

000 001 002 003 004 005 DUALRES: A RESAMPLING-BASED FRAMEWORK FOR 006 ENHANCING PROBABILISTIC FORECASTING 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Probabilistic forecasting of time series has gained increasing attention in practice due to the need for assessing risks and uncertainties in future observations. In this manuscript, we propose DualRes, a framework that improves the probabilistic forecasting performance of existing algorithms by incorporating conditional heteroskedasticity and residual distributional information. Specifically, during training, DualRes employs two separate models to learn the conditional mean and volatility of the time series, while during inference it generates pseudo-normalized residuals through resampling. DualRes requires only mean forecasts, so it offers substantial flexibility in the choice of forecasting algorithms—even algorithms originally designed for mean forecasting can be adapted to probabilistic forecasting. DualRes applies to both univariate and multivariate time series and remains robust under non-Gaussian errors with conditional heteroskedasticity. Numerical experiments on six real-world datasets demonstrate its good empirical performance in capturing distribution of future observations and producing accurate prediction intervals.

1 INTRODUCTION

Time series is a common data type in real-world applications such as finance, energy management, and weather forecasting. After collecting a sequence of time series data, this manuscript focuses on probabilistic forecasting, which aims to predict the probability distribution of future observations and thereby support risk assessing and decision-making, as discussed in Luo et al. (2018); Nguyen & Quanz (2021); Wu & Politis (2024); Zheng et al. (2025) and the references therein.

To our knowledge, two types of methods are commonly considered in probabilistic forecasting. The first type, such as the work of Kolloviev et al. (2023); Chen et al. (2024b;a); Tashiro et al. (2021); Zheng et al. (2025), leveraged diffusion process and generative model, like those of Song et al. (2020); Ho et al. (2020); Kolloviev et al. (2025), to perform probabilistic forecasting. The validity of such methods in general relied on the assumption of time series having Gaussian distribution. Another stream that addressed probabilistic forecasting problems involved adjusting the training processes. Notable examples include Le Guen & Thome (2020); Rasul et al. (2021b); Hasson et al. (2021); Bergsma et al. (2023); Ansari et al. (2024). A common issue of these methods is that the underlying mathematical models and mechanisms of their validity are not transparent and rigorous to practitioners compared to those of diffusion model-based approaches.

In this manuscript, motivated by recent advances in bootstrap and resampling methods for statistical inference and prediction in time series analysis Wu & Politis (2024; 2025); Zhang et al. (2024), we propose DualRes, a resampling-based framework for probabilistic forecasting of time series data. DualRes consists of three steps. First, we train a predictive model—such as those in Zeng et al. (2023); Lin et al. (2024)—to estimate the conditional mean of the time series, and compute fitted residuals as the difference between the observations and the predictive means. Second, we introduce another model to estimate the conditional volatility, and normalize the fitted residuals by dividing them by the predicted volatilities. Finally, we apply bootstrap algorithms (see Efron (1979)) to resample the normalized residuals, and combine the estimated conditional mean and volatility to generate predictive distributions of future observations. As demonstrated in Wu (1986); Stine (1985); Chwialkowski et al. (2014), a well-designed bootstrap algorithm can approximate the underlying probability distribution of future time series without imposing restrictive distributional

assumptions, such as Gaussianity. Thus, DualRes relaxes the reliance on Gaussian distributions of diffusion process-based methods.

In addition to relaxing the Gaussian assumption, DualRes offers several advantages. First, it is flexible in the choice of conditional mean and volatility models. As shown Section 4.1, by applying a logarithmic transformation to the squared residuals, DualRes requires only mean forecasts to perform probabilistic forecasting. This allows models originally designed for mean forecasting to be adapted for probabilistic forecasting. Second, DualRes explicitly accounts for conditional heteroskedasticity and non-Gaussianity, thereby improving the performance of probabilistic forecasting methods that ignore these features. Finally, as established in Theorem 1, DualRes incorporates spatial dependence by resampling residual vectors, making it adaptable to multivariate time series settings.

We summarize the advantages of the proposed method as follows.

- **No Gaussianity assumption:** Our work does not rely on maximizing likelihood functions, so the data distributions are not necessarily Gaussian.
- **Flexibility in selecting mean/volatility forecasting algorithms:** Implementation of our work only needs models generating mean forecasts, thus offering good flexibilities.
- **Theoretical justification:** The validity of our approach stems from its ability to simulate the underlying data-generating process of time series instead of a black-box model. Furthermore, under some conditions, the resampling mechanism is ensured to capture the underlying distribution of innovations.
- **Robustness to conditional heteroskedasticity and multivariate Settings:** DualRes is adaptable for conditional heteroskedastic time series, and it accounts for spatial dependence in predictions.

2 RELATED WORKS

This work is related to the area of probabilistic time series forecasting and resampling. We provide a brief introduction of the latest studies for each area. In addition, we introduce the setting of probabilistic forecasting to make the manuscript self-contained.

Probabilistic time series forecasting. Diffusion models and their variants, like those introduced in Ho et al. (2020), have been applied to both univariate and multivariate probabilistic forecasting of time series Rasul et al. (2021a;b); Li et al. (2022); Chen et al. (2024b;a); Kolloviev et al. (2025); Zheng et al. (2025). By modeling time series data as a Markov chain with Gaussian transitions, these methods offer good interpretability in the training and inference stage. The state space model is another frequently used model that offers good interpretability and empirical performance. Recent works such as Rangapuram et al. (2018); Li et al. (2019) leveraged deep learning to describe parameters in the state space model. We also refer Rangapuram et al. (2021); Feng et al. (2024); Ansari et al. (2024) for other deep learning-based approaches to probabilistic forecasting.

Resampling and bootstrap. Bootstrap algorithm is a well-recognized method to quantify uncertainty of statistics, and has been employed to various fields of machine learning, like those in White & White (2010); Austern & Syrgkanis (2021); Shin et al. (2021); Rohekar et al. (2018); Wang et al. (2024b); Yu et al. (2024).

3 RESAMPLING ASSISTED PROBABILISTIC FORECASTING (DUALRES)

Suppose we observe a time series $\mathbf{x}_{1:T} \in \mathbf{R}^d$, with $t = 1, \dots, T$ denoting the time steps. Our objective is to forecast the distributions of future observations \mathbf{x}_{T+j} for $j = 1, 2, \dots, J$. There have been discussions in the literature like Salinas et al. (2020) and Kolloviev et al. (2025). When further investigating these works, we find that they effectively incorporated the conditional mean and conditional volatility information in forecasting. However, these works commonly assigned a Gaussian distribution to the residuals, making the validity of forecasting algorithms rely on the residuals (and therefore, observations) obeying Gaussian distributions.

Our objective is to take into account the distributional information and avoid the assumption of Gaussian distribution in forecasting. To achieve the goal, we incorporate a resampling step into the

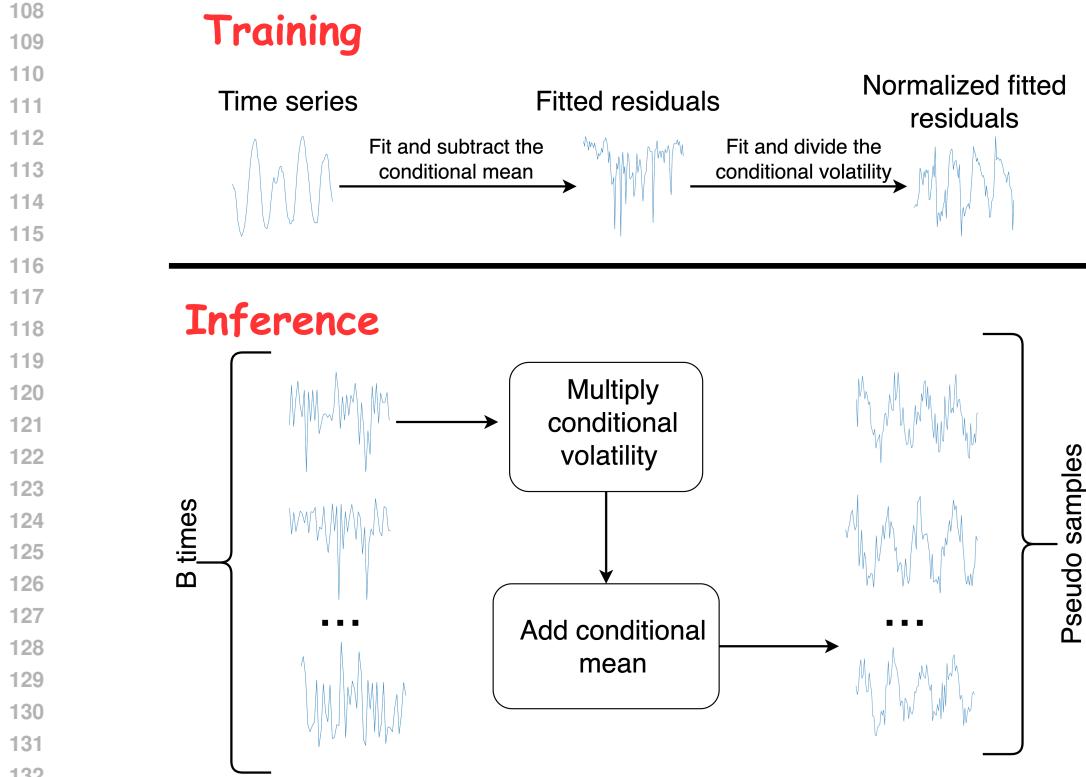


Figure 1: Structure of the training and inference stage.

forecasting algorithm 2. Resampling has been well employed in the literature such as Pan & Politis (2016), Wu & Politis (2025), and Zhang et al. (2025) in forecasting. However, to our knowledge, they did not account for the conditional heteroskedasticity (i.e., dependence of future variance on past observations), while our work allows for the existence of conditional heteroskedasticity in future observations.

3.1 TRAINING STAGE

Figure 1 presents an overview about the structure of the training and inference stage of the proposed method. Our work is motivated by a two-stage conditional heterogeneous vector autoregressive model

$$\mathbf{x}_t = F(\mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-q}) + \boldsymbol{\zeta}_t, \quad \text{and} \quad \boldsymbol{\zeta}_t = G(\boldsymbol{\zeta}_{t-1}, \dots, \boldsymbol{\zeta}_{t-s}) \boldsymbol{\eta}_t, \quad (1)$$

where

$$G(\boldsymbol{\zeta}_{t-1}, \dots, \boldsymbol{\zeta}_{t-s}) = \text{diag}(G_1(\boldsymbol{\zeta}_{t-1}, \dots, \boldsymbol{\zeta}_{t-s}), \dots, G_d(\boldsymbol{\zeta}_{t-1}, \dots, \boldsymbol{\zeta}_{t-s}))$$

is a $d \times d$ diagonal matrix, $F : \mathbf{R}^{d \times q} \rightarrow \mathbf{R}^d$, $G_i : \mathbf{R}^{d \times s} \rightarrow [0, \infty)$ are functions to learn, and $\boldsymbol{\eta}_t$ are independent of past observations \mathbf{x}_{-t} and $\boldsymbol{\zeta}_{-t}$, $\mathbf{E}[\boldsymbol{\eta}^{(t)}] = 0$, and $\boldsymbol{\eta}^{(t)}$ have identical distribution.

The functions F and G respectively controls the conditional mean and conditional volatility of time series data. Furthermore, such model offers a good property that the residual terms $\boldsymbol{\zeta}_t$ does not incur bias to the conditional mean F , which motivates the two-stage training procedure as in Algorithm 1. We prove this property in Section 4.

162

Algorithm 1 Training a heterogeneous vector autoregressive model

163

Require: Time series data $\{\mathbf{x}_t : t = 1, \dots, T\}$, lag q for the conditional mean model, and lag s for the conditional volatility model.

164

165

166

1: Train the conditional mean model \hat{F} and derive the fitted residuals

167

$$\hat{\zeta}_t = \mathbf{x}_t - \hat{F}(\mathbf{x}_{t-q}, \dots, \mathbf{x}_{t-1})$$

168

169

for $t = q + 1, \dots, T$.

170

171

2: Train the conditional volatility model \hat{G} with the fitted residuals $\hat{\zeta}_t, t = q + 1, \dots, T$. After that, derive the normalized fitted residuals

172

173

$$\hat{\eta}_t = \hat{G}^{-1}(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1}) \hat{\zeta}_t, \quad (2)$$

174

where $t = q + s + 1, \dots, T$.

175

176

177

178

Remark 1. Practitioners may resort to mean forecasting methods, such as Lin et al. (2024), to establish the model \hat{F} for the conditional mean function F in equation 1. Learning G , on the other hand, is not straightforward. After calculating $\hat{\zeta}_t$, this manuscript performs the transformation $\hat{\iota}_t = R(\hat{\zeta}_t)$ for $t = q + 1, \dots, T$, where $R : \mathbf{R}^d \rightarrow \mathbf{R}^d$ is a function of the form:

179

180

181

182

183

184

185

$$R(\mathbf{x}) = (\log(\mathbf{x}_1^2), \log(\mathbf{x}_2^2), \dots, \log(\mathbf{x}_d^2))^\top \quad \text{and} \quad \mathbf{x} \in \mathbf{R}^d. \quad (3)$$

186

187

188

We then use mean forecasting methods (e.g., those in Lin et al. (2024)) to learn $U_i = \log(G_i)$. We demonstrate in Section 4.1 that, despite taking logarithm transformations incur a constant bias when learning $\log(G_i)$, the constant bias will be self-eliminated during the normalization step equation 2 of Algorithm 1 and the sampling step equation 4 of the inference Algorithm 2. Consequently, the bias introduced during the training stage does not affect the prediction.

189

190

191

192

193

194

195

The motivation of the model equation 1 originates from the ARMA-GARCH model, like those in Ling & McAleer (2003), that adopted linear models for both F and G . The conditional heteroskedasticity considered in this manuscript associates the volatility with past observations, and is different from Ye et al. (2025), where the volatility was associated with exogenous features.

196

197

198

199

200

201

The flexibility of Algorithm 1 is reflected by its selection of models used to learn F and G —mean forecasting algorithms, such as those proposed in Zeng et al. (2023); Zhang & Yan (2023); Lin et al. (2024), among others—can be employed to fulfill this purpose.

202

203

204

205

206

3.2 INFERENCE STAGE

207

208

209

210

211

212

213

214

215

The intuition behind Algorithm 2 involves simulating the data generating process in equation 1. If \hat{F} and \hat{G} closely approximate the true conditional mean F and conditional volatilities G , then Theorem 1 in Section 4 guarantees that the distribution of the simulated normalized residuals η_j^* closely matches the distribution of the true normalized residuals η_j . Furthermore, the generation of \mathbf{x}_{T+j}^* follows the same autoregressive iteration as in equation 1. Therefore, under the assumption that equation 1 accurately characterizes the data generating process of \mathbf{x}_t , since the estimated conditional mean \hat{F} , conditional volatility \hat{G} , the distribution of pseudo-normalized residuals η_j^* , and the autoregressive iteration all provide good approximations to that of \mathbf{x}_t , the distribution of the pseudo-samples \mathbf{x}_{T+j}^* should be close to that of the actual future observations \mathbf{x}_{T+j} .

216 **Algorithm 2** Inference Stage

217 **Require:** Time series data $\mathbf{x}_{1:T}$, lag q for conditional mean, lag s for conditional volatility, prediction
 218 step J , resampling time B .

219 1: Derive the functions \hat{F} and \hat{G} , as well as the normalized fitted residuals $\hat{\eta}_t$ as in Algorithm 1.

220 2: **for** $b \leftarrow 1$ to B **do**

221 3: Sample η_j^* for $j = 1, \dots, J$ by drawing from $\hat{\eta}_{q+s+1}, \dots, \hat{\eta}_T$ with replacement.

222 4: Generate pseudo-samples $\mathbf{x}_{T+1}^*, \dots, \mathbf{x}_{T+j}^*$ using the following iteration:

223

$$\begin{aligned} \zeta_{T+j}^* &= \hat{G}(\hat{\zeta}_{T+j-s}^*, \dots, \hat{\zeta}_{T+j-1}^*) \eta_j^*, \\ \mathbf{x}_{T+j}^* &= \hat{F}(\mathbf{x}_{T+j-q}^*, \dots, \mathbf{x}_{T+j-1}^*) + \zeta_{T+j}^*, \end{aligned} \quad (4)$$

224 where $\mathbf{x}_{T+j-q}^* = \mathbf{x}_{T+j-q}$ and $\hat{\gamma}_{T+j-s}^* = \hat{\gamma}_{T+j-s}$ if $q, s \geq j$.

225 5: **end for**

226 6: For any measurable set $A \subset \mathbf{R}^{d \times J}$, we estimate the joint distribution of $\mathbf{x}_{(T+1):(T+J)}$ by the
 227 empirical measure $\frac{1}{B} \sum_{b=1}^B \mathbf{1}_{\mathbf{x}_{(T+1):(T+J)}^* \in A}$

232
 233 **Remark 2.** Practitioners may resort to Remark 1 to learn G . In such case, the value of
 234 $\hat{G}(\hat{\zeta}_{T+j-s}^*, \dots, \hat{\zeta}_{T+j-1}^*)$ can be derived through applying the learned autoregressive model to
 235 $\hat{\iota}_{T+j-s}^*, \dots, \hat{\iota}_{T+j-1}^*$, where $\hat{\iota}_k^* = R(\zeta_k^*)$.

236
 237

4 THEORETICAL JUSTIFICATION

238 The theoretical justification of DualRes is divided into two parts. First, we provide illustrations on
 239 why Algorithm 1 is capable of learning F and G . After that, we summarize in Theorem 1 that the
 240 distribution of the pseudo-normalized residuals η_j^* closely approximates that of the true normalized
 241 residuals η_j .

242
 243

4.1 FURTHER DISCUSSIONS ON SECTION 3

244 To illustrate why the two-stage procedure in Algorithm 1 learns F and G , from the tower property of
 245 conditional expectation,

$$\begin{aligned} \mathbb{E}[\zeta_t | \mathbf{x}_{(t-q):(t-1)}] &= \mathbb{E}[\mathbb{E}[G(\zeta_{t-1}, \dots, \zeta_{t-s}) \eta_t | \mathbf{x}_{(t-q):(t-1)}, \zeta_{(t-s):(t-1)}] | \mathbf{x}_{(t-q):(t-1)}] \\ &= \mathbb{E}[(G(\zeta_{t-1}, \dots, \zeta_{t-s}) \mathbb{E}\eta_t) | \mathbf{x}_{(t-q):(t-1)}] = 0. \end{aligned}$$

246 Therefore, when we train \hat{F} , the residuals ζ_t do not incur bias to F , making it possible for the
 247 estimator \hat{F} to closely approximate F . On the other hand, define the function R as in equation 3,
 248 define $\gamma_t = R(\zeta_t)$, then the i -th element of γ_t is

$$\gamma_{t,i} = \log(G_i^2(\zeta_{t-1}, \dots, \zeta_{t-s})) + \log(\eta_{t,i}^2). \quad (5)$$

249 Furthermore, by assuming that the functions $G_i^2(\cdot)$, $i = 1, \dots, d$, depend on $\zeta_{t-1}, \dots, \zeta_{t-s}$ only
 250 through their element-wise squares, and notice that $\zeta_{t,i}^2 = \exp(\gamma_{t,i})$, equation 5 implies that

$$\gamma_t = A(\gamma_{t-1}, \dots, \gamma_{t-s}) + \iota_t, \quad (6)$$

251 where $A : \mathbf{R}^{d \times s} \rightarrow \mathbf{R}^d$ is a function such that $A_i(\gamma_{t-1}, \dots, \gamma_{t-s}) = \log(G_i^2(\zeta_{t-1}, \dots, \zeta_{t-s})) +$
 252 $\mathbb{E}[\log(\eta_{t,i}^2)]$ and $\iota_{t,i} = \log(\eta_{t,i}^2) - \mathbb{E}[\log(\eta_{t,i}^2)]$. Therefore, the representation equation 6 allows
 253 the use of a mean-forecasting algorithm to learn B , which inevitably incurs a constant bias term
 254 $\mathbb{E}[\log(\eta_{t,i}^2)]$.

255 Fortunately, the constant bias does not affect the prediction as it self-eliminated during equation 2
 256 of Algorithm 1, which divides the fitted residuals $\hat{\zeta}_t$ by \hat{G} , and equation 4 of Algorithm 2, which
 257 multiplies the sampled η_j^* by \hat{G} .

258 We would like to stress that the assumption of G_i^2 depending on $\zeta_{t-1}, \dots, \zeta_{t-s}$ through their
 259 element-wise squares is common in the literature. For example, the ARMA-GARCH models in Ling

& McAleer (2003) leveraged this assumption. The advantage of this transformation is, by replacing γ_t with $\hat{\gamma}_t = R(\hat{\zeta}_t)$, $\hat{\gamma}_t$ approximately follows an additive autoregressive process equation 6, allowing the use of various conditional mean forecasting methods—such as those in Lin et al. (2024)—for estimating the function A in equation 6.

275 4.2 VALIDITY OF THE RESAMPLE PROCEDURE

277 While conditional mean and volatility information has been widely leveraged in various probabilistic
 278 forecasting algorithms, like Salinas et al. (2020); Zheng et al. (2025), the distributional information
 279 of residuals η_t has received comparatively less attention. Compared to directly assigning normal
 280 distribution to η_t , we introduce the resampling step equation 4 in Algorithm 2 to learn underlying
 281 distribution of η_t .

282 Furthermore, as illustrated in Section 3, the validity of Algorithm 2 comes from simulating the
 283 underlying data generating process of \mathbf{x}_t . Therefore, if model eq. equation 1 holds true and Algorithm
 284 1 generates good estimators for F and G (up to a constant scale), the validity of Algorithm 2 is
 285 achieved provided that the empirical process of the vector $\hat{\eta}_t$ —characterized by the probability
 286 measure defined by the following joint cumulative distribution function (CDF in abbreviation)

$$287 \hat{P}(\mathbf{y}) = \frac{1}{T - q - s} \sum_{t=s+q+1}^T \mathbf{1}_{\hat{\eta}_t \leq \mathbf{y}} \quad (7)$$

290 where $\mathbf{1}_{\hat{\eta}_t \leq \mathbf{y}}$ denotes for $\prod_{i=1}^d \mathbf{1}_{\hat{\eta}_{t,i} \leq y_i}$, converges to the distributions of $\eta^{(t)}$. Theorem 1 provides a
 291 theoretical justification for this claim.

292 **Theorem 1.** *Suppose $\eta_t, t = 1, 2, \dots$, are independent and identical distributed. In addition,
 293 suppose conditions detailed in Section A of Appendix hold true. Then we have*

$$294 \sup_{\mathbf{y} \in \mathbf{R}^d} |\hat{P}(\mathbf{y}) - P(\mathbf{y})| \rightarrow_p 0, \quad (8)$$

295 where \rightarrow_p denotes convergence in probability, $P(\cdot)$ denotes the CDF of η_t , and the convergence is
 296 with respect to the sample size $T \rightarrow \infty$.

300 *Proof.* Postponed to Section A in Appendix. □

302 Theorem 1 guarantees that the distribution of the resampled normalized residuals $\eta_{t,i}^*$ in Algorithm 2
 303 matches that of the true normalized residuals $\eta_{t,i}^*$. As a result, Algorithm 2 effectively captures the
 304 distributional information of $\eta_{t,i}^*$.

305 **Remark 3.** *According to Politis et al. (1999), sampling with replacement from $\hat{\eta}_t$ is equivalent to
 306 drawing from the distribution with CDF $\hat{P}(\cdot)$ as defined in e.g. equation 7. Therefore, the distribution
 307 of η_i^* is guaranteed to match the distribution of η_i once e.g. equation 8 is satisfied.*

310 5 NUMERICAL EXPERIMENTS

312 This section demonstrates the effectiveness of DualRes as a boosting algorithm for enhancing the
 313 performance of existing methods in both univariate and multivariate probabilistic forecasting. Due to
 314 the space limitations, the detailed experimental setup and additional experimental results—including
 315 hyperparameter choices, introduction of datasets and evaluation metrics, and demonstration of mean
 316 forecasting performance—are deferred to Section B of the Appendix.

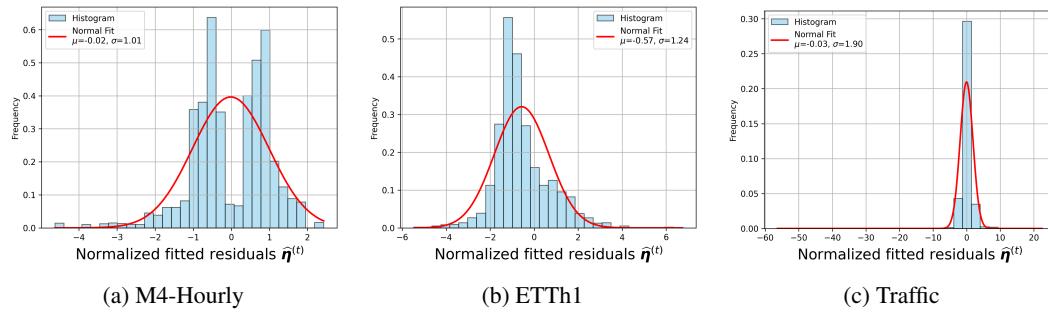
317 5.1 UNIVARIATE PROBABILISTIC FORECASTING

319 **Dataset and experimental settings.** We run the experiments on six real-world commonly used time
 320 series dataset, respectively named *ETTh1*, *ETTh2*, *Electricity*, *Traffic*, *Exchange*, and *M4-Hourly*. The
 321 details about these datasets are introduced in Section B.1 of the Appendix.

323 The evaluation metrics are CRPS and MAEC (mean absolute error of coverage). A detailed introduction
 324 to these metrics is provided in Section B.2 of the Appendix. In addition to probabilistic

324
 325 Table 1: Numerical experiment results on univariate time series datasets. The numbers in brackets
 326 indicate 95% confidence intervals, computed from five independent repetitions of each experiment.
 327 In the ablation studies, the better result is highlighted in bold, corresponding to smaller metric values,
 328 or, when metrics are equal, to narrower confidence intervals.

Models	Metrics	ETTh1	ETTh2	Electricity	Traffic	Exchange	M4-Hourly
DeepAR	CRPS	0.178(0.031)	0.076(0.015)	0.082(0.001)	0.107(0.007)	0.015(0.001)	0.087(0.092)
	MAEC	0.411(0.082)	0.394(0.148)	0.454(0.001)	0.443(0.035)	0.498(0.003)	0.411(0.099)
DeepAR +Ours	CRPS	0.176(0.011)	0.085(0.002)	0.071(0.001)	0.115(0.003)	0.010(0.001)	0.042(0.003)
	MAEC	0.408(0.018)	0.393(0.021)	0.439(0.006)	0.471(0.013)	0.466(0.026)	0.378(0.003)
DLinear	CRPS	0.185(0.001)	0.075(0.003)	0.061(0.007)	0.131(0.002)	0.019(0.008)	0.048(0.005)
	MAEC	0.414(0.014)	0.462(0.018)	0.382(0.016)	0.433(0.012)	0.447(0.024)	0.373(0.020)
DLinear +Ours	CRPS	0.196(0.008)	0.070(0.004)	0.054(0.001)	0.133(0.002)	0.010(0.001)	0.040(0.012)
	MAEC	0.388(0.013)	0.395(0.069)	0.367(0.007)	0.393(0.003)	0.465(0.011)	0.409(0.016)
PatchTST	CRPS	0.169(0.005)	0.066(0.010)	0.063(0.003)	0.124(0.001)	0.013(0.003)	0.041(0.006)
	MAEC	0.431(0.013)	0.406(0.076)	0.375(0.017)	0.435(0.013)	0.475(0.037)	0.386(0.056)
PatchTST +Ours	CRPS	0.200(0.043)	0.073(0.001)	0.063(0.001)	0.134(0.003)	0.012(0.002)	0.056(0.024)
	MAEC	0.403(0.028)	0.399(0.089)	0.372(0.015)	0.413(0.002)	0.473(0.022)	0.416(0.027)
TimeMixer	CRPS	0.365(0.005)	0.095(0.004)	0.273(0.006)	0.384(0.001)	0.027(0.008)	0.107(0.012)
	MAEC	0.415(0.006)	0.383(0.004)	0.427(0.001)	0.411(0.024)	0.500(0.000)	0.441(0.041)
TimeMixer +Ours	CRPS	0.348(0.018)	0.094(0.001)	0.237(0.002)	0.356(0.001)	0.014(0.001)	0.144(0.018)
	MAEC	0.396(0.014)	0.429(0.006)	0.400(0.001)	0.410(0.003)	0.421(0.076)	0.370(0.008)



352 Figure 2: Histograms of the normalized fitted residuals $\hat{\eta}_t$ across various datasets. The red lines here
 353 represent the Gaussian density curves based on the mean and standard deviation of $\hat{\eta}_t$.
 354

355 forecasting, Section B.3 of the Appendix evaluates the mean forecasting performance of various
 356 algorithms with and without adding DualRes. All experimental results are based on five repetitions,
 357 and we demonstrate the 95% confidence intervals apart from the average metrics.
 358

359 **Results of univariate probabilistic forecasting.** The performance of DualRes is evaluated through
 360 ablation studies in Table 1, where the baseline models are *DeepAR* Salinas *et al.* (2020), *DLinear* Zeng
 361 *et al.* (2023), *PatchTST* Nie *et al.* (2023), and *TimeMixer* Wang *et al.* (2024a). *DLinear*, *PatchTST*,
 362 and *TimeMixer* were originally developed for mean forecasting, and their distributional indices are
 363 obtained through fitting a t-distribution to the predictive values, which is the default operation in
 364 probabilistic forecasting frameworks such as Alexandrov *et al.* (2020).
 365

366 As demonstrated in Table 1, incorporating information on conditional volatility and the distribution of
 367 normalized residuals leads to substantial improvements in both CRPS and MAEC across forecasting
 368 algorithms—for example, the average CRPS of *TimeMixer* on the Exchange dataset decreases from
 369 0.027 to 0.014 after applying DualRes. In addition, DualRes enhances the stability of forecasting
 370 algorithms, as reflected in achieving narrower confidence intervals.
 371

372 the CRPS and MAEC of various forecasting algorithms have significant decreases after incorporating
 373 information of conditional volatility and the distribution of normalized residuals in forecasting—for
 374 example, the average CRPS of *TimeMixer* when applied to Exchange data decreases from 0.027
 375 to 0.014. Furthermore, DualRes increases the stability of the prediction algorithms in the sense of
 376 reaching narrow confidence intervals.
 377

378 We attribute the performance improvement to DualRes’s ability to capture information about both
 379 heterogeneity and the normalized residuals distribution. As shown in Figure 3, the widths of the
 380 prediction intervals, which are controlled by conditional volatility, vary substantially across different
 381

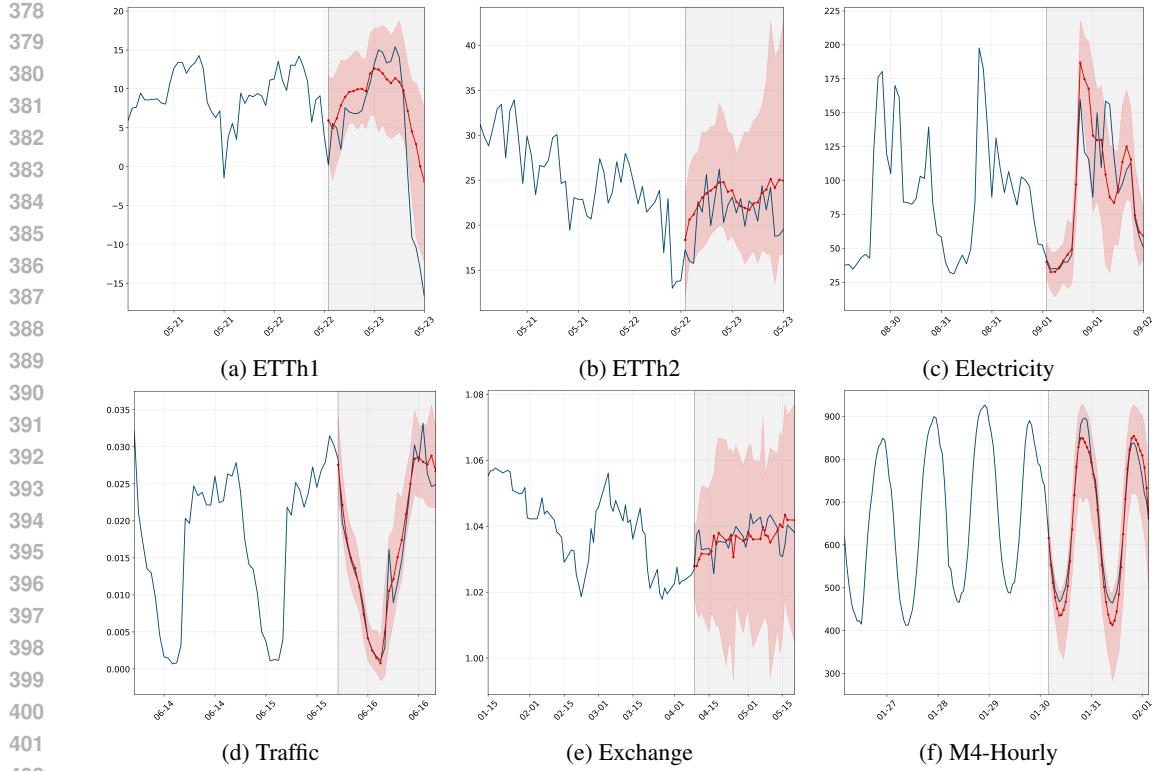


Figure 3: Prediction intervals generated by predictive algorithms incorporating DualRes. Blue lines, red lines, and red shadow areas respectively represent the true values, the predictive means, and the 90% prediction intervals.

prediction steps. By explicitly accounting for the volatility, DualRes enhances the performance of forecasting algorithms.

In addition to volatility, Figure 2 shows that the distribution of normalized fitted residuals rarely follows a parametric family, such as the normal or t -distribution, in real-world datasets. In practice, these distributions may exhibit multimodality or heavy tails. DualRes avoids the need to impose a parametric assumption—such as those in Zheng et al. (2025)—by introducing a resampling step (Line 3 of Algorithm 2). This design also contributes to its performance gains.

5.2 MULTIVARIATE PROBABILISTIC FORECASTING

Dataset and experimental settings. We conduct experiments on three real-world datasets: *ETTh1*, *ETTh2*, *Electricity*, with a detailed introduction in Section B.1 of the Appendix.

Compared to univariate time series forecasting, multivariate time series data can exhibit spatial dependence, making probabilistic forecasting algorithms essential for capturing spatial dependence. Accordingly, in addition to CRPS and MAEC, we also evaluate the performance of probabilistic forecasting algorithms using the energy score (ES) Chung et al. (2024), with further details provided in Section B.2 of the Appendix.

Results of multivariate probabilistic forecasting. The performance of DualRes is evaluated through ablation studies in Table 2, using baseline models *VEC-LSTM* Salinas et al. (2019) and *TMDM* Li et al. (2024). *VEC-LSTM*, also known as the DeepVAR model, is an RNN-based time series model with a Gaussian copula process output. *TMDM* is a Transformer-based diffusion model. Both algorithms were originally developed for probabilistic forecasting of multivariate time series.

According to Table 2, DualRes achieves improvements across all metrics for *VEC-LSTM* and for the majority of metrics in *TMDM*. For example, on the *Electricity* dataset, the CRPS of *TMDM* decreases from 0.655 to 0.292 after incorporating DualRes. Apart from accounting for conditional

432 Table 2: Numerical experiment results on multivariate time series datasets. The interpretation of the
 433 values and the use of boldface are the same as in Table 1.

435 Dataset	ETTh1			ETTh2			Electricity		
	436 Metrics	CRPS	MAEC	ES	CRPS	MAEC	ES	CRPS	MAEC
437 VEC-LSTM	0.184(0.003)	0.310(0.015)	3.873(0.157)	0.095(0.002)	0.243(0.014)	6.423(0.196)	0.441(0.014)	0.385(0.072)	48684(3323)
+Ours	0.182(0.005)	0.294(0.001)	3.503(0.085)	0.087(0.001)	0.241(0.016)	6.067(0.190)	0.301(0.013)	0.251(0.009)	41398(3744)
438 TMDM	0.456(0.023)	0.268(0.052)	13.344(0.163)	0.092(0.008)	0.318(0.123)	6.933(0.393)	0.655(0.275)	0.458(0.082)	87761(6179)
+Ours	0.397(0.040)	0.458(0.082)	11.341(0.372)	0.092(0.004)	0.306(0.023)	7.326(0.498)	0.292(0.018)	0.227(0.009)	37322(2438)

440
 441 heteroskedasticity and residual distributional information, the improvement in the energy score highlights
 442 DualRess ability to capture spatial dependence in multivariate time series. This effectiveness
 443 stems from resampling entire normalized residual vectors $\hat{\eta}_t$, rather than their individual components.
 444

445 6 DISCUSSION

446 Focusing on probabilistic time series forecasting, this manuscript proposes the DualRes framework,
 447 which extracts conditional volatility information from fitted residuals and models the distribution
 448 of normalized residuals through resampling. These operations make DualRes robust to conditional
 449 heteroskedasticity and free from restrictive parametric assumptions, such as Gaussianity. We further
 450 provide theoretical guarantees for the validity of the proposed training and inference procedures.
 451

452 In addition, as DualRes requires only conditional mean forecasts, it offers substantial flexibility in
 453 the choice of models for both the conditional mean and volatility. As demonstrated in the numerical
 454 experiments, even models originally designed for mean forecasting can be adapted for probabilistic
 455 forecasting, leading to significant performance gains.

456 Our work highlights the importance of incorporating the distribution of normalized residuals—beyond
 457 conditional mean and volatility—in probabilistic forecasting. Since residuals in real-world time series
 458 often deviate from parametric distributions, introducing a resampling step enables greater flexibility
 459 when addressing the underlying randomness in the data.

460 **Limitations and Future Work.** One main limitation of our work lies in the computational complexity
 461 of the algorithm. Concerning this, one potential future direction of this work involves leveraging
 462 advanced subsampling techniques, like those in McElroy & Politis (2024), to decrease computational
 463 complexity.

464 Another limitation is that the validity of Theorem 1 depends on the conditional mean and volatility
 465 models accurately reflecting the true conditional mean and volatility functions. As a result, if future
 466 observations have a distributional shift, the proposed method may no longer be reliable.

469 REFERENCES

470 Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
 471 Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
 472 Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang Wang. Gluonts: Probabilistic and neural
 473 time series modeling in python. *Journal of Machine Learning Research*, 21(116):1–6, 2020. URL
 474 <http://jmlr.org/papers/v21/19-820.html>.

475 Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
 476 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper
 477 Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon
 478 Wilson, Michael Bohlke-Schneider, and Bernie Wang. Chronos: Learning the language of time
 479 series. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=gerNCVqqtR>. Expert Certification.

480 Morgane Austern and Vasilis Syrgkanis. Asymptotics of the bootstrap via stability
 481 with applications to inference with model selection. In M. Ranzato, A. Beygelzimer,
 482 Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information
 483 Processing Systems*, volume 34, pp. 10705–10717. Curran Associates, Inc., 2021.

2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/58b7483ba899e0ce4d97ac5eecf6fa99-Paper.pdf.

Shane Bergsma, Tim Zeyl, and Lei Guo. Suranets: Sub-series autoregressive networks for long-sequence, probabilistic forecasting. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 30518–30533. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/6171c9e600432a42688ad61a525951bf-Paper-Conference.pdf.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael Samuel Albergo, Nicholas Matthew Boffi, and Eric Vanden-Eijnden. Probabilistic forecasting with stochastic interpolants and föllmer processes. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 6728–6756. PMLR, 21–27 Jul 2024a. URL <https://proceedings.mlr.press/v235/chen24n.html>.

Yu Chen, Marin Biloš, Sarthak Mittal, Wei Deng, Kashif Rasul, and Anderson Schneider. Recurrent interpolants for probabilistic time series prediction. *arXiv preprint arXiv:2409.11684*, 2024b.

Youngseog Chung, Ian Char, and Jeff Schneider. Sampling-based multi-dimensional recalibration. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=iJWeK2snMH>.

Kacper Chwialkowski, Dino Sejdinovic, and Arthur Gretton. A wild bootstrap for degenerate kernel tests. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/file/4e382cb49370f64415df2672b19fb1f2-Paper.pdf.

B. Efron. Bootstrap Methods: Another Look at the Jackknife. *The Annals of Statistics*, 7(1):1 – 26, 1979. doi: 10.1214/aos/1176344552. URL <https://doi.org/10.1214/aos/1176344552>.

Shibo Feng, Chunyan Miao, Ke Xu, Jiaxiang Wu, Pengcheng Wu, Yang Zhang, and Peilin Zhao. Multi-scale attention flow for probabilistic time series forecasting. *IEEE Trans. on Knowl. and Data Eng.*, 36(5):20562068, May 2024. ISSN 1041-4347. doi: 10.1109/TKDE.2023.3319672. URL <https://doi.org/10.1109/TKDE.2023.3319672>.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. *Journal of the American Statistical Association*, 102(477):359–378, 2007. doi: 10.1198/016214506000001437. URL <https://doi.org/10.1198/016214506000001437>.

Hilaf Hasson, Bernie Wang, Tim Januschowski, and Jan Gasthaus. Probabilistic forecasting: A level-set approach. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 6404–6416. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/32b127307a606effdcc8e51f60a45922-Paper.pdf.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and Yuyang (Bernie) Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic time series forecasting. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 28341–28364. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/5a1a10c2c2c9b9af1514687bc24b8f3d-Paper-Conference.pdf.

540 Marcel Kolloviev, Marten Lienen, David Lüdke, Leo Schwinn, and Stephan Günnemann. Flow
 541 matching with gaussian process priors for probabilistic time series forecasting. In *The Thirteenth*
 542 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=uxVBbSlKQ4>.

543

544 Vincent Le Guen and Nicolas Thome. Probabilistic time series forecasting with shape and tem-
 545 poral diversity. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
 546 *Advances in Neural Information Processing Systems*, volume 33, pp. 4427–4440. Curran Asso-
 547 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/2f2b265625d76a6704b08093c652fd79-Paper.pdf.

548

549

550 Longyuan Li, Junchi Yan, Xiaokang Yang, and Yaohui Jin. Learning interpretable deep state
 551 space model for probabilistic time series forecasting. In *Proceedings of the 28th International*
 552 *Joint Conference on Artificial Intelligence*, IJCAI’19, pp. 29012908. AAAI Press, 2019. ISBN
 553 9780999241141.

554

555 Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series fore-
 556 casting with diffusion, denoise, and disentanglement. In S. Koyejo, S. Mohamed,
 557 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-*
 558 *mation Processing Systems*, volume 35, pp. 23009–23022. Curran Associates, Inc.,
 559 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/91a85f3fb8f570e6be52b333b5ab017a-Paper-Conference.pdf.

560

561 Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, baolin sun, and Mingyuan Zhou. Transformer-
 562 modulated diffusion models for probabilistic multivariate time series forecasting. In *The Twelfth*
 563 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=qae04YACHs>.

564

565 Shengsheng Lin, Weiwei Lin, Xinyi HU, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
 566 Enhancing time series forecasting through modeling periodic patterns. In *The Thirty-eighth Annual*
 567 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=clBiQUGj4w>.

568

569 Shiqing Ling and Michael McAleer. Asymptotic theory for a vector arma-garch model. *Econometric*
 570 *Theory*, 19(2):280310, 2003. doi: 10.1017/S0266466603192092.

571

572 Rui Luo, Weinan Zhang, Xiaojun Xu, and Jun Wang. A neural stochastic volatility model. *Proceedings*
 573 *of the AAAI Conference on Artificial Intelligence*, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.12124.
 574 URL <https://ojs.aaai.org/index.php/AAAI/article/view/12124>.

575

576 Tucker McElroy and Dimitris N Politis. Skip sampling: subsampling in the frequency domain.
 577 *Biometrika*, 111(4):1241–1256, 08 2024. ISSN 1464-3510. doi: 10.1093/biomet/asae039. URL
 578 <https://doi.org/10.1093/biomet/asae039>.

579

580 Nam Nguyen and Brian Quanz. Temporal latent auto-encoder: A method for probabilistic multivariate
 581 time series forecasting. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(10):
 582 9117–9125, May 2021. doi: 10.1609/aaai.v35i10.17101. URL <https://ojs.aaai.org/index.php/AAAI/article/view/17101>.

583

584 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 585 64 words: Long-term forecasting with transformers. In *The Eleventh International Confer-*
 586 *ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Jbdc0vTOcol>.

587

588 Li Pan and Dimitris N. Politis. Bootstrap prediction intervals for linear, nonlinear and nonparametric
 589 autoregressions. *Journal of Statistical Planning and Inference*, 177:1–27, 2016. ISSN 0378-3758.
 590 doi: <https://doi.org/10.1016/j.jspi.2014.10.003>. URL <https://www.sciencedirect.com/science/article/pii/S037837581400175X>.

591

592 Dimitris N. Politis, Joseph P. Romano, and Michael Wolf. *Subsampling*. Springer Series in Statistics.
 593 Springer-Verlag, New York, 1999. ISBN 0-387-98854-8. doi: 10.1007/978-1-4612-1554-7. URL
 594 <https://doi.org/10.1007/978-1-4612-1554-7>.

594 Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang,
 595 and Tim Januschowski. Deep state space models for time series forecasting. In S. Ben-
 596 gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
 597 *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 598 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf.

600 Syama Sundar Rangapuram, Lucien D Werner, Konstantinos Benidis, Pedro Mercado, Jan Gasthaus,
 601 and Tim Januschowski. End-to-end learning of coherent probabilistic forecasts for hierarchical
 602 time series. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International
 603 Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp.
 604 8832–8843. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/rangapuram21a.html>.

606 Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
 607 diffusion models for multivariate probabilistic time series forecasting. In Marina Meila and Tong
 608 Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139
 609 of *Proceedings of Machine Learning Research*, pp. 8857–8868. PMLR, 18–24 Jul 2021a. URL
 610 <https://proceedings.mlr.press/v139/rasul21a.html>.

612 Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs M Bergmann, and Roland Vollgraf.
 613 Multivariate probabilistic time series forecasting via conditioned normalizing flows. In *Interna-
 614 tional Conference on Learning Representations*, 2021b. URL <https://openreview.net/forum?id=WIGQBFuVRv>.

616 Raanan Y. Rohekar, Yaniv Gurwicz, Shami Nisimov, Guy Koren, and Gal Novik. Bayesian structure
 617 learning by recursive bootstrap. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
 618 Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31.
 619 Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/11e2ad6bf99300cd3808bb105b55d4b8-Paper.pdf.

622 David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. *High-
 623 dimensional multivariate forecasting with low-rank Gaussian copula processes*. Curran Associates
 624 Inc., Red Hook, NY, USA, 2019.

625 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecast-
 626 ing with autoregressive recurrent networks. *International Journal of Forecasting*, 36(3):1181–1191,
 627 2020. ISSN 0169-2070. doi: <https://doi.org/10.1016/j.ijforecast.2019.07.001>. URL <https://www.sciencedirect.com/science/article/pii/S0169207019301888>.

629 Olimjon Shukurovich Sharipov. *Glivenko-Cantelli Theorems*, pp. 612–614. Springer Berlin Heidel-
 630 berg, Berlin, Heidelberg, 2011. ISBN 978-3-642-04898-2. doi: 10.1007/978-3-642-04898-2_280.
 631 URL https://doi.org/10.1007/978-3-642-04898-2_280.

633 Minsuk Shin, Hyungjoo Cho, Hyun-seok Min, and Sungbin Lim. Neural bootstrapper. In
 634 M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Ad-
 635 vances in Neural Information Processing Systems*, volume 34, pp. 16596–16609. Curran Asso-
 636 ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/8abfe8ac9ec214d68541fc888c0b4c3-Paper.pdf.

638 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 639 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 640 arXiv:2011.13456*, 2020.

641 Robert A. Stine. Bootstrap prediction intervals for regression. *Journal of the American Statistical
 642 Association*, 80(392):1026–1031, 1985. ISSN 01621459. URL <http://www.jstor.org/stable/2288570>.

645 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csd: conditional score-based
 646 diffusion models for probabilistic time series imputation. In *Proceedings of the 35th International
 647 Conference on Neural Information Processing Systems*, NIPS ’21, Red Hook, NY, USA, 2021.
 Curran Associates Inc. ISBN 9781713845393.

648 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 649 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
 650 *International Conference on Learning Representations (ICLR)*, 2024a.

651
 652 Yaoming Wang, Jin Li, Wenrui Dai, Bowen Shi, Xiaopeng Zhang, Chenglin Li, and Hongkai Xiong.
 653 Bootstrap AutoEncoders with contrastive paradigm for self-supervised gaze estimation. In Ruslan
 654 Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
 655 Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*,
 656 volume 235 of *Proceedings of Machine Learning Research*, pp. 50794–50806. PMLR, 21–27 Jul
 657 2024b. URL <https://proceedings.mlr.press/v235/wang24ah.html>.

658 Martha White and Adam White. Interval estimation for reinforcement-learning algorithms in
 659 continuous-state domains. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Cu-
 660 lotta (eds.), *Advances in Neural Information Processing Systems*, volume 23. Curran Asso-
 661 ciates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/13f3cf8c531952d72e5847c4183e6910-Paper.pdf.

662
 663 C. F. J. Wu. Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis. *The
 664 Annals of Statistics*, 14(4):1261 – 1295, 1986. doi: 10.1214/aos/1176350142. URL <https://doi.org/10.1214/aos/1176350142>.

665
 666 Kejin Wu and Dimitris N. Politis. Bootstrap prediction inference of nonlinear autoregressive models.
 667 *Journal of Time Series Analysis*, 45(5):800–822, 2024. doi: <https://doi.org/10.1111/jtsa.12739>.
 668 URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12739>.

669
 670 Kejin Wu and Dimitris N. Politis. Scalable subsampling inference for deep neural networks. *ACM /
 671 IMS J. Data Sci.*, January 2025. doi: 10.1145/3711709. URL <https://doi.org/10.1145/3711709>. Just Accepted.

672
 673 Mengyu Xu, Danna Zhang, and Wei Biao Wu. Pearsons chi-squared statistics: approximation theory
 674 and beyond. *Biometrika*, 106(3):716–723, 04 2019. ISSN 0006-3444. doi: 10.1093/biomet/asz020.
 675 URL <https://doi.org/10.1093/biomet/asz020>.

676
 677 Weiwei Ye, Zhuopeng Xu, and Ning Gui. Non-stationary diffusion for probabilistic time series
 678 forecasting, 2025. URL <https://arxiv.org/abs/2505.04278>.

679
 680 Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
 681 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
 682 large language models. In *The Twelfth International Conference on Learning Representations*,
 683 2024. URL <https://openreview.net/forum?id=N8N0hgNDrt>.

684
 685 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 686 forecasting? *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(9):11121–11128,
 687 Jun. 2023. doi: 10.1609/aaai.v37i9.26317. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26317>.

688
 689 Yaoli Zhang, Ye Tian, and Yunyi Zhang. Leveraging temporal dependency in probabilistic electric
 690 load forecasting. *Applied Soft Computing*, 169:112611, 2025. ISSN 1568-4946. doi: <https://doi.org/10.1016/j.asoc.2024.112611>. URL <https://www.sciencedirect.com/science/article/pii/S1568494624013851>.

691
 692 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 693 for multivariate time series forecasting. In *The Eleventh International Conference on Learning
 694 Representations*, 2023. URL <https://openreview.net/forum?id=vSVLM2j9eie>.

695
 696 Yunyi Zhang, Efstathios Paparoditis, and Dimitris N. Politis. Simultaneous statistical inference for
 697 second order parameters of time series under weak conditions. *The Annals of Statistics*, 52(5):2375 –
 698 2399, 2024. doi: 10.1214/24-AOS2439. URL <https://doi.org/10.1214/24-AOS2439>.

699
 700 Ronghua Zheng, Hanru Bai, and Weiyang Ding. KooNPro: A variance-aware koopman probabilistic
 701 model enhanced by neural process for time series forecasting. In *The Thirteenth International
 702 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=5oSUGTzs8Y>.

702 A PROOF OF THEOREM 1
703704 To validate Theorem 1, we propose the following technical assumptions.
705706 **Assumptions:**707 1. $\eta_t, t = 1, 2, \dots$, are independent and identically distributed with continuous cumulative distribution function $P(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}$. Suppose $\mathbf{E}[\eta_1] = 0$ and $\text{Var}(\eta_{1,i}) \leq C$ for a constant C and any $i = 1, \dots, d$.
708709 2. For a vector $\mathbf{x} \in \mathbb{R}^d$, define $\|\mathbf{x}\|$ as its L^2 norm. We suppose the conditional mean and volatility
710 function estimator satisfy
711

712
$$\sup_{\mathbf{Y} \in \mathbb{R}^{d \times q}} \|\widehat{F}(\mathbf{Y}) - F(\mathbf{Y})\| \rightarrow_p 0 \quad \text{and} \quad \sup_{\mathbf{Y} \in \mathbb{R}^{d \times s}} |\widehat{G}_i(\mathbf{Y}) - G_i(\mathbf{Y})| \rightarrow_p 0,$$

713

714 where $i = 1, 2, \dots, d$, and \rightarrow_p denotes convergence in probability.
715716 3. Suppose $G_i(\cdot)$ is continuous differentiable with bounded gradient, i.e.,
717

718
$$\sup_{\mathbf{Y} \in \mathbb{R}^{d \times s}} \|\nabla_{\mathbf{Y}} G_i(\mathbf{Y})\| < \infty$$

719

720 for $i = 1, \dots, d$. Furthermore, suppose there exists a constant $c > 0$ such that
721

722
$$\inf_{\mathbf{Y} \in \mathbb{R}^{d \times s}} |G_i(\mathbf{Y})| > c$$

723

724 for $i = 1, \dots, d$.
725726 With those assumptions, we demonstrate that Theorem 1 holds true.
727728 *Proof of Theorem 1.* For any vector $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_d)^\top \in \mathbb{R}^d$, define
729

730
$$\tilde{P}(\mathbf{y}) = \frac{1}{T - q - s} \sum_{t=s+q+1}^T \mathbf{1}_{\eta_t \leq \mathbf{y}}.$$

731

732 From Glivenko-Cantelli Theorem, like Theorem 4 of Sharipov (2011), we have
733

734
$$\sup_{\mathbf{y} \in \mathbb{R}^d} |\tilde{G}(\mathbf{y}) - G(\mathbf{y})| \rightarrow_p 0.$$

735

736 On the other hand, define the functions
737

738
$$g_0(u) = (1 - \min(1, \max(u, 0))^4)^4 \quad \text{and} \quad g_{\psi,t}(x) = g_0(\psi(x - t)),$$

739

740 as demonstrated in Xu et al. (2019), which satisfy the following property: $g_0(\cdot)$ is third-order
741 continuous differentiable, $g_0(u) = 1$ if $u \leq 0$, $g_0(u) = 0$ if $u \geq 1$, and
742

743
$$g_* = \sup_{u \in \mathbf{R}} \{|g'_0(u)| + |g''_0(u)| + |g'''_0(u)|\} < \infty, \quad \mathbf{1}_{x \leq t} \leq g_{\psi,t}(x) \leq \mathbf{1}_{x \leq t + \psi^{-1}}, \quad \sup_{x,t \in \mathbf{R}} |g'_{\psi,t}(x)| \leq g_* \psi.$$

744

745 Define
746

747
$$\begin{aligned} \Delta_t &= \widehat{\eta}_t - \eta_t \\ &= \widehat{G}^{-1} \left(\widehat{\zeta}_{t-s}, \dots, \widehat{\zeta}_{t-1} \right) \left(F(\mathbf{x}_{t-q}, \dots, \mathbf{x}_{t-1}) - \widehat{F}(\mathbf{x}_{t-q}, \dots, \mathbf{x}_{t-1}) \right) \\ &\quad + \widehat{G}^{-1} \left(\widehat{\zeta}_{t-s}, \dots, \widehat{\zeta}_{t-1} \right) \left(G(\zeta_{t-s}, \dots, \zeta_{t-1}) - \widehat{G} \left(\widehat{\zeta}_{t-s}, \dots, \widehat{\zeta}_{t-1} \right) \right) \eta_t. \end{aligned}$$

748

749 Notice that
750

751
$$\widehat{F}(\mathbf{y}) = \frac{1}{T - q - s} \sum_{t=s+q+1}^T \mathbf{1}_{\eta_t + \Delta_t \leq \mathbf{y}} \leq \frac{1}{T - q - s} \sum_{t=s+q+1}^T \prod_{i=1}^d g_{\psi, \mathbf{y}_i}(\eta_{t,i} + \Delta_{t,i}).$$

752

756 From Taylor expansion,

$$\begin{aligned}
& \left| \prod_{i=1}^d g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i} + \boldsymbol{\Delta}_{t,i}) - \prod_{i=1}^d g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i}) \right| \\
& \leq \sum_{i=1}^d \left(\prod_{j=1}^{i-1} g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i} + \boldsymbol{\Delta}_{t,i}) (g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i} + \boldsymbol{\Delta}_{t,i}) - g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i})) \prod_{j=i+1}^d g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i}) \right) \\
& \leq \sum_{i=1}^d |g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i} + \boldsymbol{\Delta}_{t,i}) - g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i})| \leq g_* \psi \sum_{i=1}^d |\boldsymbol{\Delta}_{t,i}| \leq g_* \psi \sqrt{d} \|\boldsymbol{\Delta}_t\|.
\end{aligned}$$

767 Therefore,

$$\begin{aligned}
& \frac{1}{T-q-s} \sum_{t=s+q+1}^T \prod_{i=1}^d g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i} + \boldsymbol{\Delta}_{t,i}) \\
& \leq \frac{1}{T-q-s} \sum_{t=s+q+1}^T \prod_{i=1}^d g_{\psi, \mathbf{y}_i}(\boldsymbol{\eta}_{t,i}) + \frac{g_* \psi \sqrt{d}}{T-q-s} \sum_{t=s+q+1}^T \|\boldsymbol{\Delta}_t\| \\
& \leq \frac{1}{T-q-s} \sum_{t=s+q+1}^T \mathbf{1}_{\boldsymbol{\eta}_t \leq \mathbf{y} + \psi^{-1}} + \frac{g_* \psi \sqrt{d}}{T-q-s} \sum_{t=s+q+1}^T \|\boldsymbol{\Delta}_t\| \\
& = \tilde{F}(\mathbf{y} + \psi^{-1} \mathbf{h}) + \frac{g_* \psi \sqrt{d}}{T-q-s} \sum_{t=s+q+1}^T \|\boldsymbol{\Delta}_t\|,
\end{aligned}$$

782 where $\mathbf{h} = (1, 1, \dots, 1)^\top$. Similarly,

$$\begin{aligned}
& \hat{F}(\mathbf{y}) \geq \frac{1}{T-q-s} \sum_{t=s+q+1}^T \prod_{i=1}^d g_{\psi, \mathbf{y}_i - \psi^{-1}}(\boldsymbol{\eta}_{t,i} + \boldsymbol{\Delta}_{t,i}) \\
& \geq \frac{1}{T-q-s} \sum_{t=s+q+1}^T \prod_{i=1}^d g_{\psi, \mathbf{y}_i - \psi^{-1}}(\boldsymbol{\eta}_{t,i}) - \frac{g_* \psi \sqrt{d}}{T-q-s} \sum_{t=s+q+1}^T \|\boldsymbol{\Delta}_t\| \\
& \geq \tilde{F}(\mathbf{y} - \psi^{-1} \mathbf{h}) - \frac{g_* \psi \sqrt{d}}{T-q-s} \sum_{t=s+q+1}^T \|\boldsymbol{\Delta}_t\|.
\end{aligned}$$

793 With probability tending to 1,

$$\inf_{\mathbf{Y} \in \mathbf{R}^{d \times s}} \hat{G}_i(\mathbf{Y}) \geq \inf_{\mathbf{Y} \in \mathbf{R}^{d \times s}} G_i(\mathbf{Y}) - \sup_{\mathbf{Y} \in \mathbf{R}^{d \times s}} |\hat{G}_i(\mathbf{Y}) - G_i(\mathbf{Y})| > c/2.$$

797 If that happens for $i = 1, \dots, d$, we have

$$\begin{aligned}
& \|\hat{G}^{-1}(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1}) (F(\mathbf{x}_{t-q}, \dots, \mathbf{x}_{t-1}) - \hat{F}(\mathbf{x}_{t-q}, \dots, \mathbf{x}_{t-1}))\| \\
& \leq \frac{2}{c} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| \rightarrow_p 0.
\end{aligned} \tag{9}$$

803 On the other hand, for any $i = 1, \dots, d$, the i th element of
 $\hat{G}^{-1}(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1}) (G(\zeta_{t-s}, \dots, \zeta_{t-1}) - \hat{G}(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})) \boldsymbol{\eta}_t$ is

$$\frac{G_i(\zeta_{t-s}, \dots, \zeta_{t-1}) - \hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})}{\hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})} \boldsymbol{\eta}_{t,i}.$$

810 and
811

$$\begin{aligned}
 & \left| \frac{G_i(\zeta_{t-s}, \dots, \zeta_{t-1}) - \hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})}{\hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})} \eta_{t,i} \right| \\
 & \leq \frac{2|\eta_{t,i}|}{c} \left(|G_i(\zeta_{t-s}, \dots, \zeta_{t-1}) - G_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})| \right. \\
 & \quad \left. + |G_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1}) - \hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})| \right)
 \end{aligned}$$

820 From Assumption 2,
821

$$|G_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1}) - \hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})| \leq \sup_{\mathbf{Y} \in \mathbf{R}^{d \times s}} |G_i(\mathbf{Y}) - \hat{G}_i(\mathbf{Y})| \rightarrow_p 0. \quad (10)$$

826 On the other hand, for any $t = q + 1, \dots, T$,
827

$$\begin{aligned}
 \|\hat{\zeta}_t - \zeta_t\| &= \|F(\mathbf{x}_{t-q}, \dots, \mathbf{x}_{t-1}) - \hat{F}(\mathbf{x}_{t-q}, \dots, \mathbf{x}_{t-1})\| \\
 &\leq \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| \rightarrow_p 0.
 \end{aligned}$$

832 Define the matrix
833

$$\Gamma = [\hat{\zeta}_{t-s} - \zeta_{t-s} \quad \dots \quad \hat{\zeta}_{t-1} - \zeta_{t-1}]^T,$$

837 from Taylor's expansion,
838

$$\begin{aligned}
 |G_i(\zeta_{t-s}, \dots, \zeta_{t-1}) - G_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})| &= \left| \sum_{i=1}^d \sum_{j=1}^s (\nabla_{\mathbf{Z}} G_i(\mathbf{Z}))_{ij} \Gamma_{ij} \right| \\
 &\leq \sum_{i=1}^d \sum_{j=1}^s |\nabla_{\mathbf{Z}} G_i(\mathbf{Z})_{ij}| |\Gamma_{ij}| \\
 &\leq Cds \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\|,
 \end{aligned} \quad (11)$$

849 where $\mathbf{Z} \in \mathbf{R}^{d \times s}$ is a random matrix. From eq.equation 9, eq.equation 10 and eq.equation 11, with
850 probability tending to 1

$$\begin{aligned}
 \|\Delta_t\| &\leq \frac{2}{c} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| + \sqrt{\sum_{i=1}^d \left(\frac{G_i(\zeta_{t-s}, \dots, \zeta_{t-1}) - \hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})}{\hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})} \eta_{t,i} \right)^2} \\
 &\leq \frac{2}{c} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| + \frac{2\sqrt{d}}{c} \max_{i=1, \dots, d} |\eta_{t,i}| \times |G_i(\zeta_{t-s}, \dots, \zeta_{t-1}) - \hat{G}_i(\hat{\zeta}_{t-s}, \dots, \hat{\zeta}_{t-1})| \\
 &\leq \frac{2}{c} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| + \frac{2\sqrt{d}}{c} \left(\sum_{i=1}^d |\eta_{t,i}| \right) \left(\sup_{\mathbf{Y} \in \mathbf{R}^{d \times s}} |G_i(\mathbf{Y}) - \hat{G}_i(\mathbf{Y})| \right) \\
 &\quad + \frac{2\sqrt{d}}{c} \left(\sum_{i=1}^d |\eta_{t,i}| \right) \left(Cds \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| \right).
 \end{aligned}$$

864 Since

$$\begin{aligned}
& \frac{\psi\sqrt{d}}{T-q-s} \sum_{t=s+q+1}^T \|\Delta_t\| \leq \frac{2\psi\sqrt{d}}{c} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| \\
& + \frac{2\psi d}{c(T-q-s)} \sum_{i=1}^d \sup_{\mathbf{Y} \in \mathbf{R}^{d \times s}} |G_i(\mathbf{Y}) - \hat{G}_i(\mathbf{Y})| \sum_{t=s+q+1}^T |\eta_{t,i}| \\
& + \frac{2C\psi d^2 s}{c(T-q-s)} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| \sum_{i=1}^d \sum_{t=s+q+1}^T |\eta_{t,i}| \\
& \leq \frac{2\psi\sqrt{d}}{c} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| \\
& + \frac{2\psi d}{c(T-q-s)} \left(\max_{i=1, \dots, d} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times s}} |G_i(\mathbf{Y}) - \hat{G}_i(\mathbf{Y})| \right) \left(\sum_{i=1}^d \sum_{t=s+q+1}^T |\eta_{t,i}| \right) \\
& + \frac{2C\psi d^2 s}{c(T-q-s)} \sup_{\mathbf{Y} \in \mathbf{R}^{d \times q}} \|F(\mathbf{Y}) - \hat{F}(\mathbf{Y})\| \sum_{i=1}^d \sum_{t=s+q+1}^T |\eta_{t,i}|,
\end{aligned}$$

883 and

$$\mathbf{E} \left[\frac{1}{T-q-s} \sum_{i=1}^d \sum_{t=s+q+1}^T |\eta_{t,i}| \right] = \sum_{i=1}^d \mathbf{E} [|\eta_{1,i}|] < \infty.$$

887 According to Assumption 2,

$$\frac{\psi\sqrt{d}}{T-q-s} \sum_{t=s+q+1}^T \|\Delta_t\| \rightarrow_p 0,$$

892 and the result is proven according to the continuity of $P(\cdot)$, and by setting $\psi \rightarrow \infty$. \square

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 INTRODUCTION OF DATASETS AND HYPER-PARAMETERS

897 Our work evaluates the performance of models on six commonly used datasets named *ETTh1*, *ETTh2*,
898 *Electricity*, *Traffic*, *Exchange*, *M4-Hourly* when performing univariate probabilistic forecasting, and
899 on three datasets *ETTh1*, *ETTh2*, *Electricity* when performing multivariate probabilistic forecasting.
900 The names and characteristics of the datasets are summarized as in Table 3. *Electricity*, *Traffic*,
901 *Exchange*, *M4-Hourly* are available in GluonTS Alexandrov et al. (2020). We consider the *ETTh1*,
902 *ETTh2*, *Electricity* datasets as multiple separate univariate time series in univariate experiments, while
903 we consider them as single multivariate time series data in multivariate experiments.

905 Table 3: Overview of the datasets used in univariate time series experiments.

907 Dataset	GluonTS Name	Dimension	Test	Domain	Freq.	Median Time Steps
908 ETTh1 ¹	-	7	126	\mathbf{R}^+	H	17396
909 ETTh2 ²	-	7	126	\mathbf{R}^+	H	17396
910 M4-Hourly ³	m4_hourly	414	414	\mathbb{N}	H	960
911 Electricity ⁴	electricity_nips	370	2590	\mathbf{R}^+	H	5833
Traffic ⁵	traffic_nips	963	6741	(0, 1)	H	4001
912 Exchange ⁶	exchange_rate_nips	8	40	\mathbf{R}^+	D	6071

¹<https://github.com/zhouhaoyi/ETDataset/tree/main>

²<https://github.com/zhouhaoyi/ETDataset/tree/main>

³<https://github.com/Mcompetitions/M4-methods/tree/master/Dataset>

⁴<https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014>

⁵<https://zenodo.org/records/4656132>

⁶<https://github.com/laiguokun/multivariate-time-series-data>

For the experiment detail, we set the resample times 100 when computing the CRPS and MAEC metrics. The context length and prediction length in conditional mean model follow the settings in Kolloviev et al. (2023). In our work, for univariate time series data, we use the technique mentioned in Remarks 1 and 2, and adopt a simple multilayer perceptron model (referred to as “SimpleFeedForwardEstimator in the *GluonTS* package Alexandrov et al. (2020)) to model the logarithm of the conditional volatilities. For multivariate time series, we use the *VEC-LSTM* model to estimate the logarithm of conditional volatilities in the first experiment, and the *TMDM* model in the second one. The context length of the conditional volatility model is selected based on the autocorrelation coefficients plot (Figure 4) below. The prediction length in the conditional volatility model is set to 1. All other hyperparameters are set to their default values in the *GluonTS* package.

Table 4: Hyperparameters of the Conditional Mean and Volatility model

Dataset	Conditional Mean Model		Conditional Volatility Model	
	Context Len.	Predict Len.	Context Len.	Predict Len.
ETTh1	336	24	24	1
ETTh2	336	24	24	1
M4-Hourly	312	48	14	1
Electricity	336	24	48	1
Traffic	336	24	48	1
Exchange	360	30	100	1

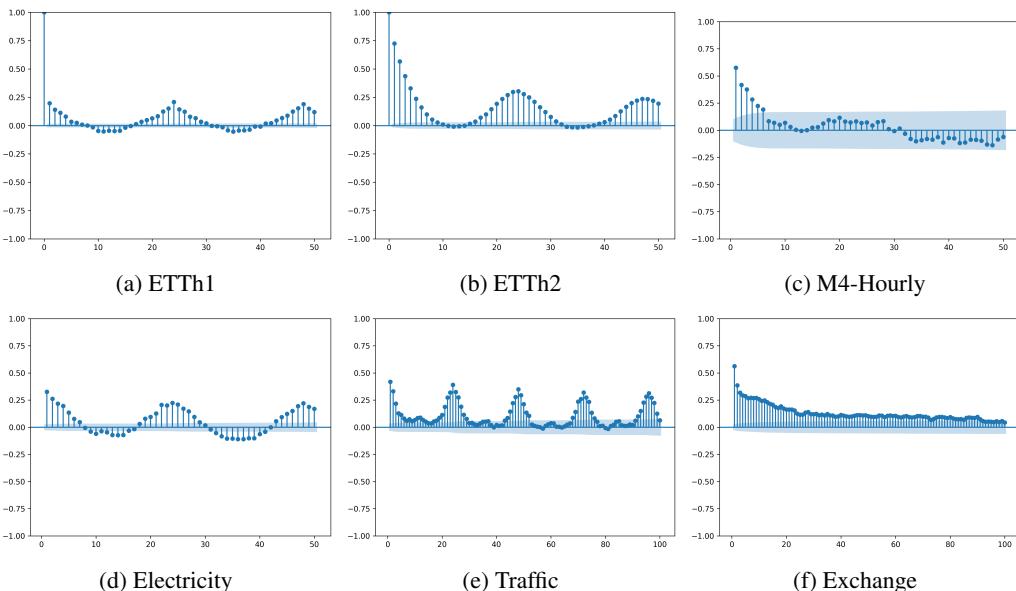


Figure 4: Autocorrelation coefficients plot of the logarithm of square fitted residuals.

B.2 METRICS OF THE EXPERIMENT

Continuous Ranked Probability Score (CRPS). The CRPS is a commonly used metric in probabilistic forecasting, as demonstrated in Gneiting & Raftery (2007) and Kolloviev et al. (2023). It is defined as the integral of the pinball loss over the interval $[0, 1]$:

$$CRPS(F^{-1}, y) = \int_0^1 2\Lambda_\kappa(F^{-1}(\kappa), y)d\kappa, \text{ where } \Lambda_\kappa(q, y) = (\kappa - \mathbf{1}_{y < q}) \times (y - q).$$

A forecasted quantile function F^{-1} with a small CRPS indicates good alignment with the observation y . We approximate the quantile function by sample quantiles at nine quantile levels $\{10\%, 20\%, \dots, 90\%\}$. These sample quantiles are estimated from 100 forecast samples.

972 For multivariate time series, the CRPS is computed as the summation of the element-wise CRPS.
 973

974 **Mean Absolute Error of Coverage (MAEC).** Suppose the prediction step is J , and the prediction
 975 intervals are with endpoints $\mathbf{u}_j, \mathbf{v}_j \in \mathbf{R}^d$, where $\mathbf{u}_{j,i} \leq \mathbf{v}_{j,i}$ for $i = 1, \dots, d$, here $j = 1, \dots, J$.
 976 The coverage probability we are interested in is the frequency

$$977 \quad 978 \quad \widehat{p}(\beta) = \frac{1}{dJ} \sum_{j=1}^J \sum_{i=1}^d \mathbf{1}_{\mathbf{u}_{j,i} \leq \mathbf{x}_{T+j,i} \leq \mathbf{v}_{j,i}}, \\ 979$$

980 β here indicates the quantile level of the prediction intervals. Specifically, for univariate time series
 981 ($d = 1$), the endpoints of prediction intervals are scalars, and the coverage probability becomes
 982

$$983 \quad 984 \quad \widehat{p}(\beta) = \frac{1}{J} \sum_{j=1}^J \mathbf{1}_{\mathbf{u}_{j,1} \leq \mathbf{x}_{T+j} \leq \mathbf{v}_{j,1}}. \\ 985$$

986 We consider 9 quantile levels $\{\beta_1, \dots, \beta_9\} = 10\%, 20\%, \dots, 90\%$, and the MAEC metric calculates
 987 the mean absolute error between $\widehat{p}(\beta_s)$ and β_s , i.e.,
 988

$$989 \quad 990 \quad MAEC = \sum_{s=1}^9 |\widehat{p}(\beta_s) - \beta_s|. \\ 991$$

992 A low MAEC indicates that the prediction intervals achieve the desired coverage probabilities in
 993 general, thereby reflecting higher accuracy of prediction intervals.

994 **Energy Score (ES).** Introduced in Chung et al. (2024), ES is a metric to evaluate the performance of
 995 a probabilistic forecasting method in capturing spatial dependence for multivariate data. For a future
 996 time series data $\mathbf{y}_j \in \mathbf{R}^d$, and a predictive distribution \widehat{p}_j , we define the energy score as
 997

$$998 \quad ES_j = \mathbb{E}_{\mathbf{x} \sim \widehat{p}_j} \|\mathbf{x} - \mathbf{y}_j\|_2^\beta - \frac{1}{2} \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim \widehat{p}_j} \|\mathbf{x} - \mathbf{x}'\|_2^\beta, \\ 999$$

1000 where \mathbf{x}, \mathbf{x}' are independent sampled from \widehat{p}_j . We calculate the ES as the average value
 1001

$$1002 \quad 1003 \quad ES = \frac{1}{J} \sum_{j=1}^J ES_j. \\ 1004$$

1005 Following Chung et al. (2024), we set $\beta = 1.7$. A smaller energy score indicates that the predictive
 1006 distribution is closer to the ground truth.

1007 In addition to the probabilistic forecasting metrics, we evaluate the mean forecasting performance
 1008 of univariate time series through the metrics *Normalized Deviation (ND)* and *normalized root mean*
 1009 *squared error (NRMSE)*, introduced as follows:
 1010

1011 **Normalized Deviation (ND).** Suppose the future J observations are $\mathbf{x}_{T+1}, \dots, \mathbf{x}_{T+J}$ with corre-
 1012 sponding predictors $\widehat{\mathbf{x}}_{T+j}$, ND is defined by

$$1013 \quad 1014 \quad ND = \frac{\sum_{j=1}^J |\widehat{\mathbf{x}}_{T+j} - \mathbf{x}_{T+j}|}{\sum_{j=1}^J |\mathbf{x}_{T+j}|}, \\ 1015$$

1016 indicating the absolute error normalized by the total absolute scale of the prediction time series. ND
 1017 is independent of the scale of the time series, making it suitable for comparison across different
 1018 datasets.

1019 **Normalized root mean squared error (NRMSE).** With the notations in ND, the NRMSE is defined
 1020 by
 1021

$$1022 \quad 1023 \quad \frac{RMSE}{|\mathbf{x}|}, \quad \text{where} \quad RMSE = \sqrt{\frac{1}{J} \sum_{j=1}^J (\widehat{\mathbf{x}}_{T+j} - \mathbf{x}_{T+j})^2} \quad \text{and} \quad |\mathbf{x}| = \frac{1}{J} \sum_{j=1}^J |\mathbf{x}_{T+j}|. \\ 1024$$

1025 Similar to ND, NRMSE is also independent of the scale of time series.

1026 Table 5: Mean forecasting performance. The interpretation of the values and the use of boldface are
 1027 the same as in Table 1.

Models	Metrics	ETTh1	ETTh2	Electricity	Traffic	Exchange	M4-Hourly
DeepAR	ND	0.225(0.045)	0.082(0.011)	0.104(0.001)	0.128(0.012)	0.019(0.002)	0.109(0.113)
	NRMSE	0.417(0.063)	0.123(0.015)	0.760(0.010)	0.391(0.052)	0.029(0.002)	0.653(0.515)
DeepAR +Ours	ND	0.219(0.018)	0.114(0.017)	0.086(0.002)	0.154(0.010)	0.013(0.001)	0.054(0.002)
	NRMSE	0.408(0.026)	0.092(0.091)	0.625(0.066)	0.429(0.037)	0.020(0.001)	0.296(0.017)
DLinear	ND	0.227(0.004)	0.086(0.011)	0.075(0.009)	0.161(0.002)	0.024(0.010)	0.057(0.006)
	NRMSE	0.422(0.004)	0.126(0.012)	0.593(0.063)	0.407(0.002)	0.044(0.026)	0.323(0.050)
DLinear +Ours	ND	0.243(0.011)	0.086(0.007)	0.067(0.000)	0.160(0.004)	0.012(0.002)	0.046(0.015)
	NRMSE	0.452(0.016)	0.097(0.090)	0.538(0.017)	0.418(0.001)	0.020(0.003)	0.315(0.093)
PatchTST	ND	0.212(0.003)	0.084(0.017)	0.078(0.004)	0.151(0.002)	0.017(0.005)	0.053(0.011)
	NRMSE	0.402(0.001)	0.122(0.021)	0.635(0.020)	0.441(0.003)	0.024(0.005)	0.283(0.081)
PatchTST +Ours	ND	0.247(0.059)	0.090(0.002)	0.080(0.003)	0.159(0.004)	0.015(0.002)	0.063(0.031)
	NRMSE	0.450(0.095)	0.081(0.058)	0.656(0.058)	0.437(0.006)	0.023(0.004)	0.615(0.061)
TimeMixer	ND	0.460(0.005)	0.120(0.004)	0.382(0.011)	0.498(0.004)	0.030(0.014)	0.142(0.012)
	NRMSE	0.855(0.021)	0.182(0.009)	3.656(0.002)	0.764(0.003)	0.041(0.019)	0.825(0.083)
TimeMixer +Ours	ND	0.461(0.021)	0.119(0.002)	0.379(0.007)	0.499(0.001)	0.015(0.001)	0.157(0.007)
	NRMSE	0.909(0.084)	0.590(0.530)	3.599(0.051)	0.763(0.003)	0.028(0.001)	0.605(0.685)

B.3 ADDITIONAL EXPERIMENTAL RESULTS

Table 5 reports the performance of DualRes in mean forecasting, evaluated using the metrics ND and NRMSE. Although the primary goal of DualRes is to improve probabilistic forecasting, the framework also enhances mean forecasting performance and increases the stability of predictive algorithms. We attribute this improvement to the iterative updates in equation 4 of Algorithm 2: since \hat{F} is a nonlinear function, adding the residuals ζ_{T+j}^* and applying repeated function compositions alter the distributions—and consequently the means—of the pseudo-samples at future steps.