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ABSTRACT

While unbiased machine learning models are essential for many applications, bias
is a human-defined concept that can vary across tasks. Given only input-label pairs,
algorithms may lack sufficient information to distinguish stable (causal) features
from unstable (spurious) features. However, related tasks often share similar biases
– an observation we may leverage to develop stable classifiers in the transfer setting.
In this work, we explicitly inform the target classifier about unstable features in
the source tasks. Specifically, we derive a representation that encodes the unstable
features by contrasting different data environments in the source task. We achieve
robustness by clustering data of the target task according to this representation
and minimizing the worst-case risk across these clusters. We evaluate our method
on both text and image classifications. Empirical results demonstrate that our
algorithm is able to maintain robustness on the target task for both synthetically
generated enviornments and real-world environments. Our code will be publicly
available.

1 INTRODUCTION

Automatic de-biasing (Sohoni et al., 2020; Creager et al., 2021; Sanh et al., 2021) has emerged
as a promising direction for learning stable classifiers. The key premise here is that no additional
annotations for the bias attribute are required. However, bias is a human-defined concept and can
vary from task to task. Provided with only input-label pairs, algorithms may not have sufficient
information to distinguish stable (causal) features from unstable (spurious) features.

To address this challenge, we note that related tasks are often fraught with similar spurious correlations.
For instance, when classifying animals such as camels vs. cows, their backgrounds (desert vs. grass)
may constitute a spurious correlation (Beery et al., 2018). The same bias between the label and the
background also persists in other related classification tasks (such as sheep vs. antelope). In the
resource-scarce target task, we only have access to the input-label pairs. However, in the source
tasks, where training data is sufficient, identifying biases may be easier. For instance, we may have
examples collected from multiple environments, in which correlations between bias features and the
label are different (Arjovsky et al., 2019). These source environments help us define the exact bias
features that we want to regulate.

One obvious approach to utilize the source task is direct transfer. Specifically, given multiple source
environments, we can train an unbiased source classifier and then apply its representation to the
target task. However, we empirically demonstrate that while the source classifier is not biased when
making its final predictions, its internal continuous representation can still encode information about
the unstable features. Figure 1 shows that in Colored MNIST, where the digit label is spuriously
correlated with the image color, direct transfer by either re-using or fine-tuning the representation
learned on the source task fails in the target task, performing no better than the majority baseline.

In this paper, we propose to explicitly inform the target classifier about unstable features from the
source data. Specifically, we derive a representation that encodes these unstable features using the
source environments. Then we identify distinct subpopulations by clustering examples based on this
representation and apply group DRO (Sagawa et al., 2019) to minimize the worst-case risk over these
subpopulations. As a result, we enforce the target classifier to be robust against different values of the
unstable features. In the example above, animals would be clustered according to backgrounds, and
the classifier should perform well regardless of the clusters (backgrounds).
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Source task: 0 vs 1 Target task: 2 vs 3

Only one data environment 
is available for training.

Correlations between the spurious color feature and the 
label are different across the two training environments.
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Figure 1: Transferring across tasks in Colored MNIST (Arjovsky et al., 2019). On the source task,
we learn a color-invariant model that achieves oracle performance (given direct access to the unstable
features). However, directly transferring this model to the target task, by reusing or fine-tuning its
feature extractor, severely overfits the spurious correlation and underperforms the majority baseline
(50%) on a test set where the spurious correlation flips. By explicitly transferring the unstable features,
our algorithm TOFU (Transfer OF Unstable features) is able to reach the oracle performance.

The remaining question is how to compute the unstable feature representation using the source data
environments. Following Bao et al. (2021), we hypothesize that unstable features are reflected in
mistakes observed during classifier transfer across environments. For instance, if the classifier uses
the background to distinguish camels from cows, the camel images that are predicted correctly would
have a desert background while those predicted incorrectly are likely to have a grass background.
More generally, we prove that among examples with the same label value, those with the same
prediction outcome will have more similar unstable features than those with different predictions. By
forcing examples with the same prediction outcome to stay closer in the feature space, we obtain a
representation that encodes these latent unstable features.

We evaluate our approach, Transfer OF Unstable features (TOFU), on both synthetic and real-
world environments. Our synthetic experiments first confirm our hypothesis that standard transfer
approaches fail to learn a stable classifier for the target task. By explicitly transferring the unstable
features, our method significantly improves over the best baseline across 12 transfer settings (22.9%
in accuracy), and reaches the performance of an oracle model that has direct access to the unstable
features (0.3% gap). Next, we consider a practical setting where environments are defined by an input
attribute and our goal is to reduce biases from other unknown attributes. On CelebA, TOFU achieves
the best worst-group accuracy across 38 latent attributes, outperforming the best baseline by 18.06%.
Qualitative and quantitative analyses confirm that TOFU is able to identify the unstable features.

2 RELATED WORK

Removing bias via annotations: Due to idiosyncrasies of the data collection process, annotations
are often coupled with unwanted biases (Buolamwini and Gebru, 2018; Schuster et al., 2019; McCoy
et al., 2019; Yang et al., 2019). To address this issue and learn robust models, researchers leverage
extra information (Belinkov et al., 2019; Stacey et al., 2020; Hinton, 2002; Clark et al., 2019; He
et al., 2019; Mahabadi et al., 2020). One line of work assumes that the bias attributes are known and
have been annotated for each example, e.g., group distributionally robust optimization (DRO) (Hu
et al., 2018; Oren et al., 2019; Sagawa et al., 2020). By defining groups based on these bias attributes,
we explicitly specify the distribution family to optimize over. However, identifying the hidden biases
is time-consuming and often requires domain knowledge (Zellers et al., 2019; Sakaguchi et al., 2020).
To address this issue, another line of work (Peters et al., 2016; Krueger et al., 2020; Chang et al.,
2020; Jin et al., 2020; Ahuja et al., 2020; Arjovsky et al., 2019; Bao et al., 2021; Kuang et al., 2020;
Shen et al., 2020) only assumes access to a set of data environments. These environments are defined
based on readily-available information of the data collection circumstances, such as location and
time. The main assumption is that while spurious correlations vary across different environments,
the association between the causal features and the label should stay the same. Thus, by learning a
representation that is invariant across all environments, they alleviate the dependency on spurious
features. In contrast to previous works, we don’t have access to any additional information besides
the labels in our target task. We show that we can achieve robustness by transferring the unstable
features from a related source task.

2



Under review as a conference paper at ICLR 2022

Automatic de-biasing A number of recent approaches focus on a more common setting where the
algorithm only has access to the input-label pairs. Sanh et al. (2021); Nam et al. (2020); Utama et al.
(2020) find that weak models are more vulnerable to spurious correlations as they only learn shallow
heuristics. By boosting from their mistakes, they obtain a more robust model. Qiao et al. (2020) uses
adversarial learning to augment the biased training data. Creager et al. (2021); Sohoni et al. (2020);
Ahmed et al. (2020); Matsuura and Harada (2020); Liu et al. (2021) propose to identify minority
groups by looking at the features produced by a biased model.

These automatic approaches are intriguing as they do not require additional annotation. However,
we note that bias is a human-centric concept and can vary from tasks to tasks. For models that only
have access to the input-label pairs, they have no information to distinguish causal features from
bias features. For example, consider the Colored MNIST dataset, where color and digit shape are
correlated in the training set but not in the test set. If our task is to predict the digit, then color
becomes the spurious bias that we want to remove. Vice versa, if we want to predict the color, then
digit shape is spurious. Creager et al. (2021); Nam et al. (2020) empirically demonstrate that they can
learn a color-invariant model for the digit prediction task. However, their approaches will result in
the same color-invariant model for the color prediction task, and thus fail at test time, when color and
digit are no longer correlated. In this work, we leverage source tasks to define the exact bias that we
want to remove for the target task.

Transferring robustness across tasks: Prior work has also studied the transferability of adversarial
robustness across tasks. For example, Hendrycks et al. (2019); Shafahi et al. (2020) show that by
pre-training the model on a large-scale source task, we can improve the model robustness against
adversarial perturbations over l∞ norm. We note that these perturbations measure the smoothness of
the classifier, rather than the stability of the classifier against spurious correlations. In fact, our results
show that if we directly re-use or fine-tune the pre-trained feature extractor on the target task, the
model will quickly over-fit to the unstable correlations present in the data. We propose to address
this issue by explicitly inferring the unstable features using the source environments and use this
information to guide the target classifier during training.

3 METHOD

Problem formulation We consider the transfer problem from a source task to a target task. For
the source task, we assume the standard setting (Arjovsky et al., 2019) where the training data
contain n environments E1, . . . , En. Within each environment Ei, examples are drawn from the joint
distribution Pi(x, y). Following Woodward (2005), we define unstable features Z(x) as features that
are differentially correlated with the label across the environments. We note that Z(x) is unknown to
the model.

For the target task, we only have access to the input-label pairs (x, y) (i.e. no environments). We
assume that the target label is not causally associated with the above unstable features Z . However,
due to collection biases, the target data may contain spurious correlations between the label and Z .
Our goal is to transfer the knowledge that Z is unstable in the source task, so that the target classifier
will not rely on these spurious features.

Overview If the unstable features have been identified for the target task, we can simply apply
group DRO to learn a stable classifier. By grouping examples based on the unstable features and
minimizing the worst-case risk over these manually-defined groups, we explicitly address the bias
from these unstable features (Hu et al., 2018; Oren et al., 2019; Sagawa et al., 2020). In our setup,
while these unstable features are not accessible, we can leverage the source environments to derive
groups over the target data that are informative of these biases. Applying group DRO on these
automatically-derived groups, we can eliminate the unstable correlations in the target task.

Our overall transfer paradigm is depicted in Figure 2. It consists of two steps: inferring unstable
features from the source task (Section 3.1) and learning stable correlations for the target task (Section
3.2). First, for the source task we use a classifier trained on one environment to partition data from
another environment based on the correctness of its predictions. Starting from the theoretical results in
(Bao et al., 2021), we show that these partitions reflect the similarity of the examples in terms of their
unstable features: among examples with the same label value, those that share the same prediction
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T.1

T.2 Minimize the worst-case risk across all clusters so that 
the model is robust against different unstable feature values.

T.2
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Figure 2: Our algorithm TOFU 1) infers unstable features from the source task (Section 3.1) and 2)
learns stable correlations for the target task (Section 3.2). We create partitions for all environment
pairs. For ease of illustration, we only depict using f1 to partition E2. Best viewed in color.

outcome have more similar unstable features than those with different predictions (Theorem 1). We
can then derive a representation fZ where examples are distributed based on the unstable features Z .
Next, we cluster target examples into groups based on the learned unstable feature representation
fZ . These automatically-derived groups correspond to different modes of the unstable features, and
they act as proxies to the manually-defined groups in the oracle setting where unstable features are
explicitly annotated. Finally, we use group DRO to obtain our robust target classifier by minimizing
the worst-case risk over these groups.

3.1 INFERRING UNSTABLE FEATURES FROM THE SOURCE TASK

Given the data environments from the source task, we would like to 1) identify the unstable correla-
tions across these environments; 2) learn a representation fZ(x) that encodes the unstable features
Z(x). We achieve the first goal by contrasting the empirical distribution of different environments
(Figure 2.S.1 and Figure 2.S.2) and the second goal by metric learning (Figure 2.S.3).

Let Ei and Ej be two different data environments. Bao et al. (2021) shows that by training a classifier
fi on Ei and using it to make predictions on Ej , we can reveal the unstable correlations from its
prediction results. Intuitively, if the unstable correlations are stronger in Ei, the classifier fi will
overuse these correlations and make mistakes on Ej when these stronger correlations do not hold.1

In this work, we connect the prediction results directly to the unstable features. We show that the
prediction results of the classifier fi on Ej estimate the relative distance of the unstable features.

Theorem 1 (Simplified). Consider examples in Ej with label value y. Let XX
1 , X

X
2 denote two

batches of examples that fi predicted correctly, and let X×3 denote a batch of incorrect predictions.
We use · to represent the mean across a given batch. Following the same assumption in (Bao et al.,
2021), we have

‖Z(XX
1 )−Z(XX

2 )‖2 < ‖Z(XX
1 )−Z(X×3 )‖2

1We assume that the distributions of Ei and Ej are different enough such that fi will make mistakes.
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almost surely for large enough batch size.2.

The result makes intuitive sense as we would expect example pairs that share the same prediction
outcome should be more similar than those with different prediction outcomes. We note that it is
critical to look at examples with the same label value; otherwise, the unstable features will be coupled
with the task-specific label in the prediction results.

While the value of the unstable features Z(x) is still not directly accessible, Theorem 1 enables us
to learn a feature representation fZ(x) that preserves the distance between the examples in terms
of their unstable features. We adopt standard metric learning (Chechik et al., 2010) to minimize the
following triplet loss:

LZ(XX
1 , X

X
2 , X

×
3 ) = max(0, ‖fZ(XX

1 )− fZ(XX
2 )‖22 − ‖fZ(XX

1 )− fZ(X×3 )‖22 + δ), (1)

where δ is a hyper-parameter. By minimizing Eq equation 1, we encourage examples that have similar
unstable features to be close in the representation fZ . To summarize, inferring unstable features from
the source task consists of three steps (Figure 2.S):

S.1 For each source environment Ei, train an environment-specific classifier fi.

S.2 For each pair of environments Ei and Ej , use classifier fi to partition Ej into two sets: EiX
j

and Ei×
j , where EiX

j contains examples that fi predicted correctly and Ei×
j contains those

predicted incorrectly.

S.3 Learn an unstable feature representation fZ by minimizing Eq equation 1 across all pairs of
environments Ei, Ej and all possible label value y:

fZ = argmin
∑

y,Ei 6=Ej

EXX
1 ,XX

2 ,X×
3

[
LZ(XX

1 , X
X
2 , X

×
3 )
]
,

where batches XX
1 , X

X
2 are sampled uniformly from EiX

j |y and batch X×3 is sampled
uniformly from Ei×

j |y (·|y denotes the subset of · with label value y).

3.2 LEARNING STABLE CORRELATIONS FOR THE TARGET TASK

Given the unstable feature representation fZ , our goal is to learn a target classifier that focuses on
the stable correlations rather than using unstable features. Inspired by group DRO (Sagawa et al.,
2020) we minimize the worst-case risk across groups of examples that are representative of different
unstable feature values. However, in contrast to DRO, these groups are constructed automatically
based on the previously learned representation fZ .

For each target label value y, we use the representation fZ to cluster target examples with label y into
different clusters (Figure 2.T.1). Since these clusters capture different modes of the unstable features,
they are approximations of the typical manually-defined groups when annotations of the unstable
features are available. By minimizing the worst-case risk across all clusters, we explicitly enforce
the classifier to be robust against unstable correlations (Figure 2.T.2). We note that it is important to
cluster within examples of the same label, as opposed to clustering the whole dataset. Otherwise, the
cluster assignment may be correlated with the target label.

Concretely, learning stable correlations for the target task has two steps (Figure 2.T).

T.1 For each label value y, apply K-means (l2 distance) to cluster examples with label y in the
feature space fZ . We use Cy

1 , . . . , C
y
nc

to denote the resulting cluster assignment, where nc
is a hyper-parameter.

T.2 Train the target classifier f by minimizing the worst-case risk over all clusters:

f = argminmax
i,y
L(Cy

i ),

where L(Cy
i ) is the empirical risk on cluster Cy

i .
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Table 1: Pearson correlation coefficient between the spurious feature Z and the label Y for each
task. The validation environment Eval follows the same distribution as Etrain

1 . We study the transfer
problem between different task pairs. For the source task S, the model can access Etrain

1 (S), Etrain
2 (S)

and Eval(S). For the target task T , the model can access Etrain
1 (T ) and Eval(T ).

ρ(Z, Y )
MNIST BEER REVIEW ASK2ME WATERBIRD

ODD EVEN LOOK AROMA PALATE PENE. INCI. WATER SEA.

E train
1 0.87 0.87 0.60 0.60 0.60 0.31 0.44 0.36 0.39

E train
2 0.75 0.75 0.80 0.80 0.80 0.52 0.66 0.63 0.64

Eval 0.87 0.87 0.60 0.60 0.60 0.31 0.44 0.36 0.39

E test −0.11 −0.11 −0.80 −0.80 −0.80 0.00 0.00 0.00 0.00

4 EXPERIMENTAL SETUP

4.1 DATASETS AND SETTINGS

Synthetic environments We start with controlled experiments where environments are created
based on the spurious correlation. We consider four datasets: MNIST (LeCun et al., 1998), Beer-
Review (McAuley et al., 2012), ASK2ME (Bao et al., 2019a) and Waterbird (Sagawa et al., 2019).
In MNIST and BeerReview, we inject spurious feature to the input (background color for MNIST
and pseudo token for BeerReview). In ASK2ME and Waterbird, spurious feature corresponds to an
attribute of the input (breast cancer for ASK2ME and background for Waterbird).

For each dataset, we consider multiple tasks and study the transfer between these tasks. Specifically,
for each task, we split its data into four environments: Etrain

1 , Etrain
2 , Eval, Etest, where spurious

correlations vary across the two training environments Etrain
1 , Etrain

2 . For the source task S, the model
can access both of its training environments Etrain

1 (S), Etrain
2 (S). For the target task T , the model only

has access to one training environment Etrain
1 (T ). We note that the validation set Eval(T ) plays an

important role in early-stopping and hyper-parameter tuning, especially when the distribution of the
data is different between training and testing (Gulrajani and Lopez-Paz, 2020). In this work, since we
don’t have access to multiple training environments on the target task, we assume that the validation
data Eval follows the same distribution as the training data Etrain

1 . Table 1 summarizes the level of the
spurious correlations for different tasks. Additional details can be found in Appendix C.1.3

Natural environments We also consider a practical setting where environments are directly defined
by a given attribute of the input, and our goal is to reduce model biases from other latent attributes.
We study CelebA (Liu et al., 2015a) where each input (an image of a human face) is annotated with
40 binary attributes. The source task is to predict the Eyeglasses attribute and the target task
is to predict the BlondHair attribute. We use the Young attribute to define two environments:
E1 = {Young = 0} and E2 = {Young = 1}. In the source task, both environments are available.
In the target task, we only have access to environment E1 during training and validation. At test
time, we evaluate the robustness of our target classifier against other latent attributes. Specifically,
for each unknown attribute such as Male, we partition the testing data into four groups: {Male =
1,BlondHair = 0}, {Male = 0,BlondHair = 0}, {Male = 1,BlondHair = 1}, {Male =
0,BlondHair = 1}. Following Sagawa et al. (2019), We report the worst-group accuracy and the
average-group accuracy.

4.2 BASELINES

We compare our algorithm against the following baselines. For fair comparison, all methods share
the same representation backbone and hyper-parameter search space.

ERM baseline We learn a classifier on the target task from scratch by minimizing the average loss
across all examples. Note that this classifier is independent of the source task. Its performance reflects
the deviation between the training distribution and the testing distribution of the target task.

2See Appendix B for the full theorem and proof.
3All data splits, hyper-parameter search spaces are available in the supplementary materials.
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Table 2: Target task accuracy of different methods. All methods are tuned based on a held-out
validation set that follows from the same distribution as the target training data. Bottom right:
standard deviation across 5 runs. Upper right: source task testing performance (if applicable).

SOURCE TARGET ERM REUSEPI FINETUNEPI MULTITASK TOFU ORACLE
M

N
IS

T ODD EVEN 12.3±0.6 14.4(70.9)
±1.0 11.2(70.1)

±2.1 11.6(69.6)
±0.6 69.1±1.6 68.7±0.9

EVEN ODD 9.7±0.6 19.2(71.1)
±2.3 11.5(71.1)

±1.2 10.1(70.0)
±0.7 66.8±0.8 67.8±0.5

B
E

E
R

R
E

V
IE

W

LOOK AROMA 55.5±1.7 31.9(70.1)
±1.0 53.7(70.1)

±1.4 54.1(76.0)
±2.2 75.9±1.4 77.3±1.3

LOOK PALATE 46.9±0.3 22.8(70.0)
±1.9 49.3(73.2)

±2.1 52.8(73.3)
±2.9 73.8±0.7 74.0±1.2

AROMA LOOK 63.9±0.6 40.1(68.6)
±3.1 65.2(66.4)

±1.8 64.0(71.5)
±0.6 80.9±0.5 80.1±0.6

AROMA PALATE 46.9±0.3 14.0(68.3)
±2.4 47.9(63.2)

±3.3 50.0(71.2)
±1.4 73.5±1.1 74.0±1.2

PALATE LOOK 63.9±0.6 40.4(57.2)
±2.8 64.3(60.1)

±2.7 63.1(75.9)
±1.0 81.0±1.0 80.1±0.6

PALATE AROMA 55.5±1.7 23.1(59.2)
±3.3 54.5(58.7)

±1.2 56.5(73.3)
±1.3 76.9±1.5 77.3±1.3

A
S

K
. PENE INCI. 79.3±1.3 71.7(72.7)

±0.5 79.3(71.2)
±0.8 71.1(73.5)

±1.4 83.2±1.8 84.8±1.2

INCI. PENE. 71.6±1.8 64.1(83.4)
±1.5 72.0(83.4)

±3.1 61.9(82.4)
±0.7 78.1±1.4 78.3±0.9

B
IR

D WATER SEA. 81.8±4.3 87.8(99.5)
±1.1 82.0(99.5)

±4.0 88.0(99.5)
±0.9 93.1±0.4 93.7±0.7

SEA. WATER 75.1±6.3 94.6(93.3)
±1.6 78.2(93.1)

±8.1 93.5(92.7)
±1.9 99.0±0.4 98.9±0.5

Average 55.2 43.7 55.8 56.4 79.3 79.6

Transfer methods Since the source task contains multiple environments, we can learn a stable
model on the source task and transfer it to the target task. We use four algorithms to learn the source
task: DANN (Ganin et al., 2016), C-DANN (Li et al., 2018b), MMD (Li et al., 2018a), PI (Bao et al.,
2021). We consider three standard methods for transferring the source knowledge:

REUSE: We directly transfer the feature extractor of the source model to the target task. The feature
extractor is fixed when learning the target classifier.

FINETUNE: We update the feature extractor when training the target classifier. (Shafahi et al., 2020)
has shown that FINETUNE may improve adversarial robustness of the target task.

MULTITASK: We adopt the standard multi-task learning approach (Caruana, 1997) where the source
model and the target model share the same feature extractor and are jointly trained together.

Automatic de-biasing methods For the target task, we can also apply de-biasing approaches that
do not require environments. We consider the following baselines:

EIIL (Creager et al., 2021): Based on a pre-trained ERM classifier’s prediction logits, we infer an
environment assignment that maximally violates the invariant learning principle (Arjovsky et al.,
2019). We then apply group DRO to minimize the worst-case loss over all inferred environments.

GEORGE (Sohoni et al., 2020): We use the feature representation of a pre-trained ERM classifier to
cluster the training data. We then apply group DRO to minimize the worst-case loss over all clusters.

LFF (Nam et al., 2020): We train a biased classifier together with a de-biased classifier. The biased
classifier amplifies its bias by minimizing the generalized cross entropy loss. The de-biased classifier
then up-weights examples that are mis-labeled by the biased classifier during training.

M-ADA (Qiao et al., 2020): We use a Wasserstein auto-encoder to generate adversarial examples. The
de-biased classifier is trained on both the original examples and the generated examples.

DG-MMLD (Matsuura and Harada, 2020): We iteratively divide target examples into latent domains
via clustering, and train the domain-invariant feature extractor via adversarial learning.

ORACLE For synthetic environments, we can use the spurious feature to define groups and train
an oracle model. For example, in task SEABIRD, this oracle model will minimize the worst-case
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Table 3: Worst-group and average-group accuracy on CelebA. The source task is to predict
Eyeglasses and the target task is to predict BlondHair. We use the attribute Young to define
two environments: E1 = {Young = 0}, E2 = {Young = 1}. Both environments are available in
the source task. In the target task, we only have access to E1 during training and validation.. We
show the results for the first 3 attributes (alphabetical order). The right-most Average∗ column is
computed based on the performance across all 38 attributes. See Appendix F for full results.

METHOD
ArchedEyebrows Attractive BagsUnderEyes Average∗

Worst Avg. Worst Avg. Worst Avg. Worst Avg.

ERM 75.43 88.52 75.00 88.94 70.91 87.09 61.01 85.07

T
R

A
N

S
F

E
R

REUSEPI 53.71 64.05 52.13 64.85 52.50 66.88 47.58 64.14

REUSEDANN 59.56 72.44 62.03 72.26 64.58 73.83 55.27 72.31

REUSEC-DANN 56.02 67.07 57.78 67.90 57.50 68.33 53.22 68.56

REUSEMMD 48.91 59.80 48.46 61.51 58.74 63.11 50.61 61.27

FINETUNEPI 71.86 87.02 72.73 87.34 62.50 84.10 63.07 85.27

FINETUNEDANN 65.38 83.89 63.35 84.98 56.86 81.34 50.60 80.49

FINETUNEC-DANN 73.85 88.90 75.61 89.39 75.86 88.14 62.03 85.57

FINETUNEMMD 76.07 88.80 74.33 89.74 78.57 88.61 66.80 86.81

MULTITASK 69.66 86.91 72.73 87.44 70.00 85.21 64.37 85.21

A
U

T
O

-D
E

B
IA

S EIIL 64.71 85.12 64.43 85.96 66.67 83.90 57.62 83.22

GEORGE 74.73 87.89 73.66 87.70 77.78 87.97 63.34 85.04

LFF 45.41 60.23 47.67 60.16 42.59 60.72 42.52 62.04

M-ADA 64.61 83.33 67.33 83.59 70.34 85.34 54.55 80.77

DG-MMLD 69.51 87.38 68.42 87.50 63.41 84.78 55.69 83.51

TOFU 85.66 91.47 88.30 92.76 90.38 92.41 84.86 91.71

Figure 3: PCA visualization of the un-
stable feature representation fZ for ex-
amples in MNIST EVEN. fZ is trained
on MNIST ODD. TOFU identifies the
hidden spurious color feature by con-
trasting different source environments.

76%

24%

Male=0
Male=1

71%

29%

85%

15%

75%

25%

77%

23%

TOFU
Environment E1

Environment E2

EIILDistribution of  Male over 
examples with BlondHair=0 Cluster 𝒞01

Cluster 𝒞02

diff: 14% diff: 2%

Figure 4: Visualization of the unknown attribute Male
on CelebA. Left: distributions of Male in the training
data. Mid: partitions learned by TOFU. Right: partitions
learned by EIIL. TOFU generates partitions that are more
informative of the unknown attribute (14% vs. 2%). See
Appendix F for results on more attributes.

risk over the following four groups: {seabird in water}, {seabird in land} {landbird
in water}, {landbird in land}. This oracle model helps us analyze the performance of our
proposed algorithm separately from the inherent limitations (such as model capacity and data size).

5 RESULTS

Table 2 summarizes our results on synthetic environments. We observe that standard transfer methods
fail to improve over the ERM baseline. On the other hand, TOFU consistently achieves the best
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Table 4: Quantitative evaluation of the generated clusters against the ground truth unstable features.
For comparison, the TRIPLET baseline directly encourages source examples with the same label to
stay close to each other in the feature space, from which we generate the clusters. For both methods,
we generate two clusters for each target label value and report the average performance across all
label values. We observe that the TRIPLET representation, while biased by the spurious correlations,
fails to recover the ground truth unstable features for some tasks. By explicitly contrasting the source
environments, TOFU derives clusters that are highly-informative of the unstable features.

SOURCE TARGET
Homogeneity Completeness V measure

TRIPLET TOFU TRIPLET TOFU TRIPLET TOFU

M
N

IS
T ODD EVEN 0.4286 0.6820 0.5811 0.9561 0.4906 0.7960

EVEN ODD 0.6709 0.6764 0.9362 0.9988 0.7814 0.8055

B
E

E
R

R
E

V
IE

W

LOOK AROMA 0.3321 0.9256 0.2801 0.9218 0.3039 0.9236

LOOK PALATE 0.3317 0.9095 0.2796 0.8988 0.3034 0.9039

AROMA LOOK 0.3330 1.0000 0.2811 1.0000 0.3049 1.0000

AROMA PALATE 0.8252 1.0000 0.7740 1.0000 0.7974 1.0000

PALATE LOOK 0.8306 0.9816 0.7794 0.9811 0.8028 0.9813

PALATE AROMA 0.8272 0.9585 0.7764 0.9561 0.7996 0.9573

performance across 12 transfer settings, outperforming the best baseline by 22.9%. While TOFU
doesn’t have access to the unstable features, by inferring them from the source environments, it
matches the oracle performance with only 0.30% absolute difference.

Table 3 presents our results on natural environments. This task is very challenging as there are
multiple latent spurious attributes in the training data. We observe that most automatic de-biasing
methods underperform the ERM baseline. With the help of the source task, FINETUNE and MULTITASK
achieve slightly better performance than ERM. TOFU continues to shine in this real-world setting:
achieving the best worst-group and average-group performance.

Is TOFU able to identify the unstable features? Yes. For synthetic environments, we visualize the
unstable feature representation produced by fZ on MNIST EVEN. Figure 3 demonstrates that while
fZ only sees source examples (ODD) during training, it can distribute target examples based on their
unstable color features. For natural environments, we visualize the distribution of two latent attributes
(Male and ArchedEyebrows) over the generated clusters. Figure 4 shows that the distribution
gap of the unknown attribute Male across the generated partitions is 2% for EIIL, only marginally
better than random splitting (0%). By leveraging information from the source task, TOFU learns
partitions that are more informative of the unknown attribute (14%).

How do the generated clusters compare to the oracle groups? We quantitatively evaluate the
generated clusters based on three metrics: homogeneity (each cluster contain only examples with the
same unstable feature value), completeness (examples with the same unstable feature value belong
to the same cluster), and V-measure (the harmonic mean of homogeneity and completeness). From
Table 4, we see that TOFU is able to derive clusters that resemble the oracle groups on BEER REVIEW.
In MNIST, since we generate two clusters for each label value and there are five different colors, it is
impossible to recover the oracle groups. However, TOFU still achieves almost perfect completeness.

6 CONCLUSION

Reducing model bias is a critical problem for many machine learning applications in the real world.
In this paper, we recognize that bias is a human-defined concept. Without additional knowledge,
automatic de-biasing methods cannot effectively distinguish causal features from spurious features.
The main departure of this paper is to identify bias by using related tasks. We demonstrate that when
the source task and target task share the same set of biases, we can effectively transfer this knowledge
and improve the robustness of the target model without additional human intervention. Compared
with 15 baselines across 5 datasets, our approach consistently delivers significant performance gain.
Quantitative and qualitative analyses confirm that our method is able to identify the hidden biases.
Due to space limitations, we leave further discussions to Appendix A.
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