means e ∧ Agent e x ⟶ ¬(∃e2. IncreaseInTemperature e2 ∧ Agent e2 x)" 

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ Placed e ∧ Agent e x ∧ Patient e y ∧ Location e 
z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Helps e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Keep e2 ∧ Agent e2 x 
∧ Patient e2 y ∧ Reflects e3 ∧ Agent e3 x ∧ Patient e3 z "
proof -
  from asm have "ShinyAluminumScreen x" by simp
  then have "∃e. Reflects e ∧ Agent e x ∧ Patient e y" using explanation_3 by blast
  then have "¬(∃e2. Absorbs e2 ∧ Agent e2 x ∧ Patient e2 y)" using explanation_2 by blast
  then have "¬(∃e2. IncreaseInTemperature e2 ∧ Agent e2 x)" using explanation_1 by blast
  then have "Cool x" using explanation_4 by blast
  then have "Helps e ∧ Agent e x ∧ Patient e y" by simp
  then have "Keep e ∧ Agent e x ∧ Patient e y" by simp
  show ?thesis using asm `Helps e ∧ Agent e x ∧ Patient e y` `Keep e ∧ Agent e x ∧ Patient e y` `∃e. Reflects e ∧ 
Agent e x ∧ Patient e y` by blast
qed

end

Figure 61: The Isabelle theory code for table 11 iteration 9
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theory question_45_10
imports Main
begin

typedecl entity
typedecl event

consts
  ShinyAluminumScreen :: "entity ⇒ bool"
  SolarEnergy :: "entity ⇒ bool"
  Absorbs :: "entity ⇒ entity ⇒ bool"
  Agent :: "event ⇒ entity ⇒ bool"
  Patient :: "event ⇒ entity ⇒ bool"
  IncreaseInTemperature :: "event ⇒ bool"
  Sunlight :: "entity ⇒ bool"
  Energy :: "entity ⇒ bool"
  Reflects :: "event ⇒ bool"
  Cool :: "entity ⇒ bool"
  Means :: "event ⇒ bool"
  Screen :: "entity ⇒ bool"
  Car :: "entity ⇒ bool"
  Helps :: "event ⇒ bool"
  Keep :: "event ⇒ bool"
  Windshield :: "entity ⇒ bool"
  ParkedCar :: "entity ⇒ bool"
  Placed :: "event ⇒ bool"
  Location :: "event ⇒ entity ⇒ bool"

(* Explanation 1: If a shiny aluminum screen absorbs solar energy then that shiny aluminum screen will increase in 
temperature. *)
axiomatization where
    explanation_1: "∀x y e1 e2. ShinyAluminumScreen x ∧ SolarEnergy y ∧ Absorbs x y ∧ Agent e1 x ∧ Patient e1 y ⟶ 
IncreaseInTemperature e2 ∧ Agent e2 x"

(* Explanation 2: A shiny aluminum screen that reflects sunlight does not absorb any energy. *)
axiomatization where
    explanation_2: "∀x y z e1. ShinyAluminumScreen x ∧ Sunlight y ∧ Energy z ∧ Reflects e1 ∧ Agent e1 x ∧ Patient 
e1 y ⟶ ¬Absorbs x z"

(* Explanation 3: A shiny aluminum screen reflects sunlight. *)
axiomatization where
    explanation_3: "∀x y e. ShinyAluminumScreen x ∧ Sunlight y ∧ Reflects e ∧ Agent e x ∧ Patient e y"

(* Explanation 4: Keeping cool means not increasing temperature. *)
axiomatization where
    explanation_4: "∀x e1 e2. Cool x ∧ Means e1 ∧ Agent e1 x ⟶ ¬IncreaseInTemperature e2"

theorem hypothesis:
(* Premise: a shiny aluminum screen can be placed on the windshield of a parked car. *)
assumes asm: "ShinyAluminumScreen x ∧ Windshield y ∧ ParkedCar z ∧ Placed e ∧ Agent e x ∧ Patient e y ∧ Location e 
z"
(* Hypothesis: The screen helps to keep the car cool because it reflects the sunlight. *)
shows "∃x y z e1 e2 e3. Screen x ∧ Car y ∧ Sunlight z ∧ Helps e1 ∧ Agent e1 x ∧ Patient e1 y ∧ Keep e2 ∧ Agent e2 x 
∧ Patient e2 y ∧ Reflects e3 ∧ Agent e3 x ∧ Patient e3 z "
proof -
  from asm have "ShinyAluminumScreen x" by simp
  then obtain e1 where e1: "Reflects e1 ∧ Agent e1 x ∧ Patient e1 y" using explanation_3 by blast
  then have "¬Absorbs x z" using explanation_2 by blast
  then have "¬IncreaseInTemperature e2" using explanation_4 by blast
  have conclusion: "Reflects e1 ∧ Agent e1 x ∧ Patient e1 y" using e1 by simp
  show ?thesis using asm conclusion `¬IncreaseInTemperature e2` by blast
qed

end

Figure 62: The Isabelle theory code for table 11 iteration 10
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