
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REVISITING [CLS] AND PATCH TOKEN INTERACTION
IN VISION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision Transformers have emerged as powerful, scalable and versatile representa-
tion learners. To capture both global and local features, a learnable [CLS] class
token is typically prepended to the input sequence of patch tokens. Despite their
distinct nature, both token types are processed identically throughout the model.
In this work, we investigate the friction between global and local feature learn-
ing under different pre-training strategies by analyzing the interactions between
class and patch tokens. Our analysis reveals that standard normalization layers
introduce an implicit differentiation between these token types. Building on this
insight, we propose specialized processing paths that selectively disentangle the
computational flow of class and patch tokens, particularly within normalization
layers and early query-key-value projections. This targeted specialization leads to
significantly improved patch representation quality for dense prediction tasks. Our
experiments demonstrate segmentation performance gains of over 2 mIoU points
on standard benchmarks, while maintaining strong classification accuracy. The
proposed modifications introduce only an 8% increase in parameters, with no ad-
ditional computational overhead. Through comprehensive ablations, we provide
insights into which architectural components benefit most from specialization and
how our approach generalizes across model scales and learning frameworks.

1 INTRODUCTION

In recent years, significant progress has been made in developing vision foundation models capable
of generating rich and highly generalizable visual representations for images. Notably, latest state-
of-the-art results have been achieved using Vision Transformer (ViT) models (Dosovitskiy et al.,
2021) trained under various paradigms, including fully-supervised (Touvron et al., 2022), weakly
supervised (Radford et al., 2021; Bolya et al., 2025), and self-supervised learning (Zhou et al., 2021;
Oquab et al., 2023; Siméoni et al., 2025). These models capture a wide spectrum of visual semantics,
enabling robust performance across a diverse range of downstream tasks and data domains.

The ViT architecture (Dosovitskiy et al., 2021) processes images by dividing them into fixed-size
patches, which are then embedded and fed to a sequence of transformer blocks. Typically, a trainable

Original image
l

(a) DINOv2 w/ regs
(Darcet et al., 2023)

(a) + ours
l

(b) DINOv2 w/ attn.
bias (An et al., 2025)

(b) + ours
l

Figure 1: Visualization of the impact of our proposed layer specialization for [CLS] and patch
tokens on the patch features obtained with DINOv2 when using two strategies to mitigate artifacts,
namely registers (‘regs’) (Darcet et al., 2023) and attention bias (‘attn. bias’) (An et al., 2025). We
display the first PCA components of model outputs in RGB.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

class token [CLS] is prepended to the sequence of patch embeddings and is designed to aggregate
information from all patches. Patches and [CLS] tokens are trained with different objectives, if any.
For instance, most pre-training methods apply a loss function solely on the [CLS] token (Chen
et al., 2020; Grill et al., 2020; Caron et al., 2021; Radford et al., 2021; Touvron et al., 2022). Some
employs an objective on patch tokens only (He et al., 2022), while others train the [CLS] and patch
tokens with separate losses (Zhou et al., 2021; Oquab et al., 2023; Siméoni et al., 2025). Regardless
of the specific training paradigm, recent works (Darcet et al., 2023; An et al., 2025; Siméoni et al.,
2025) show that there is a persistent imbalance between the [CLS] and patch tokens. Proposed so-
lutions to this issue include introducing additional storage tokens into the input sequence (Darcet
et al., 2023), modifying the attention mechanism (An et al., 2025), or incorporating additional loss
terms to explicitly constrain patch locality (Siméoni et al., 2025). In contrast, we hypothesize that
the imbalance arises because models process the [CLS] and patch tokens through identical compu-
tational pipelines, despite their fundamentally different roles and nature, and propose disentangling
their treatment to overcome the imbalance.

In this work, we analyze the model statistics in order to better understand the internal mechanisms
that govern the interaction between the [CLS] and patch tokens. Our analysis reveals a surprising
finding: normalization layers are already implicitly learning to distinguish between the [CLS] and
patch tokens before the attention mechanism. Building on this insight, we introduce a simple yet
effective architectural modification that explicitly separates the processing of the [CLS] and patch
tokens, as illustrated in Fig. 5. With just a minimal set of specialized layers, our approach leads
to noticeably richer dense features (see Fig. 1) and delivers substantial gains on dense prediction
tasks. For instance, we improve the average mIoU scores on segmentation benchmarks by as much
as 2.2 points with a ViT-L. This work sheds light on hidden dynamics within transformer models
and also demonstrates how targeted architectural changes can translate into significant real-world
performance improvements. We make the following contributions:

• We analyze the interactions between [CLS] and patch tokens within Vision Transformers,
and show that models implicitly attempt to distinguish them through normalization layers.

• We propose an architectural modification that specializes their computations to reduce the
friction between them, while keeping the number of operations constant. We study different
specialization strategies for transformer block components.

• We demonstrate the generalizability of our approach across model scales and learning
frameworks, showing significant improvements in dense prediction tasks without compro-
mising classification performance.

2 RELATED WORK

Vision Transformers Inspired by Vaswani et al. (2017) and first introduced by Dosovitskiy et al.
(2021), Vision Transformer has become an architecture of choice when building vision models. A
typical ViT model consists of a patch embedder and a stack of transformer blocks. Given an image,
the patch embedder divides it into equally-sized square patches and transforms them into patch
tokens that represent local information in the image. Optionally, a learnable [CLS] token is added to
the set of patch tokens in order to capture global information. All tokens are then passed through the
transformer blocks which process them with various transformations, most notably the multi-head
self-attention operator (Vaswani et al., 2017) that allows tokens to attend to each other. Built on the
original architecture, subsequent works have introduced additional components to improve various
aspects of ViTs such as data efficiency (Touvron et al., 2020; Yuan et al., 2021), computational cost
(Liu et al., 2021; Bolya et al., 2023) and normalization (Touvron et al., 2021). ViT architecture
has enabled state-of-the-art performance in various tasks (Carion et al., 2020; Strudel et al., 2021),
simplified multi-modal learning (Radford et al., 2021; Fini et al., 2024), and led to excellent local
and global representation in foundation models (Oquab et al., 2014; Tschannen et al., 2025; Siméoni
et al., 2025). In most ViTs, [CLS] and patch tokens are functionally interchangeable in transformer
blocks – they are processed in identical manner using the same operators – despite their distinctive
nature. We show in our analysis that the identical treatment of these tokens is suboptimal and that
disentangling them leads to better local features for dense tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

[CLS]-patches patches-patches
−0.2

0.0

0.2

0.4

co
si

n
e

si
m

il
ar

it
y before

after

(a) LayerNorm pre-attn.

[CLS]-patches patches-patches
−0.2

0.0

0.2

0.4

(b) Self-attention

[CLS]-patches patches-patches
−0.2

0.0

0.2

0.4

(c) LayerScale post-attn.

[CLS]-patches patches-patches
−0.2

0.0

0.2

0.4

(d) LayerNorm pre-MLP

Figure 2: [CLS] -patches separation effect within transformer blocks in vanilla DINOv2 ViT-L
model. We show mean and standard deviation of cosine similarity between [CLS] and all patches,
and all-to-all patches, before and after each transformer layers. ‘attn.’ stands for attention.

Improving dense feature learning Visual representation learning approaches have mostly focus
on optimizing the global representation by primarily training the [CLS] token to summarize the im-
age content either in supervised (Touvron et al., 2022), weakly supervised (Radford et al., 2021;
Tschannen et al., 2025) or self-supervised settings (Caron et al., 2021; Liu et al., 2021). As a by-
product, they also produce local representation that perform well on tasks that require fine-grained
features such as object detection, semantic segmentation or depth estimation. Most notably, the self-
supervised method DINO (Caron et al., 2021) produces excellent patch features that supercharge
research on unsupervised object detection and segmentation. iBoT (Zhou et al., 2021) augments
DINO with masked image modeling (He et al., 2022) to optimize both global and local representa-
tion. DINOv2 (Oquab et al., 2023) introduces new technical components such as Sinkhorn-Knopp
centering and untying heads to successfully scale DINO to large datasets and model sizes, achieving
excellent performance on dense tasks. Learning meaningful dense features with Vision Transform-
ers is not without challenges. Darcet et al. (2023) discusses the noisy attention maps produced by
models trained at scale during longer training periods. This issue, which degrades dense prediction
performance, is caused by some patch tokens losing their local context after being repurposed by the
model to store global information. They propose an architectural solution with registers to mitigate
these issues. Other successful attempts to enhance the quality of local features include regulariz-
ing similarity to neighbor patches post-training (Pariza et al., 2024) or recovering patch similarity
with Gram anchoring mechanism (Siméoni et al., 2025). Similar to these works, we improve dense
features quality during training by specializing [CLS] and patch tokens treatment within the Trans-
former blocks of ViTs and thus reducing the friction between them.

3 FRICTION BETWEEN [CLS] AND PATCHES

Vision Transformers are typically trained with a trainable [CLS] token which encodes global infor-
mation about the image prepended to the sequence of patch tokens. Despite the distinct nature of the
[CLS] and patch tokens, current models treat them equivalently, applying the exact same operations
to both. However, (Darcet et al., 2023) has highlighted potential communication issues between
these two types of tokens, leading to a severe loss of locality of patch tokens and the appearance of
undesirable outliers in the attention maps. While registers help to mitigate the appearance of arti-
facts, we argue that more could be done. Our observations indicate that a degree of friction persists
between [CLS] and patch tokens, as discussed below.

ViTs differentiate [CLS] and patch tokens for the attention We analyze the interplay between
[CLS] and patch tokens by computing their similarity at different points within the model, before
and after principal layers in each transformer block. In Fig. 2, we visualize the mean and standard
deviation of these similarities. Our results are averaged over patches of 1000 images and across all
model blocks. Additionally, we present the same statistics between patches. While certain opera-
tions—such as the LayerScale applied post-attention—have little effect on the similarity between
[CLS] and patch tokens, the self-attention layer markedly increases their similarity. This increase
is expected, as self-attention realigns the different token types. However, our analysis uncovers a
surprising phenomenon: the representations of [CLS] and patch tokens naturally diverge at specific
stages of the computational pipeline, particularly just before attention operations. Indeed, the Lay-
erNorm applied before attention drastically reduces the similarity between [CLS] and patch tokens,
bringing it close to zero. This implicit differentiation indicates that the model attempts to adapt to

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

[CLS]-patches patches-patches

−0.25

0.00

0.25

0.50

co
si

n
e

si
m

il
ar

it
y before LN

after

(a) DINOv2

[CLS]-patches patches-patches

−0.25

0.00

0.25

0.50

(b) DINOv2 w/ regs

[CLS]-patches patches-patches

−0.25

0.00

0.25

0.50

(c) DINOv2 w/ attn-bias

[CLS]-patches patches-patches

−0.25

0.00

0.25

0.50

(d) DEIT-III

Figure 3: Impact of LayerNorm before attention layer for different pre-trained models. We show
mean and standard deviation of cosine similarity between [CLS] and all patches, and between all
patches. Statistics visualized before and after LayerNorm (LN).

the distinct functional roles of these token types before the attention mechanism, despite their shared
parameterization. We plot the statistics of more layers in Appendix A.2.

Role of the pre-attention LayerNorm In Fig. 3, we focus on the impact of the pre-attention
LayerNorm to the similarity between the [CLS] and patch tokens in different pre-trained models,
including DINOv2 (Oquab et al., 2023) and its variants with registers (Darcet et al., 2023), noted
‘regs’, and attention bias (An et al., 2025), noted ‘attn. bias’, and supervised DEIT-III (Touvron
et al., 2022). It can be observed that in all cases, prior to the attention mechanism, the Layer-
Norm disentangles the [CLS] and patch tokens, enabling them to serve distinct functions within the
attention process. This phenomenon appears in all pre-trained models with different extent. For
instance, the LayerNorm strongly enforces negative correlation between [CLS] and patches in DI-
NOv2 and DEIT-III while keeping the correlation close to zeros in the variants of DINOv2. In
contrast, the similarity among patch tokens remains positive and largely stable, with only a slight
decrease observed—a phenomenon we interpret as a regularization effect. This effect likely prevents
rank collapse and promotes a more uniform distribution of tokens on the unit sphere, consistent with
observations reported in Wu et al. (2024).

dimensions

[CLS]

patches

(a) Block 7

dimensions

[CLS]

patches

(b) Block 15

dimensions

[CLS]

patches

(c) Block 23 (Last)

Figure 4: Dimensions with biggest magnitudes early (a), in the middle (b), at the end (c) of the
model for [CLS] and patches. Tokens taken at the output of blocks. The considered model is a
DINOv2 ViT-L with attention bias

Dimension separation The LayerNorm layer performs a point-wise normalization and a
dimension-wise affine transformation, therefore a separation effect can appear when inputs have
very different magnitudes in each dimension. In Fig. 4, we plot the dimensions with biggest abso-
lute magnitudes—averaged over patches and [CLS]—at the output of different blocks. We observe
that some specific dimensions are leveraged only by a certain token type and that the deeper we are
in the model, the fewer token types share dimensions. This enables normalization layers to perform
distinctive operations. More than just regularizing, they specialize and separate the tokens.

All the observations above indicate that treating [CLS] and patch tokens identically compels the
model to allocate resources towards implicitly separating them, which could be used to learn more
meaningful features. We argue that disentangling their treatments would facilitate the model in
learning better representation, as discussed in next section.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Specialized Transformer blockPatches

[CLS]

QKV
proj.

Layer
Norm Linear Layer

Scale
Layer
Norm MLP Layer

Scale

QKV
proj.

Layer
Norm Linear Layer

Scale
Layer
Norm MLP Layer

Scale

Attention

sharable weights

Figure 5: Architecture specialization. We investigate how [CLS] and patch tokens can be processed
through specialized layers, while preserving their interactions within the attention mechanism.

4 [CLS] - PATCHES SPECIALIZATION: ANALYSIS

In this section, we first define our proposed layer specialization in Sec. 4.1 and set the experimental
setting in Sec. 4.2. In Sec. 4.3, we discuss the benefits of splitting normalizations for [CLS] and
patch tokens. We also investigate which part of the model needs specialization in Sec. 4.4, and more
specifically which layers in Sec. 4.5.

4.1 OUR PROPOSAL: LAYER SPECIALIZATION

Based on observations made in the previous section, we explore disentangling the computation of
global and local representations in ViTs. Taking inspiration from the success of double-stream ar-
chitectures to handle different modalities (Esser et al., 2024), we explore a similar approach for the
[CLS] and patch tokens. More specifically, inside a classic transformer block, [CLS] and patch to-
kens go through several layers: projections, some normalizations and a MLP. We propose to decou-
ple the [CLS] and patch tokens by processing them with different weights for certain layers. Indeed,
instead of using a single layer to process both token types, we introduce two distinct layers—each
with its own set of weights—specialized for either [CLS] or patch tokens. This allows each layer to
better capture the unique characteristics of its respective token type. However, the tokens continue
to interact through the attention mechanism as usual, ensuring information flow between [CLS] and
patch tokens is preserved. An illustration of this specialized architecture is provided in Fig. 5. While
this approach introduces some additional memory overhead, our experiments show that the increase
in model size remains small—approximately 8%—when layer specialization is applied selectively
to achieve optimal performance. More importantly, layer specialization does not increase inference
FLOPs, as the model continues to perform the same computational operations during inference.
This ensures that the efficiency of the model is maintained, even as we enhance its representational
capacity through targeted specialization.

4.2 EXPERIMENTAL SETTING: TRAINING AND EVALUATION

Training We investigate layer specialization with different pre-training paradigms including the
popular self-supervised strategy DINOv2 (Oquab et al., 2023) and the fully-supervised DeiT-III
(Touvron et al., 2022). We also investigate different model sizes (ViT-B, L, H). Unless specified
otherwise, we produce results with a ViT-L model trained following DINOv2 recipe. Following
An et al. (2025), we integrate the attention bias strategy, which mitigates high-norm anomalies
(Darcet et al., 2023) without introducing additional tokens, in all models and attention operations.
More discussion can be found in Appendix A.1. For DINOv2, we train our models on ImageNet-
22K (Ridnik et al., 2021) dataset for 600k training steps. For DeiT-III, we train our models on
ImageNet-1K (Deng et al., 2009) for respectively 400 epochs on ViT-B and 800 epochs on ViT-L.
For both training paradigms, we pre-train using the first pre-training phase, and drop the high-
resolution fine-tuning step. We report more details in Appendix A.3.

Evaluation Following Oquab et al. (2014), we assess model representations via linear probing
on global, with ImageNet-1k (Deng et al., 2009), and dense prediction tasks. For semantic seg-
mentation, we use ADE20K (Zhou et al., 2017), Cityscapes (Cordts et al., 2016) and PASCAL
VOC (Everingham et al., 2010), reporting mIoU. For depth estimation, we use KITTI (Geiger et al.,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

LN
attn.

LS
attn.

LN
MLP

LS
MLP

0.0

0.2

0.4

co
si

n
e

si
m

il
ar

it
y baseline

specialized
norms

(a) [CLS] -patches cosine sim.

LN
attn.

LS
attn.

LN
MLP

LS
MLP

0.0

0.2

0.4

(b) Patches-patches cosine sim.

Spec. Linear Avg Avg
Acc. Seg. Depth ↓

– 85.4 64.5 1.232
norms 85.1 65.6 1.178

(c) Norm specialization

Figure 6: Normalization specialization. Mean and standard deviation of the cosine similarity com-
puted between (a) [CLS] and all patches and (b) all to all patches. We compare post-normalization
statistics between the baseline architecture (DINOv2 ViT-L with attn. bias) and when specializing
the normalization layers for [CLS] and patch token (specialized norms). (c) Quantitative results
with specialized normalization layers. ‘LN’ stands for LayerNorm and ‘LS’ for LayerScale.

2013), NYU Depth v2 (Nathan Silberman & Fergus, 2012) and SUN RGB-D (Song et al., 2015),
reporting RMSE. Some tables show average segmentation and depth scores across corresponding
benchmarks. More details in Appendix A.3.

4.3 SPECIALIZING NORMALIZATION LAYERS

As discussed in Sec. 3, ViTs attempt to separate the [CLS] and patch tokens with the LayerNorm
applied prior to the attention operation. Building on this observation, our initial experiment focuses
on specializing the normalization layers (LayerNorms and Layer Scales) within the model, with the
aim of further supporting the model’s inherent tendency to separate these feature types.

We specialize the normalization layers in all blocks of the model. This lightweight modification
introduces only 0.05% additional parameters, yet significantly alters the feature distributions. In
Fig. 6a, we report the mean and standard deviation of the cosine similarity between the [CLS] and
patch tokens, computed after each normalization layer. We compare our variant with specialized
normalization weights to the baseline. Conversely, Fig. 6b shows the corresponding statistics when
using all patches instead of the [CLS] . We observe that specializing the normalization layers further
amplifies the disentanglement of the [CLS] and patch tokens, resulting in a more distinct separation
of their embeddings after each normalization step.

The impact of these specialized normalizations is quantified in Fig. 6c. The specialization leads
to significant improvements on dense prediction tasks, yielding an average increase of +1.1 mIoU
points on segmentation benchmarks and an improvement of −0.054m on depth estimation. These
results highlight that a better specialization of the token types benefits the patches representations.
On the other side, global results are slightly degrading. We however show in the next section that
this loss can be mitigated. Unless otherwise specified, in the remainder of the paper, we apply
specialized normalization layers to all transformer blocks.

4.4 BLOCK-LEVEL TARGETED SPECIALIZATION

0 10 20

block index

0.0

0.1

0.2

co
si

n
e

si
m

il
ar

it
y

before LN

after LN

Figure 7: Mean cosine similarity between
[CLS] and all patches before and after the first
LayerNorm (LN) of each block.

While normalization layers in ViTs show in overall
a [CLS] -patch separation effect, we have observed
that the extent of their impact is not uniform across
all blocks. It can be seen from Fig. 7, which depicts
[CLS] -patches cosine similarity before and after
the first LayerNorm in each block, that the sepa-
ration effect of the normalization varies depending
on its position within the model. Indeed, blocks at
the beginning and near the end see the most impact.
We hypothesize that the importance of separation
in the early blocks stems from their proximity to
the different inputs. Although the [CLS] token is
trained to summarize information from the patches,
it is initialized as a learned parameter and thus has
an input distribution very distinct from that of the patch tokens. Later in the model, separation be-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Specialized Linear Avg Avg
blocks Acc. Seg. Depth ↓
∅ 85.4 64.5 1.232
1st half 85.1 65.7 1.191
2nd half 85.2 64.5 1.236
All 85.0 65.9 1.191

(a) Which model’s part to specialize

0 10 20
64

65

66

67

block

mIoU

(b) Avg. segmentation perf.

0 10 20

1.15

1.2

1.25

block

rmse

(c) Avg. depth perf. ↓

Figure 8: Block specialization. (a) Performance metrics when specializing specific parts of the
model (b) Average segmentation scores and (c) average depth rmse (↓) vs number of specialized
blocks at the beginning of the model. Normalization layers are specialized in all blocks. The base
model is a DINOv2 ViT-L with attention bias.

comes important again as tokens are closer to the final representations and the training objectives.
The observations above suggest that we can benefit from more targeted specialization within the
model. We study next which blocks should be specialized to optimize the model’s performance.

We first quantitatively compare the impact of specializing different sections of the model, as shown
in Fig. 8a. To this end, we train DINOv2 while specializing either the first half, the second or all
of the transformer blocks, on top of specializing all normalization layers. Within a block, all layers
are specialized. Our findings indicate that the best performance is achieved when specializing the
early layers, which are closest to the input. Specifically, specializing the first half of the layers
improves the segmentation results by an average of 1.2 mIoU points, with only a negligible decrease
in linear accuracy. In contrast, specializing the late layers yields no improvement compared to the
baseline. We attribute this to the fact that [CLS] and patch tokens share the representation space in
the first part; once this interaction is established, further specialization has limited effect. Finally,
while specializing all layers produces the highest segmentation performance, it comes with a higher
memory cost and a larger drop in linear accuracy.

We further analyze how the number of specialized blocks, starting from the first, affects performance
(Fig. 8b and 8c). We vary the number of blocks specialized from 0 to 24 (total number of blocks in
ViT-L) in steps of 4, and observe that specializing the first third of the model yields the best results,
while specializing later layers degrades performance. Notably, the optimal point at one third of the
model’s depth coincides with a marked shift in the statistics of similarity scores shown in Fig. 7,
which might explain the effectiveness of specializing the early layers.

4.5 TARGETED SPECIALIZATION WITHIN TRANSFORMERS BLOCKS

The previous section has shown that careful selection of transformer blocks for specialization is
important for optimizing the performance. We now explore whether further improvements can be
achieved with a targeted selection of specific layers to specialize within the transformer blocks. In
the following experiments, we specialize different layers of blocks in the first third of the model
while also applying specialization to the normalization layers in all blocks.

Table 1 shows model performance on global and dense prediction tasks when specializing different
layers (QKV projection, Linear and MLP, see Fig. 5). We observe that the performance on global
task remain largely stable independently of the selected layers. In contrast, results on dense segmen-
tation tasks get further improvements beyond what is achieved with normalization specialization
alone. Interestingly, the gains do not increase monotonically with the number of specialized lay-
ers or additional parameters, as might be expected from typical scaling laws (Touvron et al., 2021).
Specializing either or both QKV and post-attention projections consistently yields improvements. In
particular, the greatest performance gains are achieved by specializing the QKV projection, which
introduces only 8% additional parameters while delivering an average increase of +1 mIoU point
over normalizations alone. In contrast, specializing the post-attention projection does not offer fur-
ther benefits, and specialization of the MLP layer either has no effect or negatively impacts perfor-
mance. Note that we could ease this 8% memory cost overhead with Low Rank Adaptation used
when specializing the QKV projection. We produce encouraging preliminary results with different
ranks in Appendix A.5 and leave further investigation as future work.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Layer specialization ablation. Performance and increase in parameter count of models
trained with different layer specialization strategies, applied to the first third of the transformer
blocks. In all cases, the normalization specialization described in Sec. 4.3 is applied in all blocks.
The base model is a DINOv2 ViT-L with attention bias.

QKV Linear MLP Parameter Linear Avg. Seg. Avg. Depth ↓proj. Increase (%) Accuracy

0.05 85.1 65.6 1.178
✓ 3 85.3 66.1 1.191

✓ 8 85.2 66.6 1.165
✓ ✓ 11 85.1 66.1 1.180

✓ 22 85.1 65.2 1.189
✓ ✓ 25 85.1 65.9 1.163

✓ ✓ 30 85.3 65.6 1.185
✓ ✓ ✓ 33 85.3 66.1 1.174

baseline with specialization

200k 400k 600k

82

84

iter.

accuracy

(a) IN1k
200k 400k 600k

42

44

46

48

iter.

mIoU

(b) ADE20k
200k 400k 600k

64

66

iter.

mIoU

(c) Cityscapes

200k 400k 600k

80

82

84

iter.

mIoU

(d) VOC
200k 400k 600k

2.8

2.9

3

iter.

rmse

(e) KITTI ↓
200k 400k 600k

0.38

0.4

iter.

rmse

(f) NYU ↓

Figure 9: Performances and training dynamics. Performance vs. training iterations on global task
ImageNet classification (IN1k) and dense tasks—segmentation (ADE20k, Cityscapes, VOC) and
depth (KITTI, NYU)—with linear probing. We compare baseline DINOv2 ViT-L with attn. bias
and when specializing QKV projection in the first 1/3 of the model and all normalizations.

Our overall results show that increasing the disentanglement between [CLS] and patch tokens be-
fore the attention mechanism (with separated normalizations and projection) contributes to improved
dense prediction performance. We hypothesize that encouraging the [CLS] and patch tokens to as-
sume more distinct roles in the attention mechanism enhances their interactions, ultimately improv-
ing overall model effectiveness. We also report results in Appendix A.6 for the setting where only
the QKV projections are specialized, while the normalization layers remain shared. In this configu-
ration, performance is comparable to the baseline, indicating that the specialization of normalization
layers is critical to achieve improvements, as shown in Sec. 4.3.

In Fig. 9, we compare performance dynamics of normalization and QKV projection specialization
against baseline DINOv2 with attention bias. Across all dense benchmarks—of both segmentation
and depth estimation—specialization consistently enhances results. These improvements are evident
from early stages of training and continue to increase over time. This trend suggests that employing
specialization not only boosts performance but also contributes to more stable training dynamics.

4.6 GENERALIZATION RESULTS

We investigate the generalizability of our specialization approach across different variants of DI-
NOv2, as presented in the upper part of Table 2. Specifically, we train models using the DINOv2
recipe with two high-norm handler strategies—registers (Darcet et al., 2023) (“4 registers”) and at-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Generalizability of the specialization on (a) DINOv2 when using different high-norm han-
dling strategies (4 registers (Darcet et al., 2023), attention bias (An et al., 2025) (‘attn. bias’) or none
(∅)), (b) different ViT sizes and (c) a supervised framework: DeiT-III. Relative difference between
baseline and our specialization (‘+ours’) is shown in green if improvement and red otherwise.

Method Size Classif. Segmentation Depth ↓
ImNet ADE City VOC KITTI NYU SUN

DINOv2 - With high-norm handling strategies

∅ L 85.3 45.7 64.2 82.1 2.868 0.389 0.410
+ours 85.3+0.0% 47.3+3.5% 66.6+3.7% 83.7+1.9% 2.787 -2.8% 0.369-5.1% 0.390 -4.9%

4 registers L 85.3 45.6 64.9 82.2 2.893 0.372 0.411
+ours 85.3+0.0% 47.5+4.2% 65.9+1.5% 83.6+1.7% 2.906+0.4% 0.367-1.3% 0.395 -3.9%

Attn. bias L 85.4 46.2 65.2 82.2 2.917 0.373 0.406
+ours 85.2 -0.2% 48.4+4.8% 67.4+3.4% 84.0+2.2% 2.739 -6.1% 0.362-2.9% 0.393 -3.2%

DINOv2 - Other sizes

Attn. bias B 80.4 38.3 58.4 76.6 3.250 0.462 0.464
+ours 80.6+0.2% 38.5+0.5% 60.3+3.3% 76.5 -0.1% 3.236 -0.4% 0.448-3.0% 0.470+1.3%

Attn. bias H 86.2 48.1 67.0 83.1 2.717 0.359 0.387
+ours 86.1 -0.1% 49.2+2.3% 67.1+0.1% 83.5+0.5% 2.752+1.3% 0.344-4.2% 0.386 -0.3%

DeiT-III

Attn. bias B 81.8 25.4 61.7 48.9 5.040 0.747 0.823
+ours 81.7 -0.1% 26.3+3.5% 62.7+1.6% 50.7+3.7% 4.900 -2.8% 0.732-2.0% 0.809 -1.7%

tention bias (An et al., 2025) (“attn. bias”)—as well as without any handler. In all cases, we observe
that specialization consistently boosts dense prediction results by up to 4.8% on ADE20k, while hav-
ing a negligible effect on classification performance (no decrease greater than 0.2%). This shows
that better separating the treatment of [CLS] and patch tokens is complementary to both high-norm
handling strategies to improve dense features. We also investigate the specialization on DINOv2
ViT-B and ViT-H models and present results in the middle section of Table 2. It can be seen that our
proposed specialization leads to improvements on most benchmarks, confirming its generalizability
across different ViT model sizes.

We further explore the fully-supervised training setting by applying specialization to a ViT-B trained
with DEIT-III (Touvron et al., 2022) strategy. We observe consistent improvements in dense pre-
diction tasks, with gains reaching up to 3.7% on VOC. For ViT-L, specialization does not yield
benefits, likely due to the training dynamics related to the absence of a local loss to guide dense
feature learning which causes the dense performance to degrade over time (we provide more details
in Appendix A.7). These results suggest that the effectiveness of the specialization may depend on
training objectives, highlighting promising directions for future research.

Finally, we visualize the learned patch representations using PCA in Fig. 1 for DINOv2 models
trained with either registers or attention bias. In both settings, incorporating our specialization strat-
egy produces cleaner and more semantically meaningful patch representations. Specifically, this
approach reduces artifacts in textures and uniform regions, resulting in more accurate object seg-
mentation. More visualizations can be found in A.8.

5 CONCLUSION

In this work, we investigate the disentanglement of [CLS] and patches computations in Vision Trans-
formers, focusing on their distinct roles and interactions. Through a comprehensive analysis, we
demonstrate that disentangling their processing pathways and selectively specializing architectural
layers leads to significant improvements in dense prediction tasks, including segmentation and depth
estimation, while maintaining strong global performance. Our approach achieves these gains with-
out increasing computational overhead, with minimal additional parameter cost, and generalizes
across multiple ViT architectures and frameworks. These findings highlight the importance of tai-
lored architectural designs and suggest promising directions for future research, including further
exploration of efficient specialization strategies and applications to broader modalities and tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Systematic outliers in large language
models. ICLR, 2025.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. In ICLR, 2023.

Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma,
Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, et al. Perception encoder: The best visual
embeddings are not at the output of the network. arXiv preprint arXiv:2504.13181, 2025.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. arXiv preprint arXiv:2309.16588, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai
Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T Toshev,
Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, and Alaaeldin El-Nouby. Multi-
modal autoregressive pre-training of large vision encoders, 2024.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The international journal of robotics research, 32(11):1231–1237, 2013.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Álvaro Bernardo, Bilal Pires, Zhaohan Guo, et al. Bootstrap your
own latent-a new approach to self-supervised learning. In Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 21271–21284, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022, October
2021.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level im-
age representations using convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1717–1724, 2014.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. In International Conference on Machine Learning, pp.
27408–27438. PMLR, 2023.

Valentinos Pariza, Mohammadreza Salehi, Gertjan Burghouts, Francesco Locatello, and Yuki M
Asano. Near, far: Patch-ordering enhances vision foundation models’ scene understanding. arXiv
preprint arXiv:2408.11054, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. arXiv preprint arXiv:2104.10972, 2021.

Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. arXiv
preprint arXiv:2508.10104, 2025.

Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understand-
ing benchmark suite. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 567–576, 2015.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 7262–7272, October 2021.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In ICCV, pp. 32–42, 2021.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In ECCV, pp. 516–
533. Springer, 2022.

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
encoders with improved semantic understanding, localization, and dense features. arXiv preprint
arXiv:2502.14786, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the role of attention
masks and layer norm in transformers. Advances in Neural Information Processing Systems, 37:
14774–14809, 2024.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis E.H. Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2021.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.

A APPENDIX

A.1 ADDRESSING TOKEN INTERACTION ANOMALIES

In this work, we examine how the distinct roles of [CLS] and patch tokens affect their interactions
within the model. Previous works (Darcet et al., 2023; Sun et al., 2024) show that despite sharing
computational pathways, these different token types develop inter-dependencies that can lead to
token anomalies, manifested as high-norm outliers in the patch features space. These anomalies
suggest an underlying tension in how information flows between global and local representations.

Registers. In order to mitigate such artifacts, observed when using different pre-training strate-
gies (Oquab et al., 2023; Touvron et al., 2022; Radford et al., 2021), Darcet et al. (2023) propose
to add learnable register tokens to the input sequence, whose roles are to replace the high-norm
patches in the internal communication between patches and the [CLS] token. Doing so mitigates the
appearance of such artifacts and boost overall results.

Attention bias. The recent study on artifacts in Large Language Models by An et al. (2025) in-
vestigates the systematic appearance of outliers which they link to the attention mechanism. They
propose a solution consisting in adding learnable biases to the keys and values in each attention
head. They analyze the equivalence of their solution compared to registers.

Table 3: The impact of norm handling strategies on DINOv2 results.
Norm. method IN ADE City. NYU↓
∅ 85.3 45.7 64.2 0.389
4 registers 85.3 45.6 64.9 0.372
attn. bias 85.4 46.2 65.2 0.373

In our experiments, we observe that both strategies have a similar impact on high-norm artifacts
and as seen in Table 3, best overall performance is achieved when using the attention bias (‘attn.
bias’) strategy, with a significant improvement on segmentation benchmarks (e.g. ADE20k and
Cityscapes). To minimize confounding factors that could affect the interaction between the [CLS]
and patch tokens, we adopt the attention bias strategy, which mitigates high-norm anomalies without
introducing additional tokens.

A.2 EFFECT OF OTHER LAYERS ON [CLS] -PATCHES SIMILARITIES

We report in Fig. 10, the effect on [CLS] -patches similarity of the MLP and post-MLP LayerScale
layers within transformer blocks. The MLP layer, similar to the self-attention layer, increases the

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

similarity between [CLS] and patches as it aligns the features. The post-MLP LayerScale, similar to
other normalization layers, shows a stronger disentangling effect.

[CLS]-patches patches-patches
−0.2

0.0

0.2

0.4

co
si

n
e

si
m

il
ar

it
y before

after

(a) MLP

[CLS]-patches patches-patches
−0.2

0.0

0.2

0.4

(b) post-MLP LayerScale

Figure 10: Effect of the MLP and post-MLP LayerScale layers on [CLS] -patches similarity in
vanilla DINOv2 pre-trained model. We show mean and standard deviation of the cosine similarity
between [CLS] and all patches (‘CLS-patches’), and between patches (‘patches-patches’), before
and after the considered layers.

A.3 TRAINING AND EVALUATION DETAILS

Throughout this work, we follow the experimental protocol of Oquab et al. (2023) and evaluate the
performance of the trained models on a set of global and dense task benchmarks.

Classification For the global task, we perform linear probing on ImageNet classifi-
cation (Deng et al., 2009). We train a linear layer with SGD for 12500 itera-
tions, using random-resized-crop data augmentation, and the [CLS] token as input for
the linear layer. We also perform the following grid search on learning rate :
{1.0e−5, 2.0e−5, 5.0e−5, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1}
We then report the highest accuracy value obtained on the validation set as is common practice.

Segmentation For semantic segmentation, we use ADE20K (Zhou et al., 2017), Cityscapes
(Cordts et al., 2016), and VOC (Everingham et al., 2010), and report the mean Intersection over
Union (mIoU) scores for each. When we report the average performance of segmentation tasks, we
average the scores across these 3 datasets. We train a linear classifier on the training set of each
benchmark for 40000 iterations with a learning rate of 1e−3. This linear layer is applied on top of
the patch output features (after the last layer normalization) of the frozen backbone, with the features
further normalized using a trained batch normalization layer.

Depth estimation For depth estimation, we evaluate on KITTI (Geiger et al., 2013), NYU Depth
v2 (Nathan Silberman & Fergus, 2012), and SUN RGB-D (Song et al., 2015), reporting the average
Root Mean Squared Error (rmse) scores. When we report the average performance of dense tasks,
we average the scores across these 3 datasets. We train a linear classifier on the training set of each
benchmark for 38400 iterations with a learning rate of 1e−3. For the input of this linear layer, we
take patch and [CLS] output features from four evenly spaced layers of the backbone, not applying
the last layer normalization.

When training with DINOv2 and DeiT-III models, we follow the default configurations provided in
the official repository, modified to add biases in the attention and to specialize layers or blocks.

A.4 SPECIALIZATION OF NORMALIZATION LAYERS IN DEIT-III

We report in Fig. 11 the impact of the specialization of the normalization layers when using DeiT-III
pre-training strategy. Similar to the case of DINOv2, the average [CLS] -patch cosine similarity
significantly reduces when employing the specialized normalization, showing the disentanglement
effect.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

LN
attn.

LN
MLP

0.0

0.2

co
si

n
e

si
m

il
ar

it
y baseline

specialized
norms

(a) [CLS] -patch cosine similarity

LN
attn.

LN
MLP

0.0

0.2

(b) all-all patch cosine similarity

Figure 11: Specialization of normalization layers. Mean and standard deviation of the cosine sim-
ilarity computed between (a) the [CLS] and all patches and (b) all patch to all patches. The average is
computed over 1k images and all model blocks. We compare post-normalization statistics between
the standard architecture (‘Baseline’) and the model after normalization specialization (‘Specialized
norms’). ‘LN’ stands for LayerNorm and ‘LS’ for LayerScale.

A.5 LORA APPROXIMATION

As the parameters increase can be a bottleneck for training efficiency, we explore the use of Low-
Rank Adaptation (LoRA) (Hu et al., 2022) techniques to reduce the number of trainable parameters
while maintaining performance. Additionally, we hypothetise that [CLS] and patches representa-
tions share common features. Hence we consider [CLS] stream as a specialization of patches stream
instead of a complete different stream. Then, for a layer f that we choose to specialize, we compute
the operation on the class token xcls as the sum of the patches layer fpatch and a low-rank adaptation
(LoRA) decomposition f

(r)
cls of rank r.

Patches

CLS

QKV
proj.

LoRA

Attention

(a) LoRA design

Specialization Param. Linear Avg Avg
Incr. (%) Acc. Seg. Depth ↓

∅ – 85.4 64.5 1.232
norms 0.05 85.1 65.6 1.178
+QKV 8.3 85.2 66.6 1.165
+LoRA QKV r=16 0.2 85.3 65.8 1.188
+LoRA QKV r=128 1.4 85.2 65.9 1.193

(b) Results with LoRA

Figure 12: LoRA impact. (a) Visualization of LoRA design : [CLS] as an approximation of patches.
(b) Performance metrics and parameter increase for different LoRA configurations (rank 16 and 128)
during first third of the model. In all cases, the normalization specialization described in Sec. 4.3 is
applied, corresponding to ’norms’ row.
We conduct experiments in which we specialize normalization layers and the QKV projections with
LoRA approximations of ranks 16 and 128 (over an embedding dimension of 1024). The results
presented in Fig. 12b shows improvements (+0.2 and +0.3 in segmentation tasks) over specializing
only the normalization layers, while adding a limited number of parameters (+0.15% and +1.35%
respectively). We leave further investigations as future work.

A.6 NORMALIZATIONS ARE NEEDED

Additionally to the specialization experiments we produced in Sec. 4.5, we also conduct an exper-
iment specializing QKV projection during the first third of the model, but not the normalization
layers. We plot the results of this experiment in Table 4 compared to the baseline and to our best
model specializing normalization layers and QKV projection during third of the model. We observe
that specializing only QKV projections brings little improvement over the baseline, e.g. +0.2 mIoU
pt in average on segmentation tasks. This shows that specializing the normalization layers is crucial
for best performance.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 4: Importance of specializing norms. Performance of for different layer specialization
(Spec.) strategies applied on the first third of the transformer blocks). Normalization layers are
specialized in all blocks. Baseline is a ViT-L DINOv2 with attention bias.

Model Linear Avg. Seg. Avg. Depth ↓Acc.

Baseline 85.4 64.5 1.232
Specialized norms 85.1 65.6 1.178
Specialized norms & QKV proj. 85.2 66.6 1.165
Specialized QKV proj. 85.4 64.7 1.211

A.7 ADDITIONAL RESULTS ON DEIT-III

baseline with specialization

100k 200k 300k 400k

62

64

66

iter.

mIoU

(a) ViT-B
200k 400k 600k 800k

60

65

70

iter.

mIoU

(b) ViT-L

Figure 13: DeiT-III training evolution. We visualize VOC segmentation performance (mIoU)
throughout training for (a) ViT-B and (b) ViT-L pre-trained with DeiT-III (‘baseline’) and when
adding our layer specialization.

We report in Fig. 13 the performance curves on VOC segmentation task during the training of ViT-B
and ViT-L models when following DeiT-III. We observe that the performance reaches its peak in
the middle of the pre-training, then drops significantly towards the end. We attribute this behavior
to the lack of a local loss to drive dense performances. We observe a significant gain with our
specialization in the first half of the training, but the gains are then diluted in the drop, particularly
in the case of ViT-L.

A.8 OTHER QUALITATIVE RESULTS

We produce in Fig. 14, 15 and 16 more qualitative results when pre-training the model following
DINOv2 with the vanilla architecture, four registers or attention bias and when integrating our spe-
cialization. Each figure shows the first three components, computed with the patch features, and
mapped to RGB. In all cases, we observe that the specialization helps to produce more precise patch
features with less artifact. For instance, we invite the reader to pay attention to the back of the
dog (first row), where the artifacts visible in the original pre-training are notably reduce with our
specialization.

A.9 WRITING DETAILS

We have used Large Language Models (LLMs) to help write and proofread this paper. More specifi-
cally, they have helped to rephrase some parts of the text, propose synonyms, and check the grammar.
We have carefully checked all the outputs of the LLMs to ensure that they are accurate and faithful
to our work.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Original image (a) Vanilla DINOv2 (a) + ours

Figure 14: First PCA components of model outputs in RGB. Specialization of normalizations and
QKV projections is made during 1/3 of the model. ViT-L with vanilla DINOv2.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Original image (a) DINOv2 w/ registers (a) + ours

Figure 15: First PCA components of model outputs in RGB. Specialization of normalizations and
QKV projections is made during 1/3 of the model. ViT-L DINOv2 with four registers.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Original image (a) DINOv2 w/ attn. bias (a) + ours

Figure 16: First PCA components of model outputs in RGB. Specialization of normalizations and
QKV projections is made during 1/3 of the model. ViT-L DINOv2 with attention bias.

18


	Introduction
	Related Work
	Friction Between [CLS] and Patches
	[CLS] - Patches Specialization: Analysis 
	Our Proposal: Layer Specialization
	Experimental Setting: Training and Evaluation
	Specializing Normalization Layers
	Block-Level Targeted Specialization
	Targeted Specialization within Transformers Blocks
	Generalization Results

	Conclusion
	Appendix
	Addressing Token Interaction Anomalies
	Effect of other Layers on [CLS] -Patches Similarities
	Training and Evaluation Details
	Specialization of Normalization Layers in DeiT-III
	LoRA Approximation
	Normalizations Are Needed
	Additional results on DeiT-III
	Other Qualitative Results
	Writing details


