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ABSTRACT

Dense self-supervised learning (SSL) methods showed its effectiveness in enhanc-
ing the fine-grained semantic understandings of vision models. However, existing
approaches often rely on parametric assumptions or complex post-processing (e.g.,
clustering, sorting), limiting their flexibility and stability. To overcome these lim-
itations, we introduce Patch-level Kernel Alignment (PaKA), a non-parametric,
kernel-based approach that improves the dense representations of pretrained vision
encoders with a post-(pre)training. Our method propose a robust and effective
alignment objective that captures statistical dependencies which matches the in-
trinsic structure of high-dimensional dense feature distributions. In addition, we
revisit the augmentation strategies inherited from image-level SSL and propose a
refined augmentation strategy for dense SSL. Our framework improves dense rep-
resentations by conducting a lightweight post-training stage on top of a pretrained
model. With only 14 hours of additional training on a single GPU, our method
achieves state-of-the-art performance across a range of dense vision benchmarks,
demonstrating both efficiency and effectiveness.

1 INTRODUCTION

Self-supervised learning (SSL) has rapidly advanced the capabilities of vision foundation models,
enabling them to learn generalizable visual concepts without human-annotated labels. While earlier
work (Chen et al., 2020; He et al., 2020; Grill et al., 2020; Caron et al., 2020) primarily focused on
image-level tasks such as classification, recent studies have shifted toward fine-grained, structured
tasks, such as semantic segmentation (Strudel et al., 2021; Xie et al., 2021; Zhang et al., 2022) and
object detection (Carion et al., 2020; Li et al., 2022a) that require detailed, spatially-aware under-
standing. Achieving strong performance in such tasks hinges on the quality of dense representations,
where each spatial location in the image is embedded with semantically meaningful information.

To enable such dense visual understanding, recent research has shifted towards dense self-supervised
learning, aiming to equip models with fine-grained spatial awareness. Some approaches (Oquab
et al., 2023; Zhou et al., 2022) have advanced dense representation learning by reconstructing masked
image patches, which result in high-quality, fine-grained features by leveraging the input itself as
the target. Meanwhile, another line of research (Lebailly et al., 2024; Pariza et al., 2025; Stegmüller
et al., 2023; Ziegler & Asano, 2022) has focused on dense representation learning via self-distillation
using carefully designed objectives that align teacher and student patch-level features without labels.
Specifically, methods like Leopart (Ziegler & Asano, 2022), Croc (Stegmüller et al., 2023), and
CrIBO (Lebailly et al., 2024) apply clustering algorithms to group features and train models using
clustering-based pseudo-labels. On the other hand, NeCo (Pariza et al., 2025) adopts a sorting-based
objective to enforce patch-level relational consistency and builds on pretrained encoders. This
approach exemplifies what we refer to as post-(pre)training, where a pretrained model is taken and
further refined for enhanced dense representations.

At their core, these methods can be seen as performing distribution alignment, where alignment occurs
at the level of dense feature representations. However, they often rely on parametric assumptions to
manage the complexity of patch-level feature distributions in high-dimensional space. For instance,
cluster-based approaches (Lebailly et al., 2024; Stegmüller et al., 2023) model the probability
distribution of a patch by mapping it to K predefined prototypes. Such parametric assumptions can
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make training sensitive to hyperparameter choices, while also reducing the flexibility to capture the
complex distributions of patch-level features.

In this work, we propose a non-parametric, kernel-based learning approach that moves beyond
the limitations of parametric distribution modeling, formulated as a post-(pre)training refinement
stage applied to enhance the dense representations of a pretrained model. Our method evaluates
the holistic similarity structure of patch-level features through a kernel metric. While a simple
Gram matrix alignment can be used to compare teacher and student patch features, we find this
approach unstable due to structural misalignment between teacher and student feature spaces in
dense post-(pre)training. To address this, we introduce Patch-level Kernel Alignment (PaKA), which
applies Centered Kernel Alignment (CKA) at the patch level to capture intrinsic similarity structures,
enabling reliable comparison under distributional discrepancies. Consequently, PaKA enables stable
and efficient dense post-(pre)training without parametric constraints and eliminates the need for
complex algorithms or memory banks.

Furthermore, we revisit augmentation strategies originally designed for image-level SSL, which have
been widely adopted in dense SSL (Pariza et al., 2025; Ziegler & Asano, 2022) without thorough re-
evaluation. Our analysis shows that certain augmentations, especially those inherited from image-level
SSL, can hinder the learning of spatially detailed dense features. Motivated by these observations, we
propose a cropping strategy specifically designed to preserve spatial information and improve dense
feature alignment.

Our framework, combining CKA-based alignment and refined augmentation, achieves state-of-the-art
performance on multiple dense benchmarks while reducing computation by 37% and memory usage
by 24% compared to prior methods. The main contributions of our work are summarized as follows:

• We propose Patch-level Kernel Alignment (PaKA), a simple yet effective dense post-(pre)training
method that aligns dense features between teacher and student models using Centered Kernel
Alignment (CKA), without relying on clustering, memory banks, or explicit distribution model-
ing.

• We analyze the impact of standard augmentation strategies inherited from image-level SSL and
identify their limitations for dense representation learning. Based on this analysis, we introduce
a new augmentation strategy specifically tailored for dense representation learning.

• We demonstrate that our full framework, which combines CKA-based alignment and refined
augmentations, achieves state-of-the-art performance across diverse dense vision benchmarks
while reducing computational and memory costs.

2 RETHINKING DISTRIBUTION ALIGNMENT FOR DENSE SSL

2.1 DISTRIBUTION ALIGNMENT IN DENSE SELF-SUPERVISED LEARNING

The process of dense self-supervised learning (SSL) can be interpreted as a problem of distribution
alignment. At its core, dense SSL leverages a self-distillation mechanism to learn fine-grained
representations by enforcing multi-view consistency at the patch level. This is commonly implemented
through a student-teacher architecture (Caron et al., 2021), where the teacher network generates a
target distribution of dense representations from a holistic, global view of an image. This teacher
distribution acts as a stable, information-rich target, encapsulating the underlying semantic structure.
The student network, conversely, is tasked with modeling this target distribution while only observing
partial, low-resolution local views. By aligning the student’s output distribution with the teacher’s
richer target distribution, the dense SSL objective guides the student to produce robust and spatially-
aware representations, even from partial views.

2.2 FROM PARAMETRIC CONSTRAINTS TO NON-PARAMETRIC RELATIONAL LEARNING

Despite their diverse formulations, contemporary dense self-supervised learning approaches (Wang
et al., 2021; Stegmüller et al., 2023; Lebailly et al., 2024; Ziegler & Asano, 2022; Pariza et al., 2025)
can be seen to effectively perform distribution alignment in feature space. However, these approaches
are often built upon parametric assumptions and architectural priors, which limit their flexibility in
learning the complex and high-dimensional distribution of patch-level features.
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Figure 1: Overview of Patch-level Kernal Alignment (PaKA) for Dense Post-(pre)training. PaKA
is a student-teacher framework that aligns dense patch representations by comparing their relational
structures, enabling the student to capture the teacher’s fine-grained feature relationships without
requiring complex algorithms or memory banks.

For instance, DenseCL (Wang et al., 2021) learns patch-level representations using contrastive
learning. This method defines a probability distribution for patches under a binary constraint -
whether a patch is similar (positive) or dissimilar (negative) to another - and it only leverages these
binary relationships during training. Such a limited definition can restrict the diversity of patch
relationships captured in the learned distribution.

Cluster-based approaches (Lebailly et al., 2024; Stegmüller et al., 2023; Ziegler & Asano, 2022)
attempt to partially overcome such limitations by defining the probability distribution of a patch
through comparison against K prototypes, often generated across multiple images. Nevertheless, this
approach remains parametric, as it relies on pre-defined parameters such as the number of clusters K,
which constrains the flexibility of the learned distribution.

Similarly, NeCo (Pariza et al., 2025), whose approach of matching relationships among patches
within a batch inherently avoids the need for explicit prototype construction, nonetheless introduces
its own form of restriction on the distribution. It establishes a soft order of similarity among patches
via a sorting mechanism with a steepness parameter s. The high steepness decisively sharpens the
ranking among patches and drives the output toward a discrete limit. While this strategy circumvents
the need for explicit clustering, the sorting process implicitly induces a structure that resembles
cluster-based grouping, where top-ranked patches act as pseudo-prototypes.

To address these limitations, we introduce a non-parametric and relational learning framework without
imposing a fixed structure on the feature distribution. This is achieved via a kernel-based mechanism,
which enables flexible modeling of complex feature relationships.

3 PATCH-LEVEL KERNEL ALIGNMENT

We introduce Patch-level Kernel Alignment (PaKA), a simple and flexible framework for dense SSL,
as illustrated in Figure 1. PaKA fine-tunes a pretrained image-level SSL model to learn spatially and
semantically rich patch-level representations using a kernel-based alignment loss.

3.1 POST-(PRE)TRAINING VISION ENCODERS FOR DENSE REPRESENTATION

Following prior works (Ziegler & Asano, 2022; Pariza et al., 2025), we further fine-tune the image-
level SSL models such as DINOv2 (Oquab et al., 2023) to improve patch-level dense representa-
tions. Both student and teacher networks are initialized from the same pretrained weights, with
the teacher updated via Exponential Moving Average (EMA). We apply a multi-crop augmentation
strategy (Caron et al., 2020), generating two global crops Vg for both networks and multiple low
resolution local crops Vl exclusively for the student. From the global crop Vg, divided into H ×W
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(a) Feature space gap (b) Training convergence (c) Overclustering performance

Figure 2: Why CKA leads to better alignment than Gram-matrix in dense post-(pre)training.
(a) 2D PCA projection of 5,000 teacher and student dense representations. (b) Normalized training
loss curves for the Gram-matrix and CKA losses. Complete training loss curves can be found in the
Appendix. (c) Overclustering performance on ADE20K.

patches, the teacher encoder produces a patch-level dense representation Φt ∈ RH×W×D. Similarly,
the student encoder processes a local crop and divides into h × w patches, to yield its patch-level
dense representation Φs ∈ Rh×w×D.

To enable a direct patch-wise comparison of Φt and Φs, we align representations from the region
of intersection between Vg and Vl. Specifically, let b be the bounding box defining Vl within Vg.
We apply ROI Align to the teacher’s representation Φt to extract features corresponding to this
intersection, resized to a target h′ × w′ grid: Φt

b = ROIAlign(Φt, b, h′, w′). Similarly, the student’s
representation Φs is resized to Φs

b = ROIAlign(Φs, b, h′, w′). This results in two aligned feature
maps, Φt

b,Φ
s
b ∈ Rh′×w′×D, which are subsequently flattened into N = h′ × w′ patch embeddings:

T = [t1, . . . , tN ]⊤, S = [s1, . . . , sN ]⊤ ∈ RN×D.

The spatially aligned patch embeddings, T and S, are dense features that represent the same over-
lapping region captured from different views. Given the inherently complex and high-dimensional
nature of these patch-derived feature sets, T and S, it is crucial to adopt an alignment methodology
that can effectively capture their intricate relational structures.

3.2 KERNEL-BASED RELATIONAL ALIGNMENT

We propose a kernel-based learning objective to align the dense features, T and S. This approach is
motivated by kernel-based strategies (He & Ozay; Li et al., 2021; Qiu et al., 2024; Zhou et al., 2024;
Zong et al.) for knowledge transfer, which facilitate a more holistic comparison by aligning the entire
similarity structure of feature distributions.

One intuitive approach to align feature distribution is to directly compare the Gram matrices, Kt and
Ks, derived from linear kernels on the patch-level features T and S.

Kt = TT⊤,Ks = SS⊤.

These matrices encode the pairwise relationships within each feature set, capturing the fine-grained
semantics embedded within the high-dimensional feature space. Indeed, the recent DINOv3 (Siméoni
et al., 2025) leverages this concept in its "Gram anchoring" method, which uses a loss equal to
LGram = ∥Ks −Kt∥2F to preserve the quality of dense features that would otherwise degrade during
long training schedules. While DINOv3 employs this intuitive approach for preservation, we first
analyze the Gram matrix loss as a baseline to evaluate its effectiveness for representation improvement,
before introducing our more robust method.

While Gram matrices offer a straightforward means to encode pairwise relationships, directly adopting
them in dense post-(pre)training can be suboptimal. Our findings reveal that there is a distributional
discrepancy between teacher and student representations. As illustrated in Figure 2a, there is not only
a clear spatial gap between the two feature spaces, but also a difference in their geometric structure.
This structural disparity is quantitatively evident: the teacher’s feature space is highly anisotropic,
with a large difference of variances along its first two principal components, in stark contrast to the
student’s far more compact space. This underlying discrepancy is critical because the Gram matrix,
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as a linear kernel, is inherently sensitive to the geometry of its feature space. When the teacher and
student spaces are structurally misaligned, their corresponding Gram matrices, Kt and Ks, will
capture inherently different relational patterns.

To address the challenges due to feature distribution discrepancies, we adopt Centered Kernel
Alignment (CKA). It was initially proposed to measure feature similarity across different layers of a
neural network, which typically exhibit distinct feature distributions. CKA is theoretically grounded
in the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005), allowing it to evaluate
the statistical dependence between the feature distributions represented by Kt and Ks. This enables
a comparison of intrinsic similarity structures rather than extrinsic ones, resulting in more robust
and efficient training. To quantify this stability, we use the Coefficient of Variation (CV) of each
training loss across mini-batches, a statistical measure comparing the relative variability of variables
with different scales. Over 20,000 training steps, the CV of the CKA loss is smaller than the CV
of Gram matrix loss, indicating that CKA is less sensitive to feature variance and promotes more
stable learning. Consequently, as shown in Figure 2b and Figure 2c, this stability facilitates faster
convergence, ultimately resulting in higher performance.

3.3 FORMULATION OF THE PAKA LOSS

The CKA-based alignment of the global geometry between the patch-level representations T and S is
implemented as follows. Starting with the Gram matrices Kt and Ks, which are derived using linear
kernels as previously defined, we first center them using the centering matrix H = I − 1

N 11⊤:

K̃s = HKsH, K̃t = HKtH.

The CKA similarity, which quantifies the likeness between the representations S and T using their
centered Gram matrices, is then defined as:

CKA(S, T ) =
⟨K̃s, K̃t⟩F

∥K̃s∥F · ∥K̃t∥F
.

The CKA metric quantifies the dependency between kernels: a high CKA means strong dependency,
while a low CKA implies weak dependency. Consequently, for a loss function, we desire a formulation
where minimizing the loss corresponds to increasing CKA. As CKA is normalized between 0 and
1, the loss term takes the form of 1 - CKA, effectively converting the maximization of CKA into a
minimization problem. The PaKA loss is:

LPaKA = 1− CKA(S, T ).

Our PaKA loss has a value between 0 and 1 and does not require any hyperparameters. Minimizing
this loss encourages the student to preserve the teacher’s pairwise patch relationships, offering robust
alignment without forcing si ≈ ti directly.

4 TOWARDS EFFECTIVE AUGMENTATION STRATEGIES FOR DENSE SSL

4.1 LIMITATIONS OF IMAGE-LEVEL AUGMENTATION FOR DENSE SSL

Data augmentation is pivotal in self-supervised learning (SSL), defining invariances for the model.
However, dense SSL has largely inherited augmentation strategies from image-level SSL. Image-level
SSL methods (Chen et al., 2020; Grill et al., 2020; Caron et al., 2020; 2021) use augmentations
(e.g., multi-crop) to create different "views" for instance-level invariance. Dense SSL methods such
as NeCo (Pariza et al., 2025) and Leopart (Ziegler & Asano, 2022) retain this paradigm, feeding
global crops to both student and teacher, with spatial alignment via ROI Align for local views. This
approach has limitations for dense feature alignment:

• Local crops often have minimal spatial overlap with global crops, reducing mutual information
and alignment utility.

• Strong augmentations on the teacher view may introduce noise, leading the student to overfit to
non-semantic artifacts.

These limitations reduce the mutual information available for patch-level alignment and may introduce
noise, limiting the effectiveness of dense SSL.
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(a) Our augmentation strategies (b) Minimum intersection ratio (c) Teacher augmentation strength

Figure 3: Our proposed augmentation strategies and their empirical validation. (a) Conceptual
overview of maximizing view intersection and employing a clean teacher. (b) Performance, measured
as mIoU in an overclustering task(K=500) on Pascal VOC (Everingham et al.), significantly improves
as the minimum intersection ratio between views is increased. (c) Student model performance peaks
when teacher augmentation strength is minimized. Detailed experimental results are provided in the
Appendix.

4.2 PROPOSED AUGMENTATION STRATEGIES

Motivated by the limitations of this inherited augmentation paradigm, we introduce two key augmen-
tation refinements for dense SSL. Our proposed augmentation strategies are depicted schematically
in Figure 3a.

Global–Local Intersection Maximization. Dense SSL methods (Ziegler & Asano, 2022; Pariza
et al., 2025) compute their objective by applying ROI Align exclusively to the overlapping regions
from global and local crops of different sizes. A critical issue arises in this process: if the spatial
overlap between these global and local crops is minimal, the amount of information incorporated into
the loss function diminishes significantly, which can hinder effective learning. To maximize shared
information between teacher and student views, we propose Global–Local Intersection Maximization:
enforcing a minimum spatial Intersection-over-Union (IoU) between local and global crops. We
reject local crops whose IoU with the corresponding global crop is below a threshold ratio m.
Controlling this minimum overlap m explicitly regulates mutual information. Empirically, increasing
m consistently improves clustering performance, as shown in Figure 3b, confirming that denser
shared regions lead to more effective alignment. In our method, we set the value of m to ensure an
overlap of 90% or greater.

Reducing Noise with an Augmentation-free Teacher. Effective dense SSL hinges on capturing
fine-grained spatial relationships, not just global semantics. This fundamentally reframes the teacher’s
role from simply another augmented peer to a stable semantic anchor. We introduce a clean-teacher
strategy: the teacher receives an unaugmented or very weakly transformed image, while the student
still processes the full augmentation pipeline. Our Clean Teacher Strategy embodies this revised
role through an asymmetric configuration: the student learns invariance from strong augmentations
while aligning to a teacher that ideally processes an entirely augmentation-free input. This allows the
teacher to provide more reliable signals reflecting the image’s intrinsic structure. Our experiments in
Figure 3c support this observation, showing that student representation quality is highest when all
augmentations, including color jitter and blur, are removed from the teacher’s pipeline.

5 EXPERIMENTS

5.1 SETUP

Datasets. We use the COCO (Lin et al., 2014) dataset for model training, with evaluation conducted
across a diverse set of datasets, including Pascal VOC 2012 (Everingham et al.), COCO (Lin et al.,
2014), ADE20K (Zhou et al., 2017), and COCO-Stuff 164K (Caesar et al., 2018). These datasets
cover various tasks in this study. For visual in-context learning and overclustering, performance is
measured using Pascal VOC 2012 and ADE20K. For semantic segmentation, we report linear-probe
result on Pascal VOC 2012, COCO-Things, COCO-Stuff 164K, and ADE20K.
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Implementation Details. Our model is post-trained from the pretrained checkpoint DI-
NOv2R (Darcet et al.) with no registers. We conduct the main training on a single H100 GPU
with 80GB of memory with a mini-batch size of 55. For a fair comparison, we also post-trained same
backbone model by NeCo (Pariza et al., 2025), based on the code from official GitHub repositories.
On our hardware environment, NeCo baseline was trained within a maximum batch size of 40. We use
AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate of 5e−6 for the backbone model,
a weight decay of 0.04, and 20 workers. Our models generally underwent 25 epochs of training,
while data augmentation experiments were run for 10 epochs. The data augmentation experiments
used 4 RTX 3090 GPUs with 24GB of memory in a mini-batch size of 10 per GPU. For crop sizes,
we use two 518×518 global crops and four 98×98 local crops.

5.2 COMPARISON WITH PRIOR WORKS

Table 1: Visual In-Context Learning benchmark. Dense Nearest Neighbor retrieval performed on
Pascal VOC and ADE20k datasets with varying training data proportions. We construct uniformly
sampled training subsets, down-sampling the full set by ratios of 1/1, 1/8, 1/64, and 1/128. † reported
in this paper are produced using our implementation.

Pascal VOC ADE20K
Method Pretrained 1/128 1/64 1/8 1/1 1/128 1/64 1/8 1/1

DINO ✗ 26.4 30.5 41.3 48.7 9.5 11.0 15.0 17.9
SelfPatch ✗ 28.4 32.6 43.2 50.8 10.0 10.9 14.7 17.7
CrOC ✗ 34.0 41.8 53.8 60.5 8.7 10.8 15.2 17.3
Leopart ✗ 44.6 49.7 58.4 64.5 12.9 14.8 19.6 23.9
CrlBo ✗ 53.9 59.9 66.9 72.4 14.6 17.3 22.7 26.6
DINOv2R ✗ 60.1 65.7 74.5 78.8 23.7 27.1 33.9 39.5
NeCo† DINOv2R 65.5 69.0 75.1 78.8 23.9 27.2 34.3 39.8
PaKA† DINOv2R 68.1 72.4 77.3 80.5 24.3 27.3 34.7 39.9

Visual In-Context Learning. We evaluate our method using the visual in-context reasoning
benchmark (Balazevic et al., 2023b) which is inspired by natural language processing (NLP). This
benchmark assesses a vision encoder’s scene understanding capabilities directly from its learned
representations, without relying on decoders or parameter tuning. Essentially, the benchmark performs
patch-level nearest neighbor retrieval. Dense representations extracted from validation set images
serve as queries, and the keys for retrieval are constructed from training images and stored in a
memory bank. Label for a given query patch is subsequently predicted by leveraging the labels of its
nearest neighbors retrieved from this memory bank.

We applied our post-training method to the pretrained models DINOv2R, and PaKA outperformed all
competing methods in Table 1. On average, PaKA improved the performance of DINOv2R by 4.8%
across all sampling fractions on PascalVOC. The high performance of PaKA in visual in-context
learning suggests that our method excels at extracting semantically more similar features from the
memory bank, which is a collection of features serving as a surrogate for the vast feature space.

Table 2: Linear segmentation performance. Linear segmentation performance (mIoU) using heads
trained on frozen spatial features from various extractors, evaluated on four datasets.

Method Pretrained Pascal VOC COCO-Things COCO-Stuff ADE20K

DINO ✗ 50.2 43.9 45.9 17.5
TimeT DINO 66.3 58.2 48.7 20.7
iBOT ✗ 66.1 58.9 51.5 21.8
CrOC ✗ 67.4 64.3 51.2 23.1
CrIBo ✗ 71.6 64.3 49.1 22.7
DINOv2R ✗ 74.2 75.3 56.0 35.0
NeCo† DINOv2R 81.4 81.1 61.4 39.9
PaKA† DINOv2R 82.2 82.5 62.6 40.9

Linear Semantic Segmentation. To assess the generalization capabilities of the learned representa-
tions, we perform linear semantic segmentation. This involves keeping the backbone weights frozen
and attaching a linear classification head. The head projects dense features from the backbone to
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Table 3: Overclustering-based evaluations. Models are assessed by applying K-means clustering
with a range of granularities K, which is ground-truth, and overclustering values of 300 and 500.

Pascal VOC ADE20K
Method Pretrained K = GT K = 300 K = 500 K = GT K = 300 K = 500

DINO ✗ 4.3 13.9 17.3 4.2 5.3 5.9
iBOT ✗ 4.4 23.8 31.1 5.3 7.1 8.4
CrOC ✗ 3.4 16.4 20.0 1.9 3.1 4.1
CrIBo ✗ 18.3 51.3 54.5 7.3 9.6 11.9
DINOv2R ✗ 12.2 46.7 49.5 7.5 9.8 11.5
NeCo† DINOv2R 20.7 68.6 71.3 11.5 16.5 19.9
PaKA† DINOv2R 21.3 74.5 76.5 12.1 17.4 21.4

Figure 4: Visualization of Overclustering. Results of Overclustering for DINOv2R, NeCo, and
PaKA on Pascal VOC. Colored overlays represent matched semantic clusters derived via K-means.

class logits, which are resized to the input resolution through bilinear interpolation to match the target
masks. We compute pixel-level cross-entropy loss for supervision and report mIoU performance on
four standard segmentation benchmarks. This approach directly evaluates the discriminative power
of the static pretrained features, offering insights into their quality without task-specific adaptation of
the backbone.

In Table 2, PaKA outperforms our base model DINOv2R by 5.9% to 8% across all four benchmarks
and consistently outperforms NeCo. This demonstrates that PaKA still delivers the bigger boost,
underscoring its superior ability to learn highly transferable, discriminative features without any
task-specific fine-tuning of the backbone.

Overclustering. The quality of the dense representations is further assessed using an overclustering
task that requires minimal additional supervision similar to visual in-context learning. Following the
previous work (Ziegler & Asano, 2022), we apply K-means clustering via Faiss (Johnson et al., 2019)
to all dense features from the backbone, explicitly discarding the projection head. The generated
clusters are greedily matched to ground-truth classes at the pixel level, followed by a Hungarian
matching (Kuhn, 1955) to ensure permutation-invariant (Ji et al., 2019) evaluation. Performance is
quantified using mIoU and assessed at various granularities, with K set to the number of ground-truth
objects as well as overclustering values of 300 and 500.

As shown in Table 3 and Figure 4, PaKA demonstrates its ability to learn expressive dense representa-
tions. In particular, for PascalVOC with K = 500, the post-trained NeCo model improves upon the
DINOv2R baseline by 21.8 %, whereas PaKA attains a 27 % gain. This represents a 5.2 % absolute
advantage over NeCo, which is an another post-training method. Such a margin suggests that PaKA
learns features that are well-distributed in cluster-level within the feature space.

5.3 COMPUTATIONAL AND MEMORY EFFICIENCY ANALYSIS

We evaluated the resource efficiency of our proposed PaKA framework against NeCo, as shown in
Table 4. For computational efficiency, we measured the total training time required for 25 epochs
on a single NVIDIA H100 GPU. For memory efficiency, we assessed the maximum batch size that

Table 4: Resource efficiency and performance on Pascal VOC. Comparison of GPU hours, memory
cost, and mIoU scores for NeCo and PaKA on post-training DINOv2R with a NVIDIA H100 GPU.

Method Pretrained GPU Hours Memory Cost K=GT K=300 K=500 Linear

DINOv2R ✗ - - 12.2 46.7 49.5 74.2
NeCo DINOv2R 22 h 24 min 1.90 GB per sample 20.7 ↑8.5 68.6 ↑21.9 71.3 ↑21.8 81.4 ↑7.2

PaKA DINOv2R 14 h 4 min ↓37% 1.45 GB per sample ↓24% 21.3 ↑9.1 74.5 ↑27.8 76.5 ↑27.0 82.2 ↑8.0

8
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Table 5: Ablation studies for PaKA. To evaluate the ablated models, we employ overclustering
(K = GT and K = 500) and linear segmentation (Linear) on Pascal VOC 2012.

(a) Kernel Alignment Metrics

Metric K = GT K = 500 Linear

MMD 19.6 65.3 76.8
HSIC 17.5 63.0 78.5
Gram 18.0 76.0 82.2
CKA 21.3 76.5 82.2

(b) Augmentation Components

Max. Clean. K = GT K = 500 Linear

18.1 75.0 82.1
✓ 18.7 75.8 82.0

✓ 19.9 75.5 81.8
✓ ✓ 21.3 76.5 82.2

(c) Loss-Augmentation Synergy

Method Aug. K = GT K = 500 Linear

NeCo 20.7 71.3 81.4
NeCo ✓ 17.8 73.1 81.5
PaKA 18.1 75.0 82.1
PaKA ✓ 21.3 76.5 82.2

could fit within a fixed VRAM capacity and used this to approximate memory usage. The results
show that PaKA achieves strong dense representation performance within only 14 hours of training
on a single GPU, which is 37% faster and 24% more memory-efficient compared to NeCo.

5.4 ABLATION STUDY

To validate the design choices of our proposed Patch-level Kernel Alignment (PaKA) framework and
to understand the individual contributions of its key components, we conduct a series of ablation
studies. All studies are conducted on the Pascal VOC 2012, reporting performance in overclustering
tasks (K = GT , K = 500) and linear semantic segmentation tasks.

Impact of Kernel Alignment Metric. We ablated the choice of kernel alignment metric, compar-
ing our Centered Kernel Alignment (CKA) against Maximum Mean Discrepancy (MMD), Hilbert-
Schmidt Independence Criterion (HSIC), and Gram matrix (Gram) used in Gram anchoring objec-
tive (Siméoni et al., 2025). Table 5(a) reveals that CKA consistently achieves the highest scores
across all datasets. This superior performance underscores CKA’s greater efficacy in aligning dense
feature distributions between teacher and student models, validating its use in PaKA.

Efficacy of Proposed Augmentation Strategies. Our ablation study assesses two strategies, maxi-
mizing global-local intersection (Max.) and a clean teacher (Clean.), against a baseline of standard
augmentations (Ziegler & Asano, 2022) combined with the CKA loss. While Table 5(b) shows
both provide individual gains, the maximizing intersection strategy’s contribution is comparatively
modest. This may be because standard augmentations already provide a mean view overlap of 75.5%
(measured across 300 COCO samples), whereas our strategy enforces an even stricter ≥90% overlap
to maximize shared information. Importantly, combining the two augmentation strategies delivers the
highest overall performance, demonstrating their synergistic benefits.

Effectiveness of Our Augmentation Strategy. We conducted a cross-combination study to evaluate
the interplay between alignment losses (PaKA and NeCo (Pariza et al., 2025)), and augmentation
strategies (our augmentation and standard augmentation (Ziegler & Asano, 2022)). Table 5(c)
indicates that our proposed augmentation improves NeCo’s sorting loss by +1.3% in overclustering
K=500, which demands more fine-grained features. Notably, even when paired with standard
augmentation, PaKA loss with standard augmentation already outperforms this enhanced NeCo
performance. The best results across all datasets are achieved by combining PaKA loss with our
proposed augmentation, highlighting their combined strength.

6 CONCLUSION

We presented a novel framework that significantly advances dense self-supervised learning by
overcoming key limitations of existing methods. Our core contribution, PaKA, introduces kernel
alignment for effective teacher-student dense feature structure transfer, utilizing Centered Kernel
Alignment for efficient, assumption-free distributional matching. PaKA notably circumvents the need
for auxiliary components such as iterative clustering, memory banks, or sorting algorithms, thereby
reducing the training complexity and hyperparameter sensitivity frequently associated with these
prior mechanisms. This streamlined approach, combined with our augmentations, establishes a robust
framework achieving state-of-the-art performance on tasks requiring detailed spatial understanding,
paving the way for more accessible and scalable dense SSL.

9
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Patch-level Kernel Alignment
for Dense Self-Supervised Learning

Supplementary Material

A EXPERIMENTAL SETUP

A.1 DENSE SELF-SUPERVISED LEARNING

Dataset. The pretraining datasets employed in this study include COCO. The COCO dataset,
specifically, comprises approximately 118,000 scene-centric images.

Network Architecture. For the architectural backbone, ViTs are utilized. More specifically, models
are trained using the ViT-Small and ViT-Base architectures. Furthermore, adopting the methodolo-
gies Caron et al. (2021); Grill et al. (2020), a student-teacher learning paradigm is implemented.
Within this framework, the teacher model parameters are updated via an EMA of the student model’s
parameters.

Removing registers in Dinov2. Our Primary experiments are based on DINOv2XR, removing the
registers from the DINOv2R Darcet et al. (2023) to restore the original DINOv2 Caron et al. (2021)
patch-based input structure. Unless noted otherwise, all ablation studies and hyperparameter searches
are likewise carried out on the DINOv2XR backbone.

Optimization. Our model was trained on a single H100 GPU with 80GB memory vutilizing a
mini-batch size of 55 per GPU. Optimization was performed using the AdamW Loshchilov & Hutter
(2017) optimizer. The learning rate for the backbone was set to 5e−6 with a weight decay of 0.04.
We used 20 worker processes for data loading. The exponential moving average that updates the
teacher’s weights follows a cosine schedule, increasing from an initial value of 0.99 to a value of 1.
Our models, initialized from pretrained checkpoints, were generally post-trained for 25 CoCo epochs.
However, for experiments specifically focused on data augmentation, we trained 10 epochs. Based
on Caron et al. (2021), we employ a three-layer projection head with 2,048 hidden units per layer,
Gaussian error linear unit activations Hendrycks & Gimpel (2016), and an output dimension of 256.

Data Augmentation. Dense SSL methods Ziegler & Asano (2022); Pariza et al. (2025) create
different views using augmentations (e.g., multi-crop), provide the teacher one global view, while the
student receives global and multiple local views. When employing the DINOv2 Oquab et al. (2023)
framework, input images were processed into global crops of 518× 518 pixels and local crops of
98× 98 pixels. To enhance dense feature alignment for our COCO pretraining, we introduce crucial
refinements to this process. Specifically, we set the teacher’s augmentation strength to 0 to provide
a noise-free target, while applying standard augmentations to the student’s views with a strength
of 1. Furthermore, to maximize mutual information and ensure local views are strongly anchored
within the global context, we enforce a strict overlap requirement, ensuring that the intersection area
between a teacher’s global crop and any corresponding local crop must exceed 0.9.

A.2 EVALUATION SETUP

Visual In-Context Learning. Our evaluation methodology adheres to the visual in-context rea-
soning benchmark proposed by Balazevic et al. (2023a), designed to assess the scene understanding
capabilities of vision encoders directly from their learned representations without necessitating
decoders or subsequent parameter adjustments. The core of this benchmark involves a patch-level
nearest neighbor retrieval process. Dense representations extracted from validation set images serve
as queries. The keys for retrieval are constructed from training images, which are uniformly sub-
sampled from the complete training set at fractions of 1 (full set), 1/8, 1/64, or 1/128. Patches
derived from these chosen training images are then encoded and compiled into a memory bank.
The label for any given query patch is subsequently inferred by leveraging the labels of its nearest
neighbors retrieved from this memory bank. We utilized the open implementation by Pariza et al.
(2024), which is faithful to the original description by Balazevic et al. (2023a) and employs the
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ScaNN library Guo et al. (2020) for efficient neighbor searches. Consistent with the setup for the
Balazevic et al. (2023a), we used a memory size of 10,240,000 and configured ScaNN to retrieve 30
nearest neighbors. Final performance is reported as mean Intersection over Union (mIoU) on subsets
of Pascal VOC 2012 Everingham et al. and ADE20K Zhou et al. (2017) datasets.

Overclustering. To evaluate unsupervised segmentation quality via overclustering, we adopted the
protocol from Leopart Ziegler & Asano (2022). The procedure commences with feature extraction:
spatial tokens are gathered from the model’s backbone using input images standardized to 448× 448
crops. These tokens then undergo K-Means clustering, for which the faiss Johnson et al. (2019)
implementation is employed. The crucial step of achieving permutation invariance, as emphasized by
Ji et al. (2019), is realized by applying the Hungarian algorithm Kuhn (1955). This algorithm operates
on cluster maps that are initially formed through a greedy matching process based on pixel-level
precision. To ensure the computational feasibility of the Hungarian matching, the overclustering is
performed on 100× 100 downsampled masks. Final assessment metrics are reported as the average
mean Intersection over Union (mIoU) from five runs with different random seeds, on the Pascal VOC
2012 Everingham et al., and ADE20K Zhou et al. (2017) datasets.

Linear Semantic Segmentation. The linear semantic segmentation evaluation followed the setup
established in Leopart Ziegler & Asano (2022). The process of generating predictions began with
448x448 input images, which were fed into our backbone model to obtain spatial output features.
These features were then resized using bilinear interpolation to align with the dimensions of the
target segmentation masks. A linear classification head was subsequently applied to these processed
features to yield the final segmentation predictions. The training of this linear head was driven by a
cross-entropy loss, calculated between the predictions and the ground-truth masks. The optimization
was performed using Stochastic Gradient Descent (SGD) with specific hyperparameters: a weight
decay of 0.0001, momentum of 0.9, and a learning rate of 0.01. The linear head was fine-tuned over
20 epochs. We trained and evaluated these linear heads on Pascal VOC 2012 Everingham et al.,
COCO-Thing, COCO-Stuff Caesar et al. (2018), and ADE20K Zhou et al. (2017) datasets.

Table 6: Visual In-Context Learning benchmark. Dense Nearest Neighbor retrieval performed on
ADE20k and Pascal VOC datasets with varying training data proportions. We construct uniformly
sampled training subsets, down-sampling the full set by ratios of 1/1, 1/8, 1/64, and 1/128.

ADE20K Pascal VOC
Method Backbone Pretrained 1/128 1/64 1/8 1/1 1/128 1/64 1/8 1/1

DINO ViT-S/16 ✗ 9.5 11.0 15.0 17.9 26.4 30.5 41.3 48.7
SelfPatch ViT-S/16 ✗ 10.0 10.9 14.7 17.7 28.4 32.6 43.2 50.8
CrOC ViT-S/16 ✗ 8.7 10.8 15.2 17.3 34.0 41.8 53.8 60.5
Leopart ViT-S/16 DINO 12.9 14.8 19.6 23.9 44.6 49.7 58.4 64.5
CrlBo ViT-S/16 ✗ 14.6 17.3 22.7 26.6 53.9 59.9 66.9 72.4
DINOv2R ViT-S/14 ✗ 23.7 27.1 33.9 39.5 60.1 65.7 74.5 78.8
NeCo† ViT-S/14 DINOv2R 23.9 27.2 34.3 39.8 65.5 69.0 75.1 78.8
PaKA† ViT-S/14 DINOv2R 24.3 27.3 34.7 39.9 68.1 72.4 77.3 80.5
MAE ViT-B/16 ✗ 10.0 11.3 15.4 18.6 3.5 4.1 5.6 7.0
DINO ViT-B/16 ✗ 11.5 13.5 18.2 21.5 33.1 37.7 49.8 57.3
Leopart ViT-B/16 ✗ 14.6 16.8 21.8 26.7 50.1 54.7 63.1 69.5
Hummingbird ViT-B/16 ✗ 11.7 15.1 22.3 29.6 50.5 57.2 64.3 71.8
CrlBo ViT-B/16 ✗ 15.9 18.4 24.4 28.4 55.9 61.8 69.2 74.2
DINOv2R ViT-B/14 ✗ 22.1 25.8 33.2 38.7 51.8 58.9 70.6 77.3
NeCo† ViT-B/14 DINOv2R 26.7 30.6 38.6 43.3 64.6 70.2 78.3 81.6
PaKA† ViT-B/14 DINOv2R 28.2 32.0 40.2 44.3 69.1 74.0 79.6 82.6

End-to-End Finetuning with a linear head. The end-to-end finetuning segmentation approach
builds upon the previously detailed linear evaluation setup, retaining most of its core configurations.
However, in this mode, we fine-tuned the entire model, thereby jointly optimizing the parameters
of the feature-extracting backbone and the linear head. To facilitate this full network training, the
backbone was finetuned using a learning rate of 0.0001, and the linear head was simultaneously
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Table 7: Depth Estimation. We fine-tuned linear layers with frozen backbone to predict the depth of
each pixel. The performance are reported on three metrics: RMSE, AbsRel, δ1. The models were
trained on classification loss on monocular depth estimation benchmark NYUd.

Linear 1. Linear 4.
Method Pretrained RMSE ↓ AbsRel ↓ δ1 ↑ RMSE ↓ AbsRel ↓ δ1 ↑

DINO ✗ .996 .386 .464 .587 .180 .722
DINOv2 ✗ .461 .146 .821 .435 .137 .843
DINOv2R ✗ .452 .142 .826 .446 .139 .832
NeCo† DINOv2R .455 .143 .825 .458 .143 .824
PaKA† DINOv2R .443 .139 .834 .426 .131 .850

Table 8: End-to-End FineTuning evalutaions with a linear head. We fine-tuned various backbones
with a linear head end-to-end, which is pretrained with different self-supervised learning methods.
The mIoU scores are reported on four different datasets.

Method Pretrained Pascal VOC COCO-Things COCO-Stuff ADE20K

DINO ✗ 65.4 65.4 54.3 29.9
iBOT ✗ 73.8 71.8 57.0 33.3
CrIBo ✗ 75.7 73.1 55.6 33.4
DINOv2R ✗ 81.5 82.2 61.9 42.5
NeCo† DINOv2R 82.7 82.6 62.8 44.7
PaKA† DINOv2R 83.0 83.1 63.3 45.1

trained with a learning rate of 0.01. The fine-tuning process was conducted for 20 epochs, with
performance evaluated as mean Intersection over Union (mIoU) on Pascal VOC 2012 Everingham
et al., COCO-Thing and COCO-Stuff Caesar et al. (2018), and ADE20K Zhou et al. (2017) datasets.

B ADDITIONAL EXPERIMENTS

B.1 DEPTH ESTIMATION.

For depth estimation, we evaluate our features on NYUd (Couprie et al., 2013) dataset, following
the protocol of previous work Li et al. (2022b). To assess our patch-level features in pixel-wise
evaluation, we measure depth estimation performance by finetuning linear heads while keeping the
backbone frozen. The model is trained with either a single linear layer(Linear 1.) or a 4-layer linear
head(Linear 4.) in Table 7, using a classification loss. We reported our performance on NYUd using
various metric: root mean squared error (RMSE), accuracy under the threshold (δi < 1.25i, i = 1),
and mean absolute relative error (AbsRel).

B.2 END-TO-END FINETUNING WITH A LINEAR HEAD.

To evaluate the transferability of pretrained features in an end-to-end setup, we finetune the entire
network including the backbone and linear head. The model is trained using a pixel-wise cross-
entropy loss, and final performance is reported using mIoU on Pascal VOC 2012, COCO-Things,
COCO-Stuff 164K, and ADE20K.

After end-to-end fine-tuning, PaKA attains the highest mIoU scores on every benchmark compared
to all dense self-supervised methods in Table 8. These consistent gains demonstrate that PaKA is
a strong, task-agnostic initialization for dense prediction tasks. Even more surprisingly, the post-
training method NeCo actually degrades the performance of its underlying pretrained model, while
our approach constantly improves the preformance of DINOv2R.

B.3 VIT-B MODEL PERFORMANCE

To demonstrate the robustness and broader applicability of our Patch-level Kernel Alignment (PaKA)
framework, this section evaluates its performance on the ViT-B architecture. Unlike the ViT-S
experiments, the ViT-B experiments were conducted on four NVIDIA RTX 3090 GPUs (24GB
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VRAM each) due to resource constraints. For these experiments, the learning rate for the backbone
was set to 1e−6 with a weight decay of 0.04. For a fair comparison, the NeCo baseline (Pariza
et al., 2025) was also trained under the same hardware conditions. Although conducted in a more
resource-constrained environment, we include these results to validate that the observed performance
trends generalize to the larger base model.

Visual In-Context Learning on ViT-B. The visual in-context learning results presented in Table 6
highlight the significant benefits of leveraging the larger ViT-B architecture with our PaKA framework,
which not only yields overall performance gains over PaKA with ViT-S, but also markedly outperforms
other methods. When compared to other methods employing the ViT-B backbone, PaKA consistently
achieves the highest performance across all data regimes on both ADE20K and Pascal VOC datasets.
This includes outperforming the prior post-training method NeCo (ViT-B), for example, by 4.5%
(1/128) and 3.8% (1/64) on Pascal VOC. Such strong performance highlights that PaKA effectively
learns a feature space well-structured for nearest-neighbor based scene understanding.

Table 9: Linear segmentation performance. Linear segmentation performance (mIoU) using heads
trained on frozen spatial features from various extractors, evaluated on four datasets.

Method Backbone Pretrained Pascal VOC COCO-Things COCO-Stuff ADE20K

DINO ViT-S/16 ✗ 50.2 43.9 45.9 17.5
TimeT ViT-S/16 DINO 66.3 58.2 48.7 20.7
iBOT ViT-S/16 ✗ 66.1 58.9 51.5 21.8
CrOC ViT-S/16 ✗ 67.4 64.3 51.2 23.1
CrIBo ViT-S/16 ✗ 71.6 64.3 49.1 22.7
DINOv2R ViT-S/14 ✗ 74.2 75.3 56.0 35.0
NeCo† ViT-S/14 DINOv2R 81.4 81.1 61.4 39.9
PaKA† ViT-S/14 DINOv2R 82.2 82.5 62.6 40.9
DINO ViT-B/16 ✗ 62.7 55.8 51.2 23.6
MAE ViT-B/16 ✗ 32.9 38.0 38.6 5.8
iBOT ViT-B/16 ✗ 73.1 69.4 55.9 30.1
CrIBo ViT-B/16 ✗ 73.9 69.6 53.0 25.7
DINOv2R ViT-B/14 ✗ 80.2 84.8 59.3 43.0
NeCo† ViT-B/14 DINOv2R 84.3 85.8 64.0 45.2
PaKA† ViT-B/14 DINOv2R 84.4 85.9 64.4 46.1

Linear Semantic Segmentation on ViT-B. In linear semantic segmentation, leveraging the larger
ViT-B/14 architecture with our PaKA framework leads to notable performance gains over PaKA with
ViT-S/14. Crucially, PaKA trained on this ViT-B model achieves the highest mIoU scores across all
benchmarks compared to other methods in Table 9. Using the ViT-B backbone, PaKA demonstrates a
consistent advantage, achieving an average mIoU gain of 3.4 over DINOv2R across the benchmarks.

Table 10: End-to-End FineTuning evalutaions with a linear head. We fine-tuned various backbones
with a linear head end-to-end, which is pretrained with different self-supervised learning methods.
The mIoU scores are reported on four different datasets.

Method Backbone Pretrained Pascal VOC COCO-Things COCO-Stuff ADE20K

DINO ViT-S/16 ✗ 65.4 65.4 54.3 29.9
iBOT ViT-S/16 ✗ 73.8 71.8 57.0 33.3
CrIBo ViT-S/16 ✗ 75.7 73.1 55.6 33.4
DINOv2R ViT-S/14 ✗ 81.5 82.2 61.9 42.5
NeCo† ViT-S/14 DINOv2R 82.7 82.6 62.8 44.7
PaKA† ViT-S/14 DINOv2R 83.0 83.1 63.3 45.1
DINOv2R ViT-B/14 ✗ 83.9 86.0 63.1 47.2
NeCo† ViT-B/14 DINOv2R 85.0 86.4 64.3 47.4
PaKA† ViT-B/14 DINOv2R 85.1 86.4 64.8 48.4

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

End-to-End Finetuning Segmentation on ViT-B. When the entire network is finetuned for
semantic segmentation, PaKA’s ViT-B initialization proves superior. Crucially, PaKA trained on this
ViT-B model achieves the highest mIoU scores across all benchmarks compared to other methods.
Following Table 10, this advantage is particularly pronounced on the challenging COCO-Stuff
and ADE20K datasets. On COCO-Stuff, PaKA reaches 64.8%, and on ADE20K, it achieves
48.4%, setting new state-of-the-art results in both cases and clearly outperforming NeCo. This
demonstrated that PaKA generalize and learn robust features applicable to diverse and complex
semantic segmentation tasks.

B.4 DIVERSE PRETRAINED BACKBONES

We applied PaKA into different backbones initialized with different pretraining methods. Experiments
were conducted on four NVIDIA RTX 3090 GPUs (24GB VRAM each), with the learning rate 1e−6.
The linear segmentation results, presented in Table 11, show that PaKA consistently and significantly
improves performance across all four benchmark datasets. Notably, when PaKA is applied to an
image-level pretrained model, DINO Caron et al. (2021), it yields substantial gains, such as +15.0
mIoU on Pascal VOC and +17.4 mIoU on COCO-Things. Furthermore, PaKA also enhances models
already pretrained with dense SSL objectives. For instance, it improves iBOT Zhou et al. (2022) by
+4.0 mIoU on Pascal VOC and +7.9 mIoU on ADE20K, and improves CrIBo Lebailly et al. (2024)
by +5.1 mIoU on COCO-Stuff and +6.2 mIoU on ADE20K. This consistent uplift underscores
PaKA’s ability to effectively refine and adapt features for dense prediction tasks.

Table 11: PaKA’s Enhancement of Diverse Pretrained Models for Linear Segmentation. This
table details the linear segmentation performance achieved by applying PaKA post-training to
various pretrained models initialized with DINO Caron et al. (2021), iBOT Zhou et al. (2022), and
CrIBo Lebailly et al. (2024), showcasing its adaptability.

Method Backbone Pretrained Pascal VOC COCO-Things COCO-Stuff ADE20K

DINO Caron et al. (2021) ViT-S/16 ✗ 50.2 43.9 45.9 17.5
+ PaKA ViT-S/16 DINO 65.2 ↑15.0 61.3 ↑17.4 54.0 ↑8.1 27.2 ↑9.7

iBOT Zhou et al. (2022) ViT-S/16 ✗ 66.1 58.9 51.5 21.8
+ PaKA ViT-S/16 iBOT 70.1 ↑4.0 66.4 ↑7.5 57.2 ↑5.7 29.7 ↑7.9

CrIBo Lebailly et al. (2024) ViT-S/16 ✗ 71.6 64.3 49.1 22.7
+ PaKA ViT-S/16 CrIBo 73.4 ↑1.8 68.1 ↑3.8 54.2 ↑5.1 28.9 ↑6.2

C QUALITATIVE EVALUATIONS

C.1 DENSE NEAREST NEIGHBOR RETRIEVAL

Figure 5, derived from our visual in-context learning evaluation on Pascal VOC, illustrates PaKA’s
superior semantic understanding in dense nearest patch retrieval compared to DINOv2R. For each
query patch, the top five nearest neighbors are retrieved from the dataset. A striking example is
when a query patch depicting an airplane tail is presented: DINOv2R retrieves largely irrelevant
patches, such as a bicycle wheel and horses. In contrast, PaKA for the same query retrieves highly
relevant patches of airplane tails, reflecting its deeper understanding of patch-level semantics and
object structure.

C.2 OVERCLUSTERING

To qualitatively assess the semantic grouping capabilities inherent in different encoders, we generate
visualizations directly from their features without any decoders or finetuning. The process begins
by extracting dense patch-level features from validation images using the frozen model backbone.
These features then undergo dimensionality reduction via Principal Component Analysis before
being grouped using K-Means overclustering. This yields a low resolution map where each patch
is assigned a raw cluster ID. To facilitate semantic interpretation, these raw clusters are matched
to ground-truth semantic classes using a many-to-one mapping that maximizes IoU. The resulting
visualizations in Figure 6 visually confirm that PaKA yields significantly cleaner clusters that better

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) DINOv2R

(b) PaKA

Figure 5: Visualization of Vision In-Context Learning. This figure contrasts the top five nearest
neighbors retrieved by PaKA versus DINOv2R on Pascal VOC. PaKA consistently finds more
semantically relevant and precise patches, including specific object parts.

adhere to object boundaries and capture fine-grained details, outperforming both DINOv2R and
NeCo in this qualitative assessment.
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Figure 6: Visualization of Overclustering. Results of Overclustering for DINOv2R, NeCo, and
PaKA on Pascal VOC. Colored overlays represent matched semantic clusters derived via K-means,
visually demonstrating PaKA’s superior ability to capture cleaner, object-level groupings compared
to DINOv2R and NeCo.

D DATASET DETAILS

Pascal VOC 2012 Everingham et al. The Pascal VOC 2012 presents natural images primarily
centered on everyday objects, providing clear examples for object recognition and segmentation. This
dataset (trainaug split) provides 10,582 training and 1,449 validation images, covering 21 semantic
classes including background.

COCO Lin et al. (2014) COCO images depict complex everyday scenes, often featuring multiple
objects in their natural context with varying scales and significant occlusions. This dataset provides
118,000 training images and 5,000 validation images, annotated across 80 distinct object categories.
In our work, we utilize the train2017 and val2017 splits from the COCO dataset.

COCO-Stuff 164K Caesar et al. (2018) The COCO-Stuff 164K dataset features complex, everyday
scenes densely populated with multiple distinct objects ("thing") and large, amorphous regions
("stuff"). It includes detailed annotations for 91 "stuff" categories and 80 "thing" categories. Following
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Pariza et al. (2025), , we consolidate these into a reduced set of 15 "stuff" and 12 "thing" classes for
our evaluations.

ADE20K Zhou et al. (2017) The ADE20K dataset is recognized for its challenging and diverse
scenes, featuring highly detailed annotations. It includes 20,210 images in its training set and 2,000
images for validation. The dataset encompasses 150 unique semantic categories, covering a wide
array of "stuff" (e.g., sky, grass) and "objects" (e.g., person, car). The "others" label is excluded from
our evaluations.

E USE OF LARGE LANGUAGE MODELS

Large Language Models, such as ChatGPT and Gemini, were used solely to aid in writing and
polishing the text. They were not used for ideation of core technical contributions, design of
experiments, or analysis of results. All methodological details, experimental designs, and findings
originate from the authors. The role of Large Language Models was limited to improving clarity,
grammar, and readability of the manuscript.

F ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or proprietary datasets. All
datasets used in our experiments (Pascal VOC, ADE20K, COCO) are publicly available and com-
monly used in the research community. We ensured that our use of these datasets complies with
their respective licenses. Our methods focus on improving representation learning and evaluation
efficiency and do not raise foreseeable risks of misuse or harmful applications. We have carefully
followed the ICLR Code of Ethics throughout the research and preparation of this paper.

G REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. The details of our training setup,
including model architectures, hyperparameters, batch sizes, learning rates, and hardware resources,
are provided in the main paper and appendix. We will release the anonymized source code and
configuration files as part of the supplementary materials to facilitate reproduction. Random seeds
and training scripts are also included to support deterministic reproduction where possible.
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