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ABSTRACT

Probabilistic forecasting of time series has gained increasing attention in practice
due to the need for assessing risks and uncertainties in future observations. In
this manuscript, we propose DualRes, a framework that improves the probabilis-
tic forecasting performance of existing algorithms by incorporating conditional
heteroskedasticity and residual distributional information. Specifically, during
training, DualRes employs two separate models to learn the conditional mean and
volatility of the time series, while during inference it generates pseudo-normalized
residuals through resampling. DualRes requires only mean forecasts, so it offers
substantial flexibility in the choice of forecasting algorithms—even algorithms
originally designed for mean forecasting can be adapted to probabilistic forecast-
ing. DualRes applies to both univariate and multivariate time series and remains
robust under non-Gaussian errors with conditional heteroskedasticity. Numerical
experiments on six real-world datasets demonstrate its good empirical performance
in capturing distribution of future observations and producing accurate prediction
intervals.

1 INTRODUCTION

Time series is a common data type in real-world applications such as finance, energy management,
and weather forecasting. After collecting a sequence of time series data, this manuscript focuses on
probabilistic forecasting, which aims to predict the probability distribution of future observations
and thereby support risk assessing and decision-making, as discussed in Luo et al. (2018); Nguyen &
Quanz (2021); Wu & Politis (2024); Zheng et al. (2025) and the references therein.

To our knowledge, two types of methods are commonly considered in probabilistic forecasting. The
first type, such as the work of Kollovieh et al. (2023); Chen et al. (2024b;a); Tashiro et al. (2021);
Zheng et al. (2025), leveraged diffusion process and generative model, like those of Song et al.
(2020); Ho et al. (2020); Kollovieh et al. (2025), to perform probabilistic forecasting. The validity
of such methods in general relied on the assumption of time series having Gaussian distribution.
Another stream that addressed probabilistic forecasting problems involved adjusting the training
processes. Notable examples include Le Guen & Thome (2020); Rasul et al. (2021b); Hasson et al.
(2021); Bergsma et al. (2023); Ansari et al. (2024). A common issue of these methods is that the
underlying mathematical models and mechanisms of their validity are not transparent and rigorous to
practitioners compared to those of diffusion model-based approaches.

In this manuscript, motivated by recent advances in bootstrap and resampling methods for statistical
inference and prediction in time series analysis Wu & Politis (2024; 2025); Zhang et al. (2024),
we propose DualRes, a resampling-based framework for probabilistic forecasting of time series
data. DualRes consists of three steps. First, we train a predictive model—such as those in Zeng
et al. (2023); Lin et al. (2024)—to estimate the conditional mean of the time series, and compute
fitted residuals as the difference between the observations and the predictive means. Second, we
introduce another model to estimate the conditional volatility, and normalize the fitted residuals
by dividing them by the predicted volatilities. Finally, we apply bootstrap algorithms (see Efron
(1979)) to resample the normalized residuals, and combine the estimated conditional mean and
volatility to generate predictive distributions of future observations. As demonstrated in Wu (1986);
Stine (1985); Chwialkowski et al. (2014), a well-designed bootstrap algorithm can approximate the
underlying probability distribution of future time series without imposing restrictive distributional
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assumptions, such as Gaussianity. Thus, DualRes relaxes the reliance on Gaussian distributions of
diffusion process-based methods.

In addition to relaxing the Gaussian assumption, DualRes offers several advantages. First, it is
flexible in the choice of conditional mean and volatility models. As shown Section 4.1, by applying a
logarithmic transformation to the squared residuals, DualRes requires only mean forecasts to perform
probabilistic forecasting. This allows models originally designed for mean forecasting to be adapted
for probabilistic forecasting. Second, DualRes explicitly accounts for conditional heteroskedasticity
and non-Gaussianity, thereby improving the performance of probabilistic forecasting methods that
ignore these features. Finally, as established in Theorem 1, DualRes incorporates spatial dependence
by resampling residual vectors, making it adaptable to multivariate time series settings.

We summarize the advantages of the proposed method as follows.

• No Gaussianity assumption: Our work does not rely on maximizing likelihood functions,
so the data distributions are not necessarily Gaussian.

• Flexibility in selecting mean/volatility forecasting algorithms: Implementation of our
work only needs models generating mean forecasts, thus offering good flexibilities.

• Theoretical justification: The validity of our approach stems from its ability to simulate the
underlying data-generating process of time series instead of a black-box model. Furthermore,
under some conditions, the resampling mechanism is ensured to capture the underlying
distribution of innovations.

• Robustness to conditional heteroskedasticity and multivariate Settings: DualRes is
adaptable for conditional heteroskedastic time series, and it accounts for spatial dependence
in predictions.

2 RELATED WORKS

This work is related to the area of probabilistic time series forecasting and resampling. We provide
a brief introduction of the latest studies for each area. In addition, we introduce the setting of
probabilistic forecasting to make the manuscript self-contained.

Probabilistic time series forecasting. Diffusion models and their variants, like those introduced in
Ho et al. (2020), have been applied to both univariate and multivariate probabilistic forecasting of time
series Rasul et al. (2021a;b); Li et al. (2022); Chen et al. (2024b;a); Kollovieh et al. (2025); Zheng et al.
(2025). By modeling time series data as a Markov chain with Gaussian transitions, these methods
offer good interpretability in the training and inference stage. The state space model is another
frequently used model that offers good interpretability and empirical performance. Recent works
such as Rangapuram et al. (2018); Li et al. (2019) leveraged deep learning to describe parameters
in the state space model. We also refer Rangapuram et al. (2021); Feng et al. (2024); Ansari et al.
(2024) for other deep learning-based approaches to probabilistic forecasting.

Resampling and bootstrap. Bootstrap algorithm is a well-recognized method to quantify uncertainty
of statistics, and has been employed to various fields of machine learning, like those in White &
White (2010); Austern & Syrgkanis (2021); Shin et al. (2021); Rohekar et al. (2018); Wang et al.
(2024b); Yu et al. (2024).

3 RESAMPLING ASSISTED PROBABILISTIC FORECASTING (DUALRES)

Suppose we observe a time series x1:T ∈ Rd, with t = 1, · · · , T denoting the time steps. Our
objective is to forecast the distributions of future observations xT+j for j = 1, 2, · · · , J . There
have been discussions in the literature like Salinas et al. (2020) and Kollovieh et al. (2025). When
further investigating these works, we find that they effectively incorporated the conditional mean
and conditional volatility information in forecasting. However, these works commonly assigned
a Gaussian distribution to the residuals, making the validity of forecasting algorithms rely on the
residuals (and therefore, observations) obeying Gaussian distributions.

Our objective is to take into account the distributional information and avoid the assumption of
Gaussian distribution in forecasting. To achieve the goal, we incorporate a resampling step into the
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Figure 1: Structure of the training and inference stage.

forecasting algorithm 2. Resampling has been well employed in the literature such as Pan & Politis
(2016), Wu & Politis (2025), and Zhang et al. (2025) in forecasting. However, to our knowledge, they
did not account for the conditional heteroskedasticity (i.e., dependence of future variance on past
observations), while our work allows for the existence of conditional heteroskedasticity in future
observations.

3.1 TRAINING STAGE

Figure 1 presents an overview about the structure of the training and inference of stage of the proposed
method. Our work is motivated by a two-stage conditional heterogeneous vector autoregressive model

xt = F (xt−1, · · · ,xt−q) + ζt, and ζt = G(ζt−1, · · · , ζt−s)ηt, (1)

where

G(ζt−1, · · · , ζt−s) = diag (G1(ζt−1, · · · , ζt−s), · · · , Gd(ζt−1, · · · , ζt−s))

is a d× d diagonal matrix, F : Rd×q → Rd, Gi : R
d×s → [0,∞) are functions to learn, and ηt are

independent of past observations x−t and ζ−t, E
[
η(t)

]
= 0, and η(t) have identical distribution.

The functions F and G respectively controls the conditional mean and conditional volatility of time
series data, Furthermore, such model offers a good property that the residual terms ζt does not incur
bias to the conditional mean F, which motivates the two-stage training procedure as in Algorithm 1.
We prove this property in Section 4.
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Algorithm 1 Training a heterogeneous vector autoregressive model

Require: Time series data {xt : t = 1, · · · , T}, lag q for the conditional mean model, and lag s for
the conditional volatility model.

1: Train the conditional mean model F̂ and derive the fitted residuals

ζ̂t = xt − F̂ (xt−q, · · · ,xt−1)

for t = q + 1, · · · , T .
2: Train the conditional volatility model Ĝ with the fitted residuals ζ̂t, t = q + 1, · · · , T. After that,

derive the normalize fitted residuals

η̂t = Ĝ−1
(
ζ̂t−s, · · · ζ̂t−1

)
ζ̂t, (2)

where t = q + s+ 1, · · · , T.

Remark 1. Practitioners may resort to mean forecasting methods, such as Lin et al. (2024), to
establish the model F̂ for the conditional mean function F in equation 1. Learning G, on the other
hand, is not straightforward. After calculating ζ̂t, this manuscript performs the transformation
ι̂t = R(ζ̂t) for t = q + 1, · · · , T, where R : Rd → Rd is a function of the form:

R(x) = (log(x2
1), log(x

2
2), · · · , log(x2

d))
> and x ∈ Rd. (3)

We then use mean forecasting methods (e.g., those in Lin et al. (2024)) to learn Ui = log(Gi). We
demonstrate in Section 4.1 that, despite taking logarithm transformations incur a constant bias when
learning log(Gi), the constant bias will be self-eliminated during the normalization step equation 2
of Algorithm 1 and the sampling step equation 4 of the inference Algorithm 2. Consequently, the bias
introduced during the training stage does not affect the prediction.

The motivation of the model equation 1 originates from the ARMA-GARCH model, like those in Ling
& McAleer (2003), that adopted linear models for both F and G. The conditional heteroskedasticity
considered in this manuscript associates the volatility with past observations, and is different from Ye
et al. (2025), where the volatility was associated with exogenous features.

The flexibility of Algorithm 1 is reflected by its selection of models used to learn F and G—mean
forecasting algorithms, such as those proposed in Zeng et al. (2023); Zhang & Yan (2023); Lin et al.
(2024), among others—can be employed to fulfill this purpose.

3.2 INFERENCE STAGE

The intuition behind Algorithm 2 involves simulating the data generating process in equation 1. If F̂
and Ĝ closely approximate the true conditional mean F and conditional volatilitiesG, then Theorem 1
in Section 4 guarantees that the distribution of the simulated normalized residuals η∗

j closely matches
the distribution of the true normalized residuals ηj . Furthermore, the generation of x∗

T+j follows
the same autoregressive iteration as in equation 1. Therefore, under the assumption that equation 1
accurately characterizes the data generating process of xt, since the estimated conditional mean F̂ ,
conditional volatility Ĝ, the distribution of pseudo-normalized residuals η∗

j , and the autoregressive
iteration all provide good approximations to that of xt, the distribution of the pseudo-samples x∗

T+j
should be close to that of the actual future observations xT+j .
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Algorithm 2 Inference Stage

Require: Time series data x1:T , lag q for conditional mean, lag s for conditional volatility, prediction
step J , resampling time B.

1: Derive the functions F̂ and Ĝ, as well as the normalized fitted residuals η̂t as in Algorithm 1.
2: for b← 1 to B do
3: Sample η∗

j for j = 1, · · · , J by drawing from η̂q+s+1, · · · , η̂T with replacement.
4: Generate pseudo-samples x∗

T+1, · · · ,x∗
T+j using the following iteration:

ζ∗
T+j = Ĝ(ζ̂∗

T+j−s, · · · , ζ̂∗
T+j−1)η

∗
j ,

x∗
T+j = F̂ (x∗

T+j−q, · · · ,x∗
T+j−1) + ζ∗

T+j ,
(4)

where x∗
T+j−q = xT+j−q and γ̂∗

T+j−s = γ̂T+j−s if q, s ≥ j.
5: end for
6: For any measurable set A ⊂ Rd×J , we estimate the joint distribution of x(T+1):(T+J) by the

empirical measure 1
B

∑B
b=1 1x∗

(T+1):(T+J)
∈A

Remark 2. Practitioners may resort to Remark 1 to learn G. In such case, the value of
Ĝ(ζ̂∗

T+j−s, · · · , ζ̂∗
T+j−1) can be derived through applying the learned autoregressive model to

ι̂∗T+j−s, · · · , ι̂∗T+j−1, where ι̂∗k = R (ζ∗
k) .

4 THEORETICAL JUSTIFICATION

The theoretical justification of DualRes is divided into two parts. First, we provide illustrations on
why Algorithm 1 is capable of learning F and G. After that, we summarize in Theorem 1 that the
distribution of the pseudo-normalized residuals η∗

j closely approximates that of the true normalized
residuals ηj .

4.1 FURTHER DISCUSSIONS ON SECTION 3

To illustrate why the two-stage procedure in Algorithm 1 learns F and G, from the tower property of
conditional expectation,

E
[
ζt | x(t−q):(t−1)

]
= E

[
E
[
G(ζt−1, · · · , ζt−s)ηt | x(t−q):(t−1), ζ(t−s):(t−1)

]
| x(t−q):(t−1)

]
= E

[
(G(ζt−1, · · · , ζt−s)Eηt) | x(t−q):(t−1)

]
= 0.

Therefore, when we train F̂ , the residuals ζt do not incur bias to F, making it possible for the
estimator F̂ to closely approximate F. On the other hand, define the function R as in equation 3,
define γt = R(ζt), then the i-th element of γt is

γt,i = log
(
G2
i (ζt−1, · · · , ζt−s)

)
+ log

(
η2
t,i

)
. (5)

Furthermore, by assuming that the functions G2
i (·), i = 1, · · · , d, depend on ζt−1, · · · , ζt−s only

through their element-wise squares, and notice that ζ2
t,i = exp (γt,i) , equation 5 implies that

γt = A(γt−1, · · · ,γt−s) + ιt, (6)

where A : Rd×s → Rd is a function such that Ai(γt−1, · · · ,γt−s) = log
(
G2
i (ζt−1, · · · , ζt−s)

)
+

E
[
log
(
η2
t,i

)]
and ιt,i = log

(
η2
t,i

)
− E

[
log
(
η2
t,i

)]
. Therefore, the representation equation 6 allows

the use of a mean-forecasting algorithm to learn B, which inevitably incurs a constant bias term
E
[
log
(
η2
t,i

)]
.

Fortunately, the constant bias does not affect the prediction as it self-eliminated during equation 2
of Algorithm 1, which divides the fitted residuals ζ̂t by Ĝ, and equation 4 of Algorithm 2, which
multiplies the sampled η∗

j by Ĝ.

We would like to stress that the assumption of G2
i depending on ζt−1, · · · , ζt−s through their

element-wise squares is common in the literature. For example, the ARMA-GARCH models in Ling
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& McAleer (2003) leveraged this assumption. The advantage of this transformation is, by replacing γt
with γ̂t = R(ζ̂t), γ̂t approximately follows an additive autoregressive process equation 6, allowing
the use of various conditional mean forecasting methods—such as those in Lin et al. (2024)—for
estimating the function A in equation 6.

4.2 VALIDITY OF THE RESAMPLE PROCEDURE

While conditional mean and volatility information has been widely leveraged in various probabilistic
forecasting algorithms, like Salinas et al. (2020); Zheng et al. (2025), the distributional information
of residuals ηt has received comparatively less attention. Compared to directly assigning normal
distribution to ηt, we introduce the resampling step equation 4 in Algorithm 2 to learn underlying
distribution of ηt.

Furthermore, as illustrated in Section 3, the validity of Algorithm 2 comes from simulating the
underlying data generating process of xt. Therefore, if model eq.equation 1 holds true and Algorithm
1 generates good estimators for F and G (up to a constant scale), the validity of Algorithm 2 is
achieved provided that the empirical process of the vector η̂t—characterized by the probability
measure defined by the following joint cumulative distribution function (CDF in abbreviation)

P̂ (y) =
1

T − q − s

T∑
t=s+q+1

1η̂t≤y (7)

where 1η̂t≤y denotes for
∏d
i=1 1η̂t,i≤yi

, converges to the distributions of η(t). Theorem 1 provides a
theoretical justification for this claim.
Theorem 1. Suppose ηt, t = 1, 2, · · · , are independent and identical distributed. In addition,
suppose conditions detailed in Section A of Appendix hold true. Then we have

sup
y∈Rd

|P̂ (y)− P (y)| →p 0, (8)

where→p denotes convergence in probability, P (·) denotes the CDF of ηt, and the convergence is
with respect to the sample size T →∞.

Proof. Postponed to Section A in Appendix.

Theorem 1 guarantees that the distribution of the resampled normalized residuals η∗
t,i in Algorithm 2

matches that of the true normalized residuals η∗
t,i. As a result, Algorithm 2 effectively captures the

distributional information of η∗
t,i.

Remark 3. According to Politis et al. (1999), sampling with replacement from η̂t is equivalent to
drawing from the distribution with CDF P̂ (·) as defined in e.q. equation 7. Therefore, the distribution
of η∗

i is guaranteed to match the distribution of ηi once e.q. equation 8 is satisfied.

5 NUMERICAL EXPERIMENTS

This section demonstrates the effectiveness of DualRes as a boosting algorithm for enhancing the
performance of existing methods in both univariate and multivariate probabilistic forecasting. Due to
the space limitations, the detailed experimental setup and additional experimental results—including
hyperparameter choices, introduction of datasets and evaluation metrics, and demonstration of mean
forecasting performance—are deferred to Section B of the Appendix.

5.1 UNIVARIATE PROBABILISTIC FORECASTING

Dataset and experimental settings. We run the experiments on six real-world commonly used time
series dataset, respectively named ETTh1, ETTh2, Electricity, Traffic, Exchange, and M4-Hourly. The
details about these datasets are introduced in Section B.1 of the Appendix.

The evaluation metrics are CRPS and MAEC (mean absolute error of coverage). A detailed intro-
duction to these metrics is provided in Section B.2 of the Appendix. In addition to probabilistic
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Table 1: Numerical experiment results on univariate time series datasets. The numbers in brackets
indicate 95% confidence intervals, computed from five independent repetitions of each experiment.
In the ablation studies, the better result is highlighted in bold, corresponding to smaller metric values,
or, when metrics are equal, to narrower confidence intervals.

Models Metrics ETTh1 ETTh2 Electricity Traffic Exchange M4-Hourly

DeepAR CRPS 0.178(0.031) 0.076(0.015) 0.082(0.001) 0.107(0.007) 0.015(0.001) 0.087(0.092)
MAEC 0.411(0.082) 0.394(0.148) 0.454(0.001) 0.443(0.035) 0.498(0.003) 0.411(0.099)

DeepAR CRPS 0.176(0.011) 0.085(0.002) 0.071(0.001) 0.115(0.003) 0.010(0.001) 0.042(0.003)
+Ours MAEC 0.408(0.018) 0.393(0.021) 0.439(0.006) 0.471(0.013) 0.466(0.026) 0.378(0.003)

DLinear CRPS 0.185(0.001) 0.075(0.003) 0.061(0.007) 0.131(0.002) 0.019(0.008) 0.048(0.005)
MAEC 0.414(0.014) 0.462(0.018) 0.382(0.016) 0.433(0.012) 0.447(0.024) 0.373(0.020)

DLinear CRPS 0.196(0.008) 0.070(0.004) 0.054(0.001) 0.133(0.002) 0.010(0.001) 0.040(0.012)
+Ours MAEC 0.388(0.013) 0.395(0.069) 0.367(0.007) 0.393(0.003) 0.465(0.011) 0.409(0.016)

PatchTST CRPS 0.169(0.005) 0.066(0.010) 0.063(0.003) 0.124(0.001) 0.013(0.003) 0.041(0.006)
MAEC 0.431(0.013) 0.406(0.076) 0.375(0.017) 0.435(0.013) 0.475(0.037) 0.386(0.056)

PatchTST CRPS 0.200(0.043) 0.073(0.001) 0.063(0.001) 0.134(0.003) 0.012(0.002) 0.056(0.024)
+Ours MAEC 0.403(0.028) 0.399(0.089) 0.372(0.015) 0.413(0.002) 0.473(0.022) 0.416(0.027)

TimeMixer CRPS 0.365(0.005) 0.095(0.004) 0.273(0.006) 0.384(0.001) 0.027(0.008) 0.107(0.012)
MAEC 0.415(0.006) 0.383(0.004) 0.427(0.001) 0.411(0.024) 0.500(0.000) 0.441(0.041)

TimeMixer CRPS 0.348(0.018) 0.094(0.001) 0.237(0.002) 0.356(0.001) 0.014(0.001) 0.144(0.018)
+Ours MAEC 0.396(0.014) 0.429(0.006) 0.400(0.001) 0.410(0.003) 0.421(0.076) 0.370(0.008)

(a) M4-Hourly (b) ETTh1 (c) Traffic

Figure 2: Histograms of the normalized fitted residuals η̂t across various datasets. The red lines here
represent the Gaussian density curves based on the mean and standard deviation of η̂t.

forecasting, Section B.3 of the Appendix evaluates the mean forecasting performance of various
algorithms with and without adding DualRes. All experimental results are based on five repetitions,
and we demonstrate the 95% confidence intervals apart from the average metrics.

Results of univariate probabilistic forecasting. The performance of DualRes is evaluated through
ablation studies in Table 1, where the baseline models are DeepAR Salinas et al. (2020), DLinear Zeng
et al. (2023), PatchTST Nie et al. (2023), and TimeMixer Wang et al. (2024a). DLinear, PatchTST,
and TimeMixer were originally developed for mean forecasting, and their distributional indices are
obtained through fitting a t-distribution to the predictive values, which is the default operation in
probabilistic forecasting frameworks such as Alexandrov et al. (2020).

As demonstrated in Table 1, incorporating information on conditional volatility and the distribution of
normalized residuals leads to substantial improvements in both CRPS and MAEC across forecasting
algorithms—for example, the average CRPS of TimeMixer on the Exchange dataset decreases from
0.027 to 0.014 after applying DualRes. In addition, DualRes enhances the stability of forecasting
algorithms, as reflected in achieving narrower confidence intervals.

the CRPS and MAEC of various forecasting algorithms have significant decreases after incorporating
information of conditional volatility and the distribution of normalized residuals in forecasting—for
example, the average CRPS of TimeMixer when applied to Exchange data decreases from 0.027
to 0.014. Furthermore, DualRes increases the stability of the prediction algorithms in the sense of
reaching narrow confidence intervals.

We attribute the performance improvement to DualRes’s ability to capture information about both
heterogeneity and the normalized residuals distribution. As shown in Figure 3, the widths of the
prediction intervals, which are controlled by conditional volatility, vary substantially across different
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(a) ETTh1 (b) ETTh2 (c) Electricity

(d) Traffic (e) Exchange (f) M4-Hourly

Figure 3: Prediction intervals generated by predictive algorithms incorporating DualRes. Blue lines,
red lines, and red shadow areas respectively represent the true values, the predictive means, and the
90% prediction intervals.

prediction steps. By explicitly accounting for the volatility, DualRes enhances the performance of
forecasting algorithms.

In addition to volatility, Figure 2 shows that the distribution of normalized fitted residuals rarely
follows a parametric family, such as the normal or t-distribution, in real-world datasets. In practice,
these distributions may exhibit multimodality or heavy tails. DualRes avoids the need to impose
a parametric assumption—such as those in Zheng et al. (2025)—by introducing a resampling step
(Line 3 of Algorithm 2). This design also contributes to its performance gains.

5.2 MULTIVARIATE PROBABILISTIC FORECASTING

Dataset and experimental settings. We conduct experiments on three real-world datasets: ETTh1,
ETTh2, Electricity, with a detailed introduction in Section B.1 of the Appendix.

Compared to univariate time series forecasting, multivariate time series data can exhibit spatial
dependence, making probabilistic forecasting algorithms essential for capturing spatial dependence.
Accordingly, in addition to CRPS and MAEC, we also evaluate the performance of probabilistic
forecasting algorithms using the energy score (ES) Chung et al. (2024), with further details provided
in Section B.2 of the Appendix.

Results of multivariate probabilistic forecasting. The performance of DualRes is evaluated through
ablation studies in Table 2, using baseline models VEC-LSTM Salinas et al. (2019) and TMDM
Li et al. (2024). VEC-LSTM, also known as the DeepVAR model, is an RNN-based time series
model with a Gaussian copula process output. TMDM is a Transformer-based diffusion model. Both
algorithms were originally developed for probabilistic forecasting of multivariate time series.

According to Table 2, DualRes achieves improvements across all metrics for VEC-LSTM and for
the majority of metrics in TMDM. For example, on the Electricity dataset, the CRPS of TMDM
decreases from 0.655 to 0.292 after incorporating DualRes. Apart from accounting for conditional
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Table 2: Numerical experiment results on multivariate time series datasets. The interpretation of the
values and the use of boldface are the same as in Table 1.

Dataset ETTh1 ETTh2 Electricity

Metrics CRPS MAEC ES CRPS MAEC ES CRPS MAEC ES

VEC-LSTM 0.184(0.003) 0.310(0.015) 3.873(0.157) 0.095(0.002) 0.243(0.014) 6.423(0.196) 0.441(0.014) 0.385(0.072) 48684(3323)
+Ours 0.182(0.005) 0.294(0.001) 3.503(0.085) 0.087(0.001) 0.241(0.016) 6.067(0.190) 0.301(0.013) 0.251(0.009) 41398(3744)

TMDM 0.456(0.023) 0.268(0.052) 13.344(0.163) 0.092(0.008) 0.318(0.123) 6.933(0.393) 0.655(0.275) 0.458(0.082) 87761(6179)
+Ours 0.397(0.040) 0.458(0.082) 11.341(0.372) 0.092(0.004) 0.306(0.023) 7.326(0.498) 0.292(0.018) 0.227(0.009) 37322(2438)

heteroskedasticity and residual distributional information, the improvement in the energy score high-
lights DualRess ability to capture spatial dependence in multivariate time series. This effectiveness
stems from resampling entire normalized residual vectors η̂t, rather than their individual components.

6 DISCUSSION

Focusing on probabilistic time series forecasting, this manuscript proposes the DualRes framework,
which extracts conditional volatility information from fitted residuals and models the distribution
of normalized residuals through resampling. These operations make DualRes robust to conditional
heteroskedasticity and free from restrictive parametric assumptions, such as Gaussianity. We further
provide theoretical guarantees for the validity of the proposed training and inference procedures.

In addition, as DualRes requires only conditional mean forecasts, it offers substantial flexibility in
the choice of models for both the conditional mean and volatility. As demonstrated in the numerical
experiments, even models originally designed for mean forecasting can be adapted for probabilistic
forecasting, leading to significant performance gains.

Our work highlights the importance of incorporating the distribution of normalized residuals—beyond
conditional mean and volatility—in probabilistic forecasting. Since residuals in real-world time series
often deviate from parametric distributions, introducing a resampling step enables greater flexibility
when addressing the underlying randomness in the data.

Limitations and Future Work. One main limitation of our work lies in the computational complexity
of the algorithm. Concerning this, one potential future direction of this work involves leveraging
advanced subsampling techniques, like those in McElroy & Politis (2024), to decrease computational
complexity.

Another limitation is that the validity of Theorem 1 depends on the conditional mean and volatility
models accurately reflecting the true conditional mean and volatility functions. As a result, if future
observations have a distributional shift, the proposed method may no longer be reliable.
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A PROOF OF THEOREM 1

To validate Theorem 1, we propose the following technical assumptions.

Assumptions:

1. ηt, t = 1, 2, · · · , are independent and identically distributed with continuous cumulative distri-
bution function P (·) : Rd → R. Suppose E [η1] = 0 and Var(η1,i) ≤ C for a constant C and any
i = 1, · · · , d.

2. For a vector x ∈ Rd, define ||x|| as its L2 norm. We suppose the conditional mean and volatility
function estimator satisfy

sup
Y∈Rd×q

||F̂ (Y)− F (Y)|| →p 0 and sup
Y∈Rd×s

|Ĝi(Y)−Gi(Y)| →p 0,

where i = 1, 2, · · · , d, and→p denotes convergence in probability.

3. Suppose Gi(·) is continuous differentiable with bounded gradient, i.e.,

sup
Y∈Rd×s

||∇YGi(Y)|| <∞

for i = 1, · · · , d. Furthermore, suppose there exists a constant c > 0 such that

inf
Y∈Rd×s

|Gi(Y)| > c

for i = 1, · · · , d.
With those assumptions, we demonstrate that Theorem 1 holds true.

Proof of Theorem 1. For any vector y = (y1, · · · ,yd)> ∈ Rd, define

P̃ (y) =
1

T − q − s

T∑
t=s+q+1

1ηt≤y.

From Glivenko-Cantelli Theorem, like Theorem 4 of Sharipov (2011), we have

sup
y∈Rd

|G̃(y)−G(y)| →p 0.

On the other hand, define the functions

g0(u) = (1−min(1,max(u, 0))4)4 and gψ,t(x) = g0(ψ(x− t)),

as demonstrated in Xu et al. (2019), which satisfy the following property: g0(·) is third-order
continuous differentiable, g0(u) = 1 if u ≤ 0, g0(u) = 0 if u ≥ 1, and

g∗ = sup
u∈R
{|g′0(u)|+ |g′′0 (u)|+ |g′′′0 (u)|} <∞, 1x≤t ≤ gψ,t(x) ≤ 1x≤t+ψ−1 , sup

x,t∈R
|g′ψ,t(x)| ≤ g∗ψ.

Define

∆t = η̂t − ηt

= Ĝ−1
(
ζ̂t−s, · · · ζ̂t−1

)(
F (xt−q, · · · ,xt−1)− F̂ (xt−q, · · · ,xt−1)

)
+ Ĝ−1

(
ζ̂t−s, · · · ζ̂t−1

)(
G (ζt−s, · · · ζt−1)− Ĝ

(
ζ̂t−s, · · · ζ̂t−1

))
ηt.

Notice that

F̂ (y) =
1

T − q − s

T∑
t=s+q+1

1ηt+∆t≤y ≤
1

T − q − s

T∑
t=s+q+1

d∏
i=1

gψ,yi
(ηt,i +∆t,i).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

From Taylor expansion,

|
d∏
i=1

gψ,yi(ηt,i +∆t,i)−
d∏
i=1

gψ,yi(ηt,i)|

≤
d∑
i=1

(

i−1∏
j=1

gψ,yi
(ηt,i +∆t,i)(gψ,yi

(ηt,i +∆t,i)− gψ,yi
(ηt,i))

d∏
j=i+1

gψ,yi
(ηt,i)

≤
d∑
i=1

|gψ,yi
(ηt,i +∆t,i)− gψ,yi

(ηt,i)| ≤ g∗ψ
d∑
i=1

|∆t,i| ≤ g∗ψ
√
d||∆t||.

Therefore,

1

T − q − s

T∑
t=s+q+1

d∏
i=1

gψ,yi(ηt,i +∆t,i)

≤ 1

T − q − s

T∑
t=s+q+1

d∏
i=1

gψ,yi(ηt,i) +
g∗ψ
√
d

T − q − s

T∑
t=s+q+1

||∆t||

≤ 1

T − q − s

T∑
t=s+q+1

1ηt≤y+ψ−1 +
g∗ψ
√
d

T − q − s

T∑
t=s+q+1

||∆t||

= F̃ (y + ψ−1h) +
g∗ψ
√
d

T − q − s

T∑
t=s+q+1

||∆t||,

where h = (1, 1, · · · , 1)>. Similarly,

F̂ (y) ≥ 1

T − q − s

T∑
t=s+q+1

d∏
i=1

gψ,yi−ψ−1(ηt,i +∆t,i)

≥ 1

T − q − s

T∑
t=s+q+1

d∏
i=1

gψ,yi−ψ−1(ηt,i)−
g∗ψ
√
d

T − q − s

T∑
t=s+q+1

||∆t||

≥ F̃ (y − ψ−1h)− g∗ψ
√
d

T − q − s

T∑
t=s+q+1

||∆t||.

With probability tending to 1,

inf
Y∈Rd×s

Ĝi(Y) ≥ inf
Y∈Rd×s

Gi(Y)− sup
Y∈Rd×s

|Ĝi(Y)−Gi(Y)| > c/2.

If that happens for i = 1, · · · , d, we have

||Ĝ−1
(
ζ̂t−s, · · · ζ̂t−1

)(
F (xt−q, · · · ,xt−1)− F̂ (xt−q, · · · ,xt−1)

)
||

≤ 2

c
sup

Y∈Rd×q

||F (Y)− F̂ (Y)|| →p 0.
(9)

On the other hand, for any i = 1, · · · , d, the ith element of
Ĝ−1

(
ζ̂t−s, · · · ζ̂t−1

)(
G (ζt−s, · · · ζt−1)− Ĝ

(
ζ̂t−s, · · · ζ̂t−1

))
ηt is

Gi (ζt−s, · · · ζt−1)− Ĝi
(
ζ̂t−s, · · · ζ̂t−1

)
Ĝi

(
ζ̂t−s, · · · ζ̂t−1

) ηt,i.
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and

|
Gi (ζt−s, · · · ζt−1)− Ĝi

(
ζ̂t−s, · · · ζ̂t−1

)
Ĝi

(
ζ̂t−s, · · · ζ̂t−1

) ηt,i|

≤ 2|ηt,i|
c

(
|Gi (ζt−s, · · · ζt−1)−Gi

(
ζ̂t−s, · · · ζ̂t−1

)
|

+|Gi
(
ζ̂t−s, · · · ζ̂t−1

)
− Ĝi

(
ζ̂t−s, · · · ζ̂t−1

)
|
)

From Assumption 2,

|Gi
(
ζ̂t−s, · · · ζ̂t−1

)
− Ĝi

(
ζ̂t−s, · · · ζ̂t−1

)
| ≤ sup

Y∈Rd×s

|Gi (Y)− Ĝi (Y) | →p 0. (10)

On the other hand, for any t = q + 1, · · · , T,

||ζ̂t − ζt|| = ||F (xt−q, · · · ,xt−1)− F̂ (xt−q, · · · ,xt−1)||
≤ sup

Y∈Rd×q

||F (Y)− F̂ (Y)|| →p 0.

Define the matrix

Γ =
[
ζ̂t−s − ζt−s · · · ζ̂t−1 − ζt−1

]
,

from Taylor’s expansion,

|Gi (ζt−s, · · · ζt−1)−Gi
(
ζ̂t−s, · · · ζ̂t−1

)
| = |

d∑
i=1

s∑
j=1

(∇ZGi(Z))ijΓij |

≤
d∑
i=1

s∑
j=1

|∇ZGi(Z))ij ||Γij |

≤ Cds sup
Y∈Rd×q

||F (Y)− F̂ (Y)||,

(11)

where Z ∈ Rd×s is a random matrix. From eq.equation 9, eq.equation 10 and eq.equation 11, with
probability tending to 1

||∆t|| ≤
2

c
sup

Y∈Rd×q

||F (Y)− F̂ (Y)||+

√√√√√√ d∑
i=1

Gi (ζt−s, · · · ζt−1)− Ĝi
(
ζ̂t−s, · · · ζ̂t−1

)
Ĝi

(
ζ̂t−s, · · · ζ̂t−1

) ηt,i

2

≤ 2

c
sup

Y∈Rd×q

||F (Y)− F̂ (Y)||+ 2
√
d

c
max

i=1,··· ,d
|ηt,i| × |Gi (ζt−s, · · · ζt−1)− Ĝi

(
ζ̂t−s, · · · ζ̂t−1

)
|

≤ 2

c
sup

Y∈Rd×q

||F (Y)− F̂ (Y)||+ 2
√
d

c

(
d∑
i=1

|ηt,i|

)(
sup

Y∈Rd×s

|Gi (Y)− Ĝi (Y) |
)

+
2
√
d

c

(
d∑
i=1

|ηt,i|

)(
Cds sup

Y∈Rd×q

||F (Y)− F̂ (Y)||
)
.
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Since

ψ
√
d

T − q − s

T∑
t=s+q+1

||∆t|| ≤
2ψ
√
d

c
sup

Y∈Rd×q

||F (Y)− F̂ (Y)||

+
2ψd

c(T − q − s)

d∑
i=1

sup
Y∈Rd×s

|Gi (Y)− Ĝi (Y) |
T∑

t=s+q+1

|ηt,i|

+
2Cψd2s

c(T − q − s)
sup

Y∈Rd×q

||F (Y)− F̂ (Y)||
d∑
i=1

T∑
t=s+q+1

|ηt,i|

≤ 2ψ
√
d

c
sup

Y∈Rd×q

||F (Y)− F̂ (Y)||

+
2ψd

c(T − q − s)

(
max

i=1,··· ,d
sup

Y∈Rd×s

|Gi (Y)− Ĝi (Y) |
)( d∑

i=1

T∑
t=s+q+1

|ηt,i|

)

+
2Cψd2s

c(T − q − s)
sup

Y∈Rd×q

||F (Y)− F̂ (Y)||
d∑
i=1

T∑
t=s+q+1

|ηt,i|,

and

E

[
1

T − q − s

d∑
i=1

T∑
t=s+q+1

|ηt,i|

]
=

d∑
i=1

E [|η1,i|] <∞.

According to Assumption 2,

ψ
√
d

T − q − s

T∑
t=s+q+1

||∆t|| →p 0,

and the result is proven according to the continuity of P (·), and by setting ψ →∞.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 INTRODUCTION OF DATASETS AND HYPER-PARAMETERS

Our work evaluates the performance of models on six commonly used datasets named ETTh1, ETTh2,
Electricity, Traffic, Exchange, M4-Hourly when performing univariate probabilistic forecasting, and
on three datasets ETTh1, ETTh2, Electricity when performing multivariate probabilistic forecasting.
The names and characteristics of the datasets are summarized as in Table 3. Electricity, Traffic,
Exchange, M4-Hourly are available in GluonTS Alexandrov et al. (2020). We consider the ETTh1,
ETTh2, Electricity datasets as multiple separate univariate time series in univariate experiments, while
we consider them as single multivariate time series data in multivariate experiments.

Table 3: Overview of the datasets used in univariate time series experiments.

Dataset GluonTS Name Dimension Test Domain Freq. Median Time Steps

ETTh11 - 7 126 R+ H 17396
ETTh22 - 7 126 R+ H 17396
M4-Hourly3 m4_hourly 414 414 N H 960
Electricity4 electricity_nips 370 2590 R+ H 5833
Traffic5 traffic_nips 963 6741 (0, 1) H 4001
Exchange6 exchange_rate_nips 8 40 R+ D 6071

1https://github.com/zhouhaoyi/ETDataset/tree/main
2https://github.com/zhouhaoyi/ETDataset/tree/main
3https://github.com/Mcompetitions/M4-methods/tree/master/Dataset
4ttps://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
5https://zenodo.org/records/4656132
6https://github.com/laiguokun/multivariate-time-series-data
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For the experiment detail, we set the resample times 100 when computing the CRPS and MAEC
metrics. The context length and prediction length in conditional mean model follow the settings
in Kollovieh et al. (2023). In our work, for univariate time series data, we use the technique
mentioned in Remarks 1 and 2, and adopt a simple multilayer perceptron model (referred to as
“SimpleFeedForwardEstimator in the GluonTS package Alexandrov et al. (2020)) to model the
logarithm of the conditional volatilities. For multivariate time series, we use the VEC-LSTM model
to estimate the logarithm of conditional volatilities in the first experiment, and the TMDM model
in the second one. The context length of the conditional volatility model is selected based on the
autocorrelation coefficients plot (Figure 4) below. The prediction length in the conditional volatility
model is set to 1. All other hyperparameters are set to their default values in the GluonTS package.

Table 4: Hyperparameters of the Conditional Mean and Volatility model

Conditional Mean Model Conditional Volatility Model

Dataset Context Len. Predict Len. Context Len. Predict Len.

ETTh1 336 24 24 1
ETTh2 336 24 24 1
M4-Hourly 312 48 14 1
Electricity 336 24 48 1
Traffic 336 24 48 1
Exchange 360 30 100 1

(a) ETTh1 (b) ETTh2 (c) M4-Hourly

(d) Electricity (e) Traffic (f) Exchange

Figure 4: Autocorrelation coefficients plot of the logarithm of square fitted residuals.

B.2 METRICS OF THE EXPERIMENT

Continuous Ranked Probability Score (CRPS). The CRPS is a commonly used metric in proba-
bilistic forecasting, as demonstrated in Gneiting & Raftery (2007) and Kollovieh et al. (2023). It is
defined as the integral of the pinball loss over the interval [0, 1]:

CRPS(F−1, y) =

∫ 1

0

2Λκ(F
−1(κ), y)dκ, where Λκ(q, y) = (κ− 1y<q)× (y − q).

A forecasted quantile function F−1 with a small CRPS indicates good alignment with the ob-
servation y. We approximate the quantile function by sample quantiles at nine quantile levels
{10%, 20%, · · · , 90%}. These sample quantiles are estimated from 100 forecast samples.
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For multivariate time series, the CRPS is computed as the summation of the element-wise CRPS.

Mean Absolute Error of Coverage (MAEC). Suppose the prediction step is J, and the prediction
intervals are with endpoints uj ,vj ∈ Rd, where uj,i ≤ vj,i for i = 1, · · · , d, here j = 1, · · · , J.
The coverage probability we are interested in is the frequency

p̂(β) =
1

dJ

J∑
j=1

d∑
i=1

1uj,i≤xT+j,i≤vj,i
,

β here indicates the quantile level of the prediction intervals. Specifically, for univariate time series
(d = 1), the endpoints of prediction intervals are scalars, and the coverage probability becomes

p̂(β) =
1

J

J∑
j=1

1uj,1≤xT+j≤vj,1 .

We consider 9 quantile levels {β1, · · · , β9} = 10%, 20%, · · · , 90%, and the MAEC metric calculates
the mean absolute error between p̂(βs) and βs, i.e.,

MAEC =

9∑
s=1

|p̂(βs)− βs|.

A low MAEC indicates that the prediction intervals achieve the desired coverage probabilities in
general, thereby reflecting higher accuracy of prediction intervals.

Energy Score (ES). Introduced in Chung et al. (2024), ES is a metric to evaluate the performance of
a probabilistic forecasting method in capturing spatial dependence for multivariate data. For a future
time series data yj ∈ Rd, and a predictive distribution p̂j , we define the energy score as

ESj = Ex∼p̂j ||x− yj ||β2 −
1

2
Ex,x′∼p̂j ||x− x′||β2 ,

where x,x′ are independent sampled from p̂j . We calculate the ES as the average value

ES =
1

J

J∑
j=1

ESj .

Following Chung et al. (2024), we set β = 1.7. A smaller energy score indicates that the predictive
distribution is closer to the ground truth.

In addition to the probabilistic forecasting metrics, we evaluate the mean forecasting performance
of univariate time series through the metrics Normalized Deviation (ND) and normalized root mean
squared error (NRMSE), introduced as follows:

Normalized Deviation (ND). Suppose the future J observations are xT+1, · · · ,xT+J with corre-
sponding predictors x̂T+j , ND is defined by

ND =

∑J
j=1 |x̂T+j − xT+j |∑J

j=1 |xT+j |
,

indicating the absolute error normalized by the total absolute scale of the prediction time series. ND
is independent of the scale of the time series, making it suitable for comparison across different
datasets.

Normalized root mean squared error (NRMSE). With the notations in ND, the NRMSE is defined
by

RMSE

|x|
, where RMSE =

√√√√ 1

J

J∑
j=1

(x̂T+j − xT+j)2 and |x| = 1

J

J∑
j=1

|xT+j |.

Similar to ND, NRMSE is also independent of the scale of time series.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Mean forecasting performance. The interpretation of the values and the use of boldface are
the same as in Table 1.

Models Metrics ETTh1 ETTh2 Electricity Traffic Exchange M4-Hourly

DeepAR ND 0.225(0.045) 0.082(0.011) 0.104(0.001) 0.128(0.012) 0.019(0.002) 0.109(0.113)
NRMSE 0.417(0.063) 0.123(0.015) 0.760(0.010) 0.391(0.052) 0.029(0.002) 0.653(0.515)

DeepAR ND 0.219(0.018) 0.114(0.017) 0.086(0.002) 0.154(0.010) 0.013(0.001) 0.054(0.002)
+Ours NRMSE 0.408(0.026) 0.092(0.091) 0.625(0.066) 0.429(0.037) 0.020(0.001) 0.296(0.017)

DLinear ND 0.227(0.004) 0.086(0.011) 0.075(0.009) 0.161(0.002) 0.024(0.010) 0.057(0.006)
NRMSE 0.422(0.004) 0.126(0.012) 0.593(0.063) 0.407(0.002) 0.044(0.026) 0.323(0.050)

DLinear ND 0.243(0.011) 0.086(0.007) 0.067(0.000) 0.160(0.004) 0.012(0.002) 0.046(0.015)
+Ours NRMSE 0.452(0.016) 0.097(0.090) 0.538(0.017) 0.418(0.001) 0.020(0.003) 0.315(0.093)

PatchTST ND 0.212(0.003) 0.084(0.017) 0.078(0.004) 0.151(0.002) 0.017(0.005) 0.053(0.011)
NRMSE 0.402(0.001) 0.122(0.021) 0.635(0.020) 0.441(0.003) 0.024(0.005) 0.283(0.081)

PatchTST ND 0.247(0.059) 0.090(0.002) 0.080(0.003) 0.159(0.004) 0.015(0.002) 0.063(0.031)
+Ours NRMSE 0.450(0.095) 0.081(0.058) 0.656(0.058) 0.437(0.006) 0.023(0.004) 0.615(0.061)

TimeMixer ND 0.460(0.005) 0.120(0.004) 0.382(0.011) 0.498(0.004) 0.030(0.014) 0.142(0.012)
NRMSE 0.855(0.021) 0.182(0.009) 3.656(0.002) 0.764(0.003) 0.041(0.019) 0.825(0.083)

TimeMixer ND 0.461(0.021) 0.119(0.002) 0.379(0.007) 0.499(0.001) 0.015(0.001) 0.157(0.007)
+Ours NRMSE 0.909(0.084) 0.590(0.530) 3.599(0.051) 0.763(0.003) 0.028(0.001) 0.605(0.685)

B.3 ADDITIONAL EXPERIMENTAL RESULTS

Table 5 reports the performance of DualRes in mean forecasting, evaluated using the metrics ND
and NRMSE. Although the primary goal of DualRes is to improve probabilistic forecasting, the
framework also enhances mean forecasting performance and increases the stability of predictive
algorithms. We attribute this improvement to the iterative updates in equation 4 of Algorithm 2: since
F̂ is a nonlinear function, adding the residuals ζ∗

T+j and applying repeated function compositions
alter the distributions—and consequently the means—of the pseudo-samples at future steps.
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