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Abstract: Three challenges limit the progress of robot learning research: robots1

are expensive (few labs can participate), everyone uses different robots (findings2

do not generalize across labs), and we lack internet-scale robotics data. We take on3

these challenges via a new benchmark: Train Offline, Test Online (TOTO). TOTO4

provides remote users access to shared robots for evaluating methods on common5

tasks and an open-source dataset of these tasks for offline training. Its manipulation6

task suite requires challenging generalization to unseen objects, positions, and7

lighting. We present initial results on TOTO comparing five pretrained visual8

representations and four offline policy learning baselines, remotely contributed by9

five institutions. The real promise of TOTO, however, lies in the future: we release10

the benchmark for additional submissions from any user, enabling easy, direct11

comparison to several methods without the need to obtain hardware or collect data.12

Keywords: Benchmarking, Robot Learning, Datasets13

1 Introduction14

Figure 1: Train Offline, Test Online: Our bench-
mark lets remote users test offline learning methods
on shared robots.

One of the biggest drivers of success in ma-15

chine learning research is arguably the avail-16

ability of benchmarks. From GLUE [1] in17

natural language processing to ImageNet [2]18

in computer vision, benchmarks have helped19

identify fundamental advances in many areas.20

On the other hand, robotics as a field struggles21

to establish common benchmarks due to the22

physical nature of evaluation. The experimen-23

tal conditions, objects of interest, and even24

hardware vary across labs, often making al-25

gorithms sensitive to implementation details.26

Finally, the difficulties of purchasing, building,27

and installing hardware and software infras-28

tructure make it challenging for newcomers to contribute to the field.29

For robotics research to advance, we clearly need a common way to evaluate and benchmark different30

algorithms. A good benchmark will not only be fair to all algorithms but also have low participation31

barrier: setup to evaluation time should be as low as possible. Efforts like YCB [3] and RB2 [4] aim32

to standardize objects and tasks, but the onus of setting up infrastructure still lies with each lab. A33

simple way to overcome this is the use of a common physical evaluation site, as the Amazon Picking34

Challenge [5] and DARPA Robotics Challenges [6, 7, 8] have. However, the barrier is still high since35

participants must set up their own training infrastructure. Both of the above frameworks leave the36

method development phase unspecified and struggle to provide apples-to-apples comparisons.37
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Many robot learning algorithms do online training, where a policy is learned concurrently with data38

collection. One way to standardize online training is with simulation [9, 10, 11, 12]. While simulation39

mitigates issues with variation across labs, the findings from simulated benchmarks may not transfer40

to the real world. On the other hand, if we conduct online training in the real world, comparison41

across labs becomes difficult due to physical differences. In recent years, larger datasets have surfaced42

in robotics [13, 14, 15], and with them the rise of offline training algorithms. From imitation learning43

to offline RL, these algorithms can be trained on the same data and tested on common hardware.44

Inspired by this observation, we propose a new robotics benchmark: TOTO (Train Offline, Test45

Online). TOTO has two key components: (a) a large-scale offline manipulation dataset to train46

imitation learning and offline RL algorithms; (b) a shared hardware setup where users can evaluate47

their methods now and going forward. Because all participants train using the same publicly-released48

dataset and evaluate on shared hardware, the benchmark provides a fair apples-apples comparison.49

TOTO paves a path forward for robot learning by lowering the entry barrier: when designing a new50

method, a researcher can train their policy on our dataset, evaluate it on our hardware, and directly51

compare it to the existing baselines for our benchmark. TOTO means no more time devoted to setting52

up hardware, collecting data, or tuning baselines. In this paper, we lay out the TODO design and53

present initial methods contributed by benchmark beta testers across the country. Our results show54

that our benchmark is challenging yet possible, providing room for growth as TOTO users iterate.55

2 The TOTO Benchmark56

Our benchmark focuses on manipulation due to lack of benchmarking in this area. The robots57

(Appendix Section 5.2) are set in environments that enable a set of benchmark manipulation tasks58

described in Section 2.1. We collect an initial dataset on these tasks, detailed in Section 2.2. Finally,59

in Section 2.3, we present the evaluation protocol for all policies contributed to our benchmark.60

2.1 Tasks61

We use two everyday manipulation tasks: pouring and scooping, similar to those introduced in prior62

work [4, 16]. Example observations are shown in Fig. 4 of Appendix Section 5.3. To see the original63

task designs, please refer to RB2: https://rb2.info. Our tasks differ from those in RB2 in a few64

ways. We randomize the robot’s pose at the start of each episode, apply more noise to target object65

locations, and use a variety of objects for each task based on availability. Lastly, we do not normalize66

the reward: the reward is the weight in grams of the material successfully scooped or poured.67

Scooping. The training set includes all combinations of three target bowls, three materials, and six68

target bowl locations (front left, front center, front right, back left, back center, and back right).69

Pouring. The training set includes all combinations of four target cups, two materials, and six target70

cup locations (same locations as scooping). The cup in the robot gripper is the same in all experiments71

(clear plastic, enabling better perception of the material remaining in the cup).72

2.2 Dataset73

A key pillar of our benchmark is the release of a manipulation dataset, which includes 1895 scooping74

trajectories and 1003 pouring trajectories collected with a mix of teleoperation, behavior cloning75

rollouts, and replay with noise. Each trajectory includes RGB-D video, actions (joint angle targets),76

joint states (joint angles), and task metrics (rewards). More details are in Appendix Section 5.3.77

2.3 Evaluation Protocol78

We evaluate using a variety of test settings. We use two unseen objects (bowls and cups) and one79

unseen material (mixed nuts for scooping and Starburst candies for pouring). We evaluate three object80

locations seen during training (front left, front center, front right) and three unseen locations. We81

evaluate three training seeds per method. The robot starts each trajectory at random pose based on82

the random seed. 2 objects, 1 material, 3 locations, and 3 seeds means that methods are evaluated83

across 18 trials each for train and test locations. We report mean and variance of these 18 trials.84
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3 Baselines85

We highlight TOTO’s importance with two sets of experiments: (a) what is a good visual representa-86

tion for manipulation? and (b) what is a good offline algorithm for policy learning? To test TOTO87

infrastructure, we have solicited baseline implementations for both experiments from several labs.88

3.1 Visual Representation Baselines89

A core unanswered question, due to the lack of benchmarking, is what is a good visual representation90

for manipulation? Is ResNet trained on ImageNet great or do self-supervised approaches outperform91

supervised models? We evaluate five visual representations provided by TOTO users from multiple92

labs. Two are trained on our data (in-domain) and three are generically pretrained.93

Resnet50 refers to the model trained with supervised learning on ImageNet [17].94

Momentum Contrast (MoCo) is trained on ImageNet [18], which we call MoCo (Generic). This is95

distinguished from MoCo (In-Domain) which is trained on our data with crop augmentations [19].96

Reusable Representations for Robot Manipulation (R3M) [20] is trained on Ego4D [21] with97

time-contrastive learning and video-language alignment. R3M, MoCo, and Resnet50 use the 2048-98

dimensional embedding vector following the fifth convolutional layer.99

Bootstrap Your Own Latent (BYOL) [22] is a self-supervised representation learning method trained100

on our dataset. The BYOL representation embedding size is 512.101

These representations performed the best among a larger set of vision models on which we ran an102

initial brief analysis (including offline visualizations and BC rollouts). Additional representations103

that performed less well included CLIP [23] and a third-layer MoCo model (instead of fifth-layer).104

3.2 Policy Learning Baselines105

Remote users have contributed the policy learning baselines detailed below. These methods span106

the spectrum from nearest neighbor querying to BC to offline reinforcement learning (RL). They107

were selected according to each TOTO contributor’s expertise with approach coverage in mind. All108

methods pass RGB image observations through frozen vision representations before passing them to109

a policy. BC, IQL, and DT use the MoCo (In-Domain) model, while VINN uses BYOL.110

Behavior Cloning (BC) learns to mirror actions in the training data. Closed-loop BC predicts a111

new action every timestep, while open-loop BC predicts a sequence of actions to execute without112

re-planning. Our BC baseline is quasi open-loop: training trajectories are split into 50-step action113

sequences, and the policy is trained to predict such a sequence. During evaluation, these 50 actions114

are executed between each prediction step. We find that this performs better than closed-loop115

or open-loop alone: closed-loop struggles without history, and open-loop is challenging with our116

variable-length tasks. We filter out zero-reward trajectories from the training data [24].117

Implicit Q-learning (IQL) [25] uses the open-source implementation from d3rlpy [26]. We con-118

catenate frozen image embeddings with the robot’s joint angles as the input state to the model.119

Visual Imitation through Nearest Neighbors (VINN) [27] is a nearest neighbor policy using an120

image encoder trained with BYOL [22]. BYOL maps the high-dimensional observation space to a low121

dimension to obtain a robust policy. VINN was originally closed-loop, but in this work we mirror the122

50-step quasi open-loop approach used in the BC baseline (described above).123

Decision Transformers (DT) [24] recasts offline RL as a (conditional) sequence modeling task. It is124

trained to predict the action in the dataset, but also conditions on the trajectory history and a target125

return (desired level of performance). We use the Hugging Face DT implementation. DT uses a126

sub-sampling period of 8 and a history window of 10 frames. For evaluation, the target return prompt127

is chosen as the mean return from the top 10% of trajectories in the dataset for each task.128

4 Experimental Results129

Visual Representation Results. Our first experiments compare the vision representations detailed130

in Section 3.1 combined with BC policies and evaluated according to Section 2.3. The success rates131

for all representations and tasks are visualized in Fig. 2, and the numerical rewards are presented132
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in Appendix Table 2. Finetuning the MoCo model on our data outperforms the generic version,133

as expected. MoCo (In-Domain) achieves the highest success rate and average reward on both134

scooping and pouring, followed by BYOL, the other in-domain model. The relative performance135

between models is mostly consistent across scooping and pouring. Resnet50 and MoCo (Generic)136

perform slightly better on pouring than on scooping.137

Fig. 2 also visualizes performance differences due to object locations. Locations seen during training138

perform better, as expected, but performance does not degrade significantly, suggesting that the139

representations have a generalizable notion of where the target object is. Surprisingly, the two140

representations trained on our data (MoCo (In-Domain) and BYOL) perform equally good or even141

slightly better on unseen locations for scooping.142

Figure 2: Vision representation comparison with BC. Models trained on our data (left of dashed
line) perform better than generic ones (right), and object train locations work better than unseen ones.

Policy Learning Results. Fig. 3 visualizes the policy learning comparison (described in 3.2)143

evaluated on TOTO, and the numerical rewards are in Appendix Table 3. Due to compute constraints,144

we have 1 and 2 seeds for DT and IQL respectively. We compensate by duplicating the evaluation of145

these seeds to keep the number of trials consistent. We find that VINN performs best in train locations.146

We also note that offline-RL approaches (especially IQL) achieve some success unlike in RB2[4].147

Our dataset is larger and more diverse than RB2, likely contributing to better offline RL performance.148

We found that scooping proves challenging due to a non-markovian aspect: the spoon is above the149

bowl both before and after scooping. Thus we would expect open-loop methods (BC, VINN) and those150

with history (DT) to perform better than others. While BC and VINN achieve competitive performance151

on scooping, DT only achieves moderate success on scooping and does not see any positive rewards152

on pouring. Meanwhile, IQL provides decent performance without history on a non-markovian task.153

Comparing the train and test location results for policy learning proves interesting. VINN performs154

the best on train locations but struggles on unseen locations, since it selects actions using the nearest155

neighbor from the training data. All other methods also experience some level of degradation when156

moving to unseen locations, leaving one clear direction for method improvement using TOTO.157

Figure 3: Evaluating offline policy learning results. VINN has the best performance on train
locations but degrades on unseen locations, as does the performance of other methods.

4.1 Discussion158

The main goal of this work is to introduce TOTO, our robotics benchmark. We presented a broad159

initial set of vision representations and policy learning baselines, which can be built off of by future160

users. Notably, these baselines were contributed in the same way that TOTO will be used in the future:161

by collaborators who locally train policies and submit them for remote evaluation on shared hardware.162

This shows the feasibility of our user workflow. The initial baseline results show the challenging163

nature of our tasks, especially with respect to generalization. By using TOTO as a community, we164

can more quickly iterate on ideas and make progress on the real-world bottlenecks to robot learning.165
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5 Appendix273

5.1 Related Work274

For a thorough description of work related to remote robotics benchmarking, we refer to the Robotics275

Cloud concept paper [28]. Here we describe related work specific to our instantiation of a robotics276

cloud (TOTO).277

Shared Tasks and Environments A necessary step in comparing method performance is evaluation278

on a common task. Common tasks might mean a standard object set such as YCB [3], which can279

be distributed to remote labs, allowing for shared metrics like grasp success on these objects. The280

Ranking-Based Robotics Benchmark (RB2) [4] provides four common manipulation tasks (similar to281

those we use, described in Section 2.1) as well as a framework for comparing and ranking methods282

across results from multiple labs. Another route is sharing the environment itself, as the Amazon283

Picking Challenge [5] and DARPA Robotics Challenges [6, 7, 8] have done. Sharing tasks or284

environments gives metrics by which we can compare approaches. However, users must still develop285

the approach on their own hardware in their own lab, and recreating identical environment setups is286

quite challenging.287

Shared, Remote Robots Going one step further, remotely-accessible robots can be shared across288

the community, enabling method development and evaluation without users acquiring their own289

hardware. Georgia Tech’s Robotarium [29] allows for remote experimentation of multi-agent methods290

on a physical robotic swarm, which has been extensively used not just in research but also in education.291

OffWorld Gym [30] provides remote access to navigation tasks using a mobile robot, with closely292

mirrored simulated and physical instances of the same environment. A recent survey paper [31]293

provides an overview of robotic grasping and manipulation competitions, including some that involve294

remotely-accessible, shared robots like [32]. Finally, most closely related to our work, the Real Robot295

Challenge [33] runs a tri-finger manipulation competition on cube reorientation tasks. The success296

of the Real Robot Challenge framework inspires our work, which also allows for the evaluation of297

manipulation tasks on shared robots. Our work, however, is designed to evaluate robot learning298

through challenging variations (lighting, unseen test objects, etc.) and an image-based dataset (as299

opposed to assuming ground-truth state access).300

Open-Source Robotics Datasets Collecting real-world robotics data is challenging and expensive301

due to physical constraints like environment resets and hardware failures. Thus open-source datasets302

serve an important role in the field by enabling larger-scale offline robot learning. Some work303

has improved the way we collect robotics data, such as self-supervised grasping [34] and further304

parallelization of robots [35]. RoboTurk [14] provides a system for simple teleoperated data collection305

which can be executed remotely. Much work in robot learning has introduced datasets more generally,306

such as MIME [36] (8260 demonstrations over 20 tasks), RoboNet [13] (162,000 trajectories collected307

across 7 robots), and Bridge Data (7,200 demonstrations across 10 environments). However, it is308

hard to understand the value of these datasets without a common evaluation platform, something309

that Collins et al. [15] addresses by using simulation to replicate a real-world dataset. In contrast,310

we address this issue with real-world evaluation that matches the domain of the data collection. Our311

initial dataset is 2,898 trajectories, but this will grow over time as we add evaluation trajectories312

collected from users’ policies.313

Offline Robot Learning Our benchmark focuses on offline robot learning, including imitation314

learning and offline RL. Our initial baselines are described and contextualized in Section 3.2.315

5.2 Hardware316

Our hardware includes a Franka Emika Panda robot arm and workstation for real-time inference. We317

use a simple and common joint position control stack that runs at 30 Hz. Actions are specified as318

joint targets, which are translated into motor control signals using an underlying high-frequency PD319
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controller. We use joint position control because end effector control using X,Y, Z positions alone is320

not feasible to solve our tasks: for example, the orientation of the gripper must change as the robot321

pours. We use an Intel D435 RealSense camera for recording RGB-D image observations.322

We allow users to opt for a lower control frequency if desired. The training data can be subsampled323

by taking one of N frames since the actions are in absolute joint angles. We decrease the test time324

control frequency accordingly.325

5.3 Task Details326

Exmaple image observations for each task, pouring and scooping, are shown in Fig. 4. We also list327

relevant statistics of our dataset in Table. 1.328

Table 1: Dataset overview. Pouring data collection using replay and BC proved challenging to reset
(unsuccessful trials require more cleanup), so it was nearly all collected with teloperation.

Task Trials Length Success Teleop BC Replay
Scooping 1895 495 0.690 41% 33% 26%
Pouring 1003 324 0.977 99% 0% 1%

5.4 Data Collection329

To improve diversity, our dataset were collected with three techniques: teleoperation, behavior cloning330

rollouts, and trajectory replay. Details of each collection method are described below.331

Teleoperation We collected the majority of trajectories with teleoperation using Puppet [37].332

The human controls the robot in an intuitive end effector space using an HTC Vive virtual reality333

headset and controller. While this teleoperation is theoretically possible to use remotely, we collect334

the data with the human and robot in the same room, giving the human direct perception of the335

scene. Our multiple teleoperators have different dominant hands, leading to more diverse data. Most336

teleoperation trials are successful.337

Behavior cloning rollouts After teleoperation trajectories are collected, we train simple, state-338

based behavior cloning (BC) policies on each target location, so no visual perception is required. We339

roll out these trajectories with some noise added to actions at each timestep. The amount of noise340

varies across trajectories for additional diversity.341

Trajectory replay Finally, we replay individual teleoperated trajectories with added noise. While342

these might seem overly similar to the original teleoperated trajectories, keep in mind that conditions343

like lighting also vary with time of day, so this replay still expands the dataset in other ways.344

5.5 Benchmark Use345

Here we introduce the framework for our benchmark. TOTO is designed to make the user workflow346

(Section 5.5.1) easy for newcomers with well-documented software infrastructure (Section 5.5.2)347

including examples and tests.348

5.5.1 User Workflow349

We provide a real-world dataset (Section 2.2) collected using our hardware setup (Section 5.2).350

Participants optionally use our software starter kit (Section 5.5.2) and locally train policies of their351

choosing using this data.352

Users submit policies through Google Drive for evaluation on our real-world setup. They do not353

receive the low-level data from these evaluation trials; they simply receive a reward and high-level354

video to guide algorithm development, but not enough data to be used effectively for online training.355

We run the real-world evaluations while an engineer is present to supervise; thus the evaluation356

turnaround time is currently around 12 hours (depending on the time of day submitted). Our goal is357
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to place the emphasis on offline learning and prevent overfitting, thus removing the need for real-time358

results or large quantities of evaluation.359

As new users evaluate methods after the paper release, we will post (anonymous) evaluation scores360

for each attempt on a website leaderboard. We will also periodically add data collected by the users’361

policies to the original dataset.362

5.5.2 Software Infrastructure363

Our software starter kit includes documented code and instructions for policy formatting and dataset364

usage. We have open-sourced baseline code, trajectory data, and pretrained models (see our website).365

These components ensure that TOTO is easily accessible to a broad portion of the robotics, ML, and366

even computer vision communities.367

We adapt the agent format from Ke et al. [38], which requires a predict function taking in368

the observation and returning the action. We also use a standard config format and require an369

init_agent_from_config function to create the agent.370

We provide users with code for training an example image-based BC agent and a docker environment371

which wraps the minimum required dependencies to run this code. Users can optionally extend the372

docker containers with additional dependencies. We also provide a stub environment which users can373

use to locally evaluate whether the agent’s predictions are compatible with our robot environment.374

This setup allows resolution of all agent format and library dependency issues before users submit375

their agents for evaluation.376

5.6 Experimental Results377

We present the numerical rewards achieved by each method for visual policy comparison (Table. 2)378

and policy learning (Table. 3).

Table 2: Performance of vision representations with BC across train and test locations.

Model Scooping Pouring
Reward Success % Reward Success %

In Domain BYOL 4.39 72.2% 20.22 66.6%
MoCo 7.42 83.3% 22.86 72.2%

Out of
Domain

MoCo 2.11 33.3% 14.89 55.5%
ResNet50 2.83 47.2% 18.86 50.0%
R3M 2.97 44.4% 6.94 33.3%

Table 3: TOTO policy learning results across train and test locations.

Model Scooping Pouring
Reward Success % Reward Success %

BC + MoCo 7.42 83.3% 22.86 72.2%
VINN 7.89 63.9% 21.75 47.2%
IQL 6.08 47.2% 9.86 38.9%
DT 2.83 27.8% 0.00 0.0%

379

5.7 Limitations and Future Work380

The evaluation protocol currently has manual steps: we measure the material transferred during381

pouring and scooping to compute rewards and reset by returning the material to the original object.382

We do see future potential to automate reward measurements and resets, such as by adding a scale383

beneath the target object and using an additional robot to reset the transferred materials. Spills of the384

transferred material, however, might still require manual intervention.385
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We plan to expand the evaluation setup to include additional robots. This would help us meet the386

increasing demand in evaluations as more users adopt the benchmark. One challenge will be visual387

differences across robots, but we plan to collect additional demonstrations on new robots, and this388

would be an opportunity to expand the set of tasks as well (we could designate one robot per task).389

As user demand further grows, we will implement an evaluation job queue that prioritizes evaluation390

requests from different users and schedules the jobs based on the number of robots currently available.391

11



Figure 4: TOTO Task Suite. Our pouring and scooping tasks involve challenging variations in
objects, position, lighting, and more.
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