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Abstract1

Incorporating equivariance as an inductive bias into deep learning architectures to2

take advantage of the data symmetry has been successful in multiple applications,3

such as chemistry and dynamical systems. In particular, roto-translations are4

crucial for effectively modeling geometric graphs and molecules, where under-5

standing the 3D structures enhances generalization. However, strictly equivariant6

models often pose challenges due to their higher computational complexity. In7

this paper, we introduce REMUL, a training procedure that learns approximate8

equivariance for unconstrained networks via multitask learning. By formulating9

equivariance as a tunable objective alongside the primary task loss, REMUL10

offers a principled way to control the degree of approximate symmetry, relaxing11

the rigid constraints of traditional equivariant architectures. We show that un-12

constrained models (which do not build equivariance into the architecture) can13

learn approximate symmetries by minimizing an additional simple equivariance14

loss. This enables quantitative control over the trade-off between enforcing equiv-15

ariance constraints and optimizing for task-specific performance. Our method16

achieves competitive performance compared to equivariant baselines while be-17

ing significantly faster (up to 10× at inference and 2.5× at training), offering18

a practical and adaptable approach to leveraging symmetry in unconstrained19

architectures.20

1 Introduction21

Equivariant machine learning models have achieved notable success across various domains, such as22

computer vision [1, 2], dynamical systems [3, 4], chemistry [5, 6], and structural biology [7]. For23

example, incorporating equivariance w.r.t. translations and rotations ensures the correct handling of24

complex structures like graphs and molecules [8–11]. Equivariant machine learning models benefit25

from this inductive bias by explicitly leveraging symmetries of the data during the architecture design.26

Typically, such architectures have highly constrained layers with restrictions on the form and action27

of weight matrices and nonlinear activations [12, 13]. This may come at the expense of higher28

computational cost, making it sometimes challenging to scale equivariant architectures, particularly29

those relying on spherical harmonics and irreducible representations [14–17]. On the other hand,30

equivariance constraints might limit the expressive power of the network, restricting its ability to act31

as a universal architecture [18].32

Equivariant layers are not the only way to incorporate symmetries into deep neural networks. Several33

approaches have been proposed to either offload the equivariance restrictions to faster networks34

[19–23] or simplify the constraints by introducing averaging operations [24–27]. Nonetheless, while35

these approaches leverage unconstrained architectures, they often require additional networks or36

averaging techniques to achieve equivariance and may not rely solely on adjustments to the training37

protocol. To this aim, a widely adopted strategy to replace ‘hard’ equivariance (i.e., built into the38

architecture itself) with a ‘soft’ one, is data augmentation [28–36], whereby the training protocol of39

an arbitrary (unconstrained) network is augmented by assigning the same label to group orbits (e.g.,40

rotated and translated versions of the input). In fact, recent works have shown that unconstrained41

architectures may offer a valid alternative provided that enough data are available [37, 38].42
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Besides the challenges in computational cost and design, there are also tasks (especially in scientific43

applications of ML) that do not exhibit full equivariance, such as dynamical phase transitions [39, 40],44

polar fluids [41], molecular nanocrystals [42], and cellular symmetry breaking [43, 44]. For such45

tasks, fully-equivariant networks might be excessively constrained, which further motivates the design46

of a more flexible approach.47

In this work, we present REMUL: Relaxed Equivariance via Multitask Learning. REMUL is a48

training procedure that aims to learn approximate equivariance during training for unconstrained49

networks using a multitask approach with adaptive weights. We conduct a comprehensive evaluation50

of unconstrained models trained with REMUL, comparing their performance and computational51

efficiency to equivariant models. We consider Transformers and Graph Neural Networks (GNNs) and52

their roto-translational (E(3))-equivariant versions as our main baselines. Our contributions are:53

• We formulate equivariance as a weighted multitask learning objective for unconstrained models,54

aiming to simultaneously learn the objective function and approximate the required equivariance55

associated with the data and the task.56

• We demonstrate that by adjusting the weighting of the equivariance loss, we can modulate the57

extent to which a model exhibits equivariance, depending on the task’s requirements. Specifically,58

tasks that demand full equivariance require a higher weight on the equivariance term, whereas59

tasks that require less strict equivariance can be managed with lower weights.60

• Empirically, we show that Transformers and Graph Neural Networks trained with our multitask61

learning approach compete or outperform their equivariant counterparts.62

• By leveraging the efficiency of Transformers, we achieve up to 10× speed-up at inference63

and 2.5× speed-up in training compared to equivariant baselines. This finding could provide64

motivations for the use of unconstrained models, which do not require equivariance in their65

design, potentially offering a more practical approach.66

• We point out that the standard Transformer exhibits a more convex loss surface near the local67

minima compared to the Geometric Algebra Transformer [45], which can indicate further68

evidence of the optimization difficulties of equivariant networks.69

2 Background70

2.1 Symmetry Groups and Equivariant Models71

Symmetry groups, a fundamental concept in abstract algebra and geometry, are a mathematical de-72

scription of the properties of an object remaining unchanged (invariant) under a set of transformations.73

Formally, a symmetry group G of a set X is a group of bijective functions from X to itself, where74

the group operation is function composition.75

Equivariant machine learning models are designed to preserve the symmetries associated with the76

data and the task. In geometric deep learning (GDL), the data is typically assumed to live on some77

geometric domain (e.g., a graph or a grid) that has an appropriate symmetry group (e.g., permutation78

or translation) associated with it. Equivariant models implement functions f : X → Y from input79

domain X to output domain Y that ensure the actions of a symmetry group G on data from X80

correspond systematically to its actions on Y , through the respective group representations ϕ and ρ.81

Formally, we say that:82

Definition 1. A function f is equivariant w.r.t. the group G if for any transformation g ∈ G and any83

input x ∈ X ,84

f(ϕ(g)(x)) = ρ(g)(f(x)) (1)

The group representations ϕ and ρ allow us to apply abstract objects (elements of the group G) on85

concrete input and output data, in the form of appropriately defined linear transformations. For86

example, if G = Sn (a permutation group of n elements, arising in learning on graphs with n nodes),87

its action on n-dimensional vectors (e.g., graph node features or labels) can be represented as an88

n× n permutation matrix.89

A special case of equivariance is obtained for a trivial output representation ρ = id:90

Definition 2. A function f is invariant w.r.t. the group G if for all g ∈ G, x ∈ X:f(ϕ(g)(x)) = f(x).91
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2.2 Equivariance as a Constrained Optimization Problem92

Consider a class of parametric functions fθ from a hypothesis space H, typically implemented as93

neural networks, whose parameters θ are estimated via a general training objective based on data94

pairs (x, y) ∼ q:95

minimize
θ

E(x,y)∼q [L(fθ(x), y)] (2)

Here, L represents the loss function that quantifies the discrepancy between the model’s predictions96

fθ(x) and the true labels y. The class of models is considered equivariant with respect to a group G97

if it satisfies the constraint in Eq. 1 for any input x ∈ X and for any action g ∈ G.98

Equivariance is typically achieved by design, by imposing constraints on the form of fθ. Since fθ is99

usually composed of multiple layers, ensuring equivariance implies restrictions on the operations100

performed in each layer, a canonical example being message-passing graph neural networks whose101

local aggregations need to be permutation-equivariant to respect the overall invariance to the action102

of the symmetric group Sn. As such, finding an equivariant solution to the minimization problem in103

Eq. 2 corresponds to solving the following constrained optimization:104

minimize
θ

E(x,y)∼q [L(fθ(x), y)]

subject to fθ(ϕ(g)(x)) = ρ(g)fθ(x), ∀g ∈ G, ∀x ∈ X
(3)

In general, such optimization is challenging, leading to complex design choices to enforce equivari-105

ance that could ultimately restrict the class of minimizers and make the training harder. Additionally,106

for relevant tasks, the optimal solution only needs to be approximate equivariant [46–49] meaning that107

the extent to which a model needs to exhibit equivariance can vary significantly based on the specific108

characteristics of the data and the requirements of the downstream application. In light of these109

reasons, we require a flexible approach to incorporating equivariance into the learning process. To110

address this, we propose REMUL, a training procedure that replaces the hard optimization problem111

with a soft constraint, by using a multitask learning approach with adaptive weights.112

3 REMUL Training Procedure113

3.1 Equivariance as a New Learning Objective114

Our main idea is to formulate equivariance as a multitask learning problem for an unconstrained115

model. We achieve that by relaxing the optimization problem in Eq. 3. Namely, once we introduce a116

functional FX ,G that measures the equivariance of a candidate function fθ, we replace the constrained117

variational problem in Eq. 3 with118

minimize
θ

E(x,y)∼q [αL(fθ(x), y) + βFX ,G(fθ(x), y)] , (4)

where α, β > 0. This decomposition allows for tailored learning dynamics where the supervised loss119

specifically addresses the information from the dataset without constraining the solution fθ, while the120

equivariance penalty F smoothly enforces symmetry preservation.121

Empirical Formulation. Let Dn = {(xi, yi)}ni=1 be a training sample of size n drawn i.i.d. from an122

underlying distribution PXY on X × Y . In conventional supervised settings, we define the empirical123

version of our optimization problem as:124

Ltotal(fθ,X ,Y, G) = αL̂obj(fθ,X ,Y) + βL̂equi(fθ,X ,Y, G), (5)

where L̂obj(fθ,X ,Y) is the empirical objective loss given by L̂obj(fθ,X ,Y) =125

1
n

∑n
i=1 L(fθ(xi), yi), and L̂equi(fθ,X ,Y, G) represents our augmented equivariance loss,126

specifically designed to enforce the model’s adherence to the symmetry action of the group G. For a127

finite number of training samples n, we propose an empirical equivariant loss L̂equi of the form:128

L̂equi(fθ,X ,Y, G) =
1

n

n∑
i=1

Eg∼G

[
ℓ(fθ(ϕ(g)xi), ρ(g)yi)

]
(6)

here ℓ is a metric function, typically an L1 or L2 norm, that quantifies the discrepancy between129

f(ϕ(g)(xi)) and ρ(g)(yi), with g ∈ G randomly-selected group elements drawn from a uniform130
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distribution for each sample. In our implementation, we enhance computational efficiency by selecting131

a single group element per sample at each training step, which we found produces effective results.132

In addition, we show how the performance varies as we increase the number of group samples.133

Characterizing the REMUL Trade-off. While REMUL is presented as a practical training134

procedure, it can be theoretically understood as a regularized optimization problem. The parameters135

α and β defined in Eq. 5 are weighting factors that balance the traditional objective loss with the136

equivariance loss, enabling practitioners to tailor the training process according to specific require-137

ments of symmetry and generalization. The following proposition characterizes the properties of the138

empirical minimizer fα,β and the underlying trade-offs between task performance and equivariance.139

The proof is provided in Appendix B.140

Proposition 1. Let fα,β ∈ argminf∈H L̂total(f ;α, β) be an empirical minimizer of the REMUL141

objective, and let f⋆
obj ∈ argminf∈H L̂obj(f) be an empirical minimizer for the objective loss alone.142

Then:143

(a) fα,β is Pareto optimal for the bi-objective problem (min L̂obj(f),min L̂equi(f)).144

(b) The following trade-off inequality holds:145

L̂obj(fα,β)− L̂obj(f
⋆
obj) ≤

β

α

(
L̂equi(f

⋆
obj)− L̂equi(fα,β)

)
. (7)

Controlling Approximate Equivariance via β/α. Eq. 7 quantifies the empirical cost of enforcing146

equivariance, showing that any increase in primary task’s loss beyond the unconstrained minimum147

L̂obj(f
⋆
obj)) is bounded by the product of relative weight β/α and the achieved reduction in the148

equivariance loss (from L̂equi(f
⋆
obj) down to L̂equi(fα,β)). The ratio β/α serves as a lever to control149

the solution’s properties: when β/α → 0, the objective prioritizes task performance, causing fα,β to150

approximate f⋆
obj (potentially sacrificing equivariance if f⋆

obj lacks natural symmetry). In contrast,151

when β/α → ∞, the objective prioritizes equivariance, driving L̂equi(fα,β) toward zero (at the cost of152

task performance). Finally, at intermediate β/α values, the solution fα,β represents a specific balance153

on the empirical Pareto frontier. REMUL thus allows learning a tunable degree of approximate154

equivariance with larger β produces more equivariant function while smaller β producing less155

equivariant function. This flexibility allows us to control the trade-off between model generalization156

& equivariance based on task’s requirements, as we demonstrate empirically in Section 6.157

3.2 Adapting Penalty Parameters during Training158

For simultaneously learning the objective and159

equivariance losses, we consider two distinct ap-160

proaches to regulate the penalty parameters α and161

β: constant penalty and gradual penalty. The162

constant penalty assigns a fixed weight to each163

task’s loss throughout the training process. In con-164

trast, the gradual penalty dynamically adjusts the165

weights of each task’s loss during training. For166

gradual penalty, we use the GradNorm algorithm167

introduced by [50], which is particularly suited168

for tasks that involve simultaneous optimization169

of multiple loss components, as it dynamically170

adjusts the weight of each loss during training. It171

updates the weights of the loss components based172

on the magnitudes of their gradients, w.r.t the last173

layer in the network, which is essential for the174

contribution of each loss. It also has a learning175

rate parameter η, that fine-tunes the speed at176

Algorithm 1 GradNorm Algorithm (one step)

1: Input: α, β, η, γ, L̂obj, L̂equi, and W (the
weights of the last layer in the network)

2: Gobj = ∥∇WαL̂obj∥2, L̃obj = L̂obj/L̂obj(0)

3: Gequi = ∥∇WβL̂equi∥2, L̃equi =

L̂equi/L̂equi(0)

4: Ḡ =
Gobj+Gequi

2 , r =
L̃obj+L̃equi

2

5: rα =
L̃obj

r , rβ =
L̃equi

r

6: L̂g = |Gobj −Ḡ× [rα]
γ |+ |Gequi −Ḡ× [rβ ]

γ |

7: α = α− η∇αL̂g

8: β = β − η∇βL̂g

9: Return: α, β

which the weights are updated, providing precise control over their convergence rates (see Algorithm177

1 for details).178
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Equivariance with Data Augmentation. Standard data augmentation for enforcing equivariance179

typically involves augmenting the training data with pairs (ϕ(g)(xi), ρ(g)(yi)) and training the180

model fθ using only the original task loss Lobj , i.e., minimizing
∑

i L(fθ(ϕ(g)(xi)), ρ(g)(yi)) over181

the augmented dataset. This implicitly encourages the network to learn symmetries by penalizing182

predictions on transformed data using the standard task objective. REMUL differs by introducing183

a separate, explicit equivariance loss term Lequi alongside the standard objective loss Lobj on the184

original data, as indicated in Eq. 5. The multitask framework with weights α, β allows explicit control185

over the balance between fitting the original data and enforcing the equivariance constraint.186

4 Quantifying Learned Equivariance187

Using group transformations to measure and assess the symmetries of ML models has been studied188

in several domains [51–55]. Inspired by the idea of frame-averaging [24–26], we introduce a metric189

to quantify the degree of equivariance exhibited by a function f , defined as:190

E(f,G) =
1

|D|
∑
x∈D

∥∥∥∥∥ 1

M

M∑
i=1

ρ(gi)(f(x))−
1

M

M∑
i=1

f(ϕ(gi)(x))

∥∥∥∥∥
2

(8)

where ∥ · ∥2 denotes an L2 norm (for non-scalar function), and M is a large number of samples191

from G. (Proof in Appendix B). This error indicates the average deviation of a function f from192

perfect equivariance across the data distribution D (lower value means more equivariant function).193

We also compare to the standard measure that takes the average over the group of differences between194

f(ϕ(g)(x)) and ρ(g)(f(x)),195

E′(f,G) =
1

|D|
∑
x∈D

1

M

M∑
i=1

∥f(ϕ(gi)(x))− ρ(gi)(f(x))∥2 (9)

We observed that both measures have very similar behavior in our experiments, where E and E′196

are near zero for equivariant models. Furthermore, as we discussed in Section 3, we demonstrate197

empirically that increasing the REMUL penalty weight β (Eq. 5) results in a lower equivariant error198

for E and E′.199

5 Related Work200

Equivariant ML Models. In the vision domain, group convolutions have proven to be a powerful201

tool for handling rotation equivariance for images and enhanced model generalization [56–59].202

Similarly, the development of equivariant architectures with respect to roto-translations for geometric203

data has been an active area of research [3–5, 60]. Techniques that use spherical harmonics and204

irreducible representations have shown a large success in modeling graph-structured data, such205

as SE(3)-Transformers [15], Tensor Field Networks [14], and DimeNet [61]. More recently, [45]206

introduced an E(3) equivariant Transformer that employs geometric algebra for processing 3D point207

clouds.208

Data Augmentation and Unconstrained Models. Alternatively, integrating transformations through209

data augmentation is a widely used strategy across multiple vision tasks, enhancing performance in210

image classification [62–64], object detection [65–67], and segmentation [68–70]. For geometric211

data, [71] has adapted a Graph Neural Network architecture with data augmentation to process 3D212

molecular structures. In parallel, [72] introduced that Vision Transformers (ViTs) with a large amount213

of training data can achieve comparable performance with Convolutional Neural Networks (CNNs),214

obviating the need for explicit translation equivariance within the architecture. Recently, this has215

shown to be effective for handling geometric data [37, 38].216

Learning Symmetries and Approximate Equivariance. Several studies have shown that the layers217

of CNN architectures can be approximated for a soft constraint [46, 73–77]. Conversely, [78] extends218

the Bayesian model selection approach to learning symmetries in image datasets. [79] introduced a219

parameter-sharing scheme to achieve permutations and shifts equivariances in Gaussian distributions.220

Recent works have relaxed the hard constrained models to a soft constraint by adding unconstrained221

layers in the architecture design [80, 81], canonicalization network [82], or explicit relaxation [83].222

Additionally, [84] modified the loss of CNN for segmentation task. [85] introduced a method to learn223
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0.01 0.1 1.0 10.0 100.0

0.01 0.1 1.0 10.0 100.0

(a) REMUL: Gradual penalty
0.01 0.1 1.0 10.0 100.0

(b) REMUL: Constant penalty (c) Baselines
Figure 1: N-body dynamical system. Each row represents a different evaluation scenario. Top:
in-distribution performance, Middle: out-of-distribution performance, Bottom: equivariance error.
The columns correspond to different architectures/ model conditions. (a) Transformer trained with
REMUL (gradual penalty), (b) Transformer trained with a constant penalty, (c) Baselines (equivariant
models, standard Transformer, and data augmentation). We conclude that Transformer architecture
with high β reduces the equivariance error and improves the performance.

equivariant representation using the group invariants, while [86] defined a regularizer that injects the224

equivariance in the latent space of the network by explicitly modeling transformations with additional225

learnable maps. In contrast, several works have started from pre-trained models [87, 88]. Furthermore,226

the EGNN framework [5] has been modified using an invariant function [89] or adversarial training227

procedure [90]. However, in our work, we start from completely unconstrained models, without228

imposing any equivariance constraints on the space of functions within the architecture. Moreover,229

we didn’t assume a specific class of models or introduce additional parameters, which increases the230

applicability of our method to various domains and makes it computationally efficient.231

6 Experiments and Discussion232

In this section, we aim to compare constrained equivariant models with unconstrained models trained233

with REMUL, our multitask approach. We are targeting three main questions: Can unconstrained234

models learn the approximate equivariance, how does that affect the performance & generalization,235

and what are their computational costs.236

We evaluate our method on different tasks for geometric data: N-body dynamical system (Section237

6.1), motion capture (Section 6.2), and molecular dynamics (Section 6.3). For unconstrained models,238

we apply REMUL to Transformers and Graph Neural Networks. We then compare against their239

equivariant counterparts: SE(3)-Transformer [15], Geometric Algebra Transformer [45], and Equiv-240

ariant Graph Neural Networks [5] as well as unconstrained models with data augmentation. We241

consider learning the rotation group SO(3) for REMUL and data augmentation and we subtract242

the center of mass for translation. We use the equivariance metric defined in Eq. 8 to analyze our243
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(a) MSE: Walking (b) Equiv. error: Walking (c) MSE: Running (d) Equiv. error: Running
Figure 2: Motion Capture dataset: Transformer trained with REMUL. We show a trade-off between
model performance and equiv. error, where high penalty β gives less equiv. error (more equivariant
model) but the best performance comes at an intermediate level of equivariance for both tasks.

results, and include the second metric in Appendix D. We also conduct a comparative analysis for the244

computational requirements of unconstrained models and equivariant models in Section 6.4. Lastly,245

we discuss the loss surfaces in Appendix A. Implementation details and additional experiments can246

be found in Appendix C & Appendix D.247

6.1 N-Body Dynamical System248

Table 1: N-body dynamical system:
MSE (×10−3). First, Second.

In-dist. OOD
SE(3)-Tr 5.16±0.70 4.85±0.78

GATr 1.49±0.43 1.41±0.46

Transformer 8.99±1.04 27.06±2.01

DA-Tr 4.20±0.79 4.21±0.91

REMUL-Tr 1.94±0.01 1.83±0.04

To conduct ablation studies of our method, we utilized the dy-249

namical system problem described by [45]. The task involves250

predicting the positions of particles after 100 Euler time steps251

of Newton’s motion equation, given initial positions, masses,252

and velocities. This problem is equivariant under rotation and253

translation groups, implying that any rotation/translation of254

the initial states should rotate/translate the final states of the255

particles by the same amount. We conduct comparisons be-256

tween Transformer trained with REMUL against two equivari-257

ant architectures: SE(3)-Transformer and Geometric Algebra258

Transformer (GATr). We use the same Transformer version259

and hyperparameters specified by [45] (implementation details, including in-distribution and out-of-260

distribution settings, in Appendix C.2). Our results are presented in Figure 1 and Table 1.261

From Figure 1, we noticed that increasing the penalty parameter β of the equivariance loss signifi-262

cantly reduces the equivariance error in both constant and gradual settings (which results in a more263

equivariant model). Equivariant architectures demonstrate an equivariance error near zero, which264

is expected by their design. The performance behaves similarly; a higher penalty enhances model265

generalization for both in-distribution and out-of-distribution. Transformer with high β outperforms266

both data augmentation and SE(3)-Transformer across in-distribution and out-of-distribution and267

competes with GATr. We also observe that despite SE(3)-Transformer having a substantially lower268

equivariance error, its performance is slightly worse than Transformer trained with data augmentation.269

This highlights that equivariance, although improving generalization in this task, is only one aspect270

of understanding model performance. Lastly, the standard Transformer (without REMUL and data271

augmentation) exhibits the highest equivariance error and the lowest overall performance.272

6.2 Motion Capture273

We further illustrate a comparison on a real-world task, the Motion Capture dataset from [91]. This274

dataset features 3D trajectory data that records a range of human motions, and the task involves275

predicting the final trajectory based on initial positions and velocities. We have reported results276

for two types of motion: Walking (Subject #35) and Running (Subject #9). We adhered to the277

standard experimental setup found in the literature [3, 4, 92], employing a train/validation/test split of278

200/600/600 for Walking and 200/240/240 for Running (additional details in Appendix C.3).279

We apply our training procedure REMUL to the Transformer architecture and compare it with280

SE(3)-Transformer, Equivariant Graph Neural Operator (EGNO) [4], Geometric Algebra Transformer281

(GATr), standard Transformer, and Transformer trained with data augmentation. We also compare282

with Equivariant MLP [93], as well as two approximate equivariance architectures: Residual Pathway283

Priors (RPP) [80], and Projection-Based Equivariance Regularizer (PER) [94]. As these architectures284

are designed specifically on MLP and linear layers, we apply our method to a standard MLP with a285
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similar number of parameters. Our results are presented in Table 2. For REMUL, we provide plots286

on how the performance and equivariance error change w.r.t. the penalty parameter β in Figure 2.287

Table 2: Motion Capture dataset:
MSE (×10−2). REMUL procedure
and data augmentation (DA) were ap-
plied to standard Transformer and
MLP. First, Second. REMUL comes
best in both tasks.

Walking Running
SE(3)-Tr 10.85±1.3 42.13±3.4

GATr 10.06±1.3 32.38±3.9

EGNO 8.1±1.6 33.9±1.7

Transformer 5.21±0.08 20.78±1.5

DA-Tr 5.3±0.18 29.83±1.4

REMUL-Tr 4.95±0.1 18.5±0.7

EMLP 7.01±0.46 57.38±8.39

RPP 6.99±0.21 34.18±2.00

PER 7.48±0.39 33.03±0.37

MLP 6.80±0.18 39.56±2.25

DA-MLP 6.37±0.04 40.23±0.94

REMUL-MLP 6.04±0.09 32.57±1.47

Table 2 indicates that when processing 3D positions related288

to human motions, both SE(3)-Transformer and GATr per-289

form worse than the standard Transformer. This outcome is290

noteworthy because human motion often lacks full rotational291

symmetry, particularly along the vertical or gravity axis. In292

fact, as detailed in the Appendix D.5 (Table 9), our analysis of293

axis-specific equivariance errors for REMUL-Transformer294

confirms that the error is highest for rotations around the295

Z-axis. Consequently, imposing strict SO(3) equivariance296

across all axes may not be beneficial and can be detrimental to297

performance. In contrast, a standard Transformer trained with298

REMUL has the best performance in both tasks. Following299

Figure 2, there is a noticeable trade-off: while higher β values300

reduce overall equivariance error, optimal task performance301

is often observed at an intermediate level of learned equivari-302

ance, where the model balances between being too rigid (fully303

equivariant) and too flexible (non-equivariant). This under-304

scores that the optimal degree of symmetry is task-dependent305

and that REMUL’s flexibility in learning approximate equiv-306

ariance is advantageous for such real-world scenarios.307

6.3 Molecular Dynamics308

We also present a comparative analysis between constrained equivariant models and unconstrained309

models focusing on molecular dynamics, specifically predicting 3D molecule structures. We utilize310

the MD17 dataset [95], which comprises trajectories of eight small molecules. We use the same311

dataset split in [4, 92], allocating 500 samples for train, 2000 for validation, and 2000 for test. For this312

task, we selected the Equivariant Graph Neural Network (EGNN) architecture and its non-equivariant313

GNN counterpart, as presented in [5]. We then apply REMUL procedure as well as data augmentation314

to the GNN architecture. Both architectures have the same hyperparameters (more information is315

indicated in Appendix C.4). We also compare with GMN [92], EGNO [4], and HEGNN [96]. Our316

results are provided in Table 3. We illustrate how the performance and equivariance error of a GNN317

trained with REMUL vary across different molecules as a function of β in Figure 9 and Figure 10.

Table 3: MD17 dataset: MSE (×10−2). REMUL procedure and data augmentation (DA) were
applied to GNN. First, Second.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01

GMN 10.14±0.03 48.12±0.4 4.83±0.01 13.11±0.03 0.40±0.01 0.91±0.01 10.22±0.08 0.59±0.01

EGNO 9.18±0.06 48.85±0.55 4.62±0.01 12.80±0.02 0.37±0.01 0.86±0.02 10.21±0.05 0.52±0.02

HEGNN 9.94±0.07 59.93±5.21 4.62±0.01 12.85±0.01 0.37±0.02 0.88±0.02 10.56±0.33 0.54±0.01

GNN 9.26±0.40 26.13±0.11 4.26±0.03 18.45±0.54 0.54±0.001 1.02±0.02 9.93±0.82 0.70±0.001

Data Augmentation 13.7±0.04 110.93±5.3 5.74±0.02 13.65±0.02 0.69±0.001 1.33±0.04 19.14±0.001 0.73±0.002

REMUL 9.28±0.40 25.95±0.18 4.02±0.16 13.59±0.03 0.54±0.001 0.99±0.001 9.38±0.20 0.67±0.001

318

From the results presented in Table 3, GNN trained with REMUL outperforms EGNN in six out of319

eight molecules. Interestingly, a standard GNN, without data augmentation or REMUL, surpasses the320

performance of EGNN on multiple molecules, such as Aspirin and Toluene. In Figure 9 & Figure 10,321

we observe that the optimal performance of each molecule is attained at different values of the penalty322

parameter β. For instance, Malonaldehyde exhibits a direct correlation between model performance323

and equivariance, where a higher β yields better performance. Conversely, for most other molecules,324

there appears to be a pronounced trade-off where the best performance is achieved at a lower value325

of β. This is particularly evident with molecules like Aspirin, where a standard GNN architecture326

outperforms EGNN. We also plot the 3D structures of the eight molecules in Figure 12. Molecules327

such as Malonaldehyde, characterized by their symmetric components, might be ideally suited for328

equivariant design. However, this advantage does not apply to all molecules. Aspirin on the other329

side, might have an asymmetric structure and exhibit a range of interactions and dynamic states that330
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(a) Combined forward pass (b) Backward pass (c) Inference time

Figure 3: Computational time for GATr and Transformer architectures. GATr has the highest time
in all scenarios. Inference times for all versions of the Transformer (standard and trained with
equivariance loss and data augmentation) are the same.

equivariant models might simplify. Consequently, for such molecules, less equivariant models could331

potentially offer more accurate predictions.332

6.4 Computational Complexity333

In this section, we report the computational time for the Geometric Algebra Transformer (GATr) and334

Transformer architectures. We selected models with an equivalent number of blocks and parameters335

for a fair comparison. Detailed configurations are provided in Appendix C.5. We measured the336

computational efficiency of each model by recording the time taken for both forward and backward337

passes during training, as well as inference time. For the Transformer’s computations, we also338

considered all the cases of data augmentation and our training procedure with the equivariance loss.339

Figure 3 includes the wall-clock time as a function of batch size with a fixed number of nodes.340

In all comparisons, GATr architecture consistently required the highest time, being approximately341

ten times slower than Transformer architecture. This significant difference can be attributed to the342

calculations of multivectors in GATr’s design. In the combined forward and backward passes, the343

addition of the equivariance loss increases the computation time of the standard Transformer as we344

calculate two model outputs at each step. However, it’s still around 2.5× faster than GATr, in the345

worst case of a gradual penalty. Furthermore, GATr reached its memory capacity earlier, hitting346

an out-of-memory issue at a batch size of 211. During inference, the computational speed for the347

Transformer trained with equivariance loss or data augmentation matches the standard Transformer,348

which results in an inference speed that is 10× faster than GATr. Notably, while we include GATr349

as our equivariant baseline, GATr itself is computationally more efficient than many equivariant350

architectures such as SE(3)-Transformer and SEGNN, as indicated in [45].351

7 Conclusion352

We introduced REMUL, a simple and effective method for learning approximately equivariant353

functions using unconstrained architectures. By formulating equivariance as an explicit, tunable354

objective within a multitask learning framework, REMUL relaxes the often costly and rigid constraints355

of traditional equivariant models. We demonstrated empirically that unconstrained networks trained356

with REMUL can learn appropriate levels of symmetry, controlled by a hyperparameter β. This357

allows us to balance the benefits of the equivariance inductive bias against task-specific requirements358

and computational costs. Our method achieves competitive performance compared to constrained359

baselines on various geometric tasks, while offering significant speed advantages (up to 10× faster360

inference, 2.5× faster training).361

Limitations and Future Directions. This work introduces a simple approach for understanding362

and analyzing unconstrained versus equivariant models, which significantly impact the field by363

enabling broader applicability and easier integration into existing frameworks. Building on these364

foundations, numerous additional ideas for extending our study present exciting opportunities for365

future research. For instance, as we noted earlier, α and β serve as additional hyperparameters366

that could be constant or automatically updated with GradNorm algorithm, we could explore more367

efficient learnable weights, such as [97, 98]. Another promising avenue is applying our method368

during the fine-tuning phase when leveraging pre-trained models for tasks that require equivariance369

[99, 100]. On the other side, further analysis is required to understand the theoretical guarantees of370

approximate equivariance offered by REMUL, such as how relaxing equivariance constraints affects371

the model’s generalization bounds [47].372
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A Loss Surface730

In this section, we analyze the relative ease of training equivariant models compared to non-equivariant731

models by examining the loss surface around the achieved local minima for each model. We explore732

how each architecture influences the loss landscape when trained on the same task. However, due to733

the high dimensionality of parameter spaces in neural networks, visualizing their loss functions in734

three dimensions might be a significant challenge. We use the filter normalization method introduced735

by [101], which calculates the loss function along two randomly selected Gaussian directions in the736

parameters space, starting from the optimal parameters θ∗ achieved at the end of training.737

We visualize the loss surface of the Geometric Algebra Transformer (GATr) and Transformer in738

Figure 4, trained on the N-body dynamical system. We observe that the Transformer architecture739

exhibits a more favorable loss shape around its local minima, characterized by a convex structure.740

This might suggest that the optimization path for the Transformer is smoother and potentially easier741

to navigate during training, leading to more stable convergence. In contrast, the loss surface of GATr742

appears more erratic and rugged. This complexity in the loss landscape can indicate multiple local743

minima and a higher sensitivity to initial conditions or parameter settings. Such characteristics might744

complicate the training process, requiring more careful tuning of hyperparameters. We leave this for745

future work to analyze how the optimization path for each model behaves during training.

(a) Geometric Algebra Transformer (b) Transformer

Figure 4: Loss surface around local minima of trained models on N-body dynamical system.

746

B Proofs747

B.1 Propositions748

Proposition 1. Let fα,β ∈ argminf∈H L̂total(f ;α, β) be an empirical minimizer of the REMUL749

objective, and let f⋆
obj ∈ argminf∈H L̂obj(f) be an empirical minimizer for the objective loss alone.750

Then:751

(a) fα,β is Pareto optimal for the bi-objective problem (min L̂obj(f),min L̂equi(f)).752

(b) The following trade-off inequality holds:753

L̂obj(fα,β)− L̂obj(f
⋆
obj) ≤

β

α

(
L̂equi(f

⋆
obj)− L̂equi(fα,β)

)
. (10)

Proof. Let fα,β be an empirical minimizer of L̂total(f ;α, β). By definition, for any f̃ ∈ H:754

α L̂obj(fα,β) + β L̂equi(fα,β) ≤ α L̂obj(f̃) + β L̂equi(f̃).

To show Eq. 10: Rearrange the optimality condition:755

α(L̂obj(fα,β)− L̂obj(f̃)) ≤ β(L̂equi(f
′)− L̂equi(fα,β)).

Dividing by α > 0:756

L̂obj(fα,β)− L̂obj(f̃) ≤
β

α
(L̂equi(f̃)− L̂equi(fα,β)).
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Setting f̃ = f⋆
obj yields Eq. 10.757

For Pareto Optimality: Assume, for contradiction, that fα,β is not Pareto optimal. Then there758

exists an ˜̃
f ∈ H such that L̂obj(

˜̃
f) ≤ L̂obj(fα,β) and L̂equi(

˜̃
f) ≤ L̂equi(fα,β), with at least759

one of these inequalities being strict. Since α > 0 and β > 0, this would imply αL̂obj(
˜̃
f) +760

βL̂equi(
˜̃
f) < αL̂obj(fα,β) + βL̂equi(fα,β). This contradicts the assumption that fα,β is a minimizer761

of L̂total(f ;α, β). Therefore, fα,β must be Pareto optimal.762

B.2 Equivariance Measure763

We define the equivariance metric E to quantify the degree of equivariance exhibited by a function f ,764

as:765

E(f,G) =
1

|D|
∑
x∈D

∥∥∥∥∥ 1

M

M∑
i=1

ρ(gi)(f(x))−
1

M

M∑
i=1

f(ϕ(gi)(x))

∥∥∥∥∥
2

(11)

Proof. Starting from Eq. 1: f(ϕ(g)(x)) = ρ(g)(f(x), the group integration of both sides w.r.t. the766

normalized Haar measure µ yields:767 ∫
G

f(ϕ(g)(x)) dµ(g) =

∫
G

ρ(g)(f(x)) dµ(g) (12)

When G is a large or continuous group, as is the case in our work, the integrals over G may not be768

computable in closed form. Therefore, we approximate the integrals using a Monte Carlo approach769

with samples {gi}Mi=1 from G:770 ∫
G

f(ϕ(g)(x)) dµ(g) ≈ 1

M

M∑
i=1

f(ϕ(gi)(x)) (13)

771 ∫
G

ρ(g)(f(x)) dµ(g) ≈ 1

M

M∑
i=1

ρ(gi)(f(x)) (14)

where M is a large number of samples from G.772

Given the group averages, we can then define the equivariance error E(f,G) as the average norm of773

the difference between these two averages over the data distribution D:774

E(f,G) =
1

|D|
∑
x∈D

∥∥∥∥∥ 1

M

M∑
i=1

ρ(gi)(f(x))−
1

M

M∑
i=1

f(ϕ(gi)(x))

∥∥∥∥∥
2

(15)

with ∥ · ∥2 denotes an L2 norm (for non-scalar function).775

776

C Implementation Details777

C.1 Equivariance Loss778

The empirical equivariance loss defined in Eq. 6, L̂equi(fθ) =
1
n

∑
Eg∼G[ℓ(fθ(ϕ(g)xi), ρ(g)yi)],779

measures the consistency of the model’s predictions on transformed inputs against the correspondingly780

transformed ground truth labels. It is distinct from a direct measure of functional equivariance, which781

compare fθ(ϕ(g)xi) with ρ(g)fθ(xi) (the transformed prediction of the original input). While782

the latter directly assesses the equivariance of the function fθ itself, our choice of L̂equi offers a783

crucial advantage: it continuously anchors the learning process to the ground truth. To see this, let784

fθ(x) = y(x) + γ(x), where y(x) is the true label for input x and γ(x) is the model’s prediction785
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error. If we assume the ground truth data itself is perfectly equivariant, i.e., y(ϕ(g)x) = ρ(g)y(x),786

then the term minimized by L̂equi (for a single instance, taking ℓ as an Lp norm) becomes:787

∥ fθ(ϕ(g)xi)︸ ︷︷ ︸
y(ϕ(g)xi)+γ(ϕ(g)xi)

− ρ(g)yi︸ ︷︷ ︸
y(ϕ(g)xi)

∥p = ∥γ(ϕ(g)xi)∥p.

Thus, minimizing L̂equi directly minimizes the magnitude of the prediction error on transformed788

inputs. This helps prevent the model from "drifting" into solutions that might be equivariant but incor-789

rect (i.e., fθ(ϕ(g)xi) ≈ ρ(g)fθ(xi) but both are far from ρ(g)yi). In contrast, a loss term based on790

functional equivariance, ∥fθ(ϕ(g)xi)− ρ(g)fθ(xi)∥p, would simplify to ∥γ(ϕ(g)xi)− ρ(g)γ(xi)∥p.791

While this term directly encourages the *error itself* to be equivariant, minimizing it alone does not792

guarantee that the error magnitude ∥γ(·)∥p is small. Our REMUL objective, by combining αL̂obj(fθ)793

(which minimizes ∥γ(xi)∥p on original data) with βL̂equi(fθ) (which minimizes ∥γ(ϕ(g)xi)∥p on794

transformed data, given ideal data equivariance), aims for both accuracy and consistency under795

transformations. The degree to which this also induces functional equivariance in fθ (i.e., making796

∥γ(ϕ(g)xi)− ρ(g)γ(xi)∥p small) is then assessed empirically using the equivariance metrics E and797

E′ as shown in our experiments.798

C.2 N-Body Dynamical System799

Following the methodology outlined in [45], the dataset for the N-body system simulation encom-800

passes four objects per sample. The center object is assigned a mass ranging from 1 to 10, whereas801

the other objects are uniformly positioned at a radius from 0.1 to 1.0 with masses between 0.01 and802

0.1. We structured the datasets into two setups: in-distribution and out-of-distribution (OOD). Each803

sample in the in-distribution dataset is subjected to a random rotation within the range [−10◦, 10◦].804

REMUL and data augmentation are trained with random rotations in the same range. Conversely, the805

OOD dataset is designed to evaluate the model’s generalization capabilities by incorporating extreme806

rotational perturbations, specifically with angles set within the ranges [−180◦,−90◦] and [90◦, 180◦].807

We trained on 100 samples, and each of the validation, test, and OOD datasets contains 5000 samples.808

For models hyperparameters and training, we follow the same settings in [45], summarized in Table809

4. For REMUL, initial α = 1.

Table 4: Hyperparameters settings for N-body dynamical system.

Hyperparameters Geometric Algebra Transformer SE(3)-Transformer Transformer

#attention blocks 10 - 10
#channels 128 8 384
#attention heads 8 1 8
#multivector 16 - -
#layers - 4 -
#degrees - 4 -
#training steps 50000 50000 50000
#optimizer Adam Adam Adam
#batch size 64 64 64
#lr 3× 10−4 3× 10−4 3× 10−4

810

C.3 Motion Capture811

Motion Capture dataset by [91] features 3D trajectory data that records a range of human motions,812

and the task involves predicting the final trajectory based on initial positions and velocities. We have813

reported results for two types of motion: Walking (Subject #35) and Running (Subject #9).814

Following the standard experimental setup in the literature on this task [3, 4, 92], we apply a815

train/validation/test split of 200/600/600 for Walking and 200/240/240 for Running. The interval816

between trajectories, ∆T = 30 for both tasks. For model hyperparameters, we fine-tuned around the817

same in Table 4 and found it the best for each model except for the Geometric Algebra Transformer818

we increased the attention blocks to 12. We train each model for 2000 epochs with batch size = 12.819

For MLP comparisons, all models and baselines have the same number of layers and parameters.820

More details in Table 5. For REMUL, α = 1.821
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Table 5: Hyperparameters settings for Motion Capture dataset.

Hyperparameters Geometric Algebra Transformer SE(3)-Transformer Transformer

#attention blocks 12 - 10
#channels 128 8 384
#attention heads 8 1 8
#multivector 16 - -
#layers - 4 -
#degrees - 4 -
#epochs 2000 2000 2000
#optimizer Adam Adam Adam
#batch size 12 12 12
#lr 3× 10−4 3× 10−4 3× 10−4

Hyperparameters Equivariant MLP RPP PER standard MLP

#hidden dim 532 348 532 680
#layers 3 3 3 3

C.4 Molecular Dynamics822

MD17 dataset [95] is a molecular dynamics benchmark that contains the trajectories of eight small823

molecules (Aspirin, Benzene, Ethanol, Malonaldehyde Naphthalene, Salicylic, Toluene, Uraci). We824

use the same dataset split in [4, 92], allocating 500 samples for train, 2000 for validation, and 2000825

for test. The interval between trajectories, ∆T = 5000. We selected the Equivariant Graph Neural826

Networks (EGNN) architecture and its non-equivariant version GNN, as introduced by [5]. The input827

for GNN architecture is the initial positions along with atom types. Both architectures have the same828

hyperparameters, details in Table 6. For REMUL, α = 1.

Table 6: Hyperparameters settings for MD17 dataset.

Hyperparameters

#layers 4
#hidden dim 64
#epochs 500
#optimizer Adam
#batch size 200
#lr 5× 10−4

829
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C.5 Computational Complexity830

In the computational experiment of Geometric Algebra Transformer (GATr) and Transformer, we831

selected models with an equivalent number of blocks and parameters. GATr incorporates a unique832

design that includes a multivector parameter; we adjusted the Transformer architecture to match the833

parameter count of GATr. Both models have around 2.6M parameters, detailed configurations are834

provided in Table 7. SE(3)-Transformer gives out of memory for this setting. We selected a uniformly835

random Gaussian input with 20 nodes and 7 features dimension. We measured the computational836

efficiency of each model by recording the time taken for both forward and backward passes during837

training, as well as the inference time as a function of batch size. For each value, we took the average838

over 10 runs with Nvidia A10 GPU.

Table 7: Hyperparameters settings for Computational Complexity.

Hyperparameters Geometric Algebra Transformer Transformer

#attention blocks 12 12
#channels 128 168
#attention heads 8 8
#multivector 16 -

839

C.6 Compute Resources840

We ran all the experiments using a single Nvidia A10 GPU.841

D Additional Experiments842

This section provides additional experimental results to further validate our training procedure843

REMUL. We include:844

• Additional evaluations on the three tasks: For the N-body dynamical system, Motion Capture,845

and Molecular Dynamics (MD17), we include the standard equivariance error E′ (defined in846

Eq. 9 of the main paper). These results are consistent with our findings in the paper, using the E847

metric.848

• Performance on MD17: We include detailed results showing performance and equivariance849

error trade-offs for REMUL applied to GNN architecture on individual molecules from the850

MD17 dataset (complementing Table 3 in the main paper).851

• Ablation on Group Sampling: We conduct an ablation study investigating the impact of the852

number of group samples used during training for REMUL and data augmentation.853

• Convergence Speed Analysis: We compare the convergence speed of REMUL against data854

augmentation by tracking training and validation MSE as a function of training steps.855

• Axis-Specific Equivariance Error on Motion Capture: To further investigate the nature of856

symmetries in the Motion Capture dataset, we report the equivariance error around individual857

X , Y , and Z axes, separately.858

• Additional N-Body System Benchmark: We evaluate REMUL (applied a GNN model) on an859

additional N-body system benchmark, comparing it against several equivariant architectures.860

• Molecular Structures: We provide 2D and 3D visualizations of the molecules from the MD17861

dataset.862
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D.1 N-Body Dynamical System863

(a) REMUL: Gradual penalty
0.01 0.1 1.0 10.0 100.0

(b) REMUL: Constant penalty (c) Baselines

Figure 5: N-body dynamical system. The second equivariance measure E′. (a) Transformer trained
with REMUL (gradual penalty), (b) Transformer trained with REMUL (constant penalty), and (c)
Baselines: Equivariant models, standard Transformer, and data augmentation.

D.2 Number of Samples from the Symmetry Group864

We conduct ablation studies on the number of samples required from the symmetry group during865

training. We compare our training procedure with data augmentation method. We selected the N-body866

dynamical system with the same training details and hyperparameters indicated in Appendix C.2. As867

shown in Figure 6, REMUL achieves better performance using fewer samples from the symmetry868

group compared to data augmentation.869

D.3 Convergence Speed Analysis870

To assess the training efficiency of REMUL relative to data augmentation, we analyzed their871

convergence behavior on the N-body dynamical system. Both REMUL and DA were applied to a872

standard Transformer using the same experimental settings described in Appendix C.2. We report the873

Mean Squared Error (MSE) on the training and validation samples as a function of the training steps.874

The results, presented in Figure 7, indicate that REMUL achieves lower training and validation errors875

compared to data augmentation.876

D.4 Additional Benchmark877

To further assess REMUL’s capabilities, we evaluated it on the N-body system benchmark from [5].878

We applied REMUL to a Graph Neural Network (GNN) architecture, using the same hyperparameter879

configurations in [5] for a fair comparison. Table 8 compares our approach against several equivariant880

models, including EGNN [5], SEGNN [6], FA-GNN [24], and TFN [14]. The results demonstrate that881

REMUL achieves strong performance, outperforming EGNN and FA-GNN while being competitive882

with SEGNN, despite the latter incorporates more specialized geometric features.

Table 8: Additional benchmark on N Body system.

MSE
SE(3)-Tr 0.0244
TFN 0.0155
MPNN 0.0107
EGNN 0.0071
SEGNN 0.0043
FA-GNN 0.0057
REMUL-GNN 0.0046

883
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(a) MSE: In-distribution (b) MSE: Out-of-distribution

Figure 6: Performance comparison of REMUL and data augmentation on N-body dynamical system,
using different numbers of samples from the symmetry group.

(a) MSE: Training samples (b) MSE: Validation samples

Figure 7: Comparison of convergence speed between REMUL and data augmentation on the N-body
system.

D.5 Motion Capture884

In the main paper (Section 6.2) we note that human motion may lack full SO(3) symmetry, particularly885

along the vertical (gravity) axis. To investigate this further, we measured the equivariance error E886

separately for rotations applied around X , Y , and Z axes. We use the best performing REMUL-887

Transformer models on Motion Capture dataset (specifically, β = 0.1 for the Walking task and888

β = 0.01 for the Running task). The results are presented in Table 9. For both Walking and Running889

tasks, the equivariance error associated with rotations around the Z-axis is higher than the errors for890

X-axis and Y -axis. which supports that the underlying dynamics in the Motion Capture exhibit a891

lesser degree of symmetry w.r.t. Z-axis, and aligns with our observation that models with relaxed892

equivariance (intermediate β) perform best on this task.

Table 9: Motion Capture: Equivariance error around different X , Y , and Z axis separately.
Walking Running

X 0.0047 0.026
Y 0.0034 0.031
Z 0.0084 0.042

893
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(a) Equiv. error: Walking (b) Equiv. error: Running

Figure 8: Motion Capture: Transformer trained with REMUL. The second equivariance measure E′.

D.6 Molecular Dynamics894

In the main paper (Section 6.3 and Table 3), we present the performance of REMUL applied to895

GNN architecture on the MD17 dataset. To provide more insights into how REMUL behaves896

across different molecular structures and how the equivariance penalty β affects task performance897

and equivariance error, we illustrate these relationships in Figures 9–11. For each molecule in the898

MD17 dataset, we trained a standard GNN using REMUL procedure with varying values of β. All899

experiments use the same training settings detailed in Appendix C.4.900
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Figure 9: MD17 dataset: GNN trained with REMUL. The first column is model performance (MSE),
and the second column is equivariance error E. Rows from top to bottom represent Aspirin, Ethanol,
Malonaldehyde, and Uracil, respectively. The equivariance error decreases on all molecules with a
higher value of β. In contrast, the required equivariance for best model performance varies for each
molecule.
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Figure 10: MD17 dataset: GNN trained with REMUL. The first column is model performance
(MSE), and the second column is equivariance error E. Rows from top to bottom represent Benzene,
Naphthalene, Salicylic, and Toluene, respectively.
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Figure 11: MD17 dataset: GNN trained with REMUL. The second equivariance measure E′.
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(a) Aspirin (2D) (b) Aspirin (3D) (c) Ethanol (2D) (d) Ethanol (3D)

(e) Benzene (2D) (f) Benzene (3D) (g) Malonaldehyde
(2D)

(h) Malonaldehyde
(3D)

(i) Naphthalene (2D) (j) Naphthalene (3D) (k) Salicylic (2D) (l) Salicylic (3D)

(m) Toluene (2D) (n) Toluene (3D) (o) Uracil (2D) (p) Uracil (3D)

Figure 12: MD17 molecules structures.
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