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Abstract

Vision-Language Models (VLMs) bring powerful under-

standing and reasoning capabilities to multimodal tasks.

Meanwhile, the great need for capable aritificial intelli-

gence on mobile devices also arises, such as the AI assistant

software. Some efforts try to migrate VLMs to edge devices

to expand their application scope. Simplifying the model

structure is a common method, but as the model shrinks, the

trade-off between performance and size becomes more and

more difficult. Knowledge distillation (KD) can help mod-

els improve comprehensive capabilities without increasing

size or data volume. However, most of the existing large

model distillation techniques only consider applications on

single-modal LLMs, or only use teachers to create new data

environments for students. None of these methods takes

into account the distillation of the most important cross-

modal alignment knowledge in VLMs. We propose a method

called Align-KD to guide the student model to learn the

cross-modal matching that occurs at the shallow layer. The

teacher also helps student learn the projection of vision to-

ken into text embedding space based on the focus of text.

Under the guidance of Align-KD, the 1.7B MobileVLM V2

model can learn rich knowledge from the 7B teacher model

with light design of training loss, and achieve an average

score improvement of 2.0 across 6 benchmarks under two

training subsets respectively.

1. Introduction

Vision Language Model (VLM) is an important Multimodal

technology, which build a bridge between vision and text

data, and facilitate many real world tasks and applications

[14, 26]. Based on the success of Large Language Models

(LLMs) [43, 44, 52], efforts have been done to integrate vi-
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Figure 1. Radar plot of MobileVLM V2 1.7B model’ perfor-

mances with Align-KD policy under different settings. L and

S refer to different Long and Short subdatasets for training, and

MVLM2 refers to MobileVLM V2 model.

sion modal features with LLMs to extend models’ capabil-

ity and their application potential and build up new Vision-

Language Models (VLMs) [12, 22, 25, 28, 56]. However,

new issues rise up: as the input features become more com-

plex, the structures of VLMs also become deeper and heav-

ier, since they have to digest information from different

modalities and face even more various scenes [2, 4]. The

growing size and complexity of VLMs makes them diffi-

cult to be accessed outside the server or high-speed Internet,

which limit the development of these cutting-edge artificial

intelligence under different scenarios, especially their de-

ployment in off-line devices like mobile phones and robots,

or some confidential application devices.

Growing attentions have been focused on compressing

VLMs while maintaining their remarkable capability as bet-

ter as possible. MobileVLM family models [8, 10] are

the first works to scale down VLMs to be able to run on
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mobile devices. Both MobileVLM V1 and MobileVLM

V2 model contain special designed lightweight downsam-

ple vision projector to embed tokens into text embedding

dimensions. With novel training strategy, MobileVLM V2

1.7B model outperforms a bunch of VLMs at 7B scale.

Even so, continue to scale down the model would encounter

more tough situations, where more severe performance drop

would occur. In this case, new strategies are in need to aid

the development of mobile VLMs.

In contrast to cutting down the scale of mobile VLMs

with the risk of significant performance drop, we are mo-

tivated to boost the model without enlarging the scale of

data amount. Knowledge distillation (KD) method is widely

used to increase the capability of neural networks, aims to

instruct smaller student model with a larger and stronger

teacher model, thus learning teacher’s behaviors or hid-

den representations [19]. Previous knowledge distillation

method for large model are mainly designed for single NLP

modality [18, 20, 24]. In the field of vision-language multi-

modal models, most works are done before the large model

era, focusing on aligning the vision proposals at the front

side [13], which are no longer used in VLM technologies.

Other works apply MSE loss on every transformer layers

between models, but is not suitable for VLMs with signifi-

cantly more layers with even different structures.

Among these works, we notice that the alignment of vi-

sion and text inputs, the most important aspect of VLMs, is

not considered in distillation. Poorly aligned cross-modal

features could lead to difficulties in comprehending or rea-

soning. In this paper, we propose a lightweight knowledge

distillation method, namely Align-KD, to let 1.7B student

model learn the alignment knowledge from much stronger

teachers. Firstly, we conduct several experiments on well-

trained VLMs, and find that the first and last Transformer

layer brings the largest shift on the features, similar as the

trends in LLMs [42]. This contributes helps us to develop

our belief that the alignment of modalities mainly happens

at the shallow layers, where the input embeddings are pro-

jected to high dimension space for comprehending and rea-

soning. Then, given that the natural cross-modal query-

ing mechanism of Attention block, we let student mimic

teacher’s text-query-vision attention distribution at the first

layer. What’s more, considering that the importance of vi-

sion tokens in the queue are different according to different

text prompts, we inject teacher’s informative vision embed-

dings unbalancedly into student’s vision projector’s output.

Finally, we follow latest LLM research [18] to calculate re-

versed Kullback-Leibler divergence (R-KLD) between out-

puts to aid more general mean-seeking learning.

We apply Align-KD policy to distill MobileVLM V2

1.7B, the state-of-the-art open-source VLM for mobile de-

vices, from MobileVLM V2 7B teacher. We formulate two

different subdatasets with increasing limitation of prompt

maximum length, thus testing the effectiveness of Align-

KD and VLMs under resource-limited scenarios. Following

the multi-step training strategy of MobileVLM V2, Align-

KD helps MobileVLM V2 1.7B model obtains universal

promotion across 6 different benchmarks. The results show

that Align-KD has great potential to help mobile VLMs to

get enhancement with limited computation resource.

The main contributions of our work are the followings:

• We propose a knowledge distillation method Align-KD

for mobile VLMs, which is the first work to distill the key

cross-modal alignment knowledge.

• Align-KD helps cutting-edge MobileVLM V2 1.7B

model obtains stable enhancement across different set-

tings and benchmarks, largely facilitates the application

of VLMs on edge devices.

• Align-KD doesn’t rely on specific design of VLMs, and

only requires light training designs, which gives it great

potential to expand to various resource limited scenes.

2. Related Works

2.1. Large Models and Their Boosting

In recent years, Large Language Models (LLMs) like GPT-3

[3], OPT [53] and LLaMA [43] significantly break through

the borderline of deep learning and its applications. Chat-

GPT [36] set off a new wave and inspired follow-up work

such as Vicuna [7]. Besides, some works try to introduce

multimodal knowledge into the large model [2, 4, 6, 35,

49, 50, 56]. LLaVA [28] feed visual tokens into LLM and

build up a comprehensive reasoning between visual and

text contents, and many other works [12, 22, 25, 48] also

approach to balance between vision and text understand-

ing. However, the growing size of LLMs leads to a high

demand on computing resources, which limits their appli-

cations. TinyLLaMA [52] and MobileLLaMA [9] scale

down the architectures and maintain relatively good per-

formance. Meanwhile in vision-language model field, Mo-

bileVLM family [8, 10] is the first open source work to fa-

cilitate the Vision-Language Model on mobile devices. Ex-

cept for the development of training strategy and special ar-

chitectures for large model, model compression techniques

including quantization and pruning [15, 16] also thrive and

provide solutions to relief burden of the computation re-

sources. Equipped with these methods, LLMs are able to

inference faster and lighter with little drop in accuracy.

2.2. Large Language Model Distillation

While former techniques are trying to do the subtraction,

knowledge distillation (KD) [19] techniques are trying to do

adding. In KD, weaker student model tries to learn from a

stronger teacher model from different aspects, like the out-

put or hidden representations. MiniLLM [18] studies the

Kullback-Leibler divergence (KLD) loss on the output dis-
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Figure 2. Exploration of feature changing trend at different layers of MobileVLM V2 model families. (a) Cosine similarity of features

from every two adjacent layers. (b) Cosine similarity of features from original vision and text embedding positions within each same

layer. The data is presented in an order of magnitude to highlight the trend of change. (c) Normalized Euclidean distance of features from

original vision and text embedding positions within each same layer. The experiments are conducted on ShareGPT4V-PT dataset, and all

the calculations are averaged after conducted on each tokens.

tillation, and suggests that reverse KLD teaches LLM stu-

dent better on mean-seeking than forward KLD. Other re-

searchers pay attention to the hidden features, training a

task-aware filter to distill knowledge from teacher to student

at different middle layers [24]. Teachers can also be used to

create a more suitable data environment for student model,

especially in LLM background where data are diverse and

sometimes polluted. Hsieh et al. [20] device a step-by-step

distillation strategy to use teacher model’s inference abil-

ity to provide training data for student, thus injecting both

label noise and text inference into the data. Meta delves

deeply into black-box systems [51], distilling high-quality

outputs generated by System 2 techniques, such as Chain-

of-Thought, Rephrase and Respond, etc., back into the stan-

dard large language model generation.

2.3. Distillation for Vision­Language Model

Most distillation methods for Vision-Language Model

(VLM) are designed before Large Model Era. Considering

that traditional VLMs rely on vision proposals, Fang et al.

[13] propose to align the input proposals between teacher

and student, and enable following transformer blocks to

align their attention distributions. To compress VLM, Wang

et al. [47] combine pruning with distillation, conduct-

ing easy output logits imitation and distillation on atten-

tion and hidden states. Although these works provide a

thinking of VLM distillation, they are restrained within the

field outside Vision-Language Model (VLM), which usu-

ally consists of more transformer layers and more com-

plex alignment between vision and language modalities. In

VLM-KD [54], researchers use VLM like LLaVA-NeXT

[30] to generate text prompts and using contrastive learn-

ing to promote long-tail recognition ability of vision mod-

els. LLaVA-MoD [39] minimizes the Kullback-Leibler di-

vergence between output distributions and utilizes Direct

Preference Optimization (DPO) to enhance the ability of the

s-MLLM to discern high-quality from low-quality samples.

But LLaVA-MoD relies on integrating the Sparse Mixture

of Experts (MoE) architecture into language model, and

also neglects the gap of alignment knowledge in distillation,

which leaves a huge space for further explorations.

3. Align-KD

In Vision-Language Models (VLMs), vision and text em-

beddings comprise the input of the large model. However,

it is obvious that the embedding mechanisms are different

for the two modalities, which means the embeddings have

to go through cross-modal alignment in the feature space.

The cross-modal alignment ability is crucial for VLMs, but

previous works mainly focus on single modal LLMs distil-

lation and neglect the importance of teaching student about

the alignment knowledge. Here we first explore the cross-

modal alignment in VLMs, and then propose our Align-KD

method step by step based on MobileVLM family.

3.1. Where Does the Alignment Happen?

Most VLMs like MobileVLM [8, 10] design special vision

projectors to project the vision embeddings, but this opera-

tion mainly align the dimension of embedded tokens. The

alignment of vision and text embeddings into the same high

dimension space is almost a black box system.

Sun et al. [42] try to figure out the internal work-

ing mechanism of Transformer layers in LLMs. The re-

searchers perform both skip and switch operations on every

Transformer layer in LLaMA 2 7B, 13B and 70B [44] mod-
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Figure 3. Left: The overall framework of Align-KD. Align-KD utilizes the text-query-vision attention of teacher model’s first layer to

extract the knowledge of cross-modal alignment, then injects this knowledge into the cross-modal attention matrix of student’s first layer.

Besides, the projected vision tokens are dynamically enhanced according to text’s focusing, also based on teacher’s first layer cross-modal

attention. Right: The schematic diagram of vision-language models’ (VLMs) first layer attention matrix. Av−v , At−v and At−t attention

refer to vision-query-vision, text-query-vision and text-query-text attention.

els, and find out that the change in the first and last layer

brings the largest drop in performance, while middle lay-

ers only give slight fluctuation. What’s more, the parameter

weight of middle layers shows high similarity while the first

and last layer are quite different. They conclude that the first

and last layer take up special responsibilities.

This inspire us to explore whether the first and last layer

in LLM of VLMs have similar functions to project input

embeddings into/out of the high dimension space where the

features mix. If so, the alignment of modalities should also

happen simultaneously. Given the well trained MobileVLM

V2 models with different sizes, we conduct 3 simple ex-

periments to explore the feature change trend in different

Transformer layers. First, we calculate the cosine similar-

ity of every two adjacent features, including the input fea-

tures. As shown in Figure 2(a), the similarities in middle

layers are much higher than the first and last layers, which

implies dramatic change in feature space in the two layers.

Then, we locate the positions of vision tokens and text to-

kens in the input embeddings, and calculate the feature co-

sine similarity as well as the Euclidean distance of these

two segments within every layers, and the results are shown

in Figure 2(b) and Figure 2(c). The experimental results

further confirm our conjecture that the head layer of LLM

maps the input to the high-dimensional space for deep pro-

cessing, and the last layer maps it to the output space. This

means that the first layer is also responsible for mapping

text and vision embeddings from different domains into the

same high-dimensional space, or alignment. Note that the

LLMs in MobileVLM V2 1.7B model and 3B model are

from MobileLLaMA family, and the LLM in 7B model is

Vicuna-7B [55], so the results are not structure-related.

Except for the first layer in LLM of VLMs, models like

MobileVLM also design vision projectors to downsample

the vision embeddings, thus reducing the calculation. The

projectors learn to maintain and enhance important infor-

mation, and align the vision embeddings with the input

text embeddings from the aspect of dimension. It also re-

ceives guidance from the backward gradient from down-

stream LLM to learn basic cross-modal knowledge.

Based of the discussion, we propose to distill the knowl-

edge of cross-modal alignment from two aspects of VLMs:

the first layer of LLM in VLMs, and the output embeddings

of vision projectors as shown in the left of Figure 3.

3.2. First Layer Text­Query­Vision Attention Only

The first layer of LLM in VLMs is the important place

where the cross-modal alignment happens. Almost all of

recent LLMs are built based upon the architecture of Trans-

former [45], an efficient parallel attention structure. While

some works have been done to improve the Transformer

block [31, 38, 41], the basic attention mechanism remains

as: project the input features into query Q, key K and value

V , and then use them to generate Attention values to help

self-adaptive fusion among different feature tokens.

Attention values imply tokens’ unbalanced focusing

degree on others and determine how the input features are

going to be projected. This nature of attention mechanism

makes it the perfect information carrier about the cross-

modal alignment in VLMs. The attention matrix of VLMs

are always in the similar mode as the right of Figure 3,

where the input embeddings are the concatenated vision and

text tokens. Since VLMs mainly use decoder transformer

layers, the attention matrix is a lower triangular matrix and

half masked. The lower part of the matrix consists of three

parts: vision-query-vision attention Av−v , text-query-text
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attention At−t and text-query-vision attention At−v .

Previous knowledge distillation methods usually teach

student model to learn from the whole attention values of

teacher’s different layers. On the contrary, we propose to let

student model mimic the first layer’s text-query-vision at-

tention (A1,t−v) only. Given a knowledgable teacher model

T , we pick out its attention matrix AT
1 from its first layer,

then split out the text-query-vision part to form AT
1,t−v and

do the same to get student S’s first layer’s text-query-vision

attention AS
1,tv . Then, we apply an 1× 1 convolution pro-

jector Pattn to align the dimension of these two, followed

by a simple mean square error (MSE) loss to get the first

layer A1,t−v only KD loss:

LA1,t−v
= MSE(Pattn(A

T
1,t−v), A

S
1,t−v). (1)

This first layer A1,t−v only KD has several advantages.

(1) First and foremost, thanks to the cross-attention mecha-

nism, the text-query-vision attention matrix of the first layer

naturally implies how the input tokens of two modalities

perceive each other, as well as the alignment projection

scheme that tokens are going to take to project into more

aligned feature space. On the contrary, it is difficult to

extract useful knowledge from A1,t−t when then text tok-

enizer of VLMs are usually fixed, while distilling A1,v−v

only lead to more vision-only enhancement, which has al-

ready been reinforced by front vision projector. And both

of them lack the key cross-modal knowledge. (2) Secondly,

first layer A1,t−v only KD significantly reduces comput-

ing workload, making the whole method efficient. Some

works distill attention matrixes at multiple layers, and some

of them even device special downstream tasks to help the

student learning, which can cause excessive computational

pressure. Even within the first attention matrix, first layer

A1,t−v only KD also saves up to 50% calculation compared

with full distillation. This lightweight design enable poten-

tial chances to conduct training with limited computation

resources. (3) What is more, considering that the design of

different VLMs could be different in both the model depth

and the block details, first layer A1,t−v only KD exhibits

greater flexibility and can be easily migrated to different

models regardless of their particular structural design or the

meaning of different depth transformer layers.

3.3. Vision Enhancement Based on Text’s Focusing

The vision projector that generates the input vision tokens

also takes up the responsibility to do rudimentary cross-

modal alignment. For example, the LDP in MobileVLM

model downsample the embeddings while extracting both

detail and semantic features, and project the embeddings

into less tokens with same dimension as text embeddings.

This rough alignment lacks the perception of text modal in-

formation, only receiving backward gradients from down-

stream Transformer layers’ cross-attention to get in touch

Text Prompts
['What are the key elements 
in this picture?',

'What does the bus screen 
show?',

'Is there any plants in the 
picture?',
'Is the bus full of people?',

'Is the bus in a rural place or 
in the city?',

'Is the line of sight blocked?',
'What is the color of the 
building behind the bus?']

Vision TokensPr
om

pt
s

Figure 4. Different text prompts cause different attention on vision

tokens of the picture. The vision tokens with high attention acti-

vation also distribute sparsely.

with another modality.

To mitigate this shortage, we propose to leverage the

cross-modal attention to help the projector get more expo-

sure to cross-modal information. Although the vision to-

kens are already refined by the projector, the text’s attention

on different vision tokens is still rather sparse because of the

directional indication of text prompts. The A1,t−v not only

contains information about cross-modal aligning projection,

but also reveals which vision tokens the text prompts pay

most attention to. Different prompts may focus on different

embeddings, but some of the tokens are significantly left

behind. Instead of inhibiting the learning of temporarily

unpopular vision tokens, we propose to enhance most pop-

ular tokens at current based on teacher model’s A1,t−v , thus

preventing hurting the learning of others. Having the text-

query-vision attention from the first layer of teacher model,

we add-up the attention value AT
1,t−v along the text dimen-

sion to get the attention score Scoren of vision token n,

Scoren =

M∑
AT

1,t−v,(n,m),m ∈ M, (2)

M is the number of text tokens. Then, the indexes of to-

kens whose attention score Scoren if the top-K are sorted

out, namely IdxK . Finally, we conduct knowledge injec-

tion from teacher to student on vision tokens listed in IdxK :

LV−focus = MSE(PV (EmbTIdxK
), EmbSIdxK

), (3)

where EmbTIdxK
and EmbSIdxK

are teacher’s and student’s

vision token embeddings within the range of IdxK , and PV

is an 1× 1 convolution projector.

Except for the knowledge injection on current popular

tokens, the rest should not be overlooked. Low-ranked at-

tention from the current text prompt does not mean the sta-

ble low popularity under other scenes. The focus on vision
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tokens may dramatically shift, e.g., when from ‘What’s the

name of book’s author on the cover?’ to ‘What is the color

of the desk under the book?’. What is more, the teacher vi-

sion token naturally contains stronger knowledge because

of the instruction of stronger LLM and higher dimension

in most cases. In this case, we add the general knowledge

distillation on all vision tokens from teacher to student, i.e.,

LV−all = MSE(PV (EmbT ), EmbS), (4)

which prevents harmful suppression of other tokens. And

we combine two losses using a weight λ to form the vision

token enhancement loss based on text’s focusing as

LV = LV−all + λLV−focus. (5)

3.4. Overall Knowledge Distillation Strategy

Except for alignment distillation in the front of VLM, we

follow MiniLLM to add reverse Kullback-Leibler diver-

gence (RKLD) loss, which uses the predicted distribution

of student model as target, between the outputs of student

and teacher. Since the text prompts and input images are

varied, RKLD loss is more suitable than forward Kullback-

Leibler divergence (FKLD) for VLM to learn about the

mean-seeking instead of mode-seeking, preventing from

overfitting on specific scene. Extract the output prediction

distribution pT , pS from teacher and student, the reverse

Kullback-Leibler divergence loss can be formulated as

LRKLD = pS log
pS

pT
. (6)

The alignment loss and RKLD loss work together with

the original supervised loss LSup, and our overall Align-KD

loss on student model can be formulated as:

L = LSup + LA1,t−v
+ LV + LRKLD. (7)

4. Experiments

4.1. Basic Experiment Settings

MobileVLM family [8, 10] is the latest and cutting-edge

Vision-Language Model for mobile devices. The Mo-

bileVLM V2 1.7B model shows remarkable performance

with lightweight design. Considering the limitation of fur-

ther compression of the model, we propose to apply Align-

KD on MobileVLM V2 1.7B to help obtain better perfor-

mance on edge devices. We choose the well trained Mo-

bileVLM V2 7B model as the teacher to conduct the knowl-

edge distillation. Align-KD is used as an extra strategy

working together with the common student training.

We use 8 NVIDIA V100 GPUs to conduct our distilla-

tion training. We follow MobileVLM V2’s work to divide

the training stage into pre-training and multi-task finetun-

ing. Because of the limited memory space, we use gradient

accumulation to achieve a global batch size of 256 for the

pre-training stage and 128 for the multi-task fintuning stage.

For both stage, we use the ZeRO2 strategy of DeepSpeed

[1], and run all experiments under half-precision floating-

point. We follow MobileVLM V2 to freeze the vision en-

coder and tokenizer while training, only train rest of the

whole network. The maximum learning rate for the pro-

jector and other components are set to 1e−3 and 2e−5 re-

spectively during pretraining and 4e−5 during multi-task

finetuning, using a cosine schedule. The convolutional pro-

jector for dimension alignment are randomly initialized and

trained together. The weight λ in vision token loss LV is set

to 0.1 to adapt to unstable changing of the tokens been fo-

cused. For top-K selection in text-focus-based vision token

knowledgable distillation, we select the top 16 tokens with

highest attention score. We follow the original MobileVLM

V2 work on the rest of settings.

4.2. Data and Dataset Reforming

Align-KD follows MobileVLM V2 to train on various

datasets. During the pretraining stage, ShareGPT4V-PT

[4] is used to give the student a brief knowledge of vi-

sion and text. It is a caption dataset and comprises 1.2

million image-text pairs. In the multi-task training stage,

more data from different tasks like conversation and VQA

are provided: COCO[5], SBU[37], Visual Dialog[11],

ShareGPT4V[4], SQA[34], IConQA[33], TextVQA[40],

VSR[27], VIGC[46]. Note that SBU is a re-collected

dataset and is updated from time to time, therefore some of

the original data might have been removed. In this case, we

washed the data list in the dataset, which is different from

the original MobileVLM training. To evaluate the effec-

tiveness of our Align-KD method, we test the performance

on different benchmarks, including GQA[21], SQA[34],

TextVQA[40], MME[17], MMBench[32] and POPE[23].

While mobile VLMs are designed for mobile devices de-

ployment with limited resources, the training of VLMs also

faces challenges when the computational resources is not

that adequate. The computation workload can be extremely

high when the input text prompts are too long, which some-

times causes ’Out of Memory’ error during training. We

formulate two different subdatasets based on the original

data listed above, each contains data with different max-

imum prompt lengths: Short with maximum lengths of

512 embedded tokens, and Long of 2048. Considering

that the training data comprises many Visual Question An-

swering (VQA) tasks, we drop the overlong data instead

of truncating them, making two subsets also vary in the

data amount. This setting is different from the original

MobileVLM work, but can help examine the effectiveness

of Align-KD strategy under different resource-limited sce-

narios, and also helps extend the application scenarios of

VLMs. The subset details are shown in Table 2.
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Method LLM #Samples MMEP GQA VQAT POPE MMBdev SQAI Avg.

MiniGPT-4 Vicuna-7B 5.0M 581.7 32.2 - - 23.0 - -

LLaVA-1.5[29] Vicuna-7B 1.2M 1510.7 62.0 58.2 85.9 64.3 66.8 68.8

ShareGPT4V Vicuna-7B 1.9M 1567.4 63.3 60.4 85.7 68.8 68.4 70.8

MoE-LLaVA-1.6B×4 StableLM-1.6B 2.2M 1300.8 60.4 47.8 84.3 59.4 62.6 63.3

MoE-LLaVA-2.7B×4 Phi-2.7B 2.2M 1396.4 61.1 50.2 85.0 65.5 68.7 66.7

MobileVLM 1.7B MobileLLaMA 1.4B 3.6M 1196.2 56.1 41.5 84.5 53.2 57.3 58.7

MobileVLM 3B MobileLLaMA 2.7B 3.6M 1288.9 59.0 47.5 84.9 59.6 61.2 62.8

MobileVLM V2 3B MobileLLaMA 2.7B 3.6M 1440.5 61.1 57.5 84.7 63.2 66.7 68.1

MobileVLM V2 7B Vicuna-7B 3.6M 1559.0 62.6 62.3 86.6 69.2 74.7 72.2

Subset / #Samples Student Model Align-KD MMEP GQA VQAT POPE MMBdev SQAI Avg.

Short / 3.6M
MobileVLM V2 1.7B - 1246.3 55.1 51.2 85.3 57.6 63.2 62.4

MobileVLM V2 1.7B ✓ 1288.4 58.9 52.4 86.5 57.8 66.6 64.4

Long / 3.6M
MobileVLM V2 1.7B - 1289.2 59.0 52.2 86.1 55.9 64.5 63.7

MobileVLM V2 1.7B ✓ 1303.8 60.1 53.1 87.0 57.5 67.7 65.1

Table 1. Test of Align-KD strategy’s effectiveness on MobileVLM V2 1.7B model. Long and Short refer to two subsets with different

maximum prompt lengths limitations. MMEP refers to MME Perception, MMBdev refers to MMBench-dev, SQAI refers to SQA-IMG.

The score of MMEP is divided by 20 when calculating the average performance.

Datasets Long Samples Short Samples

Pretraining

ShareGPT4V-PT 1.25M 1.24M

Multi-task Finetuning

COCO 592K 589k

SBU 837K* 822k*

Visual Dialog 123K 115K

ShareGPT4V 665K 655K

SQA 13K 5K

IConQA 107K 107K

TextVQA 35K 33K

VSR 13K 13K

VIGC 37K 35K

Total 3.67M 3.61M

Table 2. Details of datasets used in different stages. *SBU dataset

is re-collected, some datas are removed from the original links.

4.3. Effectiveness of Align­KD

After formulating our Long and Short subdatasets, we use

them to train MobileVLM V2 1.7B model with proposed

Align-KD strategy. Note that we use fully-trained and

open-sourced MobileVLM V2 7B model provided by Mo-

bileVLM work as our knowledge distillation teacher. The

results across 6 different benchmarks and two subsets are

shown in Table 1. Trained with Long set, MobileVLM

V2 1.7B model achieves an average score of 63.7. When

trained with Align-KD policy, the student model witnesses

a universal promotion across all benchmarks, achieving and

average score of 65.1. To be more specific, Align-KD helps

improve the MobileVLM V2 1.7B model to obtain an im-

provement of 3.2 on SQA benchmark, as well as 1.6 on

MMBench. Under resource-limited scenarios, Align-KD

gives MobileVLM V2 1.7B model an even better average

improvement of 2 across all benchmarks, from 62.4 to 64.4.

On GQA, Align-KD gives a promotion of 3.8. And it also

brings notable promotion of 1.2 on POPE, which is a rather

challenging hallucination testing benchmark.

The comprehensive results are visualized in a radar plot

in Figure 1. Our Align-KD brings stable and good bonus

under different vision-language tasks. What’s more, when

the student suffers from the performance drop brought by

the absence of long prompts, Align-KD successfully injects

the knowledge into the model and makes student model af-

ter knowledge distillation achieve performances compara-

ble with the model trained with long texts.

4.4. Ablation Study

We take a step forward to conduct ablation studies to testify

the effectiveness of each method in Align-KD. We run all

ablation experiments on Short subdataset for fairness, and

the results are shown in Table 3. The reverse Kullback-

Leibler divergence (RKLD) loss helps student learn to

mimic the outputs of stronger teacher model, but brings

somehow biased improvement. On the contrary, applying

first layer A1,t−v only loss provides notable and more bal-

anced promotion to an average of 63.6. The combination of

distillation on focused and all vision tokens further increase

the performance by 0.8 on average.

During cross-modal alignment learning, we apply the

knowledge distillation only on the text-query-vision part of

the first layer’s attention. We further testify the rationality

of this design by comparing with other methods, and the re-
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Method MMEP GQA VQAT POPE MMBdev SQAI Avg.

MVLM2 1.7B 1246.3 55.1 51.2 85.3 57.6 63.2 62.4

+LRKLD 1223.2 55.9 52.5 85.5 58.5 64.7 63.0

+LA1,t−v
1263.6 57.8 53.1 85.7 57.2 64.6 63.6

+LV−all 1288.2 57.7 52.3 86.2 57.8 64.3 63.8

+LV−focus 1288.4 58.9 52.4 86.5 57.8 66.6 64.4

Table 3. The ablation results of testing each component in Align-

KD. MVLM2 refers to MobileVLM V2 model.

sults are shown in Table 4. Replacing first layer A1,t−v only

KD strategy with distillation of vision-query-vision atten-

tion triggers extreme drop in performances. We suggest that

this is because the self-attention of vision tokens is not help-

ful for initial cross-modal alignment, and could lead to very

unstable fluctuation in the attention embedding. However,

changing into text-query-text attention is remarkably better

than vision-query-vision training, with a slight drop from

64.4 to 63.2. We believe this phenomenon can be attributed

to the fixed text tokenizer while training, and this lead to

indirect stable learning of projection of cross-modal atten-

tion. What’s more, the learning on full attention performs

better than learning only A1,v−v and A1,t−t, which further

improves our conjectures above: the cross-modal A1,t−v is

the most important factor while learning A1,t−t helps miti-

gate the negative influence brought by A1,v−v distilling.

In Figure 2, we infer that the first and last layer act as the

most outstanding characters. Align-KD mainly focuses on

the first layer, since it is exposed the most to the inputs that

need to be aligned, while the last layer is mainly in charge

of projecting into output space. However, we also testify

how the student would behave with the knowledge of out-

put attention. As it is shown in the last row of Table 4, after

adding the distillation of the last attention to Align-KD, stu-

dent model witnesses a drop in performance. A possible ex-

planation is that the deep feature is already well mixed and

extracted, and there is some overlap with functionality of

the RKLD on outputs. Besides, the distillation on extra at-

tention would lead to significant growth in the calculation,

which is a burden for resource-limited scenarios, and the

first layer A1,t−v only KD in Align-KD demonstrates huge

advantage in both effectiveness and efficiency.

4.5. Discussions and Limitations

Align-KD strategy brings benefit to MobileVLM V2 model

under both long and short prompt limitations. Align-KD

is relatively light designed, which enable possible expan-

sion to resource-limited scenarios. We provide the working

expense comparisons in Table 5, including the total train-

ing time and maximum memory occupied during training.

The experiments are conducted on 8 Nvidia V100 GPUs. It

costs around 296 GPU hours and 676 GPU hours to train

Align-KD MVLM2 1.7B on Short and Long subdatasets.

Method MMEP GQA VQAT POPE MMBdev SQAI Avg.

A1,t−v 1288.4 58.9 52.4 86.5 57.8 66.6 64.4

A1,v−v 1036.5 52.0 27.3 81.1 13.8 36.1 43.7

A1,t−t 1228.2 61.0 49.7 86.2 56.4 64.3 63.2

A1,all 1265.0 59.8 52.7 86.3 54.4 64.6 63.5

+Alast,all 1281.1 58.7 53.8 86.1 57.7 64.1 64.1

Table 4. The ablation of attention distillation strategy. ’A1,t−v’ is

our first layer A1,t−v only KD, and ’A1,v−v’, ’A1,t−t’ are in the

same way. ’A1,all’ refers to applying attention distillation on full

attention of the first layer. ’+Alast,all’ refers to adding an extra

KD loss on full attention of the last layer.

Settings Total Training Time Max Memory Occupied

Short MVLM2 1.7B 176 GPU hours -

Long MVLM2 1.7B 228 GPU hours -

Short w/ Align-KD 296 GPU hours 22.3 GB/device*

Long w/ Align-KD 676 GPU hours 30.7 GB/device†

Table 5. The comparison of training time and memory workload.

’w/ Align-KD’ refers to training with Align-KD policy. *Set batch

size to 4 per iteration. †Set batch size to 1 per iteration.

For some examples that would cause instantaneous overload

due to the gradient accumulation, we save the output repre-

sentations from teacher and let them join training later when

we can remove the teacher model from the device. When

dealing with Short, Align-KD can achieve training with

maximum memory workload of 22.3 GB per GPU, which is

acceptable for commercial devices like RTX 3090. As for

Long subset, the workload of 30.7 GB per GPU is also ac-

ceptable for devices like NVIDIA V100. The memory load

of vanilla MobileVLM V2 1.7B is not presented here since

it can be flexibly tuned. Despite the extra workload brought,

Align-KD still enables universal improvements across dif-

ferent vision-language tasks.

5. Conclusion

We propose a knowledge distillation method for Mo-

bileVLM V2 model, namely Align-KD in this paper. Based

on the conjecture that the alignment mainly happens at the

front layer of LLM in VLMs, Align-KD proposes to con-

duct knowledge distillation only on the text-query-vision

part of the first attention. The vision tokens are also un-

balancedly enhanced according to the text tokens’ focus-

ing. Using MobileVLM V2 7B model as teacher, Align-KD

enables universal improvements across benchmarks under

both regular training setting and resource-limited setting.
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