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Abstract

Incorporating equivariance as an inductive bias into deep learning architectures to
take advantage of the data symmetry has been successful in multiple applications,
such as chemistry and dynamical systems. In particular, roto-translations are
crucial for effectively modeling geometric graphs and molecules, where under-
standing the 3D structures enhances generalization. However, strictly equivariant
models often pose challenges due to their higher computational complexity. In
this paper, we introduce REMUL, a training procedure that learns approximate
equivariance for unconstrained networks via multitask learning. By formulating
equivariance as a tunable objective alongside the primary task loss, REMUL
offers a principled way to control the degree of approximate symmetry, relaxing
the rigid constraints of traditional equivariant architectures. We show that un-
constrained models (which do not build equivariance into the architecture) can
learn approximate symmetries by minimizing an additional simple equivariance
loss. This enables quantitative control over the trade-off between enforcing equiv-
ariance constraints and optimizing for task-specific performance. Our method
achieves competitive performance compared to equivariant baselines while be-
ing significantly faster (up to 10x at inference and 2.5 at training), offering
a practical and adaptable approach to leveraging symmetry in unconstrained
architectures.

1 Introduction

Equivariant machine learning models have achieved notable success across various domains, such as
computer vision [1, 2], dynamical systems [3, 4], chemistry [5, 6], and structural biology [7]. For
example, incorporating equivariance w.r.f. translations and rotations ensures the correct handling of
complex structures like graphs and molecules [8—11]. Equivariant machine learning models benefit
from this inductive bias by explicitly leveraging symmetries of the data during the architecture design.
Typically, such architectures have highly constrained layers with restrictions on the form and action
of weight matrices and nonlinear activations [12, 13]. This may come at the expense of higher
computational cost, making it sometimes challenging to scale equivariant architectures, particularly
those relying on spherical harmonics and irreducible representations [14—17]. On the other hand,
equivariance constraints might limit the expressive power of the network, restricting its ability to act
as a universal architecture [18].

Equivariant layers are not the only way to incorporate symmetries into deep neural networks. Several
approaches have been proposed to either offload the equivariance restrictions to faster networks
[19-23] or simplify the constraints by introducing averaging operations [24-27]. Nonetheless, while
these approaches leverage unconstrained architectures, they often require additional networks or
averaging techniques to achieve equivariance and may not rely solely on adjustments to the training
protocol. To this aim, a widely adopted strategy to replace ‘hard’ equivariance (i.e., built into the
architecture itself) with a ‘soft’ one, is data augmentation [28-36], whereby the training protocol of
an arbitrary (unconstrained) network is augmented by assigning the same label to group orbits (e.g.,
rotated and translated versions of the input). In fact, recent works have shown that unconstrained
architectures may offer a valid alternative provided that enough data are available [37, 38].
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Besides the challenges in computational cost and design, there are also tasks (especially in scientific
applications of ML) that do not exhibit full equivariance, such as dynamical phase transitions [39, 40],
polar fluids [41], molecular nanocrystals [42], and cellular symmetry breaking [43, 44]. For such
tasks, fully-equivariant networks might be excessively constrained, which further motivates the design
of a more flexible approach.

In this work, we present REMUL: Relaxed Equivariance via Multitask Learning. REMUL is a
training procedure that aims to learn approximate equivariance during training for unconstrained
networks using a multitask approach with adaptive weights. We conduct a comprehensive evaluation
of unconstrained models trained with REMUL, comparing their performance and computational
efficiency to equivariant models. We consider Transformers and Graph Neural Networks (GNNs) and
their roto-translational (E(3))-equivariant versions as our main baselines. Our contributions are:

* We formulate equivariance as a weighted multitask learning objective for unconstrained models,
aiming to simultaneously learn the objective function and approximate the required equivariance
associated with the data and the task.

* We demonstrate that by adjusting the weighting of the equivariance loss, we can modulate the
extent to which a model exhibits equivariance, depending on the task’s requirements. Specifically,
tasks that demand full equivariance require a higher weight on the equivariance term, whereas
tasks that require less strict equivariance can be managed with lower weights.

Empirically, we show that Transformers and Graph Neural Networks trained with our multitask
learning approach compete or outperform their equivariant counterparts.

By leveraging the efficiency of Transformers, we achieve up to 10x speed-up at inference
and 2.5x speed-up in training compared to equivariant baselines. This finding could provide
motivations for the use of unconstrained models, which do not require equivariance in their
design, potentially offering a more practical approach.

We point out that the standard Transformer exhibits a more convex loss surface near the local
minima compared to the Geometric Algebra Transformer [45], which can indicate further
evidence of the optimization difficulties of equivariant networks.

2 Background
2.1 Symmetry Groups and Equivariant Models

Symmetry groups, a fundamental concept in abstract algebra and geometry, are a mathematical de-
scription of the properties of an object remaining unchanged (invariant) under a set of transformations.
Formally, a symmetry group G of a set X is a group of bijective functions from X to itself, where
the group operation is function composition.

Equivariant machine learning models are designed to preserve the symmetries associated with the
data and the task. In geometric deep learning (GDL), the data is typically assumed to live on some
geometric domain (e.g., a graph or a grid) that has an appropriate symmetry group (e.g., permutation
or translation) associated with it. Equivariant models implement functions f : X — Y from input
domain X to output domain Y that ensure the actions of a symmetry group G on data from X
correspond systematically to its actions on Y, through the respective group representations ¢ and p.
Formally, we say that:

Definition 1. A function f is equivariant w.r.t. the group G if for any transformation g € G and any
inputx € X,

f(@(9)(x)) = p(g)(f(x)) 6]

The group representations ¢ and p allow us to apply abstract objects (elements of the group ) on
concrete input and output data, in the form of appropriately defined linear transformations. For
example, if G = S,, (a permutation group of n elements, arising in learning on graphs with n nodes),
its action on n-dimensional vectors (e.g., graph node features or labels) can be represented as an
n X n permutation matrix.

A special case of equivariance is obtained for a trivial output representation p = id:
Definition 2. A function f is invariant w.r.t. the group G ifforall g € G, v € X: f(¢(g)(x)) = f(z).
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Relaxed Equivariance via Multitask Learning

2.2 Equivariance as a Constrained Optimization Problem

Consider a class of parametric functions fy from a hypothesis space H, typically implemented as
neural networks, whose parameters 6 are estimated via a general training objective based on data

pairs (z,y) ~ ¢:
minimize B, y)~q [L(fo(2), y)] 2)

Here, L represents the loss function that quantifies the discrepancy between the model’s predictions
fo(x) and the true labels y. The class of models is considered equivariant with respect to a group G
if it satisfies the constraint in Eq. 1 for any input z € X and for any action g € G.

Equivariance is typically achieved by design, by imposing constraints on the form of fy. Since fy is
usually composed of multiple layers, ensuring equivariance implies restrictions on the operations
performed in each layer, a canonical example being message-passing graph neural networks whose
local aggregations need to be permutation-equivariant to respect the overall invariance to the action
of the symmetric group .S,,. As such, finding an equivariant solution to the minimization problem in
Eq. 2 corresponds to solving the following constrained optimization:

minimize B y)~q [L(fo(x),v)]
subjectto  fo(od(9)(x)) = p(9)fo(x), Vg € G, Vo € X

In general, such optimization is challenging, leading to complex design choices to enforce equivari-
ance that could ultimately restrict the class of minimizers and make the training harder. Additionally,
for relevant tasks, the optimal solution only needs to be approximate equivariant [46—49] meaning that
the extent to which a model needs to exhibit equivariance can vary significantly based on the specific
characteristics of the data and the requirements of the downstream application. In light of these
reasons, we require a flexible approach to incorporating equivariance into the learning process. To
address this, we propose REMUL, a training procedure that replaces the hard optimization problem
with a soft constraint, by using a multitask learning approach with adaptive weights.

3

3 REMUL Training Procedure
3.1 Equivariance as a New Learning Objective

Our main idea is to formulate equivariance as a multitask learning problem for an unconstrained
model. We achieve that by relaxing the optimization problem in Eq. 3. Namely, once we introduce a
functional Fx ¢ that measures the equivariance of a candidate function fj, we replace the constrained
variational problem in Eq. 3 with

mini@mize E(z,y)~qg [@L(fo(x),y) + BFx.a(fo(z),y)], )

where «, 8 > 0. This decomposition allows for tailored learning dynamics where the supervised loss
specifically addresses the information from the dataset without constraining the solution fy, while the
equivariance penalty F smoothly enforces symmetry preservation.

Empirical Formulation. Let D,, = {(x;,y;)}?_; be a training sample of size n drawn i.i.d. from an
underlying distribution Pxy on X x ). In conventional supervised settings, we define the empirical
version of our optimization problem as:

£tolal(f97X7va) = aEObj(f97X7y) + ﬁﬁequi(f97X7y7G)7 (5)

where Eobj(fg,é’(,y) is the empirical objective loss given by Eobj(fg,X,y) =

LS L(fo(xi),y:), and Eequi( fo,X,Y,G) represents our augmented equivariance loss,
specifically designed to enforce the model’s adherence to the symmetry action of the group G. For a

finite number of training samples n, we propose an empirical equivariant loss Leqy; of the form:
~ 1 <
Lequi(F0, X.Y.G) = — Y By | ((Fo(0(9)a), pl9)y:) ©)
i=1

here ¢ is a metric function, typically an L; or Ly norm, that quantifies the discrepancy between
f(é(g)(x;)) and p(g)(y;), with g € G randomly-selected group elements drawn from a uniform
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distribution for each sample. In our implementation, we enhance computational efficiency by selecting
a single group element per sample at each training step, which we found produces effective results.
In addition, we show how the performance varies as we increase the number of group samples.

Characterizing the REMUL Trade-off. While REMUL is presented as a practical training
procedure, it can be theoretically understood as a regularized optimization problem. The parameters
« and ( defined in Eq. 5 are weighting factors that balance the traditional objective loss with the
equivariance loss, enabling practitioners to tailor the training process according to specific require-
ments of symmetry and generalization. The following proposition characterizes the properties of the
empirical minimizer f, g and the underlying trade-offs between task performance and equivariance.
The proof is provided in Appendix B.

Proposition 1. Let f, g € argmin ey Etotal(f; a, B) be an empirical minimizer of the REMUL

objective, and let f;bj € argmingsey Eobj (f) be an empirical minimizer for the objective loss alone.
Then:

(a) fu,p is Pareto optimal for the bi-objective problem (min Eobj (f), min Eequi(f)).
(b) The following trade-off inequality holds:

o~

Eobj(foz,ﬁ) - Zobj(f;bj) S g (Eequi(fgbj) - Eequi(fa,ﬁ)) . (7)

Controlling Approximate Equivariance via 3/«.  Eq. 7 quantifies the empirical cost of enforcing
equivariance, showing that any increase in primary task’s loss beyond the unconstrained minimum

~

Lobi(fap;)) is bounded by the product of relative weight 3/« and the achieved reduction in the

o

equivariance loss (from Eequi( O*bj) down to Eequi( fa.p))- The ratio 3/« serves as a lever to control
the solution’s properties: when 5/« — 0, the objective prioritizes task performance, causing f, g to

approximate gbj (potentially sacrificing equivariance if gbj lacks natural symmetry). In contrast,

when 5/a — oo, the objective prioritizes equivariance, driving Lequi(fa,3) toward zero (at the cost of
task performance). Finally, at intermediate 3/« values, the solution f, g represents a specific balance
on the empirical Pareto frontier. REMUL thus allows learning a tunable degree of approximate
equivariance with larger S5 produces more equivariant function while smaller 3 producing less
equivariant function. This flexibility allows us to control the trade-off between model generalization
& equivariance based on task’s requirements, as we demonstrate empirically in Section 6.

3.2 Adapting Penalty Parameters during Training

For simultaneously learning the objective and
equivariance losses, we consider two distinct ap-

proaches to regulate the penalty parameters cwand . Input: o, 3, 1. 7. Lop;» Lequi» and W (the
B: constant plenalty_and 8 ’];1 adtaal pgn;llty. Thﬁ weights of the last layer in the network)
constant penalty assigns a fixed weight to eac ) T 5 Ao A r
task’s loss throughout the training process. In con- 2: Gobj = [[VwaLovill2. Lovj = Lob;/Lab;(0)
trast, the gradual penalty dynamically adjusts the

Algorithm 1 GradNorm Algorithm (one step)

weights of each task’s loss during training. For 3 Geqi = [VwBLequillze Lequi
gradual penalty, we use the GradNorm algorithm Lequi/Lequi(0) o

introduced by [50], which is particularly suited 4. G = gvbﬂ; Gequi . ﬁo'aigﬁcqui

for tasks that involve simultaneous optimization Lo Lo

of multiple loss components, as it dynamically ST =0T =

adjusts the weight of each loss during training. It~ 6: Ly = |Gobj — G X [a]"| + |Gequi — G X [15]7]
updates the weights of the loss components based R

on the magnitudes of their gradients, w.r.¢ the last 7: @ = a —nV Ly

layer in the network, which is essential for the §. g =3 — nvﬂﬁg
contribution of each loss. It also has a learning 9. Return: a, 8

rate parameter 7, that fine-tunes the speed at

which the weights are updated, providing precise control over their convergence rates (see Algorithm
1 for details).
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Relaxed Equivariance via Multitask Learning

Equivariance with Data Augmentation. Standard data augmentation for enforcing equivariance
typically involves augmenting the training data with pairs (¢(g)(x;), p(¢)(y;)) and training the
model fy using only the original task loss Loy;, i.e., minimizing Y. £(fo(¢(g)(x:)), p(9)(yi)) over
the augmented dataset. This implicitly encourages the network to learn symmetries by penalizing
predictions on transformed data using the standard task objective. REMUL differs by introducing
a separate, explicit equivariance loss term L.q,; alongside the standard objective loss Lo on the
original data, as indicated in Eq. 5. The multitask framework with weights «, 8 allows explicit control
over the balance between fitting the original data and enforcing the equivariance constraint.

4 Quantifying Learned Equivariance

Using group transformations to measure and assess the symmetries of ML models has been studied
in several domains [51-55]. Inspired by the idea of frame-averaging [24-26], we introduce a metric
to quantify the degree of equivariance exhibited by a function f, defined as:

M
1.6) =5 2 MZpgz —;gfw(g»(x))

z€D
where || - ||2 denotes an Lo norm (for non-scalar function), and M is a large number of samples
from G. (Proof in Appendix B). This error indicates the average deviation of a function f from
perfect equivariance across the data distribution D (lower value means more equivariant function).
We also compare to the standard measure that takes the average over the group of differences between

f(¢(g)(z)) and p(g)(f(x)),
f.G |D|Z lef ?(gi)(x)) — p(g:)(f(@))]l5 ©)

We observed that both measures have very similar behavior in our experiments, where E and E’
are near zero for equivariant models. Furthermore, as we discussed in Section 3, we demonstrate
empirically that increasing the REMUL penalty weight 3 (Eq. 5) results in a lower equivariant error
for £ and E’.

®)

2

5 Related Work

Equivariant ML Models. In the vision domain, group convolutions have proven to be a powerful
tool for handling rotation equivariance for images and enhanced model generalization [56-59].
Similarly, the development of equivariant architectures with respect to roto-translations for geometric
data has been an active area of research [3-5, 60]. Techniques that use spherical harmonics and
irreducible representations have shown a large success in modeling graph-structured data, such
as SE(3)-Transformers [15], Tensor Field Networks [14], and DimeNet [61]. More recently, [45]
introduced an E(3) equivariant Transformer that employs geometric algebra for processing 3D point
clouds.

Data Augmentation and Unconstrained Models. Alternatively, integrating transformations through
data augmentation is a widely used strategy across multiple vision tasks, enhancing performance in
image classification [62-64], object detection [65-67], and segmentation [68—70]. For geometric
data, [71] has adapted a Graph Neural Network architecture with data augmentation to process 3D
molecular structures. In parallel, [72] introduced that Vision Transformers (ViTs) with a large amount
of training data can achieve comparable performance with Convolutional Neural Networks (CNNs),
obviating the need for explicit translation equivariance within the architecture. Recently, this has
shown to be effective for handling geometric data [37, 38].

Learning Symmetries and Approximate Equivariance. Several studies have shown that the layers
of CNN architectures can be approximated for a soft constraint [46, 73-77]. Conversely, [78] extends
the Bayesian model selection approach to learning symmetries in image datasets. [79] introduced a
parameter-sharing scheme to achieve permutations and shifts equivariances in Gaussian distributions.
Recent works have relaxed the hard constrained models to a soft constraint by adding unconstrained
layers in the architecture design [80, 81], canonicalization network [82], or explicit relaxation [83].
Additionally, [84] modified the loss of CNN for segmentation task. [85] introduced a method to learn
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(a) REMUL: Gradual penalty (b) REMUL: Constant penalty (c) Baselines

Figure 1: N-body dynamical system. Each row represents a different evaluation scenario. Top:
in-distribution performance, Middle: out-of-distribution performance, Bottom: equivariance error.
The columns correspond to different architectures/ model conditions. (a) Transformer trained with
REMUL (gradual penalty), (b) Transformer trained with a constant penalty, (c) Baselines (equivariant
models, standard Transformer, and data augmentation). We conclude that Transformer architecture
with high (3 reduces the equivariance error and improves the performance.

equivariant representation using the group invariants, while [86] defined a regularizer that injects the
equivariance in the latent space of the network by explicitly modeling transformations with additional
learnable maps. In contrast, several works have started from pre-trained models [87, 88]. Furthermore,
the EGNN framework [5] has been modified using an invariant function [89] or adversarial training
procedure [90]. However, in our work, we start from completely unconstrained models, without
imposing any equivariance constraints on the space of functions within the architecture. Moreover,
we didn’t assume a specific class of models or introduce additional parameters, which increases the
applicability of our method to various domains and makes it computationally efficient.

6 Experiments and Discussion

In this section, we aim to compare constrained equivariant models with unconstrained models trained
with REMUL, our multitask approach. We are targeting three main questions: Can unconstrained
models learn the approximate equivariance, how does that affect the performance & generalization,
and what are their computational costs.

We evaluate our method on different tasks for geometric data: N-body dynamical system (Section
6.1), motion capture (Section 6.2), and molecular dynamics (Section 6.3). For unconstrained models,
we apply REMUL to Transformers and Graph Neural Networks. We then compare against their
equivariant counterparts: SE(3)-Transformer [15], Geometric Algebra Transformer [45], and Equiv-
ariant Graph Neural Networks [5] as well as unconstrained models with data augmentation. We
consider learning the rotation group SO(3) for REMUL and data augmentation and we subtract
the center of mass for translation. We use the equivariance metric defined in Eq. 8 to analyze our
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Figure 2: Motion Capture dataset: Transformer trained with REMUL. We show a trade-off between
model performance and equiv. error, where high penalty 5 gives less equiv. error (more equivariant

model) but the best performance comes at an intermediate level of equivariance for both tasks.
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results, and include the second metric in Appendix D. We also conduct a comparative analysis for the
computational requirements of unconstrained models and equivariant models in Section 6.4. Lastly,
we discuss the loss surfaces in Appendix A. Implementation details and additional experiments can
be found in Appendix C & Appendix D.

6.1 N-Body Dynamical System

To conduct ablation studies of our method, we utilized the dy-
namical system problem described by [45]. The task involves
predicting the positions of particles after 100 Euler time steps
of Newton’s motion equation, given initial positions, masses,
and velocities. This problem is equivariant under rotation and
translation groups, implying that any rotation/translation of In-dist. 00D

the initial states should rotate/translate the final states of the Z]i‘(%)'“ ?-llgi:))ji ‘fii’iﬁf
particles by the same amount. We conduct comparisons be- Transformer  8.99:101 27061501
tween Transformer trained with REMUL against two equivari- DA-Tr 4.20x079  4.21z00:
ant architectures: SE(3)-Transformer and Geometric Algebra REMUL-Tr

Transformer (GATr). We use the same Transformer version

and hyperparameters specified by [45] (implementation details, including in-distribution and out-of-
distribution settings, in Appendix C.2). Our results are presented in Figure 1 and Table 1.

Table 1: N-body dynamical system:
MSE (x1073). First,

From Figure 1, we noticed that increasing the penalty parameter /3 of the equivariance loss signifi-
cantly reduces the equivariance error in both constant and gradual settings (which results in a more
equivariant model). Equivariant architectures demonstrate an equivariance error near zero, which
is expected by their design. The performance behaves similarly; a higher penalty enhances model
generalization for both in-distribution and out-of-distribution. Transformer with high 8 outperforms
both data augmentation and SE(3)-Transformer across in-distribution and out-of-distribution and
competes with GATr. We also observe that despite SE(3)-Transformer having a substantially lower
equivariance error, its performance is slightly worse than Transformer trained with data augmentation.
This highlights that equivariance, although improving generalization in this task, is only one aspect
of understanding model performance. Lastly, the standard Transformer (without REMUL and data
augmentation) exhibits the highest equivariance error and the lowest overall performance.

6.2 Motion Capture

We further illustrate a comparison on a real-world task, the Motion Capture dataset from [91]. This
dataset features 3D trajectory data that records a range of human motions, and the task involves
predicting the final trajectory based on initial positions and velocities. We have reported results
for two types of motion: Walking (Subject #35) and Running (Subject #9). We adhered to the
standard experimental setup found in the literature [3, 4, 92], employing a train/validation/test split of
200/600/600 for Walking and 200/240/240 for Running (additional details in Appendix C.3).

We apply our training procedure REMUL to the Transformer architecture and compare it with
SE(3)-Transformer, Equivariant Graph Neural Operator (EGNO) [4], Geometric Algebra Transformer
(GATr), standard Transformer, and Transformer trained with data augmentation. We also compare
with Equivariant MLP [93], as well as two approximate equivariance architectures: Residual Pathway
Priors (RPP) [80], and Projection-Based Equivariance Regularizer (PER) [94]. As these architectures
are designed specifically on MLP and linear layers, we apply our method to a standard MLP with a
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similar number of parameters. Our results are presented in Table 2. For REMUL, we provide plots
on how the performance and equivariance error change w.r¢. the penalty parameter /3 in Figure 2.
Table 2 indicates that when processing 3D positions related
to human motions, both SE(3)-Transformer and GATr per-
form worse than the standard Transformer. This outcome is
noteworthy because human motion often lacks full rotational
symmetry, particularly along the vertical or gravity axis. In
fact, as detailed in the Appendix D.5 (Table 9), our analysis of

Table 2: Motion Capture dataset:
MSE (x10~2). REMUL procedure
and data augmentation (DA) were ap-
plied to standard Transformer and

axis-specific equivariance errors for REMUL-Transformer E/gs“tpi'nFl;rosttl’l tasks - REMUL comes
confirms that the error is highest for rotations around the ‘

Z-axis. Consequently, imposing strict SO(3) equivariance

across all axes may not be beneficial and can be detrimental to Walking  Running
performance. In contrast, a standard Transformer trained with éEA%)'Tr ig-gg“? ggégﬁ“
REMUL has the best performance in both tasks. Following EGNO 8.1 ;_23 33.9 jf
Figure 2, there is a noticeable trade-off: while higher 3 values Transformer

reduce overall equivariance error, optimal task performance DA-Tr 5.3x018  29.83x1.4
. . . . . REMUL-Tr 4.95+0.1 18.5+0.7
is often observed at an intermediate level of learned equivari- EMLP TO0liooe 5738550
ance, where the model balances between being too rigid (fully RPP 6.99+1021  34.18+2.00
equivariant) and too flexible (non-equivariant). This under- PER 7.48+0.39

scores that the optimal degree of symmetry is task-dependent gk_PMLP 6804015 Zgggiii
and that REMUL’s flexibility in learning approximate equiv- REMUL-MLP  6.045000 325711 47

ariance is advantageous for such real-world scenarios.

6.3 Molecular Dynamics

We also present a comparative analysis between constrained equivariant models and unconstrained
models focusing on molecular dynamics, specifically predicting 3D molecule structures. We utilize
the MD17 dataset [95], which comprises trajectories of eight small molecules. We use the same
dataset split in [4, 92], allocating 500 samples for train, 2000 for validation, and 2000 for test. For this
task, we selected the Equivariant Graph Neural Network (EGNN) architecture and its non-equivariant
GNN counterpart, as presented in [5]. We then apply REMUL procedure as well as data augmentation
to the GNN architecture. Both architectures have the same hyperparameters (more information is
indicated in Appendix C.4). We also compare with GMN [92], EGNO [4], and HEGNN [96]. Our
results are provided in Table 3. We illustrate how the performance and equivariance error of a GNN
trained with REMUL vary across different molecules as a function of 3 in Figure 9 and Figure 10.

Table 3: MD17 dataset: MSE (x10~2). REMUL procedure and data augmentation (DA) were
applied to GNN. First,

Aspirin Benzene Ethanol =~ Malonaldehyde Naphthalene  Salicylic Toluene Uracil

EGNN 14414015 62401053 4.6410.01 13.64+0.01 0.4710.02 1.0240.02  11.784007  0.6440.01
GMN 10144003 4812104 4.8310.01 13.1140.03 0.9140.01 10.2219.08 0.5940.01
EGNO 9.18 1006  48.851055 4.6210.01 12.8010.02 0.3710.01 0.8610.02  10.213005  0.5240.02
HEGNN 9941007 599345921 4.6210.01 0.3740.02 10.5640.33

GNN 18.4540.54 0.54£0.001 1.0240.02 0.7010.001
Data Augmentation  13.74004 11093453 5.7440.02 13.654.0.02 0.69+0.001 1334004 19.1410.001 0.7310.002
REMUL 25.9510.18  4.0240.16 13.59+0.03 0.54+0.001  0.99:+0.001 9384020  0.67+0.001

From the results presented in Table 3, GNN trained with REMUL outperforms EGNN in six out of
eight molecules. Interestingly, a standard GNN, without data augmentation or REMUL, surpasses the
performance of EGNN on multiple molecules, such as Aspirin and Toluene. In Figure 9 & Figure 10,
we observe that the optimal performance of each molecule is attained at different values of the penalty
parameter (3. For instance, Malonaldehyde exhibits a direct correlation between model performance
and equivariance, where a higher (3 yields better performance. Conversely, for most other molecules,
there appears to be a pronounced trade-off where the best performance is achieved at a lower value
of 8. This is particularly evident with molecules like Aspirin, where a standard GNN architecture
outperforms EGNN. We also plot the 3D structures of the eight molecules in Figure 12. Molecules
such as Malonaldehyde, characterized by their symmetric components, might be ideally suited for
equivariant design. However, this advantage does not apply to all molecules. Aspirin on the other
side, might have an asymmetric structure and exhibit a range of interactions and dynamic states that
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Figure 3: Computational time for GATr and Transformer architectures. GATr has the highest time
in all scenarios. Inference times for all versions of the Transformer (standard and trained with
equivariance loss and data augmentation) are the same.

equivariant models might simplify. Consequently, for such molecules, less equivariant models could
potentially offer more accurate predictions.

6.4 Computational Complexity

In this section, we report the computational time for the Geometric Algebra Transformer (GATr) and
Transformer architectures. We selected models with an equivalent number of blocks and parameters
for a fair comparison. Detailed configurations are provided in Appendix C.5. We measured the
computational efficiency of each model by recording the time taken for both forward and backward
passes during training, as well as inference time. For the Transformer’s computations, we also
considered all the cases of data augmentation and our training procedure with the equivariance loss.
Figure 3 includes the wall-clock time as a function of batch size with a fixed number of nodes.

In all comparisons, GATr architecture consistently required the highest time, being approximately
ten times slower than Transformer architecture. This significant difference can be attributed to the
calculations of multivectors in GATr’s design. In the combined forward and backward passes, the
addition of the equivariance loss increases the computation time of the standard Transformer as we
calculate two model outputs at each step. However, it’s still around 2.5 x faster than GATr, in the
worst case of a gradual penalty. Furthermore, GATr reached its memory capacity earlier, hitting
an out-of-memory issue at a batch size of 2'!. During inference, the computational speed for the
Transformer trained with equivariance loss or data augmentation matches the standard Transformer,
which results in an inference speed that is 10x faster than GATr. Notably, while we include GATr
as our equivariant baseline, GATTr itself is computationally more efficient than many equivariant
architectures such as SE(3)-Transformer and SEGNN, as indicated in [45].

7 Conclusion

We introduced REMUL, a simple and effective method for learning approximately equivariant
functions using unconstrained architectures. By formulating equivariance as an explicit, tunable
objective within a multitask learning framework, REMUL relaxes the often costly and rigid constraints
of traditional equivariant models. We demonstrated empirically that unconstrained networks trained
with REMUL can learn appropriate levels of symmetry, controlled by a hyperparameter 3. This
allows us to balance the benefits of the equivariance inductive bias against task-specific requirements
and computational costs. Our method achieves competitive performance compared to constrained
baselines on various geometric tasks, while offering significant speed advantages (up to 10x faster
inference, 2.5 x faster training).

Limitations and Future Directions. This work introduces a simple approach for understanding
and analyzing unconstrained versus equivariant models, which significantly impact the field by
enabling broader applicability and easier integration into existing frameworks. Building on these
foundations, numerous additional ideas for extending our study present exciting opportunities for
future research. For instance, as we noted earlier, « and (3 serve as additional hyperparameters
that could be constant or automatically updated with GradNorm algorithm, we could explore more
efficient learnable weights, such as [97, 98]. Another promising avenue is applying our method
during the fine-tuning phase when leveraging pre-trained models for tasks that require equivariance
[99, 100]. On the other side, further analysis is required to understand the theoretical guarantees of
approximate equivariance offered by REMUL, such as how relaxing equivariance constraints affects
the model’s generalization bounds [47].
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A Loss Surface

In this section, we analyze the relative ease of training equivariant models compared to non-equivariant
models by examining the loss surface around the achieved local minima for each model. We explore
how each architecture influences the loss landscape when trained on the same task. However, due to
the high dimensionality of parameter spaces in neural networks, visualizing their loss functions in
three dimensions might be a significant challenge. We use the filter normalization method introduced
by [101], which calculates the loss function along two randomly selected Gaussian directions in the
parameters space, starting from the optimal parameters 8* achieved at the end of training.

We visualize the loss surface of the Geometric Algebra Transformer (GATr) and Transformer in
Figure 4, trained on the N-body dynamical system. We observe that the Transformer architecture
exhibits a more favorable loss shape around its local minima, characterized by a convex structure.
This might suggest that the optimization path for the Transformer is smoother and potentially easier
to navigate during training, leading to more stable convergence. In contrast, the loss surface of GATr
appears more erratic and rugged. This complexity in the loss landscape can indicate multiple local
minima and a higher sensitivity to initial conditions or parameter settings. Such characteristics might
complicate the training process, requiring more careful tuning of hyperparameters. We leave this for
future work to analyze how the optimization path for each model behaves during training.

(a) Geometric Algebra Transformer (b) Transformer

Figure 4: Loss surface around local minima of trained models on N-body dynamical system.

B Proofs

B.1 Propositions

Proposition 1. Let f, g € argminycy Etotal( f; «, B) be an empirical minimizer of the REMUL

objective, and let € argmingey Lobj(f) be an empirical minimizer for the objective loss alone.
Then:

*
obj

(a) fa,p is Pareto optimal for the bi-objective problem (min Eobj (f), min Zequi( 13)}
(b) The following trade-off inequality holds:

o~

Eobj (fa,ﬁ) - Eobj(fgbj) S g (‘Cequi(fo*bj) - Eequi(fa,ﬁ)) . (10)

Proof. Let f, g be an empirical minimizer of Etotal( f; «, B). By definition, for any f € H:

anbj (fa,ﬁ) + B‘Eequi(fa,ﬁ) S anbj (f) + BEequi(f)‘
To show Eq. 10: Rearrange the optimality condition:

(Lob(fo,8) = Loni () < B(Lequi(F) = Lequi(fo5)).
Dividing by o > 0:

(Lequi(f) = Lequi(fa.s))-

Rl

Lobi(fap) = Lovi(f) <
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Setting f= yields Eq. 10.

*
obj
For Pareto Optimality: Assume, for contradiction, that f, s is not Pareto optimal. Then there

exists an f € H such that Eobj(f) < Aobj( fa,p) and Ecqui(f) < Acqui( fa,p), with at least

one of these inequalities being strict. Since & > 0 and 8 > 0, this would imply aEObJ( f ) +

ﬂﬁeqm( f ) < aﬁobJ (far8) + 5Eeqm( fa,p)- This contradicts the assumption that f, g is a minimizer
of Liotal(f; a, B). Therefore, f, g must be Pareto optimal. O

B.2 Equivariance Measure
We define the equivariance metric F to quantify the degree of equivariance exhibited by a function f,
as:

M

Zp (9:)( ]\14 > F(elg) (@)

i=1

Y

7

2

Proof. Starting from Eq. 1: f(¢(g)(x)) = p(g)(f(x), the group integration of both sides w.r.z. the
normalized Haar measure y yields:

/ £(6(9)(x)) dulg) = / p(9)((x)) dyu(g) (12)
G G

When G is a large or continuous group, as is the case in our work, the integrals over G may not be
computable in closed form. Therefore, we approximate the integrals using a Monte Carlo approach
with samples {g; }, from G:

1 M

| J(69) @) dulg) ~ 37 ; (@90 (@)) (13)
1 M

[ o duto) = 5 3 o (7w (14)

where M is a large number of samples from G.

Given the group averages, we can then define the equivariance error E( f, G) as the average norm of
the difference between these two averages over the data distribution D:

¥ Zp 9T @) — 373 £l )

with || - |2 denotes an Lo norm (for non-scalar function).

(15)

2

C Implementation Details

C.1 Equivariance Loss

The empirical equivariance loss defined in Eq. 6, Zcqui(fg) = LS Eycll(fo(d(9)zi), p(g)yi)],
measures the consistency of the model’s predictions on transformed inputs against the correspondingly
transformed ground truth labels. It is distinct from a direct measure of functional equivariance, which
compare fy(p(g)x;) with p(g)fo(z;) (the transformed prediction of the original input). While
the latter directly assesses the equivariance of the function fy itself, our choice of Ly, offers a
crucial advantage: it continuously anchors the learning process to the ground truth. To see this, let
fo(x) = y(x) + v(x), where y(z) is the true label for input = and y(x) is the model’s prediction
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error. If we assume the ground truth data itself is perfectly equivariant, i.e., y(¢(g)x) = p(g)y(x),
then the term minimized by L.q,; (for a single instance, taking ¢ as an L, norm) becomes:

I fo(e(@)zi) = p(9)yi llp = [v(d(g)zi)llp-
—— N——
y(d(g)zi)+y(d(g)zi)  y(d(g)z:)

Thus, minimizing Leqy; directly minimizes the magnitude of the prediction error on transformed
inputs. This helps prevent the model from "drifting" into solutions that might be equivariant but incor-
rect (i.e., fo(p(g)x;) = p(g) fo(x;) but both are far from p(g)y;). In contrast, a loss term based on
functional equivariance, || fo(¢(g)z:) — p(9) fo(x:)]|p, would simplify to ||y(P(g)z:) — p(g)7 (i) |lp-
While this term directly encourages the *error itself* to be equivariant, minimizing it alone does not
guarantee that the error magnitude ||y(-)||, is small. Our REMUL objective, by combining oLy i(fo)

(which minimizes ||y(x;)||, on original data) with 5Lequi(fs) (Which minimizes ||y(¢(g)z;), on
transformed data, given ideal data equivariance), aims for both accuracy and consistency under
transformations. The degree to which this also induces functional equivariance in fy (i.e., making
lv(e(9)xi) — p(g)y(zi)|l, small) is then assessed empirically using the equivariance metrics £ and
E’ as shown in our experiments.

C.2 N-Body Dynamical System

Following the methodology outlined in [45], the dataset for the N-body system simulation encom-
passes four objects per sample. The center object is assigned a mass ranging from 1 to 10, whereas
the other objects are uniformly positioned at a radius from 0.1 to 1.0 with masses between 0.01 and
0.1. We structured the datasets into two setups: in-distribution and out-of-distribution (OOD). Each
sample in the in-distribution dataset is subjected to a random rotation within the range [—10°, 10°].
REMUL and data augmentation are trained with random rotations in the same range. Conversely, the
OOD dataset is designed to evaluate the model’s generalization capabilities by incorporating extreme
rotational perturbations, specifically with angles set within the ranges [—180°, —90°] and [90°, 180°].
We trained on 100 samples, and each of the validation, test, and OOD datasets contains 5000 samples.
For models hyperparameters and training, we follow the same settings in [45], summarized in Table
4. For REMUL, initial o = 1.

Table 4: Hyperparameters settings for N-body dynamical system.

Hyperparameters Geometric Algebra Transformer SE(3)-Transformer Transformer

#attention blocks 10 - 10
#channels 128 8 384
#attention heads 8 1 8
#multivector 16 - -
#layers - 4 -
#degrees - 4 -
#training steps 50000 50000 50000
#optimizer Adam Adam Adam
#batch size 64 64 64
#r 3x 1074 3x 1074 3x 1074

C.3 Motion Capture

Motion Capture dataset by [91] features 3D trajectory data that records a range of human motions,
and the task involves predicting the final trajectory based on initial positions and velocities. We have
reported results for two types of motion: Walking (Subject #35) and Running (Subject #9).

Following the standard experimental setup in the literature on this task [3, 4, 92], we apply a
train/validation/test split of 200/600/600 for Walking and 200/240/240 for Running. The interval
between trajectories, AT = 30 for both tasks. For model hyperparameters, we fine-tuned around the
same in Table 4 and found it the best for each model except for the Geometric Algebra Transformer
we increased the attention blocks to 12. We train each model for 2000 epochs with batch size = 12.
For MLP comparisons, all models and baselines have the same number of layers and parameters.
More details in Table 5. For REMUL, o = 1.
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Table 5: Hyperparameters settings for Motion Capture dataset.

Hyperparameters Geometric Algebra Transformer SE(3)-Transformer Transformer

#attention blocks 12 - 10
#channels 128 8 384
#attention heads 8 1 8
#multivector 16 - -
#layers - 4 -
#degrees - 4 -
#epochs 2000 2000 2000
#optimizer Adam Adam Adam
#batch size 12 12 12
#r 3x107* 3x107* 3x107*

Hyperparameters Equivariant MLP RPP PER standard MLP

#hidden dim 532 348 532 680

#layers 3 3 3 3

C.4 Molecular Dynamics

MD17 dataset [95] is a molecular dynamics benchmark that contains the trajectories of eight small
molecules (Aspirin, Benzene, Ethanol, Malonaldehyde Naphthalene, Salicylic, Toluene, Uraci). We
use the same dataset split in [4, 92], allocating 500 samples for train, 2000 for validation, and 2000
for test. The interval between trajectories, AT = 5000. We selected the Equivariant Graph Neural
Networks (EGNN) architecture and its non-equivariant version GNN, as introduced by [5]. The input
for GNN architecture is the initial positions along with atom types. Both architectures have the same
hyperparameters, details in Table 6. For REMUL, o = 1.

Table 6: Hyperparameters settings for MD17 dataset.

Hyperparameters

#layers 4
#hidden dim 64
#epochs 500
#optimizer Adam
#batch size 200
#Ir 5x 1074
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C.5 Computational Complexity

In the computational experiment of Geometric Algebra Transformer (GATr) and Transformer, we
selected models with an equivalent number of blocks and parameters. GATr incorporates a unique
design that includes a multivector parameter; we adjusted the Transformer architecture to match the
parameter count of GATr. Both models have around 2.6M parameters, detailed configurations are
provided in Table 7. SE(3)-Transformer gives out of memory for this setting. We selected a uniformly
random Gaussian input with 20 nodes and 7 features dimension. We measured the computational
efficiency of each model by recording the time taken for both forward and backward passes during
training, as well as the inference time as a function of batch size. For each value, we took the average
over 10 runs with Nvidia A10 GPU.

Table 7: Hyperparameters settings for Computational Complexity.

Hyperparameters Geometric Algebra Transformer Transformer

#attention blocks 12 12
#channels 128 168
#attention heads 8 8
#multivector 16 -

C.6 Compute Resources

We ran all the experiments using a single Nvidia A10 GPU.

D Additional Experiments

This section provides additional experimental results to further validate our training procedure
REMUL. We include:

¢ Additional evaluations on the three tasks: For the N-body dynamical system, Motion Capture,
and Molecular Dynamics (MD17), we include the standard equivariance error E’ (defined in
Eq. 9 of the main paper). These results are consistent with our findings in the paper, using the £/
metric.

* Performance on MD17: We include detailed results showing performance and equivariance
error trade-offs for REMUL applied to GNN architecture on individual molecules from the
MD17 dataset (complementing Table 3 in the main paper).

» Ablation on Group Sampling: We conduct an ablation study investigating the impact of the
number of group samples used during training for REMUL and data augmentation.

¢ Convergence Speed Analysis: We compare the convergence speed of REMUL against data
augmentation by tracking training and validation MSE as a function of training steps.

» Axis-Specific Equivariance Error on Motion Capture: To further investigate the nature of
symmetries in the Motion Capture dataset, we report the equivariance error around individual
X, Y, and Z axes, separately.

* Additional N-Body System Benchmark: We evaluate REMUL (applied a GNN model) on an
additional N-body system benchmark, comparing it against several equivariant architectures.

¢ Molecular Structures: We provide 2D and 3D visualizations of the molecules from the MD17
dataset.
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D.1 N-Body Dynamical System

Equivariance error Equivariance error Equivariance error

—a— Ir=1e-3 == Transformer
—— Ir=le-4 Data Augmentation
O g Ir=1e-5 SE(3) Transformer
\ Ir=1e-6 m GATr
102 10 10
-
Y =
—
~— i
—
107 10 = 1072
1072 107! 10° 10% 102 P 0.01 0.1 1.0 10.0 100.0 # —
(a) REMUL: Gradual penalty (b) REMUL.: Constant penalty (c) Baselines

Figure 5: N-body dynamical system. The second equivariance measure E’. (a) Transformer trained
with REMUL (gradual penalty), (b) Transformer trained with REMUL (constant penalty), and (c)
Baselines: Equivariant models, standard Transformer, and data augmentation.

D.2 Number of Samples from the Symmetry Group

We conduct ablation studies on the number of samples required from the symmetry group during
training. We compare our training procedure with data augmentation method. We selected the N-body
dynamical system with the same training details and hyperparameters indicated in Appendix C.2. As
shown in Figure 6, REMUL achieves better performance using fewer samples from the symmetry
group compared to data augmentation.

D.3 Convergence Speed Analysis

To assess the training efficiency of REMUL relative to data augmentation, we analyzed their
convergence behavior on the N-body dynamical system. Both REMUL and DA were applied to a
standard Transformer using the same experimental settings described in Appendix C.2. We report the
Mean Squared Error (MSE) on the training and validation samples as a function of the training steps.
The results, presented in Figure 7, indicate that REMUL achieves lower training and validation errors
compared to data augmentation.

D.4 Additional Benchmark

To further assess REMUL’s capabilities, we evaluated it on the N-body system benchmark from [5].
We applied REMUL to a Graph Neural Network (GNN) architecture, using the same hyperparameter
configurations in [5] for a fair comparison. Table 8 compares our approach against several equivariant
models, including EGNN [5], SEGNN [6], FA-GNN [24], and TEN [14]. The results demonstrate that
REMUL achieves strong performance, outperforming EGNN and FA-GNN while being competitive
with SEGNN, despite the latter incorporates more specialized geometric features.

Table 8: Additional benchmark on N Body system.

MSE
SEQ3)-Tr 0.0244
TFN 0.0155
MPNN 0.0107
EGNN 0.0071
SEGNN 0.0043
FA-GNN 0.0057

REMUL-GNN  0.0046
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—e— Equivariance Loss —e— Equivariance Loss
—e— Data Augmentation —e— Data Augmentation
1072 1072
1073 1 1073
i 2‘ lvl é l‘ﬁ 3‘2 64 i 2 4 ill 1'6 3'2 5‘4
Number of Group Samples Number of Group Samples
(a) MSE: In-distribution (b) MSE: Out-of-distribution

Figure 6: Performance comparison of REMUL and data augmentation on N-body dynamical system,
using different numbers of samples from the symmetry group.

—— REMUL —— REMUL
—— Data Augmentation —— Data Augmentation

0.00
[ 200 400 600 800 1000 200 400 600 800 1000
Training Steps Training Steps

(a) MSE: Training samples (b) MSE: Validation samples

Figure 7: Comparison of convergence speed between REMUL and data augmentation on the N-body
system.

D.5 Motion Capture

In the main paper (Section 6.2) we note that human motion may lack full SO(3) symmetry, particularly
along the vertical (gravity) axis. To investigate this further, we measured the equivariance error £/
separately for rotations applied around X, Y, and Z axes. We use the best performing REMUL-
Transformer models on Motion Capture dataset (specifically, 8 = 0.1 for the Walking task and
B = 0.01 for the Running task). The results are presented in Table 9. For both Walking and Running
tasks, the equivariance error associated with rotations around the Z-axis is higher than the errors for
X-axis and Y -axis. which supports that the underlying dynamics in the Motion Capture exhibit a
lesser degree of symmetry w.r.f. Z-axis, and aligns with our observation that models with relaxed
equivariance (intermediate ) perform best on this task.

Table 9: Motion Capture: Equivariance error around different X, Y, and Z axis separately.

Walking Running
X 0.0047 0.026
Y 0.0034 0.031
Z 0.0084 0.042
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B=10.001 - B=10.001
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(a) Equiv. error: Walking (b) Equiv. error: Running

Figure 8: Motion Capture: Transformer trained with REMUL. The second equivariance measure F’.

D.6 Molecular Dynamics

In the main paper (Section 6.3 and Table 3), we present the performance of REMUL applied to
GNN architecture on the MD17 dataset. To provide more insights into how REMUL behaves
across different molecular structures and how the equivariance penalty 3 affects task performance
and equivariance error, we illustrate these relationships in Figures 9-11. For each molecule in the
MD17 dataset, we trained a standard GNN using REMUL procedure with varying values of 3. All
experiments use the same training settings detailed in Appendix C.4.
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Figure 9: MD17 dataset: GNN trained with REMUL. The first column is model performance (MSE),
and the second column is equivariance error £. Rows from top to bottom represent Aspirin, Ethanol,
Malonaldehyde, and Uracil, respectively. The equivariance error decreases on all molecules with a
higher value of 3. In contrast, the required equivariance for best model performance varies for each
molecule.
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Figure 10: MD17 dataset: GNN trained with REMUL. The first column is model performance
(MSE), and the second column is equivariance error E. Rows from top to bottom represent Benzene,
Naphthalene, Salicylic, and Toluene, respectively.
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Figure 11: MD17 dataset: GNN trained with REMUL. The second equivariance measure F’.
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Figure 12: MD17 molecules structures.
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