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ABSTRACT

A challenging problem for machine learning is few-shot learning, as traditionally,
models trained with SGD require many training samples to converge. Since meta-
learning models have strong fine-tuning capabilities for the distribution of tasks,
many of them have been applied to few-shot learning. Model-agnostic meta-
learning (MAML) is one of the most popular ones. Recent studies showed that
MAML-trained models tend to reuse learned features and do not perform strong
adaption, especially in the earlier layers. This paper presents an in-detail analy-
sis of this phenomenon by analyzing MAML’s components for different variants.
Our results show an interesting relationship between the importance of fine-tuning
earlier layers and the difference in the distribution between training and testing.
As a result, we determine a fundamental weakness of existing MAML variants
when the task distribution is heterogeneous, e.g., the numbers of classes or the do-
main do not match during testing and training. We propose a novel nonparametric
version of MAML that overcomes these issues while still being able to perform
cross-domain adaption.

1 INTRODUCTION

Learning tasks from only a few observations is known as few-shot learning and of major interest in
the machine learning community (Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017; Cai &
Shen, 2020; Tseng et al., 2020). Usually, a problem is solved by minimizing the empirical risk with
many training samples in many iterations. However, humans learn new tasks very quickly by using
knowledge obtained in their lives a priori (Salakhutdinov et al., 2012). Meta-learning is motivated
by how humans learn, where the goal is learning how to learn and a common approach to solve
few-shot learning problems due to its ability to efficiently leverage information from many tasks.

Model-Agnostic Meta-Learning (MAML) has been one of the most successful meta-learning algo-
rithms for few-shot learning in recent years (Finn et al., 2017). In MAML, the network is meta-
optimized for fast gradient-descent based fine-tuning on an unseen task. Its formulation of the
meta-learning objective inspired a plethora of research (Yoon et al., 2018; Li et al., 2017; Vuorio
et al., 2019; Finn et al., 2018), to the extent that MAML exists both as a concrete meta-learning
algorithm but also as a paradigm that influences meta-learning methods to this day.

Previous work has discussed whether MAML actually allows rapid fine-tuning or simply leverages
its meta-representations effectively (called feature reuse). Raghu et al. (2020) found out that freezing
the earlier layers of a network during fine-tuning improves the performance, meaning that fine-tuning
of the network body is not the major factor contributing to its few-shot capabilities, indicating feature
reuse. Oh et al. (2021) discovered that in the case of cross-domain adaptation, a change in the earlier
layers is beneficial and proposed to fix the network head instead to enforce earlier weight change,
a method they call body only inner loop (BOIL). However, as we will argue in Section 3, its fixed
final layer is impractical when the numbers of classes differ across tasks, which is a considerable
limitation in real-world scenarios.

In this paper, we develop a novel technique called NP-MAML, which has a nonparametric head
but is still trainable via gradients. Similar to BOIL, NP-MAML enforces changes in earlier layers
to solve cross-domain tasks. In addition, it is flexible to the heterogeneous task distribution. We
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compare the performance and representation change of these approaches under different challenges:
cross-domain adaption and task dimensionality. We further deliver an analysis of the different com-
ponents of the network and want to specify their respective role with regard to fine-tuning and task
adaptation.

2 META-LEARNING FOR FEW-SHOT LEARNING

In few-shot learning, a dataset consists of tasks coming from a task distribution. Each task contains
of a support set S with labels samples and a query set Q where predictions have to be made on the
samples (Vinyals et al., 2016). A typical support set consists of K examples for each of N classes,
wherefore a problem is usually described as N -way-K-shot classification problem.

Next to non-episodic approaches (Gidaris & Komodakis, 2018; Qi et al., 2018; Chen et al., 2019),
many meta-learning methods have been applied to few-shot learning problems (Vinyals et al., 2016;
Li et al., 2017; Yoon et al., 2018; Snell et al., 2017). They are particularly useful as they can learn
a configuration from which it is easy to solve various tasks. The configuration has seen similar
features or recurring patterns shared across the tasks and allowed to be transferred to novel unseen
tasks.

2.1 OPTIMIZATION-BASED META-LEARNING

Optimization-based meta-learning (Ravi & Larochelle, 2017) follows the idea of meta-learning a
task-specific optimizer U , that transforms some initial set of parameters θ into task-parameters
ϕ. Although U can be chosen arbitrarily, it is typically modelled as a m-step, gradient-based up-
date scheme, denoted U pmqpθq. While methods like Meta-LSTMs model U pmqpθq explicitly via an
LSTM (Ravi & Larochelle, 2017), which iteratively transforms θ, given both loss and loss gradient,
the popularity and success of MAML is due to its efficient and model-agnostic design, allowing
U pmq to take any differentiable form and rather meta-optimizing θ, the initial parameters, leading to
superior performance and more flexibility.

2.2 MODEL-AGNOSTIC META-LEARNING

MAML (Finn et al., 2017) introduces a couple of new interpretations of the meta-learning problem
that allow its efficient and flexible training. Firstly, task data is assumed to come from a task distri-
bution ppτq, which in turn will allow us to form an expectation over task performance. Secondly, let
Lτ px; θ˚q denote the loss of a model fθ on task-data x “ tpx1, y1q, ..., pxT , yT qu, parameterized by
θ˚. To stay consistent with the notation introduced hitherto, we will denote with Sτ the support set
of task τ and with Qτ the query set of task τ . Then, we can express the optimization objective of
MAML as

min
θ

Eτ„ppτq

”

Lτ pQτ ;U
pmqpSτ ; θqq

ı

, (1)

where we write U pmqpSτ ; θq to denote a m-step optimizer, transforming meta-parameters θ given
the support set Sτ . Intuitively, MAML improves on-task performance on average by optimizing the
initial parameters of model fθ and subsequently fine-tuning those parameters on the support set Sτ ,
where on-task performance is measured by evaluating the fine-tuned model on the query set Qτ .

As ppτq is high-dimensional and typically unknown, computing the actual expectation integral is
not feasible, which is why we define the meta-loss of MAML as

Lpθq “
1

|T |

ÿ

τPT
Lτ pQτ ;U

pmqpSτ ; θqq, (2)

where T is a batch of tasks, sampled from ppτq, and where we replace the expectation with an
empirical mean. This meta-loss is then optimized with standard gradient descent with step-size β,
i.e.,

θptq “ θpt´1q ´ β∇θpt´1qLpθpt´1qq. (3)
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A crucial detail of MAML is that the gradient descent update in Equation 3 involves second-order
derivatives if task optimizer U pmq is gradient-based. The authors thus propose a first-order ap-
proximation to the update that performs just as well as the full-gradient version of MAML. Other
approximations are proposed by (Nichol et al., 2018; Rajeswaran et al., 2019). Other extensions of
MAML stabilized and improved the method by proposing various modifications (Antoniou et al.,
2019) decoupling the gradient-based adaption procedure (Rusu et al., 2019) and integrating target
samples into the fine-tuning step (Antoniou & Storkey, 2019).

2.2.1 RAPID LEARNING OR FEATURE REUSE

After investigating the adaptation behavior of MAML, Raghu et al. (2020) claimed that MAML
tends to learn nearly fixed representations in the network body rather than rapidly fine-tuning them,
a phenomenon they call feature reuse. They analyzed the representation similarity of the layers
before and after fine-tuning and observed hardly any changes in the early layers. Their proposed
technique ANIL (almost no inner loop), which freezes the network body during fine-tuning, slightly
outperforms MAML on several tasks like MiniImageNet and Omniglot and is additionally faster.
Oh et al. (2021) proposed BOIL (body only inner loop), a complementary approach freezing only
the network head during fine-tuning, showing that in the case of (cross-)domain adaption, a fast
adaptation of weights in the earlier layers, especially the penultimate layer, is not only possible but
also highly beneficial to performance.

2.2.2 MODULARIZATION OF MAML

To accumulate the perspective of previous research and ours, we formulate a modular interpretation
of MAML. Raghu et al. (2020) and Oh et al. (2021) have found out that fine-tuning different com-
ponents of the architecture affect the runtime and the overall performance. They analyze the effects
of MAML by performing experiments on few-shot image datasets such as MiniImageNet with an
architecture consisting of four convolutional blocks and a linear layer, which we further call conv4.
We will later discuss each component of the conv4 architecture in the context of the algorithmic and
architectural challenges.

Let fθ be a model parameterized by θ. We modularize fθ by partitioning the fθ into sub-components,
e.g., a single layer, a group of layers that form one modular unit, or an entire sub-network. We call
g “ tgp1qp¨, θ1q, ..., gpnqp¨, θnqu a modularization of size n of fθ if and only if

fθ “ gpnqp¨, θnq ˝ ... ˝ gp1qp¨, θ1q (4)

and
θ “ θn Y ... Y θ1. (5)

Furthermore, we denote with g˚ Ď g the components that receive task-specific fine-tuning and call
g˚ a meta-learning configuration. Then, the meta-update according to MAML for parameter θi
becomes

θi “ θi ´ β ¨ ∇θiLpQ;ϕiq, (6)

with

ϕi “

"

U pmqpS; θiq, if gpiq P g˚

θi, otherwise,
(7)

where S is the support set and U pmq is an optimizer with m steps. We can recover the original
MAML by setting g˚ “ g.

We study the advantages and challenges of different configurations of g˚. We partition the conv4
network into three components: gearly denotes the first three convolutional blocks, gpenult denotes
the last convolutional block (penultimate layer), and ghead denotes the last linear layer. Previously
proposed methods can be obtained by only optimizing the weights of selected sub-components (see
Table 3 in Appendix A).
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3 CHALLENGES OF FEW-SHOT LEARNING

Standard few-shot learning benchmark datasets like Omniglot or MiniImageNet are single-modal,
homogenous, and balanced, whereas real-world datasets are multi-modal, heterogeneous, and im-
balanced (Vuorio et al., 2019; Triantafillou et al., 2020). The data can come from different domains
(multi-modal) and have a flexible number of shots (imbalanced) and ways (heterogeneous). We
divide the challenges into two groups, distinguishing between algorithmic and architectural chal-
lenges1 and discuss how the methods from Section 2.2.1 may deal with these challenges.

3.1 ALGORITHMIC CHALLENGE: DOMAIN SHIFT

Domain shift is a straightforward yet challenging problem of cross-domain adaptation (Oh et al.,
2021; Triantafillou et al., 2020; Cai & Shen, 2020; Tseng et al., 2020). Therein, a model is meta-
trained with a task from a domain A and is meta-tested with a task from domain B, which has not
been available during training. Oh et al. (2021) showed that BOIL outperforms MAML and ANIL
in this setup, as they learn the general features for domain A and are not able to adapt these features
for the different domain B, even when domain shift necessitates adaptation. Thus, our proposed
technique in Section 4 aims at maintaining the cross-domain adaptation capabilities of BOIL. A
more detailed discussion on domain adaption can be found in Appendix B.

3.2 ARCHITECTURAL CHALLENGE: TASK DIMENSIONALITY

Under task dimensionality, we summarize the dimensionality of both the samples and the labels
within a task. Whereas it is always possible to scale images to a common n ˆ m pixel grid, for the
output dimensionality of a task (ways), there is no trivial modification besides re-initialization. This
limitation is caused by the fully-connected linear layer whose weights need a fixed output size to
be transferred2. The head of the network turning a hidden representation gbodypx; θq into logits and
probabilities is typically expressed as

ppŷ | xq “ σ
´

WT ¨ gbodypx; θq ` b
¯

, (8)

where x is an input sample, parameters W P RHˆN and b P RN form the linear layer, H is the
output dimension of the network body and σ is the softmax operation. Since the dimension of W
has to be fixed, a linear architecture is limited because it cannot adapt distributions with varying
output dimensions. A parametric solution of this is proposed by Triantafillou et al. (2020) where the
prototypes of the support set form the initialization for the final linear layer. Another proposed solu-
tion is UnicornMAML, where the same weight is meta-learned for every neuron in the output layer
and replicated in the inner loop to match the task dimensionality Ye & Chao (2022). However, both
approaches explicitly construct a head to fit the parametric paradigm. The nonparametric version
we propose in the following section recovers predictions implicitly from support set representations
and alleviates the need for a physical linear layer altogether.

4 NONPARAMETRIC MODEL-AGNOSTIC META-LEARNING

In this section, we propose a novel technique called nonparametric model-agnostic meta-learning
(NP-MAML), which can deal with both algorithmic and architectural challenges of Section 3. In
addition, it also is implicitly permutation invariant, a quality standard MAML approaches lack, as
discovered by Ye & Chao (2022).

We derive our method as follows. Raghu et al. (2020) proposed a nonparametric head for MAML
and suggested no updates in the inner loop (NIL := No Inner Loop ) during fine-tuning. Utilizing
metric-based approaches of Vinyals et al. (2016) and Snell et al. (2017) in NIL, a similarity metric

1architectural challenges take the form of simple, physical limitations like mismatches of in- and output
dimensions and algorithmic refers to problems with performance, lack of generalization or instability of the
results (such as very high variance on the classification accuracy)

2Although we will not study the effect of rescaling in this work, we encourage a further investigation into
whether rescaling has an impact on the predictive performance of meta-learning models for image processing.
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d is applied to the representation gbodypxq and the prototype ci, defined as

ci :“
1

K

ÿ

xPSi

gbodypxq, (9)

for every class label i of the support set S

ppŷ | x, Sq “

N
ÿ

i“1

kp´dpgbodypxq, ciqq ¨ yi, (10)

with kp¨q as a kernel normalizing the distance measures into a probability and where again gbodypxq

denotes the representation of samples x by the network body. Coincidentally, this approach is very
adaptive to the task dimensionality during testing, as predictions are formed on the dimensional-
ity of the body representations. The NIL had is explicitly designed to leverage the strong meta-
representations acquired during MAML training, demonstrating that the network still performs well
on in-domain tasks, even when no test-time fine-tuning is performed. However, it is well known
in the meta-learning community that models generally benefit from an agreement of train- and test-
time loss Vinyals et al. (2016). To enable such conditions for a NIL-type predictor, we propose a
new method, nonparametric model-agnostic meta-learning (NP-MAML), which replaces the para-
metric head of MAML with a nonparametric head also for training. It allows updating the earlier
layers during fine-tuning and can be incorporated during meta-optimization. Since the nonparamet-
ric head does not require a fixed output size, it can deal with architectural challenges. At the same
time, head predictions are formed entirely based on the body representations, enforcing a BOIL-type
fine-tuning of the network body that is beneficial to the cross-domain setting.

We note that applying a NIL head at test time to a model trained with BOIL is synthetically possible
but leads to non-meaningful results, as the model still relies on the representations learned in the
head. We verify this claim experimentally in Section 5.2, where we use NIL-testing on BOIL to
architecturally cope with variations in the number of ways at test time.

In NP-MAML, we use the predictive distribution of Equation 10 and extend it such that it allows
gradients to flow through the fine-tuning stage:

ppŷ | x, Sq “

N
ÿ

i“1

kp´dpgbodypx;UpS; θqq, ciqq ¨ yi, (11)

where d is again a similarity metric, measuring the similarity between the representation
gbodypx;UpS; θqq of sample x by the network body and prototype ci. Note that in contrast to NIL,
the parameters of the body representation are the result of fine-tuning with U , a special one-step
optimizer that is similar to a contrastive loss (Andonian et al., 2021), defined as

UpS; θq “ θ ´
α

K
∇θ

´

ÿ

i,j

´dpgbodypSi; θq, cjq

¯

. (12)

Intuitively, U fine-tunes the network such as to maximize the extra-class distances between repre-
sentations of support set samples, meaning that features from different classes should be less similar
than features from the same class. Here, we use the same distance metric d from which we also form
predictions on the query set in Equation 11. We further visualize the fine-tuning effect on the net-
work’s features in Appendix C, where we see that the fine-tuning step acts as a pulling force on the
metric space, disentangling intra-class from extra-class features. We hypothesize that NP-MAML
fine-tuning learns to condition the metric space, such as to ease classification.

Note that although the prototypes cj also depend on θ, we stop the gradient flow for the prototype
when calculating the meta-gradient, achieving similar runtime performance as the other methods.
Although this is not a first-order approximation of the meta-gradient, this simplification is based on
previous evidence that for successful meta-learning, not the entire meta-gradient is required (Finn
et al., 2017).

5 EXPERIMENTS

In this section, we show the results of several experiments, which empirically support that NP-
MAML can deal with heterogeneous challenges while ensuring cross-domain adaption and out-
performing previous adaptations of MAML. In addition, we analyze the different components of
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In- and Cross-Domain Classification

MiniImageNet FC100

1-shot 5-shot 1-shot 5-shot

ANIL 47.69 ˘ 0.62 62.58 ˘ 0.54 32.83 ˘ 0.53 43.20 ˘ 0.53
BOIL 50.16 ˘ 0.64 65.31 ˘ 0.53 36.03 ˘ 0.57 47.83 ˘ 0.52
MAML 45.42 ˘ 0.61 61.84 ˘ 0.55 34.23 ˘ 0.55 44.50 ˘ 0.54
NP-MAML 49.82 ˘ 0.64 67.39 ˘ 0.53 38.57 ˘ 0.57 50.86 ˘ 0.54
Proto-Net 48.12 ˘ 0.81 66.17 ˘ 0.67 31.41 ˘ 0.67 42.78 ˘ 0.70
UnicornMAML 48.74 ˘ 0.87 63.44 ˘ 0.76 35.95 ˘ 0.80 45.15 ˘ 0.76

Table 1: In this table, the classification accuracy [%] of all models on a test set of MiniImageNet
and FC100 are depicted. All models have been trained on MiniImageNet.

MAML and show how each part of the network contributes to performance and representation
change. All models are trained in a homogeneous environment and are subsequently tested in homo-
geneous and heterogeneous environments. As a first step, this allows for more fine-grained control
of cause and effect relationships with regard to predictive performance than we would have if we
applied it on Meta-Dataset Triantafillou et al. (2020). Our setting is also most realistic for real-
world applications, where we meet environmental conditions unexpected at training time. Note, for
example, that in our setting, models are not explicitly trained to cope with domain shift, yet showing
strong performance in unexpected environment changes is a crucial property in real-world problems.
Despite all this, we regard a validation of our findings on Meta-Dataset as an important further step.

We design the experiments in a way that the effects of individual parts of the environment (domain,
number of ways, and shots) are investigated and partially isolated. We train the conv4 architecture,
the standard architecture in previous literature on few-shot learning with MAML (Finn et al., 2017;
Raghu et al., 2020; Oh et al., 2021; Vuorio et al., 2019; Yoon et al., 2018; Finn et al., 2018) on
MiniImageNet to solve a N -way-K-shot classification task. We further model domain shift by
testing on a variety of few-shot learning datasets, such as FC100 (Oreshkin et al., 2018), CIFAR-FS
(Devos et al., 2019) and CUB (Wah et al., 2011), and measure the test accuracy. We further provide
test-time accuracy for MiniImageNet to study the impact of NP-MAML when going from the in- to
the cross-domain setting. We choose the hyper-parameters of the original MAML-approaches (Finn
et al., 2017; Raghu et al., 2020; Oh et al., 2021) summarized in Appendix D. For all performance
results, we show classification accuracy on a hold-out set, where the ˘ indicates the 95% confidence
interval over tasks, following Finn et al. (2017). We further average these results across multiple
seeds. We provide results for MiniImageNet and FC100 in the main body of the text and refer to
Appendix E for results on CIFAR-FS and CUB, as well as to Appendix F for studying an increase
in the test-time environment change also with respect to the number shots and to Appendix G for a
detailed analysis of the importance of very early network layers on in- and cross-domain problems.

5.1 DOMAIN SHIFT

In our first experiment, we train each model on 5-way-1-shot and 5-way-5-shot on MiniImageNet
and test it on MiniImageNet (in-domain) and FC100 (cross-domain), where the numbers of shots K
matches its training conditions.

In Table 1, we observe that our approach NP-MAML is competitive with BOIL on 1-shot MiniIm-
ageNet and better in all other cases. As expected, ANIL performs especially poorly in the cross-
domain setup, as an adaptation of the body representations is crucial to cope with domain shift.

5.2 META-FEATURE QUALITY WHEN VARYING NUMBER OF WAYS

In this experiment, we look at the quality of the features of the penultimate layer, which we call
meta-features. The model is trained as in Section 5.1 on MiniImageNet on the homogeneous 5-
way-K-shot problems. We test the model on both MiniImageNet and FC100 but vary the number
of ways of each task (N “ 4, 7 and 10). Since MAML, ANIL and BOIL can architecturally not
fine-tune the last layer (see Section 4), we use the NIL-testing proposed by Raghu et al. (2020).
NP-MAML can be fine-tuned, and we depict both results without fine-tuning (0 inner loop steps)
and with fine-tuning NP-MAML (1 inner loop step).
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(a) 1-shot mixed-ways

MiniImageNet FC100

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

ANIL 55.29 ˘ 0.77 49.64 ˘ 0.63 40.78 ˘ 0.49 32.96 ˘ 0.36 39.03 ˘ 0.67 33.61 ˘ 0.53 26.39 ˘ 0.42 20.62 ˘ 0.31
BOIL 30.98 ˘ 0.45 25.90 ˘ 0.38 19.17 ˘ 0.28 14.47 ˘ 0.21 29.68 ˘ 0.45 24.50 ˘ 0.36 18.31 ˘ 0.28 13.48 ˘ 0.21
MAML 52.60 ˘ 0.73 47.11 ˘ 0.63 38.61 ˘ 0.47 30.79 ˘ 0.34 40.84 ˘ 0.69 35.09 ˘ 0.57 27.22 ˘ 0.44 21.23 ˘ 0.30
NP-MAML (0) 49.18 ˘ 0.70 43.44 ˘ 0.60 35.20 ˘ 0.44 28.38 ˘ 0.34 40.24 ˘ 0.64 34.76 ˘ 0.52 27.38 ˘ 0.40 21.24 ˘ 0.31
NP-MAML (1) 55.50 ˘ 0.75 49.82 ˘ 0.64 41.48 ˘ 0.47 33.59 ˘ 0.36 44.09 ˘ 0.67 38.57 ˘ 0.57 30.37 ˘ 0.43 23.83 ˘ 0.30
ProtoNet 53.91 ˘ 0.95 48.12 ˘ 0.81 40.02 ˘ 0.61 32.36 ˘ 0.46 36.56 ˘ 0.78 31.41 ˘ 0.67 24.54 ˘ 0.51 18.99 ˘ 0.37
UnicornMAML 53.18 ˘ 0.99 48.74 ˘ 0.87 39.87 ˘ 0.68 31.88 ˘ 0.49 41.78 ˘ 0.94 35.95 ˘ 0.80 27.78 ˘ 0.61 21.87 ˘ 0.42

(b) 5-shot mixed ways

MiniImageNet FC100

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

ANIL 70.89 ˘ 0.60 66.17 ˘ 0.54 58.24 ˘ 0.43 50.16 ˘ 0.34 52.43 ˘ 0.63 46.14 ˘ 0.54 37.84 ˘ 0.44 30.75 ˘ 0.29
BOIL 39.52 ˘ 0.50 33.47 ˘ 0.42 26.23 ˘ 0.31 20.02 ˘ 0.25 35.81 ˘ 0.49 30.30 ˘ 0.41 23.61 ˘ 0.32 17.96 ˘ 0.24
MAML 68.48 ˘ 0.62 63.15 ˘ 0.55 55.03 ˘ 0.43 46.62 ˘ 0.33 51.04 ˘ 0.64 44.75 ˘ 0.54 36.41 ˘ 0.43 29.60 ˘ 0.30
NP-MAML (0) 70.70 ˘ 0.60 65.49 ˘ 0.54 57.95 ˘ 0.42 50.47 ˘ 0.36 57.89 ˘ 0.63 51.89 ˘ 0.56 43.66 ˘ 0.45 36.21 ˘ 0.32
NP-MAML (1) 72.27 ˘ 0.60 67.39 ˘ 0.53 59.59 ˘ 0.43 51.69 ˘ 0.35 57.37 ˘ 0.60 50.86 ˘ 0.54 42.35 ˘ 0.44 34.58 ˘ 0.31
Proto-Net 71.66 ˘ 0.73 66.17 ˘ 0.67 58.49 ˘ 0.55 50.92 ˘ 0.41 48.55 ˘ 0.82 42.78 ˘ 0.70 35.23 ˘ 0.54 28.57 ˘ 0.39
UnicornMAML 68.66 ˘ 0.89 63.44 ˘ 0.76 55.48 ˘ 0.62 48.00 ˘ 0.46 51.63 ˘ 0.92 45.15 ˘ 0.76 37.65 ˘ 0.60 30.59 ˘ 0.43

Table 2: The classification accuracy [%] of the models on 1-shot and 5-shot in-domain for in-
domain (MiniImageNet) and cross-domain (FC100) tasks, where the number of ways varies during
test time. All models have been meta-trained on MiniImageNet.

In Table 2a, the results for 1-shot in- and cross-domain can be found. In the case of an in-domain
adaptation, NP-MAML (fine-tuned) performs the best; however, it is only slightly better than ANIL
(the difference is smaller than 1%). This holds true across all varying numbers of ways, which
does not seem to have an impact on the performance difference. NP-MAML is, without fine-tuning,
significantly worse than ANIL or MAML, but with one fine-tuning step, its performance is improved
by « 5%. BOIL performs comparatively poorly in the mixed-way setting, which confirms our claim
from Section 4 that BOIL is reliant on the train-time head, reinforcing one of the motivations for our
nonparametric approach. UnicornMAML performs similarly to ANIL and MAML in the in-domain
tasks. Here, its trainable linear layer does not yield any improvement over NIL testing. However,
in the case of cross-domain tasks, UnicornMAML is significantly better than ANIL, BOIL, and
MAML. Nevertheless, it still falls short in comparison to our novel technique, NP-MAML.

In the case of a cross-domain adaptation, NP-MAML again performs best, followed by MAML with
a difference of around 3.5% across ways. NP-MAML without fine-tuning is only slightly worse than
MAML. We observe similar results in the case of 5-shots and on more few-shot learning datasets
(Appendix E).

For 5-shot learning (Table 2b), we see similar results, with the difference that for NP-MAML the
fine-tuning step cannot improve performance on FC100. However, in the results reported in Ap-
pendix E, we see an increased necessity for fine-tuning NP-MAML in the case of fine-grained prob-
lems such as CUB. In addition, it seems that for the 5-shot problems in general, Unicorn-MAML
is less suited than MAML or ANIL, presumably because the NIL-predictor improves more strongly
with the number of available shots.

The above results show that in the cross-domain setting, the ability to fine-tune the nonparametric
predictor, as is the case for NP-MAML, gains importance with a decrease in available support set
samples.

5.3 REPRESENTATION SIMILARITY ANALYSIS

In our last experiment, we address the question rapid learning vs. feature reuse?, as posed by
Raghu et al. (2020), for NP-MAML. Similar to Raghu et al. (2020); Oh et al. (2021); Goerttler &
Obermayer (2021), we measure the centered kernel alignment (CKA) similarity of representations
of the query set before and after adaptation for the three components gearly, gpenult and ghead of conv4
of all models we compared.
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Figure 1: CKA similarity of network representations before and after adaptation for the models of
different scenarios from previous experiments. Representation similarity was obtained for the three
components gearly, gpenult and ghead of the conv4 architecture.

In Figure 1a, we see the CKA similarities for different scenarios of our experiments. We can gen-
erally observe that the representation of the head changes much less for NP-MAML than for the
others, meaning a good performance does not require a huge change there. In the case of cross-
domain tasks, the adaption for MAML and NP-MAML is larger than in the case of in-domain tasks,
underlying the overall need for representation change in cross-domain environments. For the penul-
timate layer, the similarity of BOIL is much less than for NP-MAML. Interestingly, all observations
do not change significantly when the number of shots changes during training and testing.

We additionally analyzed how the representation change differs between UnicornMAML and NP-
MAML in the setup of the mixed ways because they are the only ones who can update the weights
during fine-tuning (see Figure 1b. We see that NP-MAML changes more in the early and the
penultimate layers, which, as we know from the analysis done in Oh et al. (2021), can improve
cross-domain adaptation capability. We hypothesize that the increased representation change of NP-
MAML compared to UnicornMAML contributes to cross-domain performance in our experimental
setting.

6 DISCUSSION

In this section, we discuss all major components of MAML during training and testing under domain
adaptation: training and testing (data processing, importance of low-level features and high-level
features, type of predictor).

Task Distribution The results of Section 5 show that ANIL and MAML perform very well on
in-domain tasks, even if the number of shots and ways is different in testing3. However, in the case
of cross-domain adaption, we see that these algorithms perform poorly, as their features are not
changing to accommodate for the domain shift. BOIL, which is good in cross-domain adaptation,
fails in the case of more realistic conditions, such as a flexible number of ways, as it seems to rely

3In particular, see 5.2 and Appendix F
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strongly on the head applied during training, as we showed in Sub-section 5.2. NP-MAML solves
this issue by maintaining the strengths of BOIL (enforcing representation change) but still shows
strong performance with flexible numbers of ways and shots.

Fine-Tuning As discussed in Section 3, fine-tuning on heterogeneous test environments is chal-
lenging for existing architectures, a gap filled by our approach, NP-MAML. From the results in
Appendix F (Table 6b), we see that fine-tuning is not improving the results when increasing the
number of shots, which we believe is partially attributed to the class prototypes that average across
five samples. Still, we see a benefit to fine-tuning again in the 5-shot setting of coarse- to fine-grain
domain shift, as demonstrated on the CUB dataset in Appendix E.

In addition, we observed that NP-MAML reaches their cross-domain performance with just one
fine-tuning step (similar to BOIL), whereas ANIL and MAML use 5 and 10 for training and testing,
respectively. We think that NP-MAML has many similarities to BOIL, e.g., strong cross-domain
adaption and body-only inner learning.

We note that due to the absence of a parametric head in NP-MAML, any fine-tuning thereof is
naturally omitted. However, another perspective is to view NP-MAML as employing a pseudo-
head, a classic linear layer whose parameters are, however, implicitly formed by the output of the
network body (Snell et al., 2017). We want to present this perspective to highlight that NP-MAML
is not necessarily a variant of BOIL but follows a distinct paradigm of abandoning the parametric
head as a standard component of meta-learning architectures.

Early Layers The analysis of the importance of early layers shows that penultimate-only models
perform at least as well as full models in in-domain tasks but are significantly worse for cross-
domain adaption (see Appendix G). The effect of only updating the penultimate layer harms BOIL
more than NP-MAML, which indicates a higher resilience of our approach to this effect. Since for
NP-MAML, the penultimate version is always better for in-domain tasks, it can be summarized that
fine-tuning them is beneficial for cross-domain tasks, but for in-domain tasks, we better leave them
not-updated. Especially in the case of larger models (e.g., ResNet), this is important to note, as it
speeds up the fine-tuning quite significantly (as also argued in (Oh et al., 2021)).

Penultimate Layer Oh et al. (2021) have already discovered the importance of fine-tuning the
penultimate layer for few-shot learning, especially for cross-domain adaptation. Our results from
Section 5.1 and Appendix F confirm that this also extends to our heterogeneous setting, further
strengthening the case for methods such as ours that enable strong representation change in the
network body rather than the head.

Predictor (Head) The choice of the predictor (head) influences the generalization performance
the most. In our experiments, we could show the superiority of nonparametric heads. Especially
for heterogeneous tasks, it allows for a good adaptation. In addition, NP-MAML is the only model
where training and test conditions match precisely. That this is desirable has been discussed by
Vinyals et al. (2016).

7 CONCLUSION

In this paper, we proposed NP-MAML, a nonparametric version of MAML, which can deal with
architectural and algorithmic challenges in few-shot learning. In addition, we explored the key
components of MAML-type models and proposed a common framework to describe them. Our ex-
perimental results show that NP-MAML outperforms established methods with parametric heads.
Under domain shift, our method beats ANIL and MAML due to its ability to perform representa-
tion change also in the earlier layers. In the case of heterogeneous task distributions, NP-MAML is
very flexible in fine-tuning the support set, something which BOIL is limited at architecturally. In
our in-depth analysis of MAML key components, we revealed the hitherto unknown importance of
fine-tuning very early layers for improved cross-domain capabilities. Our representation similarity
analysis showed that NP-MAML adapts less in the network body during the inner loop than BOIL;
however, we demonstrate that although NP-MAML adapts its parameters less in total, the distri-
bution of adaptation over the network components is much more uniform, which seems to be the
crucial factor for performance in the presented heterogeneous tasks.
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rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
113–124, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
072b030ba126b2f4b2374f342be9ed44-Abstract.html.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learn-
ing. Adaptive computation and machine learning. MIT Press, 2006. ISBN 026218253X. URL
https://www.worldcat.org/oclc/61285753.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/
forum?id=rJY0-Kcll.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and

11

https://arxiv.org/abs/2105.05757
https://arxiv.org/abs/2105.05757
https://doi.org/10.1613/jair.1872
https://doi.org/10.1613/jair.1872
http://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1707.09835
https://arxiv.org/abs/2110.11044
http://arxiv.org/abs/1803.02999
https://openreview.net/forum?id=umIdUL8rMH
https://proceedings.neurips.cc/paper/2018/hash/66808e327dc79d135ba18e051673d906-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/66808e327dc79d135ba18e051673d906-Abstract.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Qi_Low-Shot_Learning_With_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Qi_Low-Shot_Learning_With_CVPR_2018_paper.html
https://openreview.net/forum?id=rkgMkCEtPB
https://proceedings.neurips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
https://www.worldcat.org/oclc/61285753
https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=rJY0-Kcll


Under review as a conference paper at ICLR 2023

Li Fei-Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):
211–252, 2015. doi: 10.1007/s11263-015-0816-y. URL https://doi.org/10.1007/
s11263-015-0816-y.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=BJgklhAcK7.

Ruslan Salakhutdinov, Joshua B. Tenenbaum, and Antonio Torralba. One-shot learning with a hi-
erarchical nonparametric bayesian model. In Isabelle Guyon, Gideon Dror, Vincent Lemaire,
Graham W. Taylor, and Daniel L. Silver (eds.), Unsupervised and Transfer Learning - Work-
shop held at ICML 2011, Bellevue, Washington, USA, July 2, 2011, volume 27 of JMLR Pro-
ceedings, pp. 195–206. JMLR.org, 2012. URL http://proceedings.mlr.press/v27/
salakhutdinov12a/salakhutdinov12a.pdf.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 4077–4087, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-
dataset: A dataset of datasets for learning to learn from few examples. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=rkgAGAVKPr.

Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-Hsuan Yang. Cross-domain few-shot
classification via learned feature-wise transformation. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=SJl5Np4tPr.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 3630–3638, 2016. URL https://proceedings.neurips.cc/
paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html.

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J. Lim. Multimodal model-agnostic
meta-learning via task-aware modulation. In Hanna M. Wallach, Hugo Larochelle, Alina
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Model Configuration g˚

MAML (Finn et al., 2017) tgearly, gpenult, gheadu

ANIL (Raghu et al., 2020) tgheadu

BOIL (Oh et al., 2021) tgearly, gpenultu

BOIL-4 (Oh et al., 2021) tgpenultu

Table 3: Meta-learning configurations corresponding to methods from (Finn et al., 2017; Raghu
et al., 2020; Oh et al., 2021). BOIL-4 indicates a variant of BOIL where only the penultimate layer
of conv4 is meta-learned.

A INSTANTIATION OF PREVIOUS METHODS OF OUR MODULARIZATION

Our modularization decomposes the network into different parts Previously proposed methods (Finn
et al., 2017; Raghu et al., 2020; Oh et al., 2021) can be obtained by only optimizing the weights of
selected sub-components (see Table 3).

B (CROSS-)DOMAIN ADAPTATION AND GENERALIZATION

The problem of domain adaptation refers to the situation where (labeled) data in one domain A exists
plentiful, while (labeled) data in a different domain B (typically called the target domain) is scarce,
requiring models to transfer knowledge gained in the domain A to make predictions in domain B
(Tseng et al., 2020). As stated by III & Marcu (2006), the idea is not to ignore data from domain B
entirely but rather to reduce the acquisition effort by transferring from domain A. This is opposed to
domain generalization, where models have no access to any data from B during training. The latter
is sometimes also referred to as cross-domain transfer (Triantafillou et al., 2020) or cross-domain
adaptation (Oh et al., 2021).

In this work, we adopt the use of cross-domain adaptation as referring to both having little or
no access to data from domain B, to stay consistent with the current literature in meta-learning
(Triantafillou et al., 2020; Cai & Shen, 2020; Tseng et al., 2020).

B.1 MULTI-MODAL META-LEARNING

To adapt the above distinction for another knowledge transfer problem setting, in multi-modal learn-
ing, one presents a model with data from both A and B, hoping that predictive performance improves
via knowledge transfer between the domains, that is, for example, reuse of general image features
that can be found in both domains (Vuorio et al., 2019; Abdollahzadeh et al., 2021). Yet, knowledge
transfer is not limited to such rather obvious commonalities. Vuorio et al. (2019) explicitly model
such multi-modal settings with MAML and show performance improvement over a MAML model
that treats each task coming from the same domain. Research in this direction has direct implications
on mixtures-of-domain datasets, such as Meta-Dataset (Triantafillou et al., 2020).

B.2 COARSE- VS. FINE-GRAINED DOMAINS

Another important notion in cross-domain adaptation is the notion of coarse- and fine-grained do-
mains (Triantafillou et al., 2020; Oh et al., 2021), referring to the level of abstractions of the ”topics”
contained within the data. For example, in the context of image classification, a domain containing
classes like dogs, cats, elephants, and giraffes is considered coarser than a domain with classes like
German Sheppard, Corgi, Husky, and Bulldog. As ”level of abstraction” is not clearly defined, this
notion is typically used only in distinguishing two domains, for example, when performing domain
adaptation from a coarse- to a fine-grained domain.

C INVESTIGATING THE EFFECT OF THE NONPARAMETRIC PREDICTOR

In Figure 2, we investigate the effect of the nonparametric predictor on the features of the network
body visually.
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Figure 2: T-SNE plot of the features of a 3-way-1-shot task, produced by a network body trained
with an NP-predictor. Features are computed from test samples of a MiniImageNet task, (a) before
and (b) after fine-tuning and colored according to their ground-truth label. We observe that the
NP-based fine-tuning, as introduced in Equation 12, resolves the cluttered features in the middle of
the left plot, pulling features that do not belong to the same tasks apart. The model that produced
the above example was trained for 30.000 iterations on 5-way-1-shot MiniImageNet, with the same
hyperparameters as for our experiments in Section 5.

D IMPLEMENTATION DETAILS

In this section, we outline the exact implementation details of each of the models we used throughout
the experiments in Section 5.

All models were trained and tested on the conv4 architecture (Finn et al., 2017; Raghu et al., 2020;
Oh et al., 2021), comprised of four convolutional blocks, each containing a 3ˆ3 convolutional layer
with one stride, a 2D Batch-Normalization layer, a ReLU non-linearity and max-pooling layer with
two strides. For models with parametric heads (ANIL, MAML, and BOIL), we formed predictions
from the convolutional features with a linear, fully-connected layer. UnicornMAML was trained
and tested always with its linear head. In its original paper, they always used pre-trained weights
wherefore our results do not match their high performance.

MiniImageNet, FC100, CIFAR-FS and CUB data has been preprocessed with the data-loaders of the
torchmeta library (Deleu et al., 2019). Constructing the conv4 architecture, as well as fine-tuning
the models, has been aided by the learn2learn framework (Arnold et al., 2020).

D.1 MODEL CONFIGURATIONS AND HYPERPARAMETERS

We carefully selected model configurations and their corresponding hyperparameters based on best
practices in previous work (Finn et al., 2017; Raghu et al., 2020; Oh et al., 2021). In addition, to
run MAML training at a similar time to the other models, we used first-order MAML throughout
all of our experiments. In addition, as outlined in Section 2.2.2, we used an approximation to the
meta-gradient of NP-MAML and NP-MAML-4 models. We trained and evaluated each model on
three different seeds and reported averages across seeds.

Gradient-based meta-learning typically requires the following hyperparameters: A number of train-
ing iterations Ttrain, a number of test iterations Ttest, a number of fine-tuning steps during training
strain, a number of fine-tuning steps during test time stest, a number of test shots (in the query set)
Ktest, an outer learning rate β, an inner learning rate α, a batch-size of the number of tasks sampled
each iteration and over which the meta-gradient is formed, a flag indicating whether to approximate
the meta-gradient and a method for forming predictions if nonparametric testing is required (e.g.,
NIL testing (Raghu et al., 2020)).
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Method strain stest β α Approximate MetaGrad Nonparametric Predictor

ANIL 5 10 0.001 0.01 No NIL
MAML 5 10 0.001 0.01 Yes NIL
BOIL 1 1 0.001 0.5 No NIL

NP-MAML 1 1 0.001 0.5 Yes Pairw. distance
UnicornMAML 5 10 0.001 0.01 Yes -

Table 4: Hyperparameter settings for ANIL, MAML, BOIL, NP-MAML and UnicornMAML,
used for the experiments in Section 5.

(a) 1-shot mixed-ways on CIFAR-FS and CUB

CIFAR-FS CUB

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

ANIL 43.75 ˘ 0.96 37.93 ˘ 0.82 31.04 ˘ 0.63 24.48 ˘ 0.47 44.48 ˘ 0.93 38.54 ˘ 0.78 31.13 ˘ 0.61 24.18 ˘ 0.44
BOIL 31.13 ˘ 0.63 26.11 ˘ 0.54 19.89 ˘ 0.41 15.06 ˘ 0.31 28.48 ˘ 0.53 23.31 ˘ 0.45 17.12 ˘ 0.36 12.45 ˘ 0.25
MAML 44.85 ˘ 0.98 38.54 ˘ 0.81 31.09 ˘ 0.65 24.64 ˘ 0.47 43.35 ˘ 0.90 37.63 ˘ 0.76 30.19 ˘ 0.57 23.48 ˘ 0.43
NP-MAML (0) 46.64 ˘ 0.95 40.69 ˘ 0.81 33.69 ˘ 0.66 24.64 ˘ 0.47 41.59 ˘ 0.84 36.36 ˘ 0.71 28.81 ˘ 0.55 22.47 ˘ 0.41
NP-MAML (1) 52.08 ˘ 1.05 45.77 ˘ 0.89 38.15 ˘ 0.72 31.05 ˘ 0.53 48.60 ˘ 0.94 43.02 ˘ 0.80 34.80 ˘ 0.62 27.63 ˘ 0.46
UnicornMAML 45.46 ˘ 0.99 39.78 ˘ 0.82 32.09 ˘ 0.66 25.72 ˘ 0.50 45.07 ˘ 0.89 40.18 ˘ 0.73 32.20 ˘ 0.60 25.05 ˘ 0.44

(b) 5-shot mixed-ways on CIFAR-FS and CUB

CIFAR-FS CUB

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

ANIL 60.37 ˘ 0.93 55.01 ˘ 0.83 47.05 ˘ 0.65 40.10 ˘ 0.51 61.85 ˘ 0.86 55.55 ˘ 0.80 47.80 ˘ 0.65 40.15 ˘ 0.52
BOIL 42.71 ˘ 0.82 37.14 ˘ 0.70 29.56 ˘ 0.55 23.70 ˘ 0.40 33.55 ˘ 0.59 28.03 ˘ 0.51 21.44 ˘ 0.38 16.16 ˘ 0.29
MAML 58.63 ˘ 0.94 52.96 ˘ 0.83 44.88 ˘ 0.65 30.79 ˘ 0.34 57.30 ˘ 0.87 51.01 ˘ 0.78 42.76 ˘ 0.60 35.26 ˘ 0.47
NP-MAML (0) 68.69 ˘ 0.92 63.62 ˘ 0.84 56.27 ˘ 0.71 49.94 ˘ 0.55 63.49 ˘ 0.85 57.82 ˘ 0.76 50.08 ˘ 0.64 42.73 ˘ 0.52
NP-MAML (1) 68.47 ˘ 0.92 63.18 ˘ 0.82 55.50 ˘ 0.69 48.61 ˘ 0.54 65.69 ˘ 0.86 59.78 ˘ 0.78 51.93 ˘ 0.64 44.19 ˘ 0.52
UnicornMAML 59.64 ˘ 0.96 53.97 ˘ 0.88 46.54 ˘ 0.67 39.53 ˘ 0.50 61.26 ˘ 0.88 54.90 ˘ 0.78 47.35 ˘ 0.63 40.33 ˘ 0.48

Table 5: Further results of classification accuracy [%] of ANIL, BOIL, NP-MAML, MAML, and
UnicornMAML on 1-shot and 5-shot on cross-domain tasks (CIFAR-FS and CUB) with a varying
number of ways during test time. The models were pre-trained on MiniImageNet.

Following previous work (Raghu et al., 2020; Oh et al., 2021), we train each model on 30.000
iterations on MiniImageNet, and following Finn et al. (2017), we evaluate test performance on a
total of 500 randomly sampled tasks from the test set of the target domain (either MiniImageNet or
FC100). Additionally, across all experiments and models, we set Ktest “ 15. Further, for 5-shot
training or testing, we set the batch-size to 2, and for 1-shot training or testing, we set the batch-size
to 4. All other hyperparameters are method-specific and are presented for each of ANIL, BOIL,
NP-MAML, and MAML in Table 4. Penultimate-only methods BOIL-4 and NP-MAML-4 follow
the hyperparameter settings of BOIL and NP-MAML, respectively.

All experiments have been conducted on a single NVIDIA Titan Xp GPU.

E ADDITIONAL RESULTS FOR VARYING THE WAYS

We performed additional experiments on CIFAR-FS and CUB, which can be found in Table 5. The
results confirm our observation in Section 5.2.

F ADDITIONAL RESULTS ON THE PERFORMANCE WHEN VARYING NUMBER
OF SHOTS

We repeat the experiments from Section 5.1 and 5.2 and additionally interchange the numbers of
shots while testing the models (1-shot to 5-shot and vice versa).

In Table 6a, we see the results when K is constant. Especially in the case of a 1-to-5-shot problem,
NP-MAML is good and outperforms when we are in a cross-domain setup. Interestingly, ANIL is
very bad when we have five shots in training but only 1 in training.
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(a) Switching number of shots with fixed ways

MiniImageNet FC100

5-to-1-shot 1-to-5-shot 5-to-1-shot 1-to-5-shot

ANIL 27.23 ˘ 0.42 61.56 ˘ 0.56 25.05 ˘ 0.35 41.71 ˘ 0.56
BOIL 49.20 ˘ 0.63 63.92 ˘ 0.54 35.51 ˘ 0.53 46.83 ˘ 0.52
MAML 43.23 ˘ 0.60 60.42 ˘ 0.57 32.37 ˘ 0.52 45.44 ˘ 0.55
NP-MAML 45.68 ˘ 0.58 63.41 ˘ 0.51 35.57 ˘ 0.52 50.28 ˘ 0.53

(b) 1-to-5-shot with mixed ways

MiniImageNet FC100

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

ANIL 68.74 ˘ 0.61 63.20 ˘ 0.55 54.96 ˘ 0.44 46.54 ˘ 0.34 50.38 ˘ 0.63 44.64 ˘ 0.54 36.15 ˘ 0.43 29.24 ˘ 0.31
BOIL 38.33 ˘ 0.50 32.68 ˘ 0.42 25.34 ˘ 0.32 19.45 ˘ 0.23 35.31 ˘ 0.53 29.84 ˘ 0.44 23.02 ˘ 0.33 17.59 ˘ 0.24
MAML 66.40 ˘ 0.64 60.81 ˘ 0.56 52.26 ˘ 0.43 44.08 ˘ 0.33 51.12 ˘ 0.66 45.20 ˘ 0.55 36.69 ˘ 0.43 29.53 ˘ 0.30
NP-MAML (0) 69.23 ˘ 0.61 64.16 ˘ 0.54 56.10 ˘ 0.45 48.43 ˘ 0.35 56.42 ˘ 0.64 50.91 ˘ 0.54 42.26 ˘ 0.44 34.65 ˘ 0.32
NP-MAML (1) 69.18 ˘ 0.59 63.41 ˘ 0.51 54.31 ˘ 0.42 45.82 ˘ 0.33 56.18 ˘ 0.65 50.28 ˘ 0.53 41.25 ˘ 0.42 33.40 ˘ 0.32

(c) 5-to-1-shot with mixed ways

MiniImageNet FC100

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

ANIL 55.84 ˘ 0.73 50.47 ˘ 0.64 42.25 ˘ 0.48 34.22 ˘ 0.36 40.83 ˘ 0.63 35.34 ˘ 0.53 27.62 ˘ 0.40 21.53 ˘ 0.29
BOIL 31.15 ˘ 0.44 25.96 ˘ 0.37 19.44 ˘ 0.29 14.57 ˘ 0.21 29.94 ˘ 0.43 24.45 ˘ 0.34 18.40 ˘ 0.27 13.52 ˘ 0.19
MAML 53.86 ˘ 0.73 48.34 ˘ 0.63 39.93 ˘ 0.46 31.99 ˘ 0.35 40.49 ˘ 0.63 34.26 ˘ 0.53 27.05 ˘ 0.41 20.95 ˘ 0.29
NP-MAML (0) 46.52 ˘ 0.67 41.18 ˘ 0.59 33.15 ˘ 0.44 26.35 ˘ 0.34 39.75 ˘ 0.59 34.11 ˘ 0.53 26.98 ˘ 0.40 21.20 ˘ 0.31
NP-MAML (1) 50.91 ˘ 0.68 45.68 ˘ 0.58 37.31 ˘ 0.44 30.28 ˘ 0.35 41.56 ˘ 0.62 35.57 ˘ 0.52 27.96 ˘ 0.40 21.88 ˘ 0.29

Table 6: In these tables, the number of shots is switched between training and testing. We see the
classification accuracy [%] of the models on a test of MiniImageNet and FC100, all trained on
MiniImageNet. In (a), the number of ways is fixed, whereas, in (b) and (c), we have a flexible
number of ways. In (b), the number of shots increases during testing, and in (c) decreases.

When also the number of shots varies, BOIL is again not able to achieve good results. When in-
creasing the number of shots during testing (see Table 6b), NP-MAML and ANIL are overall the best
performers in the case of in-domain, and NP-MAML is the best in the case of cross-domain. The
only difference is that fine-tuning in this heterogeneous setup is no longer beneficial for NP-MAML.

When decreasing the number of shots, NP-MAML suffers from the small numbers of samples in
the case of in-domain (Table 6c). Interestingly, ANIL is very good in contrast to the fixed setup of
Table 6a. We fine-tune the last layer in the fixed case, whereas we use NIL-testing in the mixed
setup, which seems to influence the performance in case of varying the number of shots. In the case
of cross-domain, NP-MAML outperforms the other approaches.

G ADDITIONAL RESULTS OF EXPERIMENTS OF THE PENULTIMATE LAYER

We want to investigate the role of the earlier layer gearly, which are in the standard setup of MAML
and BOIL fine-tuned. We observe the significance of updating the early layers by comparing the
predictive performance of BOIL and NP-MAML with only updating the penultimate layer (suffix
-4) in the inner loop versus updating all layersIn Table 7, we present the results for 5-way-few-shot
and mixed-way-1-shot.

In the case of fixed-way (Table 7a), the penultimate only variant performs similarly for in-domain
tasks but is significantly worse for cross-domain tasks ( 2% for NP-MAML and 4% for BOIL). For
the mixed-way setup (Table 7b), it is similar. In in-domain problems, the penultimate-only variant
is slightly better, but updating all weights in the inner loop is beneficial for the cross-domain setup.
For the mixed-way 1-shot in-domain case (b), NP-MAML-4 consistently performs best across all
ways after fine-tuning.However, for the in-domain case, the fine-tuned NP-MAML-4 improves only
slightly over the fine-tuned NP-MAML with a performance difference of about 0.5%. As for all
mixed-way experiments, BOIL, and by extension BOIL-4, cannot compete with the other methods,
and we also observe no notable performance difference between BOIL-4 and BOIL in neither the in-
nor the cross-domain case. For the mixed-way cross-domain case (c), the fine-tuned NP-MAML-4

17



Under review as a conference paper at ICLR 2023

(a) 5-way-few-shot

MiniImageNet FC100

1-shot 5-shot 1-shot 5-shot

BOIL 50.16 ˘ 0.64 65.31 ˘ 0.53 36.03 ˘ 0.57 47.83 ˘ 0.52
BOIL-4 49.61 ˘ 0.62 64.15 ˘ 0.53 32.97 ˘ 0.52 43.48 ˘ 0.51
NP-MAML 49.82 ˘ 0.64 67.39 ˘ 0.53 38.57 ˘ 0.57 50.86 ˘ 0.54
NP-MAML-4 50.73 ˘ 0.62 67.13 ˘ 0.53 36.12 ˘ 0.55 48.40 ˘ 0.54

(b) mixed-way-1-shot

MiniImageNet FC100

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

BOIL 30.98 ˘ 0.45 25.90 ˘ 0.38 19.17 ˘ 0.28 14.47 ˘ 0.21 29.68 ˘ 0.45 24.50 ˘ 0.36 18.31 ˘ 0.28 13.48 ˘ 0.21
BOIL-4 29.67 ˘ 0.40 24.44 ˘ 0.33 17.98 ˘ 0.25 13.14 ˘ 0.18 29.08 ˘ 0.41 24.10 ˘ 0.35 17.90 ˘ 0.27 13.18 ˘ 0.20
NP-MAML (0) 49.18 ˘ 0.70 43.44 ˘ 0.60 35.20 ˘ 0.44 28.38 ˘ 0.34 40.24 ˘ 0.64 34.76 ˘ 0.52 27.38 ˘ 0.40 21.24 ˘ 0.31
NP-MAML (1) 55.50 ˘ 0.75 49.82 ˘ 0.64 41.48 ˘ 0.47 33.59 ˘ 0.36 44.09 ˘ 0.67 38.57 ˘ 0.57 30.37 ˘ 0.43 23.83 ˘ 0.30
NP-MAML-4 (0) 49.26 ˘ 0.70 43.11 ˘ 0.58 34.74 ˘ 0.45 27.69 ˘ 0.34 37.33 ˘ 0.57 31.80 ˘ 0.49 24.63 ˘ 0.40 19.22 ˘ 0.29
NP-MAML-4 (1) 56.02 ˘ 0.75 50.73 ˘ 0.62 41.98 ˘ 0.48 34.06 ˘ 0.37 41.74 ˘ 0.65 36.12 ˘ 0.55 28.44 ˘ 0.43 22.45 ˘ 0.30

(c) mixed-way-5-shot

MiniImageNet FC100

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

BOIL 39.52 ˘ 0.50 33.47 ˘ 0.42 26.23 ˘ 0.31 20.02 ˘ 0.25 35.81 ˘ 0.49 30.30 ˘ 0.41 23.61 ˘ 0.32 17.96 ˘ 0.24
BOIL-4 35.97 ˘ 0.44 30.20 ˘ 0.37 23.08 ˘ 0.29 17.54 ˘ 0.22 35.10 ˘ 0.49 29.73 ˘ 0.42 23.01 ˘ 0.32 17.49 ˘ 0.23
NP-MAML (0) 70.70 ˘ 0.60 65.49 ˘ 0.54 57.95 ˘ 0.42 50.47 ˘ 0.36 57.89 ˘ 0.63 51.89 ˘ 0.56 43.66 ˘ 0.45 36.21 ˘ 0.32
NP-MAML (1) 72.27 ˘ 0.60 67.39 ˘ 0.53 59.59 ˘ 0.43 51.69 ˘ 0.35 57.37 ˘ 0.60 50.86 ˘ 0.54 42.35 ˘ 0.44 34.58 ˘ 0.31
NP-MAML-4 (0) 70.07 ˘ 0.60 65.09 ˘ 0.54 57.51 ˘ 0.43 49.78 ˘ 0.35 53.23 ˘ 0.60 47.08 ˘ 0.53 38.80 ˘ 0.42 32.15 ˘ 0.30
NP-MAML-4 (1) 72.11 ˘ 0.58 67.13 ˘ 0.53 59.74 ˘ 0.43 51.88 ˘ 0.35 54.54 ˘ 0.60 48.40 ˘ 0.54 40.06 ˘ 0.42 33.24 ˘ 0.30

Table 7: Classification accuracy [%] of BOIL, BOIL-4, NP-MAML-4 and NP-MAML, each
trained on 5-way-1-shot MiniImageNet and evaluated on both fixed-way (a) and mixed-way (b,
c) problems. Since only NP-MAML and NP-MAML-4 can be fine-tuned in the mixed-way setting,
NP-MAML and NP-MAML-4 results are suffixed with the number of fine-tuning steps in parenthe-
ses.

falls behind the fine-tuned NP-MAML by about 3%. In all mixed-way experiments, fine-tuning
improves the performance of NP-MAML. The results for 5-shot are similar.

We also present comparisons of BOIL and NP-MAML with their penultimate-only counterparts for
varying the number of shots between training and test time as in Section Tables 8, 9 and 10.

MiniImageNet FC100

5-to-1-shot 1-to-5-shot 5-to-1-shot 1-to-5-shot

BOIL 49.20 ˘ 0.63 63.92 ˘ 0.54 35.51 ˘ 0.53 46.83 ˘ 0.52
BOIL-4 48.66 ˘ 0.63 62.65 ˘ 0.55 33.08 ˘ 0.50 41.87 ˘ 0.49
NP-MAML (1) 45.68 ˘ 0.58 63.41 ˘ 0.51 35.57 ˘ 0.52 50.28 ˘ 0.53
NP-MAML-4 (1) 44.38 ˘ 0.60 64.10 ˘ 0.51 32.60 ˘ 0.48 47.39 ˘ 0.53

Table 8: Classification accuracy [%] of BOIL and NP-MAML, as well as their penultimate-only
counterparts BOIL-4 and NP-MAML-4. Evaluation results for 1-shot are obtained from correspond-
ing models trained on 5-way-5-shot MiniImageNet, and evaluation results for 5-shot are obtained
from corresponding models trained on 5-way-1-shot MiniImageNet. The (1) after the NP-MAML
and NP-MAML-4 results indicate that one fine-tuning step was performed before test performance
was measured. Improvements of NP-MAML over its penultimate-only counterpart under domain
shift become more evident when either in- or decreasing shots during test time. When switching
from 5 to 1 shots in-domain (on MiniImageNet), BOIL and BOIL-4 are much stronger than the
-NP variants. This effect is mirrored in favor of the -NP variants when switching from 1 to 5 shots
cross-domain (on FC100).
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MiniImageNet FC100

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

BOIL 38.33 ˘ 0.50 32.68 ˘ 0.42 25.34 ˘ 0.32 19.45 ˘ 0.23 35.31 ˘ 0.53 29.84 ˘ 0.44 23.02 ˘ 0.33 17.59 ˘ 0.24
BOIL-4 35.70 ˘ 0.44 29.87 ˘ 0.38 22.53 ˘ 0.28 16.91 ˘ 0.20 34.15 ˘ 0.49 28.86 ˘ 0.42 21.92 ˘ 0.31 16.66 ˘ 0.23
NP-MAML (0) 69.23 ˘ 0.61 64.16 ˘ 0.54 56.10 ˘ 0.45 48.43 ˘ 0.35 56.42 ˘ 0.64 50.91 ˘ 0.54 42.26 ˘ 0.44 34.65 ˘ 0.32
NP-MAML (1) 69.18 ˘ 0.59 63.41 ˘ 0.51 54.31 ˘ 0.42 45.82 ˘ 0.33 56.18 ˘ 0.65 50.28 ˘ 0.53 41.25 ˘ 0.42 33.40 ˘ 0.32
NP-MAML-4 (0) 69.53 ˘ 0.60 64.64 ˘ 0.53 56.58 ˘ 0.43 48.39 ˘ 0.34 53.29 ˘ 0.64 47.56 ˘ 0.53 39.14 ˘ 0.44 31.92 ˘ 0.31
NP-MAML-4 (1) 69.37 ˘ 0.59 64.10 ˘ 0.51 55.60 ˘ 0.41 47.05 ˘ 0.32 53.05 ˘ 0.63 47.39 ˘ 0.53 38.89 ˘ 0.43 31.70 ˘ 0.31

Table 9: Classification accuracy [%] of BOIL and NP-MAML, as well as their penultimate-only
counterparts BOIL-4 and NP-MAML-4, each trained on 5-way-1-shot MiniImageNet tasks and eval-
uated on a varying number of ways and five shots on in-domain (MiniImageNet) and cross-domain
(FC100) tasks. Since only NP-MAML and NP-MAML-4 can be fine-tuned in the mixed-way setting,
NP-MAML and NP-MAML-4 results are suffixed with the number of fine-tuning steps in parenthe-
ses. In-domain results for all -NP variants differ only slightly from each other. Cross-domain results
show improvements in favor of NP-MAML, highlighting the importance of early layer fine-tuning in
cross-domain settings, as discussed in Section 6. BOIL-4 performance is generally worse compared
to BOIL, independent of in- or cross-domain.

MiniImageNet FC100

4-way 5-way 7-way 10-way 4-way 5-way 7-way 10-way

BOIL 31.15 ˘ 0.44 25.96 ˘ 0.37 19.44 ˘ 0.29 14.57 ˘ 0.21 29.94 ˘ 0.43 24.45 ˘ 0.34 18.40 ˘ 0.27 13.52 ˘ 0.19
BOIL-4 29.64 ˘ 0.39 24.23 ˘ 0.33 17.93 ˘ 0.25 13.31 ˘ 0.18 29.52 ˘ 0.42 24.19 ˘ 0.35 18.07 ˘ 0.27 13.37 ˘ 0.20
NP-MAML (0) 46.52 ˘ 0.67 41.18 ˘ 0.59 33.15 ˘ 0.44 26.35 ˘ 0.34 39.75 ˘ 0.59 34.11 ˘ 0.53 26.98 ˘ 0.40 21.20 ˘ 0.31
NP-MAML (1) 50.91 ˘ 0.68 45.68 ˘ 0.58 37.31 ˘ 0.44 30.28 ˘ 0.35 41.56 ˘ 0.62 35.57 ˘ 0.52 27.96 ˘ 0.40 21.88 ˘ 0.29
NP-MAML-4 (0) 43.95 ˘ 0.69 38.04 ˘ 0.61 30.07 ˘ 0.46 23.17 ˘ 0.37 35.02 ˘ 0.52 29.44 ˘ 0.45 22.95 ˘ 0.35 17.72 ˘ 0.27
NP-MAML-4 (1) 49.91 ˘ 0.69 44.38 ˘ 0.60 36.30 ˘ 0.44 29.04 ˘ 0.35 38.28 ˘ 0.56 32.60 ˘ 0.48 25.81 ˘ 0.38 20.19 ˘ 0.28

Table 10: Classification accuracy [%] of BOIL and NP-MAML, as well as their penultimate-
only counterparts BOIL-4 and NP-MAML-4, each trained on 5-way-5-shot MiniImageNet tasks
and evaluated on a varying number of ways and 1 shot on in-domain (MiniImageNet) and cross-
domain (FC100) tasks. Since only NP-MAML and NP-MAML-4 can be fine-tuned in the mixed-
way setting, NP-MAML and NP-MAML-4 results are suffixed with the number of fine-tuning steps
in parentheses. When switching from 5 shots during training to 1 shot during test time, NP-MAML
(1) generally performs best with higher performance differences under domain shift.
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H EXTENDED DISCUSSION OF MAML’S MODULES

In the following two paragraphs, we give further insight into some observations from Section 5.

H.1 FINE-TUNING EARLY LAYERS FOR CROSS-DOMAIN ADAPTATION

In this section, we discuss the interesting finding that fine-tuning earlier layers in the conv4 substan-
tially improves classification accuracy under domain shift. In particular, the domain shift we studied
shifts from MiniImageNet to FC100, both containing fairly general image features (Russakovsky
et al., 2015). Previous work on understanding convolutional networks in the context of image pro-
cessing has established the view that early convolutional layers typically learn low-level features
like edges and corners, whereas high-level convolutional layers learn high-level features like faces
or outlines of various objects (Zeiler & Fergus, 2014). We hypothesize that, thus, fine-tuning earlier
layers becomes more important the more we can expect low-level features to vary. In the case of
MiniImageNet and FC100, we can observe such a variation due to the fact that FC100 images are
substantially smaller (32ˆ32 pixels) than MiniImageNet images (84ˆ84 pixels). As it has become
customary in cross-domain few-shot-learning, images from all domains are typically resized to a
common shape to fit the model architectures (Vuorio et al., 2019; Triantafillou et al., 2020; Oh et al.,
2021). The effects of such a resizing on low-level image features can be observed in Figure 3.

We further highlight that conv4 with a nonparametric predictor is flexible enough to deal with dif-
ferent image sizes, albeit not with a different number of channels. A study on the performance
differences with and without resizing on NP-MAML and especially NP-MAML-4 is suggested as
future work.

H.2 POTENTIAL OF NONPARAMETRIC PREDICTORS IN META-LEARNING RESEARCH

Our nonparametric addition to the BOIL algorithm performs favorably compared to parametric so-
lutions in cross-domain few-shot classification. Further, as established in Section 2.2.2, our method
is flexible w.r.t. the in- and output dimensionality of a given task, making it straightforward to apply
in heterogeneous environments. As a result, we encourage the use of nonparametric components,
especially in meta-learning, as it enables architectures to keep up with increasing task diversity (Tri-
antafillou et al., 2020). However, we believe that the potential of rapid learning in MAML goes
far beyond the scope of image classification. Consequently, future meta-learning architectures are
required to become increasingly flexible without losing the ability to rapidly learn new tasks from
only a few samples. We leave future work to challenge the meta-learning system even further, pos-
ing task distributions as mixtures of, e.g., predictions on time series, audio, and speech. We believe
that favorable network initialization can be learned that bridges all of those domains.

Further, we recognize the use of Gaussian Processes (Rasmussen & Williams, 2006) as another way
to form nonparametric predictive distributions over few-shot tasks, which can be employed for both
regression and classification. Applying Gaussian Processes to meta-learning has already received
attention (Myers & Sardana, 2021).
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Figure 3: Image samples from FC100 (top) vs. image samples from MiniImageNet (bottom). Im-
ages have been resized to a common 512 ˆ 512 pixels. We observe that FC100 samples are much
blurrier when resized, requiring different features for edges, corners, etc.
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