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Abstract

Network interference, where the outcome of an individual is affected by the treat-
ment of others in their social network, is pervasive in real-world settings. However,
it poses a challenge to estimating causal effects. We consider the task of estimating
the total treatment effect (TTE), or the difference between the average outcomes
of the population when everyone is treated versus when no one is, under network
interference. Under a non-uniform Bernoulli randomized design, we utilize knowl-
edge of the network structure to provide an unbiased estimator for the TTE when
network interference effects are constrained to low-order interactions among neigh-
bors of an individual. We make no assumptions on the graph other than bounded
degree, allowing for well-connected networks that may not be easily clustered. We
derive a bound on the variance of our estimator and show in simulated experiments
that it performs well compared with standard TTE estimators.

1 Introduction

Accurately estimating causal effects is relevant in numerous applications, from pharmaceutical
companies researching the efficacy of a new medication, to policy makers understanding the impact of
social welfare programs, to social media companies evaluating the impact of different recommendation
algorithms on user engagement across their platforms. The total treatment effect (TTE), the difference
between the average individual’s outcomes when everyone is treated versus when no one is treated,
is a useful estimand in these settings, as it provides an approximate “return on investment” from
a large-scale rollout of the treatment. To arrive at such an estimate, a company or agency may
design an experiment where they randomly assign subsets of the population to treatment (e.g. new
medication) and to control (e.g. a placebo) and draw conclusions based on the observed outcomes of
the participants (e.g. health outcomes).

The techniques and guarantees for estimating causal effects in classical causal inference heavily rely
upon the stable unit treatment value assumption (SUTVA), which posits that the outcome of each
individual is independent of the treatment assignment of all other individuals (12). Unfortunately,
SUTVA is violated in all of the above applications due to network interference: one’s outcome is
impacted not only by their treatment, but also by the treatment of their peers. Distinguishing between
the direct effect of treatment on an individual and the network effect of others’ treatment can be
challenging. This has resulted in a growing literature on causal inference in the presence of such
interference or spillover effects.

We consider the task of estimating the TTE under the presence of network interference. In particular,
our work assumes neighborhood interference, under which an individual is affected by the treat-
ment of their direct neighbors but is unaffected by the treatment of those individuals outside their
neighborhood. Furthermore, we focus on an experimental setting under unit randomized designs,
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wherein individuals are independently assigned to either the treatment or control group. This is in
contrast to cluster randomized designs, which have been proposed as an approach to address network
interference for randomized experimental design but which may not be feasible in practice due to an
incompatibility with existing experimental platforms or to policy regulations.

Related Work. The literature has largely taken two approaches towards estimating the total treat-
ment effect under network interference. The majority of work in the non-parametric approach assumes
partial interference: the population can be partitioned into groups, and network interference occurs
within but not across groups (1; 3; 9; 10; 13; 16; 20). Given knowledge of the groups, one typically
randomly assign groups to different treatment saturation levels, for example jointly assigning an
entire group to either treatment or control. Then, classical approaches such as a Difference-in-Means
or Horvitz-Thompson estimator can be used to estimate the TTE. The asymptotic consistency of
these estimators relies on the number of groups going to infinity. In practice, even networks with an
obvious clustering may not have a sufficiently large number of groups to result in useful estimates.
When partial interference is not satisfied, standard estimators incur bias that scales with the number
of edges between groups. Therefore, the goal of cluster-based randomized designs in this setting is to
leverage inherent structures to find a clustering that minimizes the number of edges between clusters
(8; 7; 18; 19). Finding such a clustering can be computationally expensive, difficult to implement in
existing experimentation platforms, or unfair due to nonuniform treatment exposures. For this reason,
we limit our attention to unit randomized design.

The other common approach is to impose strong structural properties on the potential outcomes
model. The most common assumption is that the potential outcomes are linear with respect to a
particular statistic of the treatment vector (2; 4; 5; 8; 11; 17). This approach reduces the number
of unknown parameters in the potential outcomes function so that causal estimation can be recast
as a linear regression problem. This lends itself naturally to using a least squares estimate, turning
the attention to minimizing the variance of the estimate by using an appropriate randomized design.
A drawback of this approach is that it frequently assumes anonymous interference, which imposes
homogeneity amongst the network effects. Our work removes need for linearity by providing a
simple, unbiased estimator for the TTE under a potential outcomes model that is polynomial with
respect to the treatment vector. Moreover, our model allows for heterogeneity in the influence of
different sets of treated neighbors. This removes the restrictive anonymous interference assumption,
so strictly generalizes beyond the typical parametric model classes.

Some of the most similar work to ours is found in (21) and (6). The former provides an estimator
for the TTE with neighborhood interference under a heterogeneous linear model, also called the
assumptions of additivity of main effects and interference in (14). Interestingly, their method requires
no knowledge of the underlying network and instead utilizes measurements over two time steps.
In (6), the authors generalize this work beyond linear to polynomial potential outcomes models,
requiring measurements at multiple time-steps. Our work considers the same potential outcomes
model as them, but in scenarios where we have knowledge of the network. In particular, we assume
knowledge of all the neighborhood sets. Our results apply to settings where we only have access to
measurements at a single time-step, or where data is observational, both of which are not addressed
in (6) or (21).

2 Model

Causal Network. Let [n] := {1, . . . , n} denote the underlying population of n individuals. We
model the network effects in the population as a directed graph over the individuals with edge set
E ⊆ [n] × [n]. An edge (j, i) ∈ E signifies that the treatment assignment of individual j affects
the outcome of individual i. As an individual’s own treatment is likely to affect their outcome, we
expect self-loops in this graph. We use Ni := {j ∈ [n] : (j, i) ∈ E} to denote the in-neighborhood
of an individual i. Note that this definition allows i ∈ Ni. Our variance bound is parameterized by
the network degree. We let din denote the maximum in-degree of any individual and dout denote the
maximum out-degree.

Potential Outcomes Model. To each individual i, we associate a treatment assignment zi ∈ {0, 1},
where we interpret zi = 1 as an assignment to the treatment group and zi = 0 as an assignment
to the control group. We collect all treatment assignments into the vector z. We use Yi to denote
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the outcome of individual i. As our setting assumes network interference, the classical SUTVA
assumption is violated. That is, Yi is not a function only of zi. Rather, Yi : {0, 1}n → R may be a
function of z, the treatment assignments of the entire population. Since each treatment variable zi
is binary, we can indicate an exact treatment assignment as a product of zi (for treated individuals)
and (1− zi) (for untreated individuals) factors. As such, we can express a general potential outcome
function Yi as a polynomial in z,

Yi(z) =
∑

T ⊆[n]

ai,T
∏
j∈T

zj
∏

k∈[n]\T

(1− zk),

where ai,T is individual i’s outcome when their set of treated neighbors is exactly T . Via a change of
basis, we can equivalently express Yi(z) as a polynomial in the “treated subsets”

Yi(z) =
∑

S′⊆[n] ci,S′
∏

j′∈S′ zj′ , (1)

where ci,S′ represents the additive effect on individual i’s outcome that they receive when the entirety
of subset S ′ is treated. Note that ci,∅ represents the baseline effect, the component of i’s outcome that
is independent of the treatment assignments.

So far, the potential outcomes model described in (1) is completely general. However, it is param-
eterized by 2n coefficients {ci,S′}, which makes it untenable in most settings. To combat this, we
impose some structural assumptions on these coefficients. First, we observe that the populations of
interest can be quite large (e.g. the population of an entire country), and their influence networks
may have high diameter. Throughout most of the paper, we assume that individuals’ outcomes are
influenced only by their immediate in-neighborhood.
Assumption 1 (Neighborhood Interference). Yi(z) only depends on the treatment of individuals in
Ni. Equivalently, Yi(z) = Yi(z

′) for any z and z′ such that zj = z′j for all j ∈ Ni. In our notation
ci,S′ = 0 for any S ′ ̸⊆ Ni.

Next, we note that the degree of each Yi(z) can (under the neighborhood interference assumption) be
as large as din. In such a model, one’s outcome may be differently influenced by a treated coalition of
any size in their neighborhood. Contrast this with a simpler linear potential outcomes model, wherein
an individual’s outcome receives only an independent additive effect effect from each of their treated
neighbors. This illustrates that the degree of the polynomial may serve as a proxy for its complexity.
In this work we consider the scenario where the degree may be significantly smaller than din.
Assumption 2 (Low Polynomial Degree). Each potential outcome function Yi(z) has degree at most
β. In our notation, ci,S′ = 0 whenever |S ′| > β.

We remark that while we use the formal mathematical term of “low polynomial degree”, this describes
a function over a vector of binary variables, such that a low polynomial degree constraint is equivalent
to constraining the order of interactions amongst the treatment of neighbors. In the simplest setting
when β = 1, this is equivalent to a model in which the networks effects are additive across treated
neighbors, strictly generalizing beyond widely-used linear models.

Under Assumptions 1 and 2, we may re-express Yi(z) from (1) in the form,

Yi(z) =
∑

S′⊆Ni

|S′|≤β

ci,S′

∏
j∈S′

zj . (2)

The number of unknown parameters in this model is
∑

i∈[n]

∑β
k=0

(|Ni|
k

)
, which scales as ndβin. As

noted above, taking β = 1 corresponds to the heterogeneous linear outcomes model in (21). This low
degree assumption will not generally admit threshold models or saturation models, both of which
would require the degree of Yi(z) to be |Ni|.
Our variance bounds utilizes an upper bound on the treatment effects for each individual. We define
Ymax such that

Ymax := max
i∈[n]

∑
S⊆Ni

|S|≤β

|ci,S |.

It follows that |Yi(z)| ≤ Ymax for any treatment vector z.
Assumption 3 (Observation Noise). Assume that the observations of individual’s outcomes are
perturbed by independent Gaussian noise such that Y obs

i = Yi(z) + ϵi for ϵi ∼ N(0, σ2).
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Causal Estimand and Randomized Design. Throughout this paper, we concern ourselves with
estimating the total treatment effect (TTE). This quantifies the difference between the average
of individual’s outcomes when the entire population is treated versus the average of individual’s
outcomes when the entire population is untreated:

TTE :=
1

n

n∑
i=1

(
Yi(1)− Yi(0)

)
, (3)

where 1 represents the all 1s vector and 0 represents the zero vector. Plugging in our parameterization
from equation (2), we may re-express the total treatment effect as

TTE =
1

n

n∑
i=1

∑
S′⊆Ni

1≤|S′|≤β

ci,S′ . (4)

Since exposing individuals to treatment can have a deleterious and irreversible effect on their
outcomes, we wish to estimate the total treatment effect after treating a small random subset of
the population. Throughout the paper, we focus on a non-uniform Bernoulli design, wherein each
individual i is independently assigned treatment with probability pi ∈ [p, 1− p] for p ∈ (0, 0.5], i.e.
each zi ∼ Bern(pi). This randomized design is straightforward to implement and understand.

3 Estimator

In this section we introduce the estimator that forms the basis for much of our work. We con-
sider an experimental setting utilizing a non-uniform Bernoulli design; each individual i is treated
independently with probability pi. Then, our estimator is given by

T̂TE =
1

n

n∑
i=1

Y obs
i (z)

∑
S⊆Ni

|S|≤β

g(S)
∏
j∈S

(
zj
pj

− 1− zj
1− pj

)
, (5)

where we define g : 2[n] → R such that g(S) = ∏
s∈S(1 − ps) −

∏
s∈S(−ps) for each S ⊆ [n].

Note that this estimator can be evaluated in O(ndβin) time and only utilizes structural information
about the graph (not any influence coefficients ci,S ). We remark that this estimator is a special case
of the pseudoinverse estimator first introduced by Swaminathan et. al. (15).

Structurally, the estimator takes the form of a weighted average of the outcomes Yi(z) of each
individual i, where the weights themselves are functions of the treatment assignments of all members
j of the in-neighborhood Ni. To make use of the low-order interference assumption, the estimator
separately scales the effect of treatment of each sufficiently small subset of Ni using the scaling
function g(S). The definition of this g(S) ensures the unbiasedness of the estimator and recovers the
Horvitz-Thompson estimator when β ≥ din. In the special case of a uniform treatment probability
pi = p̂ across all nodes, we can simplify this estimator to show that it is only a function of the number
of treated individuals in i’s neighborhood, and not their specific identities.

The following theorem summarizes the key properties of our estimator.
Theorem 1. Under a potential outcomes model satisfying the neighborhood interference assumption
with polynomial degree at most β, the estimator defined in (5) is unbiased with variance bounded by

din dout Ymax
2

n
·
( d2in
p(1− p)

)β
+

σ2

n

(
din

p(1− p)

)β

,

where each pi ∈ [p, 1− p] and p ∈ (0, 0.5].

Notably, a sequence of networks with n → ∞ and d = o(log n) has variance asymptotically
approaching 0. We defer the proof of this theorem to Appendix A.

Discussion. Our estimator is a linear weighted estimator which takes the form of
1
n

∑n
i=1 Yi(z)wi(z) for a specially constructed weight function wi(z). We can contrast our estimator
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to the commonly used Horvitz-Thompson estimator, which takes the form of

1

n

n∑
i=1

Y obs
i (z)

(
I(z treats all of Ni)

Pr(z treats all of Ni)
− I(z does not treat all of Ni)

Pr(z does not treat all of Ni)

)
.

In the special case when |Ni| ≤ β the restriction |S| ≤ β is always satisfied for every S ⊆ Ni, such
that by an application of the Binomial theorem, it follows that wi(z) reduces to

wi(z) =
∑

S⊆Ni

|S|≤β

g(S)∏j∈S

(
zj
pj

− 1−zj
1−pj

)
=
∏

j∈Ni

zj
pj

−∏j∈Ni

1−zj
1−pj

which is equivalent to the weight used in the Horvitz-Thompson estimator under Bernoulli randomized
design. As a result, when β is sufficiently large relative to the degree of the nodes in the graph, our
estimator is very similar to the Horvitz-Thompson estimator, only differing for the nodes which have
graph degree larger than β. In this sense, under Bernoulli randomization, our estimator can be viewed
as a generalization of Horvitz-Thompson to account for low polynomial degree structure, which is
most relevant for simplifying the potential outcomes associated to high degree vertices.

We can compare against the variance of Horvitz-Thompson under a Bernoulli design. In the simple
setting of a d-regular graph and uniform Bernoulli(p) randomization, (19) showed that the Horvitz-
Thompson estimator has a variance that is lower bounded by Ω(1/npd). In contrast, the variance of
our estimator only scales polynomially in the degree d, but exponentially in the polynomial degree
β, which is achieved by simply changing the estimator, without requiring any additional clustering
structure of the graph and without utilizing complex randomized designs. This is a significant gain
when the polynomial degree β is significantly lower than the graph degree d. The simplest setting of
β = 1 already expresses all potential outcomes models which satisfy additivity of main effects and
additivity of interference, as defined in (14); this subsumes all linear models which are commonly
used in the practical literature, yet which require additional homogeneity assumptions.

4 Experimental Results

Using computational experiments on simulated data, we compare the performance of our estimator
with existing estimators. Using an Erdős-Rényi model, we generate random directed graphs of
n nodes for a population of n individuals. Figure 1 shows results from networks made using the
Erdős-Rényi model with n nodes and probability pedge = 10/n of an edge existing between any two
nodes. Hence, the expected in-degree and out-degree of each node is 10. For degree β, we construct
the same potential outcomes model as in (6):

Yi(z) = ci,∅ +
∑

j∈Ni
c̃ijzj +

∑β
ℓ=2

(∑
j∈Ni

c̃ijzj∑
j∈Ni

c̃ij

)ℓ
, (6)

where ci,∅ ∼ U [0, 1], c̃ii ∼ U [0, 1], and for i ̸= j, c̃ij = vj |Ni|/
∑

k:(k,j)∈E |Nk| for vj ∼ U [0, r],
where r denotes a hyperparameter that governs the magnitude of the network effects relative to the
direct effects. We represent the magnitude of individual j’s influence by the parameter vj . This
influence is shared among individual j’s out-neighbors proportional to their in-degrees. For simplicity,
we assume no observation noise, i.e. σ = 0.

Other Estimators. We compare the performance of our estimator with the performance of least-
squares regression and difference-in-means estimators. Let Ui denote the number of individuals in
Ni \ {i} assigned to treatment, and let Ũi denote the number of neighbors individuals in Ni \ {i}
assigned to control. For some user-defined tolerance λ ∈ [0, 1], the difference-in-means estimator is
given by

T̂TEDM(λ) =
∑

i∈[n] ziI(Ui≥λ)Yi(z)∑
i∈[n] ziI(Ui≥λ) −

∑
i∈[n](1−zi)I(Ũi≥λ)Yi(z)∑

i∈[n](1−zi)I(Ũi≥λ)
. (7)

We set λ = 1 and λ = 0.75 for our experiments. Note that T̂TEDM(λ) counts an individual i’s
outcome only when at least λ of their neighborhood is assigned to the same treatment as them. We
will denote T̂TEDM = T̂TEDM(1), as it corresponds to the classical difference in means estimator.

We also compare with least-squares regression models of degree β which assume the potential
outcomes model is given by

Yi(z) = g(zi, z̄i) =
(
ρ+

∑β
k=1 γk X

k
i

)
+ zi

(
ρ̃+

∑β−1
k=1 γ̃k X

k
i

)
, (8)
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for some covariate Xi. We consider two variations. In the first, we set Xi equal to the number of
treated neighbors. In the second, we let Xi equal the proportion of treated neighbors. In both cases,
we do not include i in its neighborhood. The two sets of coefficients (ρ, γ1, . . . γβ) and (ρ̃, γ̃1, . . . γ̃β)
allow for the model to be different when i is treated vs not treated, and since we only allow up to
degree β interactions, the second summation stops at β − 1. Overall, there are 2β + 1 coefficients in
the model. Using least-squares regression, we determine the set of coefficients minimizing the least-
squares predictive error on the data set {zi, Xi, Yi(z)}i∈[n]. These coefficients define an estimate for
the function ĝ in Equation 8. Given the fitted estimate ĝ, the estimate for the total treatment effect,
denoted by T̂TELS-Num and T̂TELS-Prop for the two linear models respectively, is computed by simply
substituting in the fitted function ĝ into the definition of the TTE.

Results and Discussion. For each population size n, we sample G networks from the Erdős-Rényi
model described previously. For every configuration of parameters in the experiment, we sample
N treatment assignment vectors z1, . . . , zN from a uniform Bernoulli distribution with treatment
probability p to compute the TTE using each estimator. Each plot we include also shows the relative
bias of the TTE estimates, averaged over the results from these GN samples and normalized by the
magnitude, for each estimator. The width of the shading around each line in the plots shows the
standard deviation across the GN estimates. For our experiments1, we chose G = 10 and N = 500.
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Figure 1: Plots visualizing the performance of various TTE estimators under Bernoulli design on
Erdős-Rényi networks for both linear and quadratic potential outcomes models. The height of each
line on a plot depicts the experimental relative bias of the estimator and the shaded width depicts the
experimental standard deviation.

Figure 1 visualizes the effects of various network or estimator parameters on the performance of each
of the four benchmark TTE estimators and our estimator T̂TESNIPE(β), all under Bernoulli randomized
design. In particular, we consider the effects of the population size (n), the treatment budget (p), the
ratio between the network and direct effects (r), and the degree of the potential outcomes model (β).
Figure 1 shows the bias and empirical standard deviation of each estimator, where the values are all
normalized by the magnitude of the true TTE.

The top row of plots in Figure 1 features results for a linear (β = 1) potential outcomes model while
the bottom row shows results for a quadratic (β = 2) potential outcomes model. As expected, our
estimator, shown in blue, has no relative bias and its variance decreases as n increases. With the
exception of the modified difference-in-means estimator T̂ TEDM(0.75) in green, the variances of the
other estimators are lower than ours. However, the biases of the other estimators are larger than the

1We ran all experiments on a Linux-based machine with 20 CPU(s) and 10 cores. The Python scripts
for the experiments and the data used in our results are available at: https://github.com/mayscortez/
low-order-unitRD
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variance of our unbiased estimator overall. Moreover, as r increases, the networks effects are more
significant than the direct effects and we see the biases of the other estimators grow larger. Note that
the variance of our estimator remains relatively constant as r varies. When r is close to 0, there are
essentially no network effects, SUTVA holds and as expected, all the estimators are unbiased.
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A Proof of Theorem 1

The key insight that we use in the construction of this unbiased estimator comes from the following
lemma.
Lemma 1. Suppose that {zj}j∈[n] are mutually independent, with zj ∼ Bernoulli(pj). Then, for
any S,S ′ ⊆ [n],

E
[∏
j∈S

(zj
pj

− 1− zj
1− pj

) ∏
j′∈S′

zj′
]
= I
(
S ⊆ S ′) · ∏

j′∈S′\S

pj′ .

Proof. By the mutual independence of the {zj}, we can rewrite this expectations as a product,
separating the variables into three groups.

E
[∏
j∈S

(zj
pj

−1− zj
1− pj

) ∏
j′∈S′

zj′
]
=

∏
j∈S\S′

E
[

zj − pj
pj(1− pj)

] ∏
j′∈S′\S

E[zj′ ]
∏

j′′∈S∩S′

E
[
zj′′(zj′′ − pj′′)

pj′′(1− pj′′)

]
.

Note that the expectations in the first product each simplify to 0, so this expectation is non-zero only
when S ⊆ S ′. The expectations in the second product simplify to pj′ , and those in the third product
each simplify to 1. These observations imply the lemma.

The critical feature of this lemma, as will become apparent in the subsequent proofs, is that this
indicator function simplifies sums over arbitrary sets to sums over subsets S ⊆ S ′. This additional
structure permits simplification through techniques including the binomial theorem and Möbius
inversion.

Applying linearity of expectation, we have

E
[
T̂TE

]
=

1

n

n∑
i=1

∑
S′⊆Ni

|S′|≤β

ci,S′

∑
S∈Ni

|S|≤β

g(S) · E
[∏
j∈S

(zj
pj

− 1− zj
1− pj

) ∏
j′∈S′

zj′
]
.

Applying Lemma 1, this simplifies to

=
1

n

n∑
i=1

∑
S′⊆Ni

1≤|S′|≤β

ci,S′

∑
S⊆S′

g(S)
∏

j′∈S′\S

pj′ .

Next, substituting in the definition of g(S), and rearranging we have

=
1

n

n∑
i=1

∑
S′⊆Ni

1≤|S′|≤β

ci,S′

∏
j′∈S′

pj′
∑
S⊆S′

(∏
j∈S

1− pj
pj

− (−1)|S|
)
.

Applying the binomial theorem allows us to cancel out the (−1)|S| terms. For the remaining terms
we may rewrite

=
1

n

n∑
i=1

∑
S′⊆Ni

1≤|S′|≤β

ci,S′

∏
j′∈S′

pj′
∑
S⊆S′

∏
j∈S

( 1

pj
− 1
)

=
1

n

n∑
i=1

∑
S′⊆Ni

1≤|S′|≤β

ci,S′

∏
j′∈S′

pj′
∑
S⊆S′

∑
T ⊆S

(−1)|S|−|T | ·
∏
j∈T

1

pj
.

Finally, applying Möbius inversion on the boolean poset (P(S ′),⊆), we have

=
1

n

n∑
i=1

∑
S′⊆Ni

1≤|S′|≤β

ci,S′

∏
j′∈S′

pj′ ·
∏
j∈S′

1

pj
=

1

n

n∑
i=1

∑
S′⊆Ni

1≤|S′|≤β

ci,S′ = TTE.
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To bound the variance of this estimator, we make use of the following lemma to bound the magnitude
of each g(S) coefficient.

Lemma 2. For any S ⊆ [n], |g(S)| ≤ 1.

Proof. First, note that |g(∅)| = 0 ≤ 1. Now, for any non-empty set S, let i ∈ S. Then,∣∣g(S)∣∣ = ∣∣∣ ∏
s∈S

(1− ps)−
∏
s∈S

(−ps)
∣∣∣

=
∣∣∣(1− pi)

∏
s∈S\{i}

(1− ps) + pi
∏

s∈S\{i}

(−ps)
∣∣∣

≤ (1− pi)
∏

s∈S\{i}

(1− ps) + pi
∏

s∈S\{i}

ps (triangle inequality)

≤ 1− pi + pi
= 1.

This next lemma is used to bound the covariance terms that appear in our final calculation.

Lemma 3. Suppose that {zj}j∈[n] are mutually independent, with zj ∼ Bernoulli(pj). Then, for
any S,S ′, T , T ′ ⊆ [n],∣∣∣∣Cov

[∏
j∈S

(zj
pj

− 1− zj
1− pj

) ∏
j′∈S′

zj′ ,
∏
k∈T

(zk
pk

− 1− zk
1− pk

) ∏
k′∈T ′

zk′

]∣∣∣∣ ≤ (p(1− p))−β .

Proof. We reason separately about the two terms in the covariance expansion. By Lemma 1,

E
[∏
j∈S

(zj
pj

−1− zj
1− pj

) ∏
j′∈S′

zj′
]
E
[ ∏
k∈T

(zk
pk

−1− zk
1− pk

) ∏
k′∈T ′

zk′

]
= I
(S ⊆ S ′,
T ⊆ T ′

) ∏
j′∈S′\S

pj′
∏

k′∈T ′\T

pk′ .

(9)
Next, we reason about the expectation of the product term. Since the zj are Bernoulli random
variables, we can combine the products over S ′ and T ′, giving

E
[∏
j∈S

(zj
pj

− 1− zj
1− pj

) ∏
k∈T

(zk
pk

− 1− zk
1− pk

) ∏
j′∈S′∪T ′

zj′
]
. (10)

Now, we partition the elements of S ∪ S ′ ∪ T ∪ T ′ based on which of the products they are present
in:

1. j ∈ S ∩ T ∩ (S ′ ∪ T ′): j contributes a factor of E
[ z3

j−2z2
j pj+zjp

2
j

p2
j (1−pj)2

]
= 1

pj
.

2. j ∈ S ∩ T \ (S ′ ∪ T ′): j contributes a factor of E
[ z2

j−2zjpj+p2
j

p2
j (1−pj)2

]
= 1

pj(1−pj)
.

3. j ∈ S ∩ (S ′ ∪ T ′) \ T : j contributes a factor of E
[ z2

j−zjpj

pj−p2
j

]
= 1.

4. j ∈ T ∩ (S ′ ∪ T ′) \ S: j contributes a factor of E
[ z2

j−zjpj

pj−p2
j

]
= 1.

5. j ∈ S \ T \ (S ′ ∪ T ′): j contributes a factor of E
[ zj−pj

pj−p2
j

]
= 0.

6. j ∈ T \ S \ (S ′ ∪ T ′): j contributes a factor of E
[ zj−pj

pj−p2
j

]
= 0.

7. j ∈ (S ′ ∪ T ′) \ S \ T : j contributes a factor of E
[
zj
]
= pj .
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Cases 5 and 6 ensure that (10) is non-zero only when S ⊆ (T ∪ S ′ ∪ T ′) and T ⊆ (S ∪ S ′ ∪ T ′),
which are both necessary conditions for (9) to be non-zero. In addition, note that each j from case 7
contributing a factor of pj to (10) also contributes at least one factor of pj to (9). The remaining j
from other cases contribute a factor of at least 1. Notably, both (10) and (9) are non-negative, with
(10) dominating (9), so also the bounding the covariance. (10) will be largest when |S ∩ T | = β and
are disjoint from S ′ ∪ T ′ such that all individuals in S ∩ T fall into case 2, allowing us to bound the
covariance by (p(1− p))−β .

We are ready to bound the variance. By the law of total variance,

Var[T̂ TE] = Var
[
E
[
T̂ TE

∣∣∣ z]]+ E
[
Var
[
T̂ TE

∣∣∣ z]]

= Var

 1

n

n∑
i=1

Yi(z)
∑
S⊆Ni

|S|≤β

g(S)
∏
j∈S

(
zj
pj

− 1− zj
1− pj

) (11)

+ E

σ2

n2

n∑
i=1

( ∑
S⊆Ni

|S|≤β

g(S)
∏
j∈S

(zj
pj

− 1− zj
1− pj

))2

 . (12)

If Ni ∩ Ni′ = ∅, then Yi(z)wi(z) and Yi′(z)wi′(z) are functions of disjoint sets of independent
variables. Thus, Cov

[
Yi(z)wi(z), Yi′(z)wi′(z)

]
= 0. We let Mi denote the set of individuals i′

such that Ni ∩Ni′ ̸= ∅, i.e. all individuals i′ that share an in-neighbors with individual i. Note that
|Mi| ≤ dindout. Applying the bilinearity of covariance and the triangle inequality, we can bound (11)
by

(11) ≤ 1

n2

n∑
i=1

∑
i′∈Mi

∑
S′⊆Ni

|S′|≤β

|ci,S′ |
∑

T ′⊆Ni′
|T ′|≤β

|ci′,T ′ |
∑
S⊆Ni

|S|≤β

|g(S)|
∑

T ⊆Ni′
|T |≤β

|g(T )|

∣∣∣∣Cov
[∏
j∈S

(zj
pj

− 1− zj
1− pj

) ∏
j′∈S′

zj′ ,
∏
k∈T

(zk
pk

− 1− zk
1− pk

) ∏
k′∈T ′

zk′

]∣∣∣∣.
Plugging in our bounds from Lemmas 2 and 3 and the definition of Ymax, we can simplify this bound
to

≤ 1

n2

n∑
i=1

∑
i′∈Mi

Ymax
2
∑
S⊆Ni

|S|≤β

∑
T ⊆Ni′
|T |≤β

(p(1− p))−β ≤ din dout Ymax
2

n
·
( d2in
p(1− p)

)β
.

Next we bound (12) by

(12) ≤ σ2

n2

n∑
i=1

∑
S⊆Ni

|S|≤β

∑
S′⊆Ni

|S′|≤β

g(S)g(S ′)E

∏
j∈S

(zj
pj

− 1− zj
1− pj

) ∏
j∈S′

(zj
pj

− 1− zj
1− pj

)

=
σ2

n2

n∑
i=1

∑
S⊆Ni

|S|≤β

∑
S′⊆Ni

|S′|≤β

g(S)g(S ′)I(S = S ′)E

∏
j∈S

( zj
p2j

− 1− zj
(1− pj)2

)
=

σ2

n2

n∑
i=1

∑
S⊆Ni

|S|≤β

g(S)2
∏
j∈S

1

pj(1− pj)

Plugging in our bounds from Lemmas 2, the constraint that pi ∈ [p, 1 − p], and the fact that the
number of subsets of Ni with size at most β is bounded above by dβin, it follows that

≤ σ2

n

(
din

p(1− p)

)β

.
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