
Equi-mRNA: Protein Translation Equivariant
Encoding for mRNA Language Models

Mehdi Yazdani-Jahromi
Department of Computer Science

University of Central Florida
Orlando, FL 32816
yazdani@ucf.edu

Ali Khodabandeh Yalabadi
Department of Industrial Engineering

University of Central Florida
Orlando, FL 32816
yalabadi@ucf.edu

Ozlem Ozmen Garibay
Department of Computer Science and Industrial Engineering

University of Central Florida
Orlando, FL 32816
ozlem@ucf.edu

Abstract

The growing importance of mRNA therapeutics and synthetic biology highlights
the need for models that capture the latent structure of synonymous codon (different
triplets encoding the same amino acid) usage, which subtly modulates translation
efficiency and gene expression. While recent efforts incorporate codon-level induc-
tive biases through auxiliary objectives, they often fall short of explicitly modeling
the structured relationships that arise from the genetic code’s inherent symmetries.
We introduce Equi-mRNA, the first codon-level equivariant mRNA language model
that explicitly encodes synonymous codon symmetries as cyclic subgroups of 2D
Special Orthogonal matrix (SO(2)). By combining group-theoretic priors with an
auxiliary equivariance loss and symmetry-aware pooling, Equi-mRNA learns bio-
logically grounded representations that outperform vanilla baselines across multiple
axes. On downstream property-prediction tasks including expression, stability, and
riboswitch switching Equi-mRNA delivers up to ≈ 10% improvements in accuracy.
In sequence generation, it produces mRNA constructs that are up to ≈ 4× more
realistic under Fréchet BioDistance metrics and ≈ 28% better preserve functional
properties compared to vanilla baseline. Interpretability analyses further reveal
that learned codon-rotation distributions recapitulate known GC-content biases and
tRNA abundance patterns, offering novel insights into codon usage. Equi-mRNA
establishes a new biologically principled paradigm for mRNA modeling.

1 Introduction

RNA analysis has become central to modern molecular biology due to RNA’s essential regulatory and
functional roles within cellular systems [25, 13]. Among RNA molecules, messenger RNA (mRNA)
is especially critical, serving as a direct translator of genetic information into functional proteins,
thereby underpinning both fundamental biological processes and therapeutic advancements [40].
At the nucleotide level, mRNA sequences are structured as triplets known as codons, each specifying
a single amino acid within the resultant protein. Due to redundancy in the genetic code, multiple
synonymous codons can encode the same amino acid, a surjective many-to-one relationship that
introduces substantial complexity. Importantly, synonymous codons are not utilized equally; This
phenomenon, termed codon bias, varies widely across species and even between genes within the

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

same organism, influenced by both mutational biases and selective pressures aimed at optimizing
translational efficiency [35]. Thus, synonymous codons, despite coding for identical amino acids, can
differentially impact mRNA stability, translational speed, and protein folding dynamics [26, 51, 5].
Such subtle yet critical differences have profound biological implications, with numerous synonymous
mutations implicated in human diseases [31].
Understanding and leveraging codon-level nuances is therefore essential, particularly for applications
such as precision-engineered mRNA vaccines, gene therapies, and synthetic biology tools [6, 33].

Recent advances have demonstrated the significant potential of language models in analyzing biologi-
cal sequences, particularly for proteins [11, 12, 24, 16] and DNA [28, 56]. For messenger RNA, this
success has not held, in part because biological sequences follow constraints and grammars that are
inherently different from natural language.
Given the rich biological signal embedded in codon usage, there is strong motivation to develop
specialized language models tailored explicitly for coding regions of the genome. Such models
could exploit inductive biases inherent in the genetic code such as the codon hierarchy [52] and
organism-specific codon preferences to significantly enhance predictive modeling of biologically
relevant properties.

To fully realize the potential of language models in mRNA modeling, we developed a theoretically
principled framework for representing mRNA codon sequences, explicitly incorporating the biological
symmetry and redundancy inherent in the genetic code (Fig. 1b). Using orthogonal group actions with
equivariance constraints, implemented as per-subspace rotations of shared amino acid embeddings,
we produce interpretable embeddings that encode synonymous codon relationships. Integrating
these biologically-informed inductive biases significantly improve the data efficiency, robustness,
generalizability, and generative performance of RNA-focused language models.

0 1 2 3 4 5 6
Mean Accuracy Improvement over Vanilla (%)

Va
ni

lla
Fi

xe
d

Fi
xe

d
 +

 E
q.

Fi
xe

d
 +

 S
t.

Fi
xe

d
 +

 S
t.

+
Eq

.

Le
ar

ne
d

Le
ar

ne
d

 +
 E

q.

Le
ar

ne
d

 +
 S

t.

Le
ar

ne
d

 +
 S

t.
+

Eq
.

Fu
zz

y

Fu
zz

y
 +

 E
q.

Fu
zz

y
 +

 S
t.

Fu
zz

y
 +

 S
t.

+
Eq

.

+2.0%

+2.4%

+3.2%

+0.9%

+1.9%

+3.1%

+4.7%

+5.2%

+2.3%

+0.8%

+4.6%

6.0% (Equi-mRNA)

(a) Component impact

0

1

2

4

5

3

Relative ID

(b) Codon Embedding Visualization

Figure 1: Equi-mRNA Embedding Visualization: (a) Mean accuracy improvement over vanilla codon
embeddings (Plain learned codon embeddings) for all twelve SO(2) variants: fixed, learned, and fuzzy
rotation generators, each with and without equivariance. (b) Codon wheel for arginine: inner, middle,
and outer rings denote the 1st, 2nd, and 3rd nucleotide positions, and codons are ordered by relative ID.
A shared base vector (BV, blue) is rotated by multiples of θ (4× θ) to produce the rotated vector (RV,
red), illustrating how cyclic SO(2) subgroup embeddings differentiate synonymous codons while
preserving amino acid equivariance.

Our contributions are summarized as follows:

• We introduce Equi-mRNA, the first mRNA language model to explicitly encode codon-level
symmetries via group-theoretic priors, enforcing biologically grounded SO(2) equivariance
with an auxiliary loss and symmetry-aware pooling mechanisms.

• We curate and release a unified coding-region corpus of 25M protein-coding sequences plus
a stratified 1M sequence subset to standardize benchmarking across studies.

2

• Equi-mRNA achieves up to ≈ 10% improvements in downstream property predic-
tion, and up to ≈ 4× more realistic mRNA sequence generation with ≈ 28% better
preservation of functional properties compared to vanilla baselines.

• Through interpretability analyses, we link learned codon-rotation distributions to GC-content
biases and tRNA abundances, and demonstrate that Equi-mRNA outperforms state-of-the-art
nucleotide and codon models with fewer parameters.

2 Methodology
In this section, we will introduce the group-theoretic embedding framework for codon-level language
models. We will first describe the mathematical structure of the genetic code and how it can be
represented as a group. Then, we will outline the embedding process and how it can be integrated
into existing language model architectures.

2.1 Problem Formulation
Let C denote the set of 64 codons (including start and stop), and let A be the set of 20 amino acids
together with a stop symbol. The genetic code defines a surjective map π : C → A, where codons
mapping to the same amino acid are considered synonymous. For each a ∈ A, define Ca = π−1(a)
as the corresponding synonym set, and let na = |Ca|. By construction, the sets Ca : a ∈ A form a
disjoint partition of C. For preliminaries and notations please refer to Appendix A.1.

Cyclic action on synonymous codons. Fix an amino acid a with its set of synonymous codons
Ca = {ca,0, . . . , ca,na−1} in a chosen order. Let Ga = Zna

be the finite cyclic group with addition
modulo na. Define a group action φa : Ga × Ca → Ca by

φa(k, ca,i) = ca, (i+k) mod na
. (1)

Here the group is Ga, a group element is k ∈ Ga, and a generator is any ga ∈ Ga such that repeated
application of φa(ga, ·) visits every codon in Ca. This action is regular, it is free and transitive on Ca.
When na = 1, the action is trivial. This encoding treats each synonym set as a discrete symmetry
class that reflects the degeneracy of the genetic code [22].
Definition 2.1. (Synonymous Codon Group). For each amino acid a ∈ A with na = |Ca| > 1, let
φa : Ca → 0, 1, . . . , na − 1 be an arbitrary bijection that assigns a unique integer label to each
codon in Ca. We induce a cyclic group structure on Ca by identifying it with Zna

via φa, where the
group operation is defined as addition modulo na.

Under Definition 2.1, index the codons by a labeling map ℓa : Ca → Zna with ℓa(ca,i) =
i.Theidentityelementcorrespondstothecodonwithlabel0. Let 1 ∈ Ga = Zna be a generator.
We define the canonical substitution step as the action of 1 on any codon, that is,

ca,i 7→ φa(1, ca,i) = ca, (i+1) mod na
,

which replaces a codon by the next synonymous codon in the fixed cyclic order. Repeated application
of this step enumerates all codons in Ca, and the inverse step uses the action of −1 to move to the
previous codon.

This construction yields a well-defined group action of Ga
∼= Zna

on Ca, where substituting codon
c ∈ Ca with another synonymous codon c′ corresponds to applying an element j ∈ Zna

: if φa(c) = k,
then φa(c

′) = k + j mod na. Thus, synonymous codon substitutions are formalized as actions of
a finite cyclic group. Our objective is to build codon embeddings that explicitly respect this group
structure.

2.2 Mapping Codons to SO(2) via Cyclic Subgroups
While the codon group structure (Definition 2.1) captures the finite cyclic symmetry within each
synonym set, it is non differentiable and thus incompatible with gradient based learning. To address
this, we define a continuous group homomorphism ρa : Ga → SO(2) that maps k ∈ Zna

to a
planar rotation with θa = 2π/na or a learned angle constrained to preserve the homomorphism. This
preserves the cyclic structure while embedding codons in a differentiable manifold suitable for neural
models. Although the genetic code does not inherently suggest a rotational structure, the use of SO(2)
serves as an inductive bias that reflects codon-level redundancy through structured, parameter-sharing
representations. Its compact topology and continuous symmetry enable smooth optimization, enforce
equivariant constraints, and promote generalization across contexts.

3

Construction 2.2. Let θa := 2π
na

denote the angular increment corresponding to one step in the cyclic
group Ga. We define a homomorphism Φ from codons to SO(2) by mapping each codon c ∈ Ca to a
rotation matrix:

Φ(c) := R (φa(c) · θa) =
(
cos(φa(c)θa) − sin(φa(c)θa)
sin(φa(c)θa) cos(φa(c)θa)

)
.

The image of this mapping is the set of na evenly spaced rotations:

{R(0), R(θa), R(2θa), . . . , R((na − 1)θa)},
which forms a cyclic subgroup of SO(2) isomorphic to Zna . The generator ga = φ−1

a (1) is mapped
to R(θa), and we have Φ(gna

a) = R(na · θa) = R(2π) = I , consistent with the identity element in
both groups.

As formalized in Proposition A.1 (Appendix A.6), the map Φθa defines a group homomorphism from
the codon substitution group Ga

∼= Zna
to the cyclic subgroup of SO(2) generated by R(θa). This

ensures that synonymous codon substitutions correspond to structured, differentiable rotations in the
embedding space.

Example Serine is encoded by nSer = 6 codons:

CSer = {UCU,UCC,UCA,UCG,AGU,AGC},
which we label via φSer = {0, 1, 2, 3, 4, 5}. Under Φ, these codons are mapped to:

{R(0◦), R(60◦), R(120◦), R(180◦), R(240◦), R(300◦)},
i.e., the vertices of a regular hexagon on the unit circle. Substituting UCU (label 0) by AGC
(label 5) corresponds to applying the group action five times: Φ(AGC) = R(5θSer) Φ(UCU) =
R(−θSer) Φ(UCU) modulo 2π. Thus, CSer is embedded in a cyclic subgroup of SO(2) of order 6.
Since SO(2) is a continuous Lie group, this embedding gives the discrete Z6 symmetry a smooth,
differentiable representation, making it suitable for integration with gradient based learning.

2.3 Learning Codon Rotation Generators: Toward Adaptive and Robust Representations
The canonical construction maps each synonym set Ca to a cyclic subgroup of SO(2) by fixing a
generator angle θa = 2π

na
. This produces uniform rotations that exactly realize the Zna

action, but
it also fixes the geometry a priori and may fail to capture organism specific or condition specific
variation.

To retain differentiability while allowing data driven adaptation, we use learnable parameterizations
that preserve the group structure either exactly or approximately. A strict homomorphic parameteriza-
tion sets and learns θa under the constraint ρa(na) = I . This is enforced either by parameterizing
θa = 2πma

na
with ma an integer coprime to na, or by adding a penalty λ ∥ρa(na)− I∥2F during train-

ing. For higher dimensional embeddings, we lift the action to learned 2D subspaces by introducing
an orthonormal basis Ua ∈ Rd×2 and applying

x 7→ x+ Ua

(
R(k θa)− I2

)
U⊤
a x,

which rotates only the codon specific plane while leaving the orthogonal complement unchanged.
These parameterizations keep the cyclic symmetry visible to the model, remain fully differentiable,
and give the geometry enough freedom to reflect biological variability across datasets.

To overcome this limitation, we propose to treat the generator angle θa ∈ R as a learnable parameter
for each amino acid group. The codon embedding map is then defined as

Φθa(c) = R (φa(c) · θa) ,
where θa is optimized jointly with the model. Crucially, the generality of Proposition A.1 ensures
that the group homomorphism property continues to hold under this parameterization, provided that
θa · na ≡ 0 mod 2π, which can be softly enforced or reparameterized during training.

Learning θa introduces only one additional parameter per amino acid and provides a biologically
grounded, symmetry-preserving mechanism for fine-tuning codon embeddings. Unlike traditional
fixed-vector approaches, it maintains consistent relative geometry among synonymous codons while
enabling global adaptation to species-specific or context-dependent signals. This structured update
mechanism improves flexibility and stability during downstream adaptation, offering a principled and
efficient alternative to conventional embeddings.

4

Higher-dimensional extensions. To increase representational capacity, we also extend this con-
struction to higher-dimensional embeddings via block-diagonal rotations in SO(d), enabling multiple
independent subspaces per codon. This generalization preserves group-theoretic structure while
allowing richer task-specific codon representations. Full details of this extension and its formal
properties are presented in Appendix A.3.

2.4 Fuzzy Codon Embeddings: Soft Group Actions from Learned Distributions
Strict cyclic embeddings assume that each codon corresponds to a fixed rotation derived from a group
generator. While this enforces clean algebraic structure, it may be too rigid in biological settings
where codon preferences are not binary but graded, noisy, or context-dependent. To address this, we
introduce a fuzzy relaxation of the codon-to-rotation mapping that allows each codon to induce a
distribution over rotation angles, rather than a fixed one.

In our fuzzy formulation, each amino acid group has a learnable angle distribution over a fixed
number K of discrete rotation prototypes. These prototypes can be uniform (e.g., evenly spaced over
[0, 2π)) or trainable. For each codon, we compute a softmax over the angle logits angle_logits ∈
R|A|×m×K , yielding a smooth distribution over K angular components. The effective codon angle is
then defined as a weighted average over angle bins:

θ(c) =
2π

ka

K−1∑
j=0

pc,j · j,

where pc,j is the softmax probability assigned to codon c for angle bin j, and ka is the number of
synonymous codons for amino acid a. This angle is then scaled by the codon’s group label to form
the final rotation: φa(c) · θ(c).
This fuzzy formulation retains the inductive bias of cyclic symmetry while allowing biologically
meaningful deviations, such as soft substitutions or asymmetric codon effects. It supports gradient-
based optimization over both rotation parameters and angle distributions, making it amenable to
fine-tuning and transfer. In the limit, it recovers the hard cyclic embedding, allowing the model to
interpolate between strict and relaxed symmetry in a task-adaptive manner.

2.5 General Basis Rotation via Stiefel-Manifold-Constrained Subspaces
We extend codon embeddings by representing each synonymous codon as a rotation of a shared
base embedding vector within a learned 2D subspace of Rd. We work in an ambient space Rd. For
each amino acid a, let Ua ∈ Rd×2 have orthonormal columns that span a learned two dimensional
subspace, and let ea ∈ Rd be a shared base embedding. A synonymous codon with angle θa,k is
represented by

xa,k =
(
I − UaU

⊤
a

)
ea + Ua R(θa,k)U

⊤
a ea, R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

Thus the embedding lives in Rd, the rotation acts only in the learned two dimensional subspace, and
the orthogonal complement is preserved.

For each amino acid A, let zA ∈ Rd denote a shared base embedding vector. We define a rotation
subspace for A spanned by an orthonormal pair of vectors (uA,vA) ∈ Rd, where uA := zA/∥zA∥
is aligned with the direction of the base vector. The second vector vA ∈ Rd is constrained such that
⟨uA,vA⟩ = 0 and ∥vA∥ = 1, forming an orthonormal frame in Rd. We model this 2D subspace
using the Stiefel manifold St(2, d), which is the space of all orthonormal 2-frames in Rd.

Each codon c ∈ CA is associated with a rotation angle ϕc ∈ [0, 2π), and its embedding is computed
via:

E(c) = R(uA,vA)(ϕc) zA = cosϕc zA + sinϕc ∥zA∥vA,

where R(uA,vA)(ϕc) denotes the rotation in the plane spanned by {uA,vA} and acts as identity on
the orthogonal complement. This embedding guarantees that all synonymous codons of A lie on a
circle of radius ∥zA∥ within a task-learned semantic plane, enabling flexible and structured encoding
of codon variation.

To ensure the basis (uA,vA) remains orthonormal during training, we parameterize the subspace
using a point on the Stiefel manifold and optimize it via Riemannian gradient descent. In practice,

5

we implement this using the geoopt library, which constrains each learned matrix VA ∈ Rd×2 such
that V ⊤

A VA = I . The rotated codon embeddings can then be expressed as:

E(c) = VA ·R(ϕc) · V ⊤
A zA,

where R(ϕc) ∈ SO(2) is the canonical planar rotation matrix and VA ∈ St(2, d). This formula-
tion naturally supports group-equivariant representations while permitting the geometry of codon
substitution to be learned from data (see Proposition A.3).

2.6 Equivariance Enforcement via Auxiliary Loss
To ensure that codon-level symmetries are preserved beyond the embedding layer, we incorporate an
auxiliary equivariance loss that encourages internal representations to transform consistently under
synonymous codon substitutions. This regularization promotes structured and predictable behavior
aligned with the underlying group action, improving robustness, generalization to unseen codon
contexts, and interpretability of the learned representations. It also facilitates stable fine-tuning of
rotation generators θa in transfer settings, ensuring that codon embedding geometry adapts smoothly
to species- or task-specific preferences. The full formulation, training objective, and mathematical
properties of this loss are provided in Appendix A.4.

2.7 Equivariant Pooling Mechanisms for SO(2) Representations
To maintain architectural consistency with the SO(2)-equivariant codon embeddings, we implement
specialized pooling mechanisms that preserve group structure during sequence-level aggregation.
These include polar pooling, Fourier-based pooling, and direct angular averaging, each designed
to respect the rotational symmetries inherent in the embedding space. For a full mathematical
formulation and biological motivation of these SO(2)-aware pooling strategies, please refer to
Appendix A.5.

3 Experiments
3.1 Experimental Setup
Pretraining Corpus We constructed a large-scale pretraining corpus by drawing 25 million anno-
tated protein-coding sequences from 56 million RefSeq entries and retaining only those between 20
and 512 codons in length. Untranslated flanking regions were discarded to focus on genuine coding
signals. From this filtered set we sampled a stratified 1 million-sequence subset (preserving original
taxonomic proportions) for controlled ablations, then used the full 25 million-sequence collection to
train our final Equi-mRNA variant at scale (Appendix A.9.1).

Downstream Tasks We evaluate on six biologically driven benchmarks spanning expression,
stability, and regulatory switching (MLOS [23], mRFP [29], E. coli expression [10], Tc-riboswitch
switching factor [15], iCodon stability [9], SARS-CoV-2 degradation [48]; see Appendix A.9.2 for
details).

Two-Stage Ablation Protocol We begin with an extensive ablation on the 1 M-sequence subset
randomly sampled from the curated corpus to assess the impact of three embedding parameterizations:
Fixed, Learned, and Fuzzy θ. Each is combined with or without the Stiefel rotation basis and with or
without the equivariance loss Lequiv, yielding 12 total variants. Table 3 summarizes these models,
and Figure 4 (Appendix A.2) provides a schematic overview. All variants share an identical GPT2
Transformer backbone [37], ensuring that performance differences arise solely from embedding
design. Note that the Stiefel and Fuzzy variants introduce additional parameters to capture their
geometric transforms.

Full-Scale Training Following ablation, we selected the top-performing configuration and retrained
it on the full 25 M-sequence corpus to evaluate scalability and generalization under abundant data.
Pretraining was conducted on thirty-two NVIDIA H100 GPUs (ablation used eight NVIDIA H200
GPUs); runtimes and resource utilization are detailed in Appendix A.11.

Hyperparameters All pretraining arguments and hyperparameters, as well as downstream genera-
tion and property-prediction hyperparameters, are provided in Appendix A.10.

3.2 Symmetry-Aware Property Prediction
We summarize the downstream performance of our twelve symmetry-aware variants across five bio-
logical benchmarks. Figure 1a shows the average accuracy and Spearman correlation improvements

6

Table 1: Component-wise comparison of symmetry-aware variants: Equivariant SO(2) models improve
downstream accuracy over vanilla across all tasks. Fuzzy and Learned θ variants with Stiefel basis and/or
equivariant loss yield the best results, highlighting the benefit of structured group-theoretic priors.

Model Stiefel Equiv. E. coli(A) MLOS(S) Tc-Ribo.(S) mRFP(S) COV Deg(S)

Vanilla - - 0.580 0.633 ± 0.14 0.698 0.797 0.779

Fixed θ ✓ ✗ 0.602 0.667 ± 0.19 0.688 0.840 0.803

Learned θ ✓ ✗ 0.633 0.657 ± 0.10 0.701 0.871 0.790

Fuzzy θ ✓ ✓ 0.605 0.691 ± 0.14 0.736 0.844 0.820

over the vanilla baseline for each rotation strategy and symmetry constraint. To highlight overall
trends, Table 1 reports the top-performing configuration from each embedding group (fixed, learned,
and fuzzy θ). The fuzzy θ model with Stiefel basis and equivariant loss achieves the highest gains
overall and was therefore selected for large-scale training on the full 25M sequence corpus. From
this point forward, we refer to this fuzzy θ Stiefel with equivariance configuration trained on the
25M sequence corpus as EQUI-MRNA Model. Full results for all variants and evaluation metrics
are provided in Appendix A.12. Note that the MLOS dataset lacks standard splits and exhibits high
variability due to its small size; we report standard deviations accordingly to reflect this sensitivity.

An in-depth component analysis in Table 14 (Appendix A.12) isolates the contribution of each design
element. Fixed-angle models with equivariance already outperform the vanilla baseline on E. coli
and mRFP (0.600 and 0.841 vs. 0.580 and 0.797), demonstrating that even static geometric priors
can enhance biological alignment. Incorporating learned θ with a Stiefel projection further boosts
performance, yielding the highest accuracy on E. coli (0.633) and peak Spearman correlation on
mRFP (0.871), which suggests that data-driven codon embeddings capture species or tissue-specific
regulatory signals. Equivariant training adds additional gains on structurally sensitive tasks such
as Tc-Riboswitch (0.741) and MLOS long sequences (0.698). Finally, fuzzy θ models representing
codons as soft distributions over SO(2) deliver robust improvements on noisy or low-resource assays
like MLOS (0.691) and SARS-CoV-2 degradation (0.820), further motivating their adoption for
full-scale training.

Table 2 compares our EQUI-MRNA models (5M and 15M parameters) to established codon and
nucleotide-based baselines trained on the full 25M-sequence corpus. The 15M EQUI-MRNA variant
achieves the highest accuracy across all evaluated tasks while using only ≈ 30% of the parameters
of HELM. Even the smaller 5M model matches or surpasses several larger architectures, high-
lighting the efficiency of our symmetry-aware approach. While exact comparisons are limited by
differences in pretraining protocols, objectives, and the public availability of models (e.g., HELM’s
pre-training data is not publicly released), these results underscore the effectiveness of embedding
codon symmetries directly. Specifically, our 5M parameter variant of EQUI-MRNA employs a hybrid
Mamba–Transformer backbone, demonstrating that symmetry-aware SO(2) embeddings can achieve
competitive performance with minimal overhead and be seamlessly extended to architectures such as
state-space models.

3.3 Symmetry-Aware Sequence Generation
We conducted our experiments following the framework established by [52]. For generative eval-
uation, we used the iCodon thermostability corpus: up to 1 000 test sequences were selected and
truncated after two-thirds of their length, with the prefix serving as a prompt for autoregressive
completion of the remaining one-third via codon sampling (k = 10, p = 0.95) at temperatures
T ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Generative quality was quantified by Fréchet BioDistance (FBD) be-
tween synthetic and true suffixes, computed as in [46]. All FBD scores for equivariant variants appear
in Figure 2, with complete results in Appendix A.13.1.

To evaluate retention of functional properties, we assessed generated sequences on five downstream
benchmarks (iCodon, MLOS, mRFP, Tc-Riboswitch, and SARS-CoV-2 degradation). For each
dataset, up to 1 000 sequences were truncated after two-third of their length, and the remaining
one-thirds were generated under the same codon sampling protocol. We then applied pre-trained
CodonBert-based property prediction model [23] to estimate task-specific labels and computed mean
squared error (MSE) between predicted and true labels; lower MSE indicates better preservation of

7

Table 2: Performance comparison across downstream benchmarks: Equi-mRNA models (trained on 25M
sequences) outperform prior nucleotide and codon-based baselines across six biological tasks. The 15M GPT-2
variant achieves the highest accuracy in 5 out of 6 datasets, demonstrating the effectiveness of symmetry-aware
embeddings at scale.

Model E. coli(A) MLOS(S) iCodon(S) Tc-Ribo.(S) mRFP(S) COV Deg(S)

Nucleotide-Based

RNA-FM 0.43 - 0.34 0.58 0.80 0.74
RNABERT (82 M) 0.39 - 0.16 0.47 0.40 0.64
Aido mRNA (1.6B) 0.576 0.504 ± 0.23 0.472 0.492 0.683 0.743
CALM - 0.430 ± 0.170 0.376 0.625 0.546 0.773
mRNA-FM - 0.509 ± 0.154 0.458 0.690 0.564 0.714

Codon-Based

CodonBert (82 M) 0.57 0.543 0.350 0.502 0.832 0.78
GPT2 (CLM)(50M)* - 0.611 0.498 0.531 0.815 0.787
GPT2 (MLM)(50M)* - 0.653 0.503 0.569 0.753 0.801
HELM (CLM)(50M)* - 0.592 0.529 0.619 0.849 0.789
HELM (MLM)(50M)* - 0.701 0.525 0.626 0.822 0.833
Equi-mRNA (5M)† 0.581 0.705 ± 0.12 0.519 0.764 0.853 0.756
Equi-mRNA (15M)‡ 0.613 0.710 ± 0.13 0.537 0.737 0.855 0.791

† Mamba-based hybrid Architecture; ‡ GPT-2 Architecture both trained on 25M datapoints
* Trained on Antibody mRNA sequences

biological function. All MSE reduction compared to Vanilla model for equivariant variants appear in
Figure 3, with complete results in Appendix A.13.2.

3.3.1 Enhanced Generative Fidelity with Equi-mRNA

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

500

750

1000

1250

1500

1750

2000

2250

2500

FB
D

 (
Fr

éc
he

t
D

is
ta

nc
e)

Fréchet Distance vs. Temperature

Model
vanilla
Fixed
Fixed Stiefel

Fuzzy
Fuzzy Stiefel

Learned
Learned Stiefel

Figure 2: FBD vs. temperature for equivariant SO(2) variants and
Vanilla model: FBD between generated and true suffixes on iCodon
improves (lower ↓) with temperature for all SO(2)-equivariant vari-
ants, unlike the vanilla model which degrades. Fuzzy θ achieves
the best score (∼580 at T=1.0), a 4.3× gain over baseline.

Analyzing the generated sequences
quality results, we observe a stark con-
trast between the vanilla GPT-2 base-
line and our symmetry-aware mod-
els. The baseline’s FBD increases
with temperature indicating instabil-
ity; whereas all equivariant variants
exhibit a smooth, pronounced decline
in FBD as T rises. The best per-
former the equivariant Fuzzy θ model
achieves an FBD of ≈ 580 at T =
1.0, a roughly 4.3 times improvement
over vanilla. Equivariant Fixed θ and
Learned θ converge near 103, about a
threefold gain.

The sharp but smooth decline in FBD
indicates that equivariant models in-
creasingly capture latent sequence
modes absent in the baseline but preva-
lent in real data. Rather than degener-
ating into noise, higher temperatures
amplify those syntactic alternatives
permitted by the group-theoretic prior, reducing distributional shift without sacrificing biologi-
cal plausibility. In this way, symmetry-aware architectures and equivariance regularization convert
temperature from a benign rescaling constant into a principled mechanism for structured sequence
exploration.

8

iCodon Mlos mRFP Tc-Ribo. COV Deg

Fixed + Eq.

Fixed + St. + Eq.

Learned + Eq.

Learned + St. + Eq.

Fuzzy + Eq.

Fuzzy + St. + Eq.

6.33 15.69 3.17 -3.31 14.64

8.39 24.72 3.78 9.47 21.02

6.80 10.47 3.67 12.49 14.43

3.07 6.23 1.45 1.19 4.38

7.42 28.14 4.68 6.49 19.69

3.09 7.15 1.65 -0.73 9.14

MSE Reduction Compared to Vanilla Model (%)

Low

High

Re
la

ti
ve

 M
SE

 R
ed

uc
ti

on
 (

pe
r

da
ta

se
t)

Figure 3: MSE reduction for equivariant SO(2) variants vs. vanilla: SO(2)-equivariant variants consistently
reduce MSE (lower ↓) in property prediction across all datasets, with up to 28% improvement over Vanilla
model. Results reflect enhanced biological plausibility and downstream utility.

Lastly, scaling pretraining from 1M to 25M sequences without any architectural modifications drives
FBD down to 76.13 for the Equi-mRNA (5M) variant and 177.77 for Equi-mRNA (15M), representing
a significant leap forward in generative fidelity at this scale. These results not only demonstrate the
remarkable scalability and robustness of symmetry-aware embeddings but also establish a new state
of the art for large-scale biological sequence generation.

3.3.2 Enhanced Property Retention under Equi-mRNA Embeddings
Beyond sequence quality, we assessed property prediction by training a CodonBert-based regression
model on each dataset and measuring MSE [23]. Figure 3 demonstrates that equivariant SO(2)
models consistently lower MSE relative to vanilla GPT-2 across all benchmarks achieving up to a
28% reduction in error. Notably, the MLOS dataset, though small (<1000 sequences), comprises
≈ 1000 codon mRNAs, while Tc-Riboswitch sequences span only 26 codons; both contexts yield
uniform MSE improvements under equivariance. Such a substantial decrease in prediction error not
only confirms the capacity of structured SO(2) embeddings to capture rotational symmetries and
long-range dependencies, but also translates directly into more faithful preservation of functional
properties. In practice, this level of accuracy can significantly reduce the cost and time of experimental
validation by prioritizing higher-quality candidate sequences. For brevity, only equivariant-enforced
variant results are shown here; full comparisons among fixed, learned, and fuzzy θ models are
provided in Appendix A.13.2.

3.4 Interpretability Analysis
To test whether the imposed SO(2) structure yields biologically meaningful representations within a
single species, we fine tuned a 5M parameter model on the human coding transcriptome (GRCh38)
[27] and reserved 20% for evaluation. Focusing on human controls for cross species confounders,
lets us probe a consistent codon usage bias, and provides a clear path to codon optimization policies
that are specific to one organism rather than averaged across taxa. The goal is not only to interpret
embeddings after the fact, but to validate that codon level rotational geometry captures constraints
that matter for human design and optimization.

First, we quantified the uncertainty of learned codon angles using Shannon entropy and analyzed
its dependence on transcript GC content, which is a known correlate of secondary structure and
expression control. Binning sequences by GC proportion revealed a near linear trend in mean angle
entropy (r = 0.98, R2 = 0.97, p < 10−11), suggesting that GC rich regions induce more uncertain
codon rotations. This behavior is consistent with our parameterization, where the distribution over
angles can encode biological variability.

Second, we examined whether the codon embeddings capture translational supply constraints by
correlating learned angles with normalized human tRNA gene counts [18]. We selected the subspace
block most predictive of tRNA levels and computed a weighted composite angle per codon. A Spear-
man correlation of ρ = −0.69 indicates that codons with higher tRNA availability are systematically

9

assigned smaller angles, consistent with efficient translation demands being reflected in the rotational
geometry.

These results support the view that the group theoretic prior is both mathematically sound and aligned
with human specific biology. Visualizations and further details are provided in Appendix A.8.

4 Limitation and Future works
While Equi-mRNA introduces biologically grounded inductive biases by enforcing cyclic SO(2)
rotations over synonymous codons, it is currently constrained to protein coding regions and fixed
triplet tokenization. This design overlooks non-coding elements such as untranslated regions (UTRs)
and may obscure gene or species-specific codon usage patterns. Furthermore, the incorporation of
fuzzy angle distributions and Stiefel manifold rotations enhance representational flexibility but incurs
additional parameterization and Riemannian optimization overhead, potentially hindering scalability
in resource-constrained or large-scale settings. Current evaluations are limited to a narrow set of
benchmarks, leaving the model’s robustness on long transcripts, non-standard GC content, non-model
organisms, and real-world sequence design tasks largely unexplored.

Future extensions may benefit from meta-learning codon-specific priors using hyper-networks or gen-
erative modules that adapt rotation parameters dynamically across organisms, tissues, or experimental
regimes with minimal fine-tuning. Additionally, exploring richer group-theoretic structures such as
non-abelian or product groups could enable modeling of local codon interactions, frame-shift motifs,
or positional dependencies. Expanding empirical validation to more diverse settings and practical
applications will be essential for assessing generalization and informing deployment under realistic
biological constraints.

5 Conclusion
We introduced Equi-mRNA, a novel mRNA language modeling framework that embeds codon-level
symmetries as differentiable group actions within the SO(2) Lie group. By aligning the genetic code’s
redundancy with structured geometric priors, our model captures synonymous codon relationships
through rotation-equivariant embeddings, auxiliary symmetry-enforcing losses, and biologically
motivated pooling mechanisms. Across diverse benchmarks, Equi-mRNA consistently improves
downstream property prediction accuracy and generative fidelity, achieving up to ~10% accuracy
gains and 4.3× reductions in Fréchet BioDistance over strong baselines.

Beyond empirical performance, our interpretability analysis reveals that learned codon rotation
patterns align with known GC-content and tRNA abundance biases, offering biologically grounded
insights into translation regulation. Together, these results establish Equi-mRNA as a scalable,
interpretable, and biologically faithful foundation for modeling protein-coding sequences, with
broad implications for synthetic mRNA design and genomic modeling. Future work will extend this
symmetry-aware paradigm to non-coding regions, richer group structures, and adaptive priors for
cross-species generalization.

Acknowledgments
This work used DeltaAI at NCSA through allocation CIS250398 from the Advanced Cyberinfrastruc-
ture Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by U.S.
National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296 [4].

We thank Dr. Ivan Garibay for his thorough feedback on the manuscript and ongoing support
throughout this research.

References
[1] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural networks.

Advances in neural information processing systems, 32, 2019.

[2] Žiga Avsec, Vikram Agarwal, Daniele Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska,
Kathryn R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene ex-
pression prediction from sequence by integrating long-range interactions. Nature Methods, 18:1196–1203,
2021.

[3] Erik J Bekkers. B-spline cnns on lie groups. arXiv preprint arXiv:1909.12057, 2019.

10

[4] Timothy J. Boerner, Stephen Deems, Thomas R. Furlani, Shelley L. Knuth, and John Towns. Access:
Advancing innovation: Nsf’s advanced cyberinfrastructure coordination ecosystem: Services & support.
In Practice and Experience in Advanced Research Computing (PEARC ’23), pages 1–4, Portland, OR,
USA, July 2023. ACM. doi: 10.1145/3569951.3597559. URL https://doi.org/10.1145/3569951.
3597559.

[5] Florian Buhr, Sujata Jha, Michael Thommen, Joerg Mittelstaet, Felicitas Kutz, Harald Schwalbe, Marina V
Rodnina, and Anton A Komar. Synonymous codons direct cotranslational folding toward different protein
conformations. Molecular cell, 61(3):341–351, 2016.

[6] NJ Caplen. Gene therapy progress and prospects. downregulating gene expression: the impact of rna
interference. Gene therapy, 11(16):1241–1248, 2004.

[7] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homogeneous
spaces. Advances in neural information processing systems, 32, 2019.

[8] Flavio Dalla-Torre and et al. Nucleotide transformer: Augmenting language models with nucleotide-
level context for genomics. bioRxiv, 2025. URL https://doi.org/10.1101/2023.11.20.567498.
preprint.

[9] Michay Diez, Santiago Gerardo Medina-Muñoz, Luciana Andrea Castellano, Gabriel da Silva Pescador,
Qiushuang Wu, and Ariel Alejandro Bazzini. icodon customizes gene expression based on the codon
composition. Scientific Reports, 12(1):12126, 2022.

[10] Zundan Ding, Feifei Guan, Guoshun Xu, Yuchen Wang, Yaru Yan, Wei Zhang, Ningfeng Wu, Bin Yao,
Huoqing Huang, Tamir Tuller, et al. Mpepe, a predictive approach to improve protein expression in e. coli
based on deep learning. Computational and Structural Biotechnology Journal, 20:1142–1153, 2022.

[11] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom
Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. Prottrans: Toward understanding the
language of life through self-supervised learning. IEEE transactions on pattern analysis and machine
intelligence, 44(10):7112–7127, 2021.

[12] Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised language model for
protein design. Nature communications, 13(1):4348, 2022.

[13] Xiang-Dong Fu. Non-coding rna: a new frontier in regulatory biology. National science review, 1(2):
190–204, 2014.

[14] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-translation
equivariant attention networks. Advances in neural information processing systems, 33:1970–1981, 2020.

[15] Ann-Christin Groher, Sven Jager, Christopher Schneider, Florian Groher, Kay Hamacher, and Beatrix
Suess. Tuning the performance of synthetic riboswitches using machine learning. ACS synthetic biology, 8
(1):34–44, 2018.

[16] Brian L Hie, Varun R Shanker, Duo Xu, Theodora UJ Bruun, Payton A Weidenbacher, Shaogeng Tang,
Wesley Wu, John E Pak, and Peter S Kim. Efficient evolution of human antibodies from general protein
language models. Nature Biotechnology, 42(2):275–283, 2024.

[17] Michael J. Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and Hyunjik
Kim. Lietransformer: Equivariant self-attention for lie groups. In International conference on machine
learning, pages 4533–4543. PMLR, 2021.

[18] James R Iben and Richard J Maraia. trna gene copy number variation in humans. Gene, 536(2):376–384,
2014.

[19] Toshimichi Ikemura. Correlation between the abundance of *escherichia coli* transfer rnas and the
occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is
optimal for the *e. coli* translational system. Journal of Molecular Biology, 151:389–409, 1981.

[20] Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional encoder
representations from transformers model for dna-language in genome. Bioinformatics, 37(15):2112–2120,
2021.

[21] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In International conference on machine learning, pages
2747–2755. PMLR, 2018.

11

https://doi.org/10.1145/3569951.3597559
https://doi.org/10.1145/3569951.3597559
https://doi.org/10.1101/2023.11.20.567498

[22] Reijer Lenstra. The graph, geometry and symmetries of the genetic code with hamming metric. Symmetry,
7(3):1211–1260, 2015.

[23] Sizhen Li, Saeed Moayedpour, Ruijiang Li, Michael Bailey, Saleh Riahi, Lorenzo Kogler-Anele, Milad
Miladi, Jacob Miner, Dinghai Zheng, Jun Wang, et al. Codonbert: Large language models for mrna design
and optimization. bioRxiv, pages 2023–09, 2023.

[24] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert
Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level protein structure
with a language model. Science, 379(6637):1123–1130, 2023.

[25] Chuang Liu, Qiangqiang Shi, Xiangang Huang, Seyoung Koo, Na Kong, and Wei Tao. mrna-based cancer
therapeutics. Nature Reviews Cancer, 23(8):526–543, 2023.

[26] Yi Liu, Qian Yang, and Fangzhou Zhao. Synonymous but not silent: the codon usage code for gene
expression and protein folding. Annual review of biochemistry, 90(1):375–401, 2021.

[27] Jonathan M Mudge, Sílvia Carbonell-Sala, Mark Diekhans, Jose Gonzalez Martinez, Toby Hunt, Irwin
Jungreis, Jane E Loveland, Carme Arnan, If Barnes, Ruth Bennett, Andrew Berry, Alexandra Bignell,
Daniel Cerdán-Vélez, Kelly Cochran, Lucas T Cortés, Claire Davidson, Sarah Donaldson, Cagatay Dursun,
Reham Fatima, Matthew Hardy, Prajna Hebbar, Zoe Hollis, Benjamin T James, Yunzhe Jiang, Rory
Johnson, Gazaldeep Kaur, Mike Kay, Riley J Mangan, Miguel Maquedano, Laura Martínez Gómez,
Nourhen Mathlouthi, Ryan Merritt, Pengyu Ni, Emilio Palumbo, Tamara Perteghella, Fernando Pozo,
Shriya Raj, Cristina Sisu, Emily Steed, Dulika Sumathipala, Marie-Marthe Suner, Barbara Uszczynska-
Ratajczak, Elizabeth Wass, Yucheng T Yang, Dingyao Zhang, Robert D Finn, Mark Gerstein, Roderic
Guigó, Tim J P Hubbard, Manolis Kellis, Anshul Kundaje, Benedict Paten, Michael L Tress, Ewan Birney,
Fergal J Martin, and Adam Frankish. Gencode 2025: reference gene annotation for human and mouse.
Nucleic Acids Research, 53(D1):D966–D975, 11 2024. ISSN 1362-4962. doi: 10.1093/nar/gkae1078.
URL https://doi.org/10.1093/nar/gkae1078.

[28] Eric Nguyen, Michael Poli, Matthew G Durrant, Armin W Thomas, Brian Kang, Jeremy Sullivan, Made-
lena Y Ng, Ashley Lewis, Aman Patel, Aaron Lou, et al. Sequence modeling and design from molecular to
genome scale with evo. BioRxiv, pages 2024–02, 2024.

[29] Thijs Nieuwkoop, Barbara R Terlouw, Katherine G Stevens, Richard A Scheltema, Dick De Ridder, John
Van der Oost, and Nico J Claassens. Revealing determinants of translation efficiency via whole-gene codon
randomization and machine learning. Nucleic acids research, 51(5):2363–2376, 2023.

[30] Daniel A Nissley and Edward P O’Brien. Timing is everything: unifying codon translation rates and
nascent proteome behavior. Journal of the American Chemical Society, 136(52):17892–17898, 2014.

[31] Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in
protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.

[32] Carlos Outeiral, Daniel A Nissley, and Charlotte M Deane. Current structure predictors are not learning
the physics of protein folding. Bioinformatics, 38(7):1881–1887, 2022.

[33] Norbert Pardi, Michael J Hogan, Frederick W Porter, and Drew Weissman. mrna vaccines—a new era in
vaccinology. Nature reviews Drug discovery, 17(4):261–279, 2018.

[34] Joshua B. Plotkin and Grzegorz Kudla. Synonymous but not the same: the causes and consequences of
codon bias. Nature Reviews Genetics, 12:32–42, 2011.

[35] Joshua B Plotkin and Grzegorz Kudla. Synonymous but not the same: the causes and consequences of
codon bias. Nature Reviews Genetics, 12(1):32–42, 2011.

[36] Pawel Pratyush, Callen Carrier, Suresh Pokharel, Hamid D Ismail, Meenal Chaudhari, and Dukka B Kc.
Calmphoskan: prediction of general phosphorylation sites in proteins via fusion of codon aware embeddings
with amino acid aware embeddings and wavelet-based kolmogorov–arnold network. Bioinformatics, 41(4):
btaf124, 2025.

[37] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[38] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott,
C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. Proceedings of the National Academy of Sciences, 118(15):
e2016239118, 2021.

12

https://doi.org/10.1093/nar/gkae1078

[39] Aviv A Rosenberg, Ailie Marx, and Alex M Bronstein. Codon-specific ramachandran plots show amino
acid backbone conformation depends on identity of the translated codon. Nature communications, 13(1):
2815, 2022.

[40] Ugur Sahin, Katalin Karikó, and Özlem Türeci. mrna-based therapeutics—developing a new class of drugs.
Nature reviews Drug discovery, 13(10):759–780, 2014.

[41] Raymond Sanabria, Soobin Kim, Jacob Linder, and Anshul Kundaje. Grover: A byte-pair encoded genomic
language model learns regulatory elements. bioRxiv, 2024. URL https://doi.org/10.1101/2024.
02.14.580349. preprint.

[42] Rhodri Saunders and Charlotte M Deane. Synonymous codon usage influences the local protein structure
observed. Nucleic acids research, 38(19):6719–6728, 2010.

[43] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction of
tensorial properties and molecular spectra. In International Conference on Machine Learning, pages
9377–9388. PMLR, 2021.

[44] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423,
1948.

[45] Paul M. Sharp and Wen-Hsiung Li. The codon adaptation index—a measure of directional synonymous
codon usage bias, and its potential applications. Nucleic Acids Research, 15:1281–1295, 1987.

[46] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. arXiv preprint
arXiv:2402.05841, 2024.

[47] P Thölke and G De Fabritiis. Torchmd-net: Equivariant transformers for neural network based molecular
potentials. arxiv 2022. arXiv preprint arXiv:2202.02541, 2023.

[48] Hannah K Wayment-Steele, Wipapat Kladwang, Andrew M Watkins, Do Soon Kim, Bojan Tunguz,
Walter Reade, Maggie Demkin, Jonathan Romano, Roger Wellington-Oguri, John J Nicol, et al. Deep
learning models for predicting rna degradation via dual crowdsourcing. Nature Machine Intelligence, 4
(12):1174–1184, 2022.

[49] Matthew Wood, Mathieu Klop, and Maxime Allard. Helix-mrna: A hybrid foundation model for full
sequence mrna therapeutics. arXiv preprint arXiv:2502.13785, 2025.

[50] Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan Wu,
Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary sequence. BioRxiv,
pages 2022–07, 2022.

[51] Junjie Xu, Artem Moskalev, Tommaso Mansi, Mangal Prakash, and Rui Liao. Beyond sequence: Impact of
geometric context for RNA property prediction. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=9htTvHkUhh.

[52] Mehdi Yazdani-Jahromi, Mangal Prakash, Tommaso Mansi, Artem Moskalev, and Rui Liao. Helm:
Hierarchical encoding for mrna language modeling. arXiv preprint arXiv:2410.12459, 2024.

[53] He Zhang, Liang Zhang, Ang Lin, Congcong Xu, Ziyu Li, Kaibo Liu, Boxiang Liu, Xiaopin Ma, Fanfan
Zhao, Huiling Jiang, et al. Algorithm for optimized mrna design improves stability and immunogenicity.
Nature, 621(7978):396–403, 2023.

[54] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning-based
sequence model. Nature Methods, 12(10):931–934, 2015.

[55] Zhemin Zhou, Yuning Ji, Han Liu, and Ramana V Davuluri. Dnabert-2: Efficient and interpretable
pre-trained language models for genomic sequences. bioRxiv, 2024. URL https://doi.org/10.1101/
2024.01.10.575570. preprint.

[56] Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Efficient
foundation model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006, 2023.

13

https://doi.org/10.1101/2024.02.14.580349
https://doi.org/10.1101/2024.02.14.580349
https://openreview.net/forum?id=9htTvHkUhh
https://doi.org/10.1101/2024.01.10.575570
https://doi.org/10.1101/2024.01.10.575570

A Technical Appendices and Supplementary Material

A.1 Preliminaries

This section introduces the algebraic and geometric foundations that motivate our model design,
particularly the use of cyclic groups, the special orthogonal group SO(2), and the Stiefel manifold.
These constructs enable biologically grounded and differentiable representations of codon symmetries
in mRNA sequences.

Group and Cyclic Groups. A group is a set G equipped with a binary operation · satisfying closure,
associativity, identity, and invertibility. A group is called cyclic if there exists a generator g ∈ G such
that every element in G can be written as gk for some integer k. The finite cyclic group of order n is
denoted Zn, with addition modulo n as its operation.

Group Action. A group action of G on a set X is a function G×X → X such that the identity acts
as the identity transformation on X , and the action respects the group composition. In our context,
synonymous codons form equivalence classes Ca ⊂ C, and the group Zna

acts on Ca by cyclically
permuting codons.

Lie Groups and SO(2). A Lie group is a smooth manifold endowed with a group structure. The
group SO(2) ⊂ R2×2 consists of 2D rotation matrices of the form

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

forming a compact and differentiable group under matrix multiplication. We construct a homomor-
phism Φ : Zna

→ SO(2) by mapping codon labels to evenly spaced angles θk = 2πk/na, enabling
gradient-based learning on codon symmetries.

Stiefel Manifolds. The Stiefel manifold St(k, d) is the set of all orthonormal k-frames in Rd, i.e.,

St(k, d) =
{
V ∈ Rd×k | V ⊤V = Ik

}
.

This manifold defines a smooth subspace of Rd×k, with non-Euclidean geometry, and is central to our
parameterization of codon rotation subspaces. In Equi-mRNA, each amino acid defines a local 2D
subspace spanned by an orthonormal frame (uA, vA) ∈ St(2, d), within which synonymous codons
are rotated.

A.2 Overview of Codon Embedding Variants

To complement the detailed description in the main text, Figure 4 provides a unified visual summary
of our codon embedding framework and its key variants. Each model encodes synonymous codons
as rotated versions of a shared amino acid base embedding, differing along three key design axes:
the rotation generator (fixed, learned/cyclic, or fuzzy), and the rotation basis (standard 2D plane or
learned Stiefel subspace). This schematic illustrates the modular structure of the embedding pipeline
and how group-theoretic principles govern the construction of codon-level representations across all
twelve variants evaluated in our experiments.

A.3 Block-Diagonal Codon Embeddings in Higher Dimensions

While SO(2) suffices to model codon substitution as a planar rotation, it is often beneficial in practice
to embed codons in higher-dimensional vector spaces. To preserve the group-theoretic structure while
scaling up the representation space, we extend the SO(2) embedding to a block-diagonal SO(d)
representation, where d is even.

We partition each codon embedding vector into d/2 disjoint 2D subspaces. Each subspace is then
rotated independently by an angle θ(i)a ∈ R, where i = 1, . . . , d/2 indexes the sub-blocks, and θ

(i)
a is

a learnable generator parameter specific to amino acid a. Let Θa = (θ
(1)
a , . . . , θ

(d/2)
a) ∈ Rd/2 denote

the full set of learned rotation generators for amino acid a.

14

Codon (𝑐) aa Id Relative Id (𝜑𝑎)

AGA R 4

CGU R 0

* Total number of codons for ‘R’ is 6 (𝑛𝑅).

Indexed from 0 to 5.

Codon Relative Id1

Input mRNA Seq: AUGAGAACAGAUUUACGU…

Codons: AUG, AGA, ACA, GAU, UUA, CGU, …

Initial processing

Amino Acid (aa) Seq Ids: M,R,T,D,L,R,…

Based on codons

Codon Relative Ids: (0/0),(4/5),(2/3),(0/1),(0/5),(0/5),…

nn.Embedding(aa_seq_ids) : Learnable Base Vectors

> 𝑏𝑣𝑀, 𝑏𝑣𝑅, 𝑏𝑣𝑇, 𝑏𝑣𝐷, 𝑏𝑣𝐿, 𝑏𝑣𝑅, …

𝑅

≫ Final Embedding: 𝑅 × 𝑏𝑣𝑎𝑎

Embedding Layer

Compact View

1

Generator
2

Rotation Basis

3

Fixed

• 𝜃𝑎 =
2𝜋

𝑛𝑎

• Fuzzy angles (𝜃𝐹𝐴):

 Relative Id (𝜑𝑎(𝑐)) × 𝜃 𝑐

• 𝑅 =
cos 𝜃𝑈𝐴 − sin 𝜃𝑈𝐴

sin 𝜃𝑈𝐴 cos 𝜃𝑈𝐴

- Example for AGA (R)

𝑛𝑅= 6 , 𝜃𝑅 = 60°

𝜃𝑢𝑎 = 4 × 60° = 240°

𝜑𝑅 AGA = 4

Learned Soft / Fuzzy

𝑅1 0 0 0

0 𝑅2 … 0

⋮ … ⋱ ⋮

0 0 0 𝑅𝑑/2

• Θ𝑎 = (𝜃𝑎
1, … , 𝜃𝑎

𝑑/2
)

• 𝑑: Embedding dimension

• Learned angles (𝜃𝐿𝐴
𝑖):

 𝜑𝑎(𝑐) × 𝜃𝑎
𝑖 mod 2𝜋

• 𝑅𝑖 =
cos 𝜃𝐿𝐴

𝑖 − sin 𝜃𝐿𝐴
𝑖

sin 𝜃𝐿𝐴
𝑖 cos 𝜃𝐿𝐴

𝑖

• 𝑅 =

• 𝜃 𝑐 =
2𝜋

𝑘𝑎
σ𝑗=0

𝐾−1 𝑝𝑐,𝑗 ∙ 𝑗

• Learnable angle distribution

• 𝑝𝑐,𝑗 : Softmax probability of

 codon 𝑐 for angle bin 𝑗

• 𝑘𝑎 : number of synonymous

 codons for amino acid 𝑎

• Uniform angle (𝜃𝑈𝐴):

 Relative Id (𝜑𝑎(𝑐)) × 𝜃𝑎

• 𝑅 =
cos 𝜃𝐹𝐴 − sin 𝜃𝐹𝐴

sin 𝜃𝐹𝐴 cos 𝜃𝐹𝐴

2 Generator Types
3 Rotation Basis

Standard

Stiefel

• Initiating Stiefel vectors: 𝑢, 𝑣

• 𝑉 =
𝑢1 𝑣1

𝑢2 𝑣2
 is orthonormal

• 𝑉𝑉𝑇 = 𝐼

• Riemannian optimizer

 to update 𝑢, 𝑣 weights

• Using ’𝑅’ from generator

• Using ’𝑅’ from generator

> 𝑅𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = 𝑉 𝑅 𝑉𝑇

> 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑅

Codon Wheel for Arginine (R)

Synonymous Codon Rotations in

 Learned Stiefel Subspaces

Figure 4: Illustration of our codon embedding framework and the key variants evaluated in this study.
Each codon is mapped to a rotated copy of its amino acid base vector, using either fixed, learned
(cyclic), or fuzzy angle generators. Rotation is applied in either a fixed 2D plane or a learned subspace
on the Stiefel manifold. This figure summarizes the geometric mechanisms underlying the twelve
variants listed in Table 3.

Table 3: Overview of codon embedding variants studied. Each can be trained with or without the
equivariance loss. "Standard" uses a fixed 2D subspace, "General" uses a learned Stiefel manifold
basis. "Cyclic" uses learned generator angles, "Fuzzy" uses soft angle distributions.

Model Name Rotation Basis Generator Type
SO2-fixed-standard Standard (fixed) Fixed generator (uniform angles)
SO2-fixed-general Learned basis (Stiefel) Fixed generator (uniform angles)
SO2-cyclic-standard Standard (fixed) Learned generator (cyclic angles)
SO2-cyclic-general Learned basis (Stiefel) Learned generator (cyclic angles)
SO2-fuzzy-standard Standard (fixed) Soft generator (fuzzy angles)
SO2-fuzzy-general Learned basis (Stiefel) Soft generator (fuzzy angles)

Each codon c ∈ Ca is represented by the block-diagonal matrix:

D(i)
a =

d/2⊕
j=1

[
cos(θ

(i)
a,j) − sin(θ

(i)
a,j)

sin(θ
(i)
a,j) cos(θ

(i)
a,j)

]
.

where R(θ) ∈ SO(2) is the standard planar rotation matrix. This generalization retains the equivariant
group action structure: the embedding of codon c is obtained by applying the same group label
φa(c) ∈ Zna

to all subspaces, but using separate generators for each.

Because each block acts independently and satisfies the same group multiplication rules as the
base case, the full map ΦΘa defines a homomorphism from Zna into a block-diagonal subgroup of
SO(d). A formal proof is provided in Appendix A.2. This construction enables each amino acid’s
codon group to learn richer, task-specific rotational structure across multiple subspaces, while still
preserving group coherence. The learned parameters Θa thus define a smooth, differentiable family
of cyclic representations tailored to the downstream task.

15

A.4 Equivariance Enforcement via Auxiliary Loss

A central goal of our codon embedding framework is to respect the symmetry structure induced by
synonymous codons. Specifically, we aim to ensure that the learned representations are equivariant to
the group action defined by codon substitutions; that is, rotating a codon within its synonymous group
should induce a predictable and structured transformation in the model’s internal representation.

While our embedding construction encodes codon-level structure using SO(2) or block-diagonal
SO(d) transformations, these symmetries can be diluted or forgotten by subsequent layers in the
model if not explicitly preserved. To address this, we introduce an equivariance regularization
mechanism that reinforces the geometric structure throughout the network by aligning the transfor-
mations induced by codon substitutions with transformations in representation space.

Equivariance objective. Let zA ∈ Rd denote the base embedding of amino acid A, and let
Rc ∈ SO(d) be the rotation matrix corresponding to codon c ∈ CA. The codon-specific embedding
is then E(c) = RczA. To enforce equivariance in the downstream model f(·), we pass both the base
embedding zA and the rotated codon embedding E(c) into the network. Specifically, we require that
the output of the network behaves consistently under this transformation:

f(RczA) ≈ Rcf(zA). (2)

To promote this behavior, we define an equivariance loss term:

Lequiv = E(A,c)

[
∥f(RczA)−Rcf(zA)∥2

]
, (3)

which penalizes deviations from equivariance over the distribution of codons c for each amino acid A.
This term is added to the primary task loss, resulting in a total objective:

Ltotal = Ltask + λequivLequiv,

where λequiv controls the strength of the symmetry regularization.

Enforcing equivariance yields several advantages. First, it ensures that synonymous codon substitu-
tions, modeled as group actions, produce predictable and structured effects in the model’s internal
states, enhancing interpretability and robustness. Second, it encourages the model to generalize better
across unseen synonymous codons or species with different codon usage, since synonymous substitu-
tions correspond to smooth, equivariant transformations rather than arbitrary shifts in representation.
Third, it introduces an inductive bias that acts as a regularizer, improving performance in low-data
regimes and enabling transfer to biologically diverse contexts.

Importantly, equivariance also facilitates fine-tuning of rotation angles θa in downstream tasks.
Since the network is trained to be equivariant with respect to codon group actions, small updates to
the generator angles θa (e.g., to adapt to species-specific codon bias or task-specific codon effects)
do not destabilize the representation space. Instead, the model can smoothly adjust the codon orbits
without breaking its internal alignment, allowing the embedding geometry to shift in a controlled and
interpretable manner. This makes the framework especially well-suited for transfer learning scenarios
and downstream finetuning tasks where codon preference may shift but the overall group structure
remains consistent.

A.5 Equivariant Pooling Mechanisms for SO(2) Representations

A.5.1 Cartesian Product of SO(2) Groups

The embedding space in our model consists of m independent 2D subspaces, each encoding a rotation
in SO(2). These subspaces correspond to m codon-specific blocks in the full embedding vector of
dimension D = 2m. Each block lies in R2 and encodes a codon- or amino-acid-level transformation
as a rotation vector (cos θi, sin θi) for some angle θi ∈ [0, 2π). To model this structure formally, we
consider the total embedding space as the Cartesian product of m copies of the special orthogonal
group SO(2):

G = SO(2)× SO(2)× · · · × SO(2)︸ ︷︷ ︸
m times

= SO(2)m.

16

This group G = SO(2)m is a direct product of Lie groups and forms a smooth manifold equipped
with a natural group operation defined component-wise. Each element g ∈ G can be written as a
tuple of rotation matrices:

g = (R(θ1), R(θ2), . . . , R(θm)) ,

where R(θi) ∈ SO(2) is a 2× 2 matrix representing a rotation in the i-th subspace:

R(θi) =

[
cos θi − sin θi
sin θi cos θi

]
.

The group operation in G is defined component-wise:

g · h = (R(θ1)R(ϕ1), R(θ2)R(ϕ2), . . . , R(θm)R(ϕm)),

for g = (R(θ1), . . . , R(θm)) and h = (R(ϕ1), . . . , R(ϕm)).

This product structure induces a natural notion of independent equivariance in each rotational
subspace. That is, for a transformation to be equivariant under G, it must commute with the action of
each R(θi) individually:

f(g · x) = g · f(x), ∀g ∈ G, x ∈ R2m.

In our model, each codon embedding is represented in this G-equivariant space. Consequently,
pooling over a sequence of such codon embeddings should ideally respect the product group structure.
This justifies using blockwise angle-space aggregation, in which pooling operates independently
within each SO(2) factor.

Biological Relevance. The product structure SO(2)m captures the modularity inherent in codon
composition. Each codon position contributes independently to the semantic representation of
the sequence, analogous to how each gene segment contributes to protein folding or expression.
Modeling the embedding space as SO(2)m allows for biologically meaningful invariances (e.g.,
synonymous codon substitutions) to be explicitly encoded in the architecture, enhancing robustness
and generalization.

Connection to Equivariant Pooling. Let θ(l) ∈ Rm denote the angle vector at sequence position l
for each of the m rotation blocks. The pooling operation

θpooled =

L∑
l=1

wl θ
(l) mod 2π

defines a mapping from GL → G that is a group homomorphism when the weights wl form a convex
combination. This mapping is the formal basis of our SO(2)-aware pooling mechanisms introduced
in the next section.

To preserve the equivariant structure of codon embeddings under the action of the group SO(2), it
is crucial to aggregate sequence representations in a way that respects the geometric nature of the
embeddings. Standard mean or max pooling in Cartesian space may violate rotational equivariance,
as these operations do not align with the circular topology of angle-based embeddings.

Given codon embeddings where each pair of dimensions represents a 2D rotation vector (xi, yi) ∈ R2

corresponding to a rotation matrix R(θi) ∈ SO(2), we aim to construct a pooling function ϕ that
maps the Cartesian product group G = G1 × · · · ×Gn (where each Gi ⊆ SO(2)) to a single SO(2)
element while preserving group structure.

Homomorphic Averaging. Let each codon embedding correspond to a group element R(θi) ∈
SO(2), and consider weights wi ≥ 0 such that

∑n
i=1 wi = 1. Define the mapping

ϕ
(
R(θ1), . . . , R(θn)

)
= R

(
n∑

i=1

wi θi mod 2π

)
.

17

We can verify that ϕ is a homomorphism:

ϕ(g · h) = ϕ(g) · ϕ(h), ∀g, h ∈ G,

which ensures that equivariant properties are preserved under pooling. This motivates the use
of angle-space aggregation as a principled pooling strategy when working with rotation-encoded
representations.

We now describe three such mechanisms:

A.5.2 Polar Pooling

Polar pooling converts each 2D embedding (x, y) into its polar form (r, θ), pools the representations
in the complex plane using magnitude-weighted averaging, and then converts the result back to
Cartesian coordinates. Specifically, for a sequence of vectors {(xi, yi)}Li=1, we compute the complex
representation zi = rie

iθi and define:

zpooled =
1

L

L∑
i=1

zi, (xpooled, ypooled) = (ℜ(zpooled),ℑ(zpooled)).

This method preserves the angular structure and is invariant to rotation magnitude noise. It has the
advantage of being simple to implement and interpret while respecting the geometry of SO(2).

A.5.3 DFT-Based Rotation-Aware Pooling

We further introduce a frequency-domain pooling method that performs a Discrete Fourier Transform
(DFT) along the sequence length for each SO(2) block. The core idea is to learn a spectral filter
W ∈ Cm applied in the frequency domain:

X = FFT(x), Xfiltered = X ⊙W, xpooled = ℜ(IFFT(Xfiltered)).

This allows the model to learn frequency-specific weighting, acting as a soft attention over periodic
patterns in the sequence. Additionally, angular modulation via learned sinusoidal positional weights
enhances sensitivity to codon position and rhythm, making this approach well-suited for detecting
periodic or repeating structures in mRNA.

A.5.4 SO(2) Mean Pooling

In this approach, we directly pool in angle space by computing the weighted average of the rotation
angles. For each codon embedding, we first convert it to angle space via:

θi,j = atan2(yi,j , xi,j),

and apply attention weights αi derived from the embedding magnitudes:

θpooled,j = atan2

(∑
i

αi sin θi,j ,
∑
i

αi cos θi,j

)
.

The final embedding is then reconstructed as:

(xpooled, ypooled) = (cos θpooled, sin θpooled).

This pooling strategy is explicitly equivariant under the action of SO(2) and allows interpretable
analysis of angular dynamics within a sequence.

Advantages. All three pooling mechanisms respect the group structure of SO(2) and support
equivariant downstream processing. Compared to standard pooling, these approaches:

• Preserve biologically meaningful angular relationships between synonymous codons.
• Enable learnable or data-driven aggregation of periodic structures in sequence space.
• Provide a theoretically grounded alternative to Cartesian pooling that aligns with group-

theoretic design principles.

By incorporating these pooling methods, we enable robust, equivariant representations in our mRNA
models, which are crucial for generalization across different codon usage patterns and species.

18

A.6 Mathematical Details and Proofs

Proposition A.1 (Codon Mapping Homomorphism with Arbitrary Generator). Let Ga
∼= Zna

be the
group of synonymous codon substitutions for amino acid a, and let φa : Ca → Zna

be a bijective
labeling of its codons. Let θa ∈ R be any fixed angle such that na · θa ≡ 0 (mod 2π). Define the
map

Φθa : Ca → SO(2), Φθa(c) = R
(
φa(c) · θa

)
.

Then Φθa is a group homomorphism from Ga into SO(2). Moreover, if θa is a generator of a cyclic
subgroup of SO(2) of order na (i.e., θa = 2πm

na
with gcd(m,na) = 1), then Φθa is an isomorphism

onto its image.

Proof. Let c1, c2 ∈ Ca with integer labels k1 = φa(c1) and k2 = φa(c2). The group operation in
Ga corresponds to codon composition

c3 := φ−1
a

(
(k1 + k2) mod na

)
.

Then,
Φθa(c1) Φθa(c2) = R(k1θa)R(k2θa) = R((k1 + k2)θa) = Φθa(c3),

by the additive property of rotations. Hence, Φθa preserves the group operation and is a homomor-
phism. To establish injectivity (and thus isomorphism onto its image), note that R(jθa) = R(j′θa) if
and only if (j − j′)θa ≡ 0 (mod 2π).
This implies j ≡ j′ (mod na) whenever naθa ≡ 0 (mod 2π) and gcd(m,na) = 1 where
θa = 2πm

na
. In this case, Φθa is injective on Zna

, and hence bijective from Ca to its image in
SO(2).
The image Φθa(Ca) forms a cyclic subgroup of SO(2) of order na, generated by R(θa). Therefore,
Φθa is an isomorphism from Ga onto this subgroup.

Proposition A.2 (Cyclic Group Representation via Block-Diagonal Rotations). Let Ga
∼= Zna

be
the substitution group for amino acid a, and let

Θa = (θ(1)a , . . . , θ(d/2)a) ∈ Rd/2

be a set of generator angles. Define the embedding map:

ΦΘa
(j) = blockdiag

(
R(jθ(1)a), . . . , R(jθ(d/2)a)

)
∈ SO(d),

where R(·) ∈ SO(2), and j ∈ Zna .
Then ΦΘa is a group homomorphism from Zna into SO(d), and its image forms a cyclic subgroup of
SO(d) of order dividing na, with equality if gcd(na,mi) = 1 for all i, where θ

(i)
a = 2πmi

na
.

Proof. Each subspace map j 7→ R(jθ
(i)
a) is a homomorphism from Zna → SO(2), and by Propo-

sition A.1, forms a cyclic subgroup of SO(2) of order dividing na. Since block-diagonal matrix
multiplication distributes over block components, the full map ΦΘa

(j1 + j2) = ΦΘa
(j1)ΦΘa

(j2),
proving that ΦΘa

is a homomorphism. Injectivity (i.e., full cyclic order na) holds if each θ
(i)
a = 2πmi

na

with gcd(mi, na) = 1, ensuring each component cycles with full order. Thus the image of ΦΘa
is a

cyclic subgroup of SO(d).

Proposition A.3 (Codon Embeddings via Stiefel-Manifold Subspaces). Let VA ∈ St(2, d) be an
orthonormal basis for a 2D subspace of Rd, and let zA ∈ Rd be the base vector for amino acid A.
Define E(c) := VAR(ϕc)V

⊤
A zA, where R(ϕc) ∈ SO(2). Then:

1. E(c) ∈ Rd lies on a circle in the subspace spanned by VA.

2. The transformation VAR(ϕc)V
⊤
A ∈ SO(d) acts as a rotation in the 2D subspace and as

identity on the orthogonal complement.

Proof. (1) Since V ⊤
A zA ∈ R2, the codon embedding E(c) = VAR(ϕc)V

⊤
A zA is the image of a

2D rotation applied to the projection of zA into the subspace defined by VA. As R(ϕc) preserves
Euclidean norm, all embeddings lie at radius ∥V ⊤

A zA∥, tracing a circle.

19

(2) The matrix VAR(ϕc)V
⊤
A is a similarity transformation acting only in the 2D plane spanned by

VA. It is orthogonal because:

(VARV ⊤
A)(VARV ⊤

A)⊤ = VARR⊤V ⊤
A = VAV

⊤
A ,

which is a projection matrix onto the 2D subspace. Within that subspace, the operator behaves exactly
as R(ϕc) ∈ SO(2). On the orthogonal complement, it acts as identity since the projection of zA is
zero. Hence the overall transformation is a block rotation in SO(d).

Proposition A.4 (Sequence Homomorphism). Let’s denote our mapping as

ϕ
(
R(θ1), R(θ2), . . . , R(θn)

)
= R

(n∑
i=1

wi θi mod 2π
)
,

where each R(θi) is a rotation in a subgroup of SO(2) and wi are fixed (or learned) weights. We
want to show that ϕ is a homomorphism from the Cartesian product group

G = G1 ×G2 × · · · ×Gn

into H ⊂ SO(2). In other words, for any two elements

g =
(
R(α1), R(α2), . . . , R(αn)

)
and

h =
(
R(β1), R(β2), . . . , R(βn)

)
in G, we need to prove that

ϕ(g · h) = ϕ(g) · ϕ(h).

Proof. Group Operation in G: Since each Gi is a subgroup of SO(2), its group operation is given by
addition of angles (modulo 2π). Thus, the group operation in G is defined coordinate-wise:

g · h =
(
R(α1 + β1), R(α2 + β2), . . . , R(αn + βn)

)
.

Using the definition of ϕ, we have

ϕ(g · h) = ϕ
(
R(α1 + β1), . . . , R(αn + βn)

)
= R

(
n∑

i=1

wi (αi + βi) mod 2π

)
.

Because the weighted sum is linear, we can write

n∑
i=1

wi (αi + βi) =

n∑
i=1

wi αi +

n∑
i=1

wi βi.

Therefore,

ϕ(g · h) = R

(
n∑

i=1

wi αi +

n∑
i=1

wi βi mod 2π

)
.

R(a) ·R(b) = R(a+ b mod 2π).

Thus, we have

20

R

(
n∑

i=1

wi αi +

n∑
i=1

wi βi

)
= R

(
n∑

i=1

wi αi

)
·R

(
n∑

i=1

wi βi

)
.

By the definition of ϕ,

ϕ(g) = R

(
n∑

i=1

wi αi

)
, ϕ(h) = R

(
n∑

i=1

wi βi

)
.

Therefore, we obtain

ϕ(g · h) = ϕ(g) · ϕ(h).

A.7 Background

Advances in genomic language modeling have introduced a range of strategies for representing
biological sequences, each with different trade-offs in terms of biological fidelity, expressiveness, and
computational efficiency. At the core of this challenge lies the question of whether models should
operate on raw nucleotide sequences, protein-level amino acids, or intermediate representations such
as codons. Each level captures distinct aspects of the biological signal: nucleotide-level models retain
the full sequence information, amino acid models emphasize protein function, and codon-level models
provide a balance by preserving the coding frame and capturing synonymous variation. Understanding
how these representations influence model performance is critical for designing language models that
are both biologically grounded and effective across a wide range of downstream tasks.

A.7.1 Nucleotide-level models (DNA/RNA as a sequence of bases)

Nucleotide-level tokenization treats the coding sequence simply as a long sequence of nucleotides
(characters A, C, G, T/U). Traditional sequence models like recurrent neural networks or trans-
formers can be applied at the base level, sometimes using sliding windows or overlapping k-mers
for tractability. For example, early genomic LMs such as DNABERT tokenized DNA sequences
into overlapping k-mers (e.g. 6-mers) and then learned representations with the BERT architecture
[20]. Nucleotide-level models have the advantage of retaining all information (including non-coding
regions or regulatory motifs in the sequence context), but they do not inherently recognize the codon
structure. Synonymous codons will be treated as completely unrelated tokens unless the model
implicitly learns their interchangeability from data. The vocabulary (4 nucleotides or a set of k-mers)
is relatively small, but sequences are three times longer at the nucleotide level than at the codon level,
which can pose challenges for model input length and learning long-range dependencies. Models
like DNABERT [20] and the Nucleotide Transformer [8] tokenize sequences into overlapping k-mers
(e.g., 6-mers), striking a balance between biological context and computational tractability. While
effective at capturing regulatory signals and enabling genome-scale analysis, these models lack an
inherent inductive bias toward codon structure unless explicitly modeled. Recent approaches, such as
DNABERT-2 [55] and GROVER [41], explore adaptive tokenization methods like byte-pair encoding
to better reflect sequence regularities. Collectively, these models have demonstrated strong perfor-
mance across a variety of genomics tasks by leveraging patterns learned directly from nucleotide-level
input [2, 54].

A.7.2 Amino acid-level models (operate on the translated protein sequence)

Here, the DNA coding sequence is first translated to the corresponding amino acid sequence, and
then a protein language model is applied. This effectively discards the specific codon information,
reducing the sequence to the 20-standard amino acid alphabet. Many state-of-the-art protein language
models use this approach, treating proteins as sequences of amino acids (e.g., ESM and related
transformer models [24, 38, 11]). By focusing on amino acids, these models tap into signals of
protein structure/function and avoid the complication of extremely long nucleotide sequences. Indeed,
large protein LMs have shown remarkable success in predicting structure and function directly from

21

sequence embeddings [38]. However, by design amino-acid models ignore synonymous codon
variation. They cannot capture codon bias effects on translation or gene expression, since all
synonymous DNA sequences collapse into the same amino acid sequence. For tasks where the
protein phenotype is paramount (e.g. structural modeling), this may be acceptable [38], but for tasks
related to gene expression, regulatory control, or species-specific usage, amino-acid–only models
miss a vital piece of information. As an example, codon usage biases differ by species, and aspects
like translation elongation rates or mRNA stability are influenced by the specific codon sequence
not just the resulting protein. Thus, while amino acid LMs leverage evolutionary signals in protein
space, they lack sensitivity to codon-level features by construction. Synonymous codon usage has
been linked to specific structural characteristics of proteins [42, 39], and accumulating evidence
highlights a relationship between codon usage patterns and protein folding processes [30, 26]. Such
relationships suggest that codon-level signals may carry essential structural information currently
missed by popular protein structure predictors, such as ESMfold [24] and OmegaFold [50], which
predominantly leverage language models designed to identify sequence-level correlations rather
than explicit physical principles of folding. Given that existing deep learning approaches have been
shown to inadequately capture the underlying biophysical mechanisms governing protein folding [32],
incorporating synonymous codon usage signals could significantly improve structural predictions.

Codon-level or 3-mer models (using codons as tokens) A compromise approach is to tokenize
the sequence in codons (triplets of nucleotides) or other 3-mer genomic words, so that each token
represents a genomic substring of length three. In coding regions, aligning 3-mers precisely to the
reading frame is particularly intuitive, as each token directly corresponds to one amino acid (or a
stop signal) in the protein sequence. This representation preserves synonymous codon distinctions
while simultaneously reducing sequence length by three-fold compared to nucleotide-level models.
The resulting vocabulary of codons includes 64 tokens (61 sense codons plus 3 stop signals), a size
somewhat larger than the amino acid alphabet but still highly practical for language modeling. Recent
approaches such as CodonBERT [23], HELM [52], CaLM [36], and DNABERT using 6-mers [56]
have shown that codon-level representations can outperform standard amino acid models by capturing
nuanced codon bias signals like species-specific preferences and rare codon placements [31, 32].
Overall, encoding sequences at the codon level represents a straightforward yet powerful strategy for
embedding explicit knowledge of the coding frame into language models.

Codon-level tokenization captures synonymous differences but fails to reflect the biological relation-
ships between codons that encode the same amino acid. Hierarchical approaches, such as HELM
(Hierarchical Encoding for mRNA Language Modeling) [52], address this by explicitly modeling the
codon-amino acid structure during pretraining. HELM introduces a codon hierarchy into the loss
function, penalizing the model less for predicting synonymous codons, thus encouraging embeddings
that cluster biologically equivalent codons together. This alignment with the genetic code significantly
improves both predictive and generative performance, outperforming standard models by 8% across
diverse tasks and producing sequences that better reflect natural codon usage. These results highlight
the value of embedding biologically grounded inductive biases into language models for mRNA.

A.7.3 Limitations of Codon-Level Embedding Models and Motivation for Group-Theoretic
Embeddings

Despite their advantages, codon-level embedding language models have important limitations that
constrain their robustness and generalizability. A critical drawback is that the learned codon em-
beddings typically lack interpretable or meaningful geometric relationships: although synonymous
codons may cluster in the embedding space due to the structure of the loss function, these models
do not explicitly encode biologically meaningful relationships among codons. For instance, while
HELM [52] implicitly prefers synonymous codons due to optimization pressures, it does so without
establishing tangible structural or biological relationships between codons in the embedding space.
As a consequence, the embeddings learned by such models can be brittle; small perturbations in
the embedding vectors or minor deviations from the training distribution may cause significant
degradations in model performance or even nonsensical outputs.

Another critical limitation stems from the difficulty of adapting these embeddings to new species
or contexts via fine-tuning. Codon usage preferences vary significantly across organisms [35],
and ideally, a model should easily adjust its embeddings to capture species-specific codon biases.
However, current codon-level embedding methods are typically not robust to fine-tuning, as the

22

entire downstream network heavily relies on the original embedding structure. Small adjustments in
codon embedding vectors, intended to reflect new codon preferences, often propagate unpredictably
throughout the network, effectively destabilizing the representations and yielding outputs that degrade
biological fidelity or model accuracy. Thus, rather than enabling straightforward adaptation, attempts
at fine-tuning may inadvertently disrupt the learned codon relationships, resulting in a substantial
loss of performance and biological interpretability.

A.7.4 Equivariant Architectures and Symmetry-Aware Modeling

Incorporating symmetry into neural architectures has emerged as a powerful inductive bias for learn-
ing over structured domains. Group equivariant neural networks (G-CNNs) extend the notion of
translational equivariance in convolutional networks to more general symmetry groups, enabling the
model to respect intrinsic invariances in the data [21, 7, 3]. While early applications of equivariance
were rooted in image domains, exploiting rotation and reflection symmetries, recent works have
expanded these ideas into non-Euclidean settings and non-linear operators such as self-attention. For
instance, the LieTransformer [17] generalizes attention mechanisms to arbitrary Lie groups, demon-
strating equivariant self-attention in diverse domains including molecular property prediction and
physical trajectory modeling. Similarly, TorchMD-Net [47] highlights the advantage of rotationally
equivariant transformers in modeling vectorial and tensorial outputs for molecular systems, showing
improved generalization even for scalar-valued properties.

Rotationally equivariant neural networks have proven especially effective in domains where predicted
outputs are vectors or tensors. SE(3)-Transformers [14], Cormorant [1], and equivariant message
passing networks [43] leverage geometric symmetry to model 3D molecular systems with higher
accuracy and efficiency. While these models were developed outside of biology, they highlight
the broader value of enforcing structured equivariance. Inspired by these principles, our approach
introduces a form of rotational symmetry within the codon space of mRNA, aiming to reduce
redundancy among synonymous codons through group-theoretic modeling.

To address these shortcomings, there is strong motivation to develop embedding frameworks that
explicitly integrate the known symmetry and redundancy of the genetic code from the outset. Incor-
porating codon synonym groups as mathematically defined equivalence classes could substantially
reduce model complexity and allow models to directly exploit biologically relevant variation, such as
species-specific codon usage patterns, without the risk of destabilizing learned representations. This
approach aligns closely with established biological knowledge and promises scientifically-grounded
AI models that are inherently data-efficient, interpretable, and robust. Ultimately, creating such
structured codon representations would not only address the current limitations of existing language
modeling techniques for DNA and RNA but would also enable scalable AI systems capable of
effectively navigating vast genomic sequence spaces for critical health-related applications, including
predicting gene expression or designing optimized mRNAs for vaccines [53].

A.8 Interpretability Analysis

A.8.1 Evaluation of Model Interpretability

To rigorously assess whether our SO(2)-structured codon embeddings encode biologically meaningful
signals, we performed two targeted analyses.

1. GC Content vs. Entropy of Codon Angles Genomic GC content is a major driver of codon
usage bias [34]. We therefore measured how dispersed the learned codon angles are as a function of
transcript GC%. For each coding sequence s of length N codons, let θ1, . . . , θN ∈ [0, 2π) denote the
model’s predicted angles. We estimate the empirical distribution

pi =
1

N

N∑
j=1

1(θj ∈ bini) , i = 1, . . . ,K

by binning the circle into K equal-width intervals. The Shannon entropy of the angle distribution is
then

H(s) = −
K∑
i=1

pi log2 pi .

23

(a) Angle Distribution Entropy vs. GC-Content (b) Weighted Mean Angle vs. tRNA Abundance

Figure 5: Interpretability of SO(2) codon embeddings. (a) Mean Shannon entropy of learned codon
angles, binned by transcript GC-content, exhibits a near-linear increase (Pearson r = 0.98, R2 = 0.97,
p < 10−11), confirming that GC-driven biases are captured in angular dispersion. (b) Weighted
mean rotation angle per codon versus normalized human tRNA gene copy number (top correlating
block), showing that codons decoded by more abundant tRNAs are assigned systematically smaller
angles (Spearman ρ = −0.69, p < 10−6), indicating the embedding’s alignment with translational
efficiency.

We grouped all human transcripts into M GC% bins (e.g. 20 equal-width bins on GC% ∈ [0, 1]) and
computed the mean entropy H in each bin. Fitting a linear model

H = α+ βGC%+ ε

yielded β = 0.35 ± 0.01 (SE), Pearson r = 0.98, R2 = 0.97, p < 10−11. This near-perfect trend
demonstrates that higher GC content known to restrict codon choice to G/C-rich codons corresponds
to lower angle uncertainty, validating that our embeddings capture mutational biases [44, 34].

2. tRNA Abundance vs. Codon Angle Translational efficiency is strongly influenced by tRNA
gene copy number [19]. For each of the 61 sense codons c, let θc be its learned angle (anchored
so θc ∈ [0, 2π)), and let tc be its normalized tRNA count. We assessed monotonic association via
Spearman’s rank correlation:

ρ = 1−
6
∑

c(r(θc)− r(tc))
2

61 (612 − 1)
,

where r(·) denotes the rank. We observed ρ = −0.69 (p < 10−6), indicating that codons with
more abundant tRNAs are systematically placed at smaller angles. This alignment shows that the
SO(2) embedding axis faithfully recapitulates the biological continuum of “optimal” to “non-optimal”
codons [19, 45].

Significance and Interpretation These results carry three key implications:

1. Biological alignment of latent space. The strong GC–entropy trend (Pearson r = 0.98)
confirms that the embedding’s angular dispersion encodes mutational biases in codon usage.

2. Translational efficiency signal. The negative Spearman ρ = −0.69 substantiates that
the continuous angular coordinate corresponds to tRNA-driven translation speed, without
explicit supervision.

3. Enhanced interpretability. Constraining codon embeddings to a one-dimensional circle
yields a latent space whose every point has direct biological meaning—mutational constraint
or translational optimality thereby increasing model transparency and trust.

Overall, these analyses justify our use of an SO(2) prior: it does not limit expressivity, but rather guides
the model to learn the dominant forces shaping codon usage, producing a compact, interpretable
representation amenable to downstream biological insights.

24

A.9 Experimental Setup

A.9.1 Pretraining Corpus Construction

All RefSeq files with the suffix “.rna.gbff.gz” were downloaded via NCBI’s FTP server. Using
the Helical AI curation toolkit [49], we parsed each GenBank record, extracted 5’-UTR, CDS, and
3’-UTR features, and retained only the CDS regions to ensure that our embeddings capture codon-
level translational signals rather than untranslated flanking sequences. Sequences shorter than 20
codons or longer than 512 codons, or containing non-canonical bases, were discarded.

Due to computational limits, we randomly subsampled the cleaned set of approximately 56 million
CDS entries down to 25 million, maintaining the following class proportions: 37.6% other vertebrates,
24.4% mammals, 22.8% invertebrates, 13.7% fungi, and 1.4% viruses (including major human
pathogens such as SARS-CoV-2, influenza, RSV, HIV-1/2, HBV, HCV, HSV, EBV, VZV, Zika, and
Dengue 1–4). For the low-data ablation, we sampled 1 million sequences from this pool with stratified
sampling to preserve these ratios.

All retained coding sequences were then “codonized” by grouping every three nucleotides into a single
token, yielding a vocabulary of 64 codons. This pipeline, which includes data acquisition, filtering,
codonization, and subsampling, ensures both biological relevance and computational tractability for
our SO(2)-based embedding experiments.

A.9.2 Downstream Evaluation

We evaluate our models on diverse biologically relevant datasets:

• MLOS (Flu Vaccine mRNAs): Contains 543 sequences of influenza vaccine mRNAs
developed by Sanofi-Aventis. The task focuses on predicting the expression levels of these
sequences, each approximately 1700 nucleotides long [23].

• mRFP Expression: Includes 1459 synthetic mRNA sequences encoding a red fluorescent
protein (mRFP). Each sequence has a fixed length of 678 nucleotides, and the goal is to
predict their expression levels quantitatively[29].

• E. coli Protein Expression: Consists of 6348 sequences from E. coli, varying from 171
to 3000 nucleotides. The classification task aims to determine whether a given mRNA
sequence results in high or low protein expression.[10]

• Tc-Riboswitches: Comprises 355 riboswitch sequences ranging from 67 to 73 nucleotides.
The regression task involves predicting the switching factor, a quantitative measure indicating
regulatory activity [15].

• iCodon Human mRNA Stability: A large-scale dataset of 41,123 human mRNA sequences
with lengths ranging between 30 and 1497 nucleotides. The objective is to predict mRNA
stability as a continuous value [9].

• SARS-CoV-2 Vaccine Degradation: Contains 2400 sequences from SARS-CoV-2 vaccine
candidates, each precisely 107 nucleotides. This regression task targets prediction of the
degradation rate of vaccine mRNA molecules [48]

All datasets are split consistently into training, validation, and test subsets at ratios of 70%, 15%, and
15%, respectively, for model training and evaluation.

A.10 Hyperparameters
A.10.1 Pretraining Hyperparameters

All twelve SO(2) embedding variants were pretrained under an identical configuration to ensure a
fair comparison of their representational effects. We used a 1 M-sequence subset for ablation, with a
stratified 25 M corpus reserved for final scaling experiments. Training was run on a single node with
eight NVIDIA GPUs, using a per-device batch size of 64 on 8 GPUs and gradient accumulation over
2 steps (effective batch = 1024). Models were trained for 50 epochs, with a 5-epoch linear warmup
and cosine lr scheduler. Sequences were truncated or padded to a maximum length of 512 codons.
We logged all runs to Weights&Biases and saved checkpoints to the specified output directory. Inputs

25

and defaults not overridden on the command line (e.g., learning rate, optimizer, scheduler) were left
at their parser-specified values.

Table 4 summarizes the key pretraining hyperparameters.

Table 4: Pretraining hyperparameters (identical for all 12 variants).

Hyperparameter Value

Training file 1M Sample
Batch size 1024
Gradient accumulation steps 2
Epochs 50
Warmup epochs 5
Scheduler Cosine
Max sequence length 512 codons
Precision bf16-mixed
Embedding-layer variants 12 SO(2) configurations (fixed/cyclic/fuzzy × standard/general)

Table 5: Pretraining hyperparameters for the 25 M-sequence corpus (identical for both GPT-2 and
Mamba hybrid architecture).

Hyperparameter Value

Training file 25 M Sample
Batch size 1024
Gradient accumulation steps 2
Epochs 20
Warmup epochs 2
Scheduler Cosine
Max sequence length 512 codons
Precision bf16-mixed
Embedding-layer variants SO2-fuzzy-general-true

Downstream Hyperparameter Optimization To tune our downstream heads for both generative
and property-prediction tasks, we performed a structured grid search over key training parameters.
We varied batch size ∈ {8, 16, 32, 64}, learning rate ∈ {1e−4, 1e−5}, hidden-ratio ∈ {2, 4, 8}
(controls MLP width), and number of head layers ∈ {2, 4, 7}. We also swept over two finetuning
regimes angle-only and last-two-layers—and five pooling strategies (so2_mean, dft, polar, mean,
lie_avg). Experiments used a fixed random seed (42), early stopping patience of 20 epochs, and
scheduler patience of 10 on validation Spearman (regression) or accuracy (classification). Invalid
combinations (e.g., angle finetuning on fixed-θ models) were automatically pruned. The full search
space and the selected best hyperparameters for each dataset are reported in Appendix A.10.2.

A.10.2 Best Downstream Hyperparameters

To provide clarity on our tuning process, we present five tables (Tables 6 through 12) that summarize
the single best hyperparameter configuration—across batch size, learning rate, MLP depth and
width, finetuning regime, and pooling method—for each downstream dataset. Each table lists the
model variant (fixed, cyclic, or fuzzy), whether a Stiefel basis or equivariance loss was used, and the
corresponding “Angle?” and “Last2?” flags. By consolidating these results, readers can directly see
which configuration achieved the highest validation performance on each task without exhaustive
per-dataset details.

26

Table 6: Downstream hyperparameter configurations for COV Deg.

Model Stiefel Equiv. #Layers Batch LR Angle? Last2? Hidden Pooling
Vanilla - - 4 8 0.0001 - - 8 mean

Fixed θ ✗ ✗ 4 16 0.0001 ✗ ✓ 4 so2_mean
Fixed θ ✗ ✓ 4 32 0.0001 ✗ ✗ 4 polar
Fixed θ ✓ ✗ 4 32 0.0001 ✗ ✓ 4 lie_avg
Fixed θ ✓ ✓ 4 16 1e-05 ✗ ✓ 4 so2_mean

Learned θ ✗ ✗ 4 32 0.0001 ✓ ✓ 4 so2_mean
Learned θ ✗ ✓ 2 16 1e-05 ✓ ✓ 2 so2_mean
Learned θ ✓ ✗ 4 16 1e-05 ✓ ✓ 2 so2_mean
Learned θ ✓ ✓ 4 32 0.0001 ✓ ✓ 2 mean

Fuzzy θ ✗ ✗ 2 32 0.0001 ✓ ✓ 4 mean
Fuzzy θ ✗ ✓ 2 16 0.0001 ✓ ✓ 4 so2_mean
Fuzzy θ ✓ ✗ 4 32 0.0001 ✓ ✓ 4 polar
Fuzzy θ ✓ ✓ 2 32 1e-05 ✗ ✓ 2 dft

Table 7: Downstream hyperparameter configurations for E. coli.

Model Stiefel Equiv. #Layers Batch LR Angle? Last2? Hidden Pooling
Vanilla - - 2 8 1e-05 - - 4 mean

Fixed θ ✗ ✗ 2 8 0.0001 ✗ ✓ 4 mean
Fixed θ ✗ ✓ 4 16 1e-05 ✗ ✓ 2 dft
Fixed θ ✓ ✗ 2 8 1e-05 ✗ ✓ 4 so2_mean
Fixed θ ✓ ✓ 4 32 0.0001 ✗ ✓ 2 polar

Learned θ ✗ ✗ 4 8 1e-05 ✗ ✓ 2 so2_mean
Learned θ ✗ ✓ 2 8 0.0001 ✗ ✓ 2 polar
Learned θ ✓ ✗ 4 8 1e-05 ✓ ✓ 4 lie_avg
Learned θ ✓ ✓ 2 8 1e-05 ✓ ✓ 4 mean

Fuzzy θ ✗ ✗ 4 8 1e-05 ✓ ✓ 4 mean
Fuzzy θ ✗ ✓ 2 8 1e-05 ✓ ✓ 2 dft
Fuzzy θ ✓ ✗ 2 8 0.0001 ✗ ✓ 4 polar
Fuzzy θ ✓ ✓ 2 8 1e-05 ✓ ✓ 4 so2_mean

A.11 Training Efficiency

To assess the computational overhead introduced by our symmetry-aware embeddings, we measured
end-to-end wall-clock training times on both the 1M sequence subset and the full 25M sequence
corpus. All models share the same 15M parameter Transformer backbone; variations arise only from
the SO(2) embedding configuration (fixed vs. learned vs. fuzzy), choice of basis (standard vs. Stiefel),
and inclusion of the equivariance loss.

Table 13 summarizes these results. On the 1M subset, the vanilla model completes in under 2 h,
whereas introducing a fixed θ embedding adds only a modest 30 % overhead when no equivariance
loss is used, and roughly doubles training time when the loss is activated. Learned θ embeddings
incur a further cost up to 4–5 × slower than fixed, reflecting the extra parameterization needed for
angle optimization. Stiefel-basis rotations amplify this effect, particularly once the equivariance
penalty is applied. Fuzzy θ variants exhibit the highest training times across all 1 M experiments, as
they combine a learned angle distribution with Riemannian updates on the Stiefel manifold.

Scaling to the full 25M corpus magnifies these trends: the hybrid mamba-transformer backbone with
fuzzy θ + Stiefel + equivariance completes in just over one day, while the GPT-2 backbone requires
nearly four days under the same configuration. These results highlight a clear trade-off between
representational power and compute cost, guiding practical choices for large-scale pretraining under
resource constraints.

27

Table 8: Downstream hyperparameter configurations for MLOS Split Seed 0.

Model Stiefel Equiv. #Layers Batch LR Angle? Last2? Hidden Pooling
Vanilla - - 2 32 1e-05 - - 2 mean

Fixed θ ✗ ✗ 4 64 1e-05 ✗ ✗ 4 mean
Fixed θ ✗ ✓ 2 64 0.0001 ✗ ✗ 4 so2_mean
Fixed θ ✓ ✗ 4 32 1e-05 ✗ ✗ 2 lie_avg
Fixed θ ✓ ✓ 2 32 1e-05 ✗ ✓ 4 lie_avg

Learned θ ✗ ✗ 8 64 0.0001 ✗ ✓ 2 polar
Learned θ ✗ ✓ 2 64 0.0001 ✓ ✓ 2 polar
Learned θ ✓ ✗ 2 8 0.0001 ✓ ✓ 4 dft
Learned θ ✓ ✓ 4 32 0.0001 ✓ ✗ 4 polar

Fuzzy θ ✗ ✗ 2 64 0.0001 ✓ ✓ 2 so2_mean
Fuzzy θ ✗ ✓ 4 32 1e-05 ✓ ✗ 2 polar
Fuzzy θ ✓ ✗ 8 64 1e-05 ✗ ✓ 2 lie_avg
Fuzzy θ ✓ ✓ 4 64 1e-05 ✗ ✓ 2 lie_avg

Table 9: Downstream hyperparameter configurations for MLOS Split Seed 2.

Model Stiefel Equiv. #Layers Batch LR Angle? Last2? Hidden Pooling
Vanilla - - 2 32 0.0001 - - 8 mean

Fixed θ ✗ ✗ 4 32 0.0001 ✗ ✓ 4 dft
Fixed θ ✗ ✓ 4 32 0.0001 ✗ ✓ 8 mean
Fixed θ ✓ ✗ 4 32 0.0001 ✗ ✗ 4 lie_avg
Fixed θ ✓ ✓ 2 16 0.0001 ✗ ✓ 4 so2_mean

Learned θ ✗ ✗ 2 64 0.0001 ✓ ✗ 4 mean
Learned θ ✗ ✓ 2 32 1e-05 ✗ ✗ 4 mean
Learned θ ✓ ✗ 4 32 0.0001 ✓ ✗ 4 so2_mean
Learned θ ✓ ✓ 4 32 0.0001 ✗ ✓ 2 lie_avg

Fuzzy θ ✗ ✗ 2 32 0.0001 ✗ ✗ 4 dft
Fuzzy θ ✗ ✓ 2 32 0.0001 ✓ ✓ 4 so2_mean
Fuzzy θ ✓ ✗ 2 32 0.0001 ✓ ✗ 2 mean
Fuzzy θ ✓ ✓ 4 32 1e-05 ✗ ✗ 2 mean

A.12 Ablation Study

To evaluate the effect of embedding design on predictive performance, we report results across three
correlation-based metrics commonly used in biological sequence modeling: Spearman, Pearson, and
coefficient of determination (R2). As shown in Tables 14, 15, and 16.

A.13 Generation Experiments

This section presents the complete results of our generative evaluation, expanding upon the summary
metrics reported in the main text. Table 17 reports Fréchet BioDistance (FBD) scores and generation
diversity (IntDivGen) across SO(2)-based variants and sampling temperatures. Table 18 provides mean
squared error (MSE) of predicted properties for generated suffixes at temperature 1.0. These results
offer a comprehensive view of fidelity and diversity trade-offs across embedding configurations and
generation settings.

A.13.1 Fidelity

Table 17 reports Fréchet BioDistance (FBD) scores and generation diversity (IntDivGen) across
SO(2)-based variants and sampling temperatures.

28

Table 10: Downstream hyperparameter configurations for MLOS Split Seed 42.

Model Stiefel Equiv. #Layers Batch LR Angle? Last2? Hidden Pooling
Vanilla - - 2 16 0.0001 - - 4 mean

Fixed θ ✗ ✗ 4 32 0.0001 ✗ ✓ 4 dft
Fixed θ ✗ ✓ 2 8 1e-05 ✗ ✓ 4 so2_mean
Fixed θ ✓ ✗ 4 16 0.0001 ✗ ✗ 2 dft
Fixed θ ✓ ✓ 4 8 0.0001 ✗ ✓ 2 dft

Learned θ ✗ ✗ 4 16 0.0001 ✗ ✓ 2 dft
Learned θ ✗ ✓ 2 8 0.0001 ✓ ✓ 4 dft
Learned θ ✓ ✗ 4 8 1e-05 ✓ ✓ 2 dft
Learned θ ✓ ✓ 2 8 1e-05 ✓ ✗ 4 so2_mean

Fuzzy θ ✗ ✗ 4 16 1e-05 ✗ ✓ 4 dft
Fuzzy θ ✗ ✓ 2 8 0.0001 ✓ ✓ 2 dft
Fuzzy θ ✓ ✗ 2 8 0.0001 ✓ ✗ 2 dft
Fuzzy θ ✓ ✓ 2 8 0.0001 ✓ ✓ 2 dft

Table 11: Downstream hyperparameter configurations for mRFP.

Model Stiefel Equiv. #Layers Batch LR Angle? Last2? Hidden Pooling
Vanilla - - 2 64 0.0001 - - 4 mean

Fixed θ ✗ ✗ 2 8 0.0001 ✗ ✓ 4 mean
Fixed θ ✗ ✓ 4 32 0.0001 ✗ ✓ 4 polar
Fixed θ ✓ ✗ 2 32 0.0001 ✗ ✓ 4 so2_mean
Fixed θ ✓ ✓ 4 16 0.0001 ✗ ✓ 2 lie_avg

Learned θ ✗ ✗ 2 16 0.0001 ✓ ✓ 4 mean
Learned θ ✗ ✓ 2 32 0.0001 ✓ ✓ 4 dft
Learned θ ✓ ✗ 2 8 0.0001 ✓ ✓ 4 polar
Learned θ ✓ ✓ 2 32 0.0001 ✓ ✓ 4 polar

Fuzzy θ ✗ ✗ 4 32 0.0001 ✓ ✓ 2 polar
Fuzzy θ ✗ ✓ 2 16 0.0001 ✗ ✓ 4 dft
Fuzzy θ ✓ ✗ 2 16 0.0001 ✓ ✗ 2 polar
Fuzzy θ ✓ ✓ 4 8 0.0001 ✓ ✓ 4 dft

A.13.2 Property Retention

Table 18 provides mean squared error (MSE) of predicted properties for generated suffixes at
temperature 1.0.

29

Table 12: Downstream hyperparameter configurations for Tc-Ribo..

Model Stiefel Equiv. #Layers Batch LR Angle? Last2? Hidden Pooling
Vanilla - - 4 8 1e-05 - - 2 mean

Fixed θ ✗ ✗ 4 8 1e-05 ✗ ✗ 2 mean
Fixed θ ✗ ✓ 2 16 0.0001 ✗ ✓ 4 polar
Fixed θ ✓ ✗ 2 16 1e-05 ✗ ✗ 4 polar
Fixed θ ✓ ✓ 4 16 1e-05 ✗ ✓ 4 mean

Learned θ ✗ ✗ 2 16 0.0001 ✗ ✓ 2 dft
Learned θ ✗ ✓ 2 16 0.0001 ✓ ✗ 2 polar
Learned θ ✓ ✗ 4 16 1e-05 ✗ ✗ 4 polar
Learned θ ✓ ✓ 4 8 1e-05 ✓ ✗ 2 polar

Fuzzy θ ✗ ✗ 4 8 1e-05 ✗ ✗ 4 mean
Fuzzy θ ✗ ✓ 4 16 1e-05 ✗ ✓ 2 mean
Fuzzy θ ✓ ✗ 4 16 0.0001 ✓ ✓ 4 polar
Fuzzy θ ✓ ✓ 4 16 0.0001 ✓ ✓ 4 mean

Table 13: Training times for different SO(2)-based models.

Model Stiefel Equiv. Training Time

Vanilla – – 1 h 51 m

Fixed θ

✗ ✗ 2 h 23 m
✗ ✓ 4 h 06 m
✓ ✗ 7 h 35 m
✓ ✓ 9 h 45 m

Learned θ (cyclic)

✗ ✗ 4 h 15 m
✗ ✓ 6 h 55 m
✓ ✗ 9 h 22 m
✓ ✓ 11 h 31 m

Fuzzy θ

✗ ✗ 4 h 18 m
✗ ✓ 7 h 12 m
✓ ✗ 9 h 27 m
✓ ✓ 11 h 41 m

25M-sequence corpus

EQUI-MRNA (5M) (Mamba-Transformer Hybrid) ✓ ✓ 1 d 1 h 31 m
EQUI-MRNA (15M) (GPT-2) ✓ ✓ 3 d 18 h 24 m

30

Table 14: Comparison of vanilla, fixed, and learned SO(2)-based models across downstream datasets,
evaluated using Spearman correlation. ✓indicates the presence of a component (Stiefel basis, or
equivariant loss) in a configuration.

Model Stiefel Equiv. E. coli(A) MLOS(S) Tc-Ribo.(S) mRFP(S) COV Deg(S)

Vanilla - - 0.580 0.633 ± 0.14 0.698 0.797 0.779

Fixed θ
✗ ✗ 0.615 0.602 ± 0.11 0.724 0.834 0.783
✗ ✓ 0.600 0.633 ± 0.16 0.711 0.841 0.787
✓ ✗ 0.602 0.667 ± 0.19 0.688 0.840 0.803
✓ ✓ 0.592 0.571 ± 0.086 0.722 0.838 0.794

Learned θ
✗ ✗ 0.602 0.648 ± 0.16 0.672 0.833 0.799
✗ ✓ 0.589 0.698 ± 0.15 0.698 0.822 0.787
✓ ✗ 0.633 0.657 ± 0.10 0.701 0.871 0.790
✓ ✓ 0.612 0.667 ± 0.137 0.741 0.850 0.797

Fuzzy θ
✗ ✗ 0.603 0.666 ± 0.17 0.680 0.833 0.786
✗ ✓ 0.590 0.602 ± 0.098 0.682 0.837 0.805
✓ ✗ 0.619 0.669 ± 0.10 0.729 0.839 0.793
✓ ✓ 0.605 0.691 ± 0.14 0.736 0.844 0.820

Table 15: Comparison of vanilla, fixed, and learned SO(2)-based models across downstream datasets,
evaluated using Pearson correlation. ✓indicates the presence of a component (Stiefel basis, or
equivariant loss) in a configuration.

Model Stiefel Equiv. E. coli(AUC) MLOS(P) Tc-Ribo.(P) mRFP(P) COV Deg(P)

Vanilla - - 0.4335 0.6203 ± 0.157 0.6451 0.6875 0.8081

Fixed θ
✗ ✗ 0.4290 0.6438 ± 0.164 0.6503 0.7231 0.8249
✗ ✓ 0.4768 0.6508 ± 0.140 0.6245 0.7162 0.8298
✓ ✗ 0.5934 0.7270 ± 0.122 0.6670 0.6979 0.8276
✓ ✓ 0.6032 0.6579 ± 0.089 0.6216 0.6959 0.7939

Learned θ
✗ ✗ 0.4600 0.6412 ± 0.139 0.6086 0.7291 0.8252
✗ ✓ 0.4550 0.6336 ± 0.139 0.6183 0.6911 0.8110
✓ ✗ 0.4611 0.6212 ± 0.143 0.6463 0.7121 0.8166
✓ ✓ 0.4749 0.6659 ± 0.175 0.6294 0.7071 0.8126

Fuzzy θ
✗ ✗ 0.4549 0.6684 ± 0.183 0.6036 0.7307 0.8181
✗ ✓ 0.6469 0.6984 ± 0.049 0.5910 0.7027 0.8281
✓ ✗ 0.5052 0.6704 ± 0.147 0.6194 0.7306 0.8087
✓ ✓ 0.5452 0.6983 ± 0.145 0.6107 0.6975 0.8265

31

Table 16: Comparison of vanilla, fixed, and learned SO(2)-based models across downstream datasets,
evaluated using coefficient of determination (R2). ✓indicates the presence of a component (Stiefel
basis, or equivariant loss) in a configuration.

Model Stiefel Equiv. E. coli(F1) MLOS(R2) Tc-Ribo.(R2) mRFP(R2) COV Deg(R2)

Vanilla - - 0.4763 0.4037 ± 0.196 0.2240 0.8028 0.6136

Fixed θ
✗ ✗ 0.5340 0.3339 ± 0.136 0.2398 0.8314 0.6190
✗ ✓ 0.5158 0.3345 ± 0.133 0.2467 0.8232 0.6413
✓ ✗ 0.5273 0.3339 ± 0.139 0.2506 0.8140 0.6349
✓ ✓ 0.5133 0.3193 ± 0.101 0.2616 0.7977 0.6007

Learned θ
✗ ✗ 0.5211 0.3573 ± 0.153 0.2446 0.7788 0.6282
✗ ✓ 0.5036 0.2945 ± 0.121 0.2549 0.8038 0.6160
✓ ✗ 0.5024 0.3413 ± 0.134 0.2551 0.8034 0.6215
✓ ✓ 0.5153 0.3489 ± 0.122 0.2438 0.7931 0.5941

Fuzzy θ
✗ ✗ 0.5265 0.3715 ± 0.162 0.2373 0.7908 0.6401
✗ ✓ 0.4933 0.3062 ± 0.134 0.2142 0.7851 0.6569
✓ ✗ 0.5101 0.3591 ± 0.159 0.2451 0.7572 0.6210
✓ ✓ 0.4940 0.3320 ± 0.157 0.2448 0.7799 0.6210

32

Table 17: Generation metrics and diversity (IntDiv_Gen) for SO(2)-based variants at different
sampling temperatures.

Model Temp Stiefel Equiv. FBD Prec. Rec. F1 IntDiv_Gen
Vanilla 0.2 – – 2561.81 0.093 0.108 0.0999 929.13

Fixed θ

0.2 ✗ ✗ 2563.64 0.093 0.109 0.1004 929.11
0.2 ✗ ✓ 2565.27 0.093 0.108 0.0999 929.08
0.2 ✓ ✗ 2562.60 0.093 0.104 0.0982 929.10
0.2 ✓ ✓ 2563.44 0.094 0.107 0.1001 929.10

Learned θ

0.2 ✗ ✗ 2565.05 0.093 0.107 0.0995 929.10
0.2 ✗ ✓ 2563.29 0.094 0.107 0.1001 929.12
0.2 ✓ ✗ 2565.23 0.093 0.109 0.1004 929.11
0.2 ✓ ✓ 2563.05 0.093 0.108 0.0999 929.10

Fuzzy θ

0.2 ✗ ✗ 2564.17 0.093 0.104 0.0982 929.11
0.2 ✗ ✓ 2564.33 0.093 0.104 0.0982 929.11
0.2 ✓ ✗ 2562.88 0.093 0.107 0.0995 929.10
0.2 ✓ ✓ 2563.90 0.093 0.103 0.0977 929.12

EQUI-MRNA (5M) 0.2 ✓ ✓ 819.18 0.680 0.745 0.7110 1045.95
EQUI-MRNA (25M) 0.2 ✓ ✓ 802.89 0.519 0.519 0.5190 965.27

Vanilla 0.4 – – 2561.99 0.093 0.108 0.0999 929.15

Fixed θ

0.4 ✗ ✗ 2564.09 0.094 0.107 0.1001 929.12
0.4 ✗ ✓ 2564.21 0.093 0.109 0.1004 929.11
0.4 ✓ ✗ 2562.49 0.093 0.109 0.1004 929.12
0.4 ✓ ✓ 2562.72 0.093 0.108 0.0999 929.12

Learned θ

0.4 ✗ ✗ 2563.73 0.093 0.108 0.0999 929.13
0.4 ✗ ✓ 2562.55 0.094 0.108 0.1005 929.14
0.4 ✓ ✗ 2564.46 0.093 0.109 0.1004 929.15
0.4 ✓ ✓ 2562.82 0.093 0.108 0.0999 929.12

Fuzzy θ

0.4 ✗ ✗ 2564.21 0.093 0.108 0.0999 929.12
0.4 ✗ ✓ 2563.56 0.093 0.106 0.0991 929.13
0.4 ✓ ✗ 2562.74 0.093 0.108 0.0999 929.12
0.4 ✓ ✓ 2562.79 0.093 0.110 0.1008 929.13

EQUI-MRNA (5M) 0.4 ✓ ✓ 579.21 0.726 0.777 0.7506 1049.83
EQUI-MRNA (25M) 0.4 ✓ ✓ 310.40 0.883 0.877 0.8800 984.58

Vanilla 0.6 – – 2562.24 0.093 0.110 0.1008 929.13

Fixed θ

0.6 ✗ ✗ 2564.36 0.094 0.107 0.1001 929.13
0.6 ✗ ✓ 2563.80 0.093 0.110 0.1008 929.13
0.6 ✓ ✗ 2562.11 0.093 0.110 0.1008 929.13
0.6 ✓ ✓ 2062.68 0.120 0.134 0.1266 936.00

Learned θ

0.6 ✗ ✗ 2563.25 0.093 0.108 0.0999 929.15
0.6 ✗ ✓ 2562.04 0.094 0.108 0.1005 929.15
0.6 ✓ ✗ 2564.53 0.093 0.109 0.1004 929.15
0.6 ✓ ✓ 2562.71 0.093 0.108 0.0999 929.13

Fuzzy θ

0.6 ✗ ✗ 2563.20 0.093 0.108 0.0999 929.13
0.6 ✗ ✓ 2462.77 0.099 0.116 0.1068 930.43
0.6 ✓ ✗ 2563.15 0.093 0.108 0.0999 929.12
0.6 ✓ ✓ 2562.95 0.093 0.111 0.1012 929.14

EQUI-MRNA (5M) 0.6 ✓ ✓ 341.68 0.791 0.817 0.8038 1049.53
EQUI-MRNA (25M) 0.6 ✓ ✓ 196.15 0.959 0.954 0.9565 1001.13

Vanilla 0.8 – – 2562.67 0.093 0.112 0.1016 929.15

Fixed θ

0.8 ✗ ✗ 2564.74 0.094 0.107 0.1001 929.14
0.8 ✗ ✓ 1714.65 0.142 0.145 0.1435 943.15
0.8 ✓ ✗ 2562.17 0.093 0.110 0.1008 929.15
0.8 ✓ ✓ 1039.52 0.199 0.201 0.2000 954.47

Learned θ

0.8 ✗ ✗ 2564.03 0.093 0.107 0.0995 929.15
0.8 ✗ ✓ 1525.08 0.147 0.152 0.1495 945.01
0.8 ✓ ✗ 2564.30 0.093 0.109 0.1004 929.15
0.8 ✓ ✓ 2562.60 0.093 0.108 0.0999 929.14

Fuzzy θ

0.8 ✗ ✗ 2374.21 0.097 0.122 0.1081 930.52
0.8 ✗ ✓ 1164.22 0.165 0.166 0.1655 949.01
0.8 ✓ ✗ 2562.80 0.093 0.108 0.0999 929.12
0.8 ✓ ✓ 2562.93 0.093 0.111 0.1012 929.15

EQUI-MRNA (5M) 0.8 ✓ ✓ 129.43 0.895 0.909 0.9019 1050.24
EQUI-MRNA (25M) 0.8 ✓ ✓ 172.02 0.977 0.973 0.9750 1009.09

Vanilla 1.0 – – 2562.78 0.093 0.112 0.1016 929.16

Fixed θ

1.0 ✗ ✗ 2564.44 0.094 0.111 0.1018 929.14
1.0 ✗ ✓ 964.80 0.209 0.215 0.2120 959.16
1.0 ✓ ✗ 2562.25 0.093 0.110 0.1008 929.15
1.0 ✓ ✓ 653.14 0.350 0.355 0.3525 969.65

Learned θ

1.0 ✗ ✗ 1516.35 0.138 0.144 0.1409 941.34
1.0 ✗ ✓ 958.41 0.204 0.212 0.2079 958.78
1.0 ✓ ✗ 1921.42 0.132 0.143 0.1373 940.06
1.0 ✓ ✓ 1807.64 0.123 0.141 0.1314 939.07

Fuzzy θ

1.0 ✗ ✗ 1520.08 0.127 0.150 0.1375 940.55
1.0 ✗ ✓ 580.19 0.369 0.367 0.3680 969.57
1.0 ✓ ✗ 2023.60 0.106 0.121 0.1130 933.61
1.0 ✓ ✓ 1652.77 0.136 0.156 0.1453 941.85

EQUI-MRNA (5M) 1.0 ✓ ✓ 76.13 0.977 0.976 0.9765 1051.16
EQUI-MRNA (25M) 1.0 ✓ ✓ 177.77 0.987 0.984 0.9855 1014.56

33

Table 18: MSE of predicted property across model variants and datasets at sampling temperature 1.0.

Model Dataset Stiefel Equiv. MSE Pred.
Vanilla icodon – – 0.4640

mlos0 – – 0.1894
mrfp – – 1.8485
switch – – 0.4141
deg – – 0.7868

Fixed θ icodon ✗ ✗ 0.4649
mlos0 ✗ ✗ 0.1888
mrfp ✗ ✗ 1.8485
switch ✗ ✗ 0.4153
deg ✗ ✗ 0.7921

Fixed θ icodon ✗ ✓ 0.4346
mlos0 ✗ ✓ 0.1597
mrfp ✗ ✓ 1.7898
switch ✗ ✓ 0.4278
deg ✗ ✓ 0.6716

Fixed θ icodon ✓ ✗ 0.4640
mlos0 ✓ ✗ 0.1888
mrfp ✓ ✗ 1.8478
switch ✓ ✗ 0.4069
deg ✓ ✗ 0.8017

Fixed θ icodon ✓ ✓ 0.4252
mlos0 ✓ ✓ 0.1426
mrfp ✓ ✓ 1.7786
switch ✓ ✓ 0.3749
deg ✓ ✓ 0.6215

Learned θ icodon ✗ ✗ 0.4470
mlos0 ✗ ✗ 0.1684
mrfp ✗ ✗ 1.8193
switch ✗ ✗ 0.4221
deg ✗ ✗ 0.7086

Learned θ icodon ✗ ✓ 0.4325
mlos0 ✗ ✓ 0.1695
mrfp ✗ ✓ 1.7806
switch ✗ ✓ 0.3623
deg ✗ ✓ 0.6733

Learned θ icodon ✓ ✗ 0.4509
mlos0 ✓ ✗ 0.1791
mrfp ✓ ✗ 1.8256
switch ✓ ✗ 0.4155
deg ✓ ✗ 0.7357

Learned θ icodon ✓ ✓ 0.4498
mlos0 ✓ ✓ 0.1776
mrfp ✓ ✓ 1.8216
switch ✓ ✓ 0.4091
deg ✓ ✓ 0.7523

Fuzzy θ icodon ✗ ✗ 0.4474
mlos0 ✗ ✗ 0.1642
mrfp ✗ ✗ 1.8140
switch ✗ ✗ 0.3992
deg ✗ ✗ 0.7291

Fuzzy θ icodon ✗ ✓ 0.4296
mlos0 ✗ ✓ 0.1361
mrfp ✗ ✓ 1.7620
switch ✗ ✓ 0.3872
deg ✗ ✓ 0.6319

Fuzzy θ icodon ✓ ✗ 0.4582
mlos0 ✓ ✗ 0.1786
mrfp ✓ ✗ 1.8332
switch ✓ ✗ 0.4122
deg ✓ ✗ 0.7707

Fuzzy θ icodon ✓ ✓ 0.4497
mlos0 ✓ ✓ 0.1758
mrfp ✓ ✓ 1.8179
switch ✓ ✓ 0.4171
deg ✓ ✓ 0.7149

34

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction section carefully convey the paper’s contributions
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned all limitations and future directions in section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

35

Justification: We mentioned all the assumptions and proofs in the methodology (Section 2),
and the appendix A.6.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the required details for reproducing this model have been provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

36

Answer: [Yes]

Justification: The data are publicly available. We can provide the link to code at any time.
For the review version, we did not include the link to keep it as an anonymous review. The
supplementary Zip file including code has been attached.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to section 3.1 and A.10.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We used common metrics from the literature that were used for evaluation and
comparison. Also, we compared the performances as fair as possible. The significance of
our work can be easily interpreted with provided tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to section 3.1 and A.11.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No possible violation exists in this study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work focuses on foundational research for improving language modeling
of biological sequences, specifically mRNA. The model is designed to capture codon-level
symmetries for better sequence representation and downstream prediction performance. As
it is a methodological contribution without direct application or deployment pathways at
this stage, there are no immediate societal impacts, either positive or negative, associated
with this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

38

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper proposes a methodological advancement for modeling biological
sequences, specifically mRNA, using symmetry-aware architectures. The work does not
involve the release of general-purpose language models, image generators, or datasets
scraped from the internet. Furthermore, the developed models are specialized for biological
sequence analysis and do not pose high risks for misuse or dual-use beyond intended
scientific applications.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the assets in this work, either are original or publicly available (e.g.
datasets).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

39

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The link to the Github repository including code and datasets will be provided
after acceptance. Due to anonymous review, we cannot share the link beforehand. The
supplementary Zip file including code has been attached.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]

40

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

41

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Problem Formulation
	Mapping Codons to SO(2) via Cyclic Subgroups
	Learning Codon Rotation Generators: Toward Adaptive and Robust Representations
	Fuzzy Codon Embeddings: Soft Group Actions from Learned Distributions
	General Basis Rotation via Stiefel-Manifold-Constrained Subspaces
	Equivariance Enforcement via Auxiliary Loss
	Equivariant Pooling Mechanisms for SO(2) Representations

	Experiments
	Experimental Setup
	Symmetry-Aware Property Prediction
	Symmetry‑Aware Sequence Generation
	Enhanced Generative Fidelity with Equi‑mRNA
	Enhanced Property Retention under Equi‑mRNA Embeddings

	Interpretability Analysis

	Limitation and Future works
	Conclusion
	Technical Appendices and Supplementary Material
	Preliminaries
	Overview of Codon Embedding Variants
	Block-Diagonal Codon Embeddings in Higher Dimensions
	Equivariance Enforcement via Auxiliary Loss
	Equivariant Pooling Mechanisms for SO(2) Representations
	Cartesian Product of SO(2) Groups
	Polar Pooling
	DFT-Based Rotation-Aware Pooling
	SO(2) Mean Pooling

	Mathematical Details and Proofs
	Background
	Nucleotide-level models (DNA/RNA as a sequence of bases)
	Amino acid-level models (operate on the translated protein sequence)
	Limitations of Codon-Level Embedding Models and Motivation for Group-Theoretic Embeddings
	Equivariant Architectures and Symmetry-Aware Modeling

	Interpretability Analysis
	Evaluation of Model Interpretability

	Experimental Setup
	Pretraining Corpus Construction
	Downstream Evaluation

	Hyperparameters
	Pretraining Hyperparameters
	Best Downstream Hyperparameters

	Training Efficiency
	Ablation Study
	Generation Experiments
	Fidelity
	Property Retention

