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Abstract

In the field of 3D Human Pose Estimation (HPE), scalability and generalization
across diverse real-world scenarios remain significant challenges. This paper
addresses two key bottlenecks to scalability: limited data diversity caused by

‘popularity bias’ and increased ‘one-to-many’ depth ambiguity arising from greater
pose diversity. We introduce the Biomechanical Pose Generator (BPG), which
leverages biomechanical principles, specifically the normal range of motion, to
autonomously generate a wide array of plausible 3D poses without relying on a
source dataset, thus overcoming the restrictions of popularity bias. To address depth
ambiguity, we propose the Binary Depth Coordinates (BDC), which simplifies
depth estimation into a binary classification of joint positions (front or back).
This method decomposes a 3D pose into three core elements—2D pose, bone
length, and binary depth decision—substantially reducing depth ambiguity and
enhancing model robustness and accuracy, particularly in complex poses. Our
results demonstrate that these approaches increase the diversity and volume of pose
data while consistently achieving performance gains, even amid the complexities
introduced by increased pose diversity.

1 Introduction

3D Human Pose Estimation (HPE) is essential for determining the 3D locations of human joints in
images or videos. It plays a pivotal role in applications such as person re-identification [1], action
recognition [2, 3, 4], human mesh recovery [5, 6], and virtual reality [7, 8]. As the importance of
this technology grows, there is an increasing demand for more accurate and universally applicable
models. Addressing the key challenges that limit the scalability of this field is therefore crucial.

In this paper, we identify two primary bottlenecks impeding the scalability of 3D HPE:

1. Difficulty in Collecting Diverse Datasets: Annotated 3D datasets for 3D HPE are typically
collected in controlled indoor environments with limited motions performed by a few
individuals. This results in a ‘popularity bias’[9], where the data primarily reflects a small
subset of human activities and demographics, thus restricting the diversity needed for
effective model performance in various real-world scenarios. This lack of diversity means
that models trained on such data may fail to generalize to unseen poses and environments.

2. Exacerbation of the ‘One-to-Many’ Depth Ambiguity Problem: Depth ambiguity[10, 11,
12] arises when a single 2D pose can correspond to multiple 3D interpretations. Increased
pose diversity in 3D HPE intensifies this issue, complicating the depth estimation process.
This ambiguity significantly impacts the accuracy of 3D pose estimation, as the model must
choose from several plausible 3D configurations for a given 2D input, often leading to
incorrect depth predictions.
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Figure 1: Spherical coordinate distribution for the vector connecting the right shoulder to the right
elbow across datasets: H36M [20], 3DHP [21], 3DPW [22], and BPG, with valid regions highlighted
in grey (taken from [23]).

To address the first bottleneck, pose augmentation methods for 3D HPE [13, 14, 15, 16] have been
proposed. These methods leverage knowledge of labeled (source) data to enhance the generalization
capability of pose estimators on unseen data. However, relying solely on source data does not fully
overcome the inherent limitations, as the derived knowledge also carries the same ‘popularity bias,’
limiting its utility outside laboratory environments. Therefore, previous methods cannot guarantee
the generation of out-of-source poses that are crucial for effective real-world applications.

To overcome these limitations, we propose a Biomechanical Pose Generator (BPG) that does not
rely on source data but utilizes biomechanical knowledge. The concept of ‘Normal Range of Motion
(NROM)’[17] is commonly used in the medical field to describe the standard limits within which a
joint can move without discomfort or injury. Our method applies the NROM constraint to the forward
kinematic function[18], enabling the autonomous generation of a wide range of plausible 3D poses.
This approach enhances the diversity and reliability of pose data.

Furthermore, recognizing that adult human proportions are generally consistent [19], we allow
slight variations in proportions to accommodate a broader range of body types. Consequently,
BPG leverages biomechanical knowledge to generate a broader spectrum of feasible 3D poses,
thereby avoiding the popularity bias inherent in existing datasets, as demonstrated in Figure 1. This
methodology provides the essential flexibility and adaptability required for accurately modeling and
predicting the diverse range of human poses and activities in real-world environments.

Figure 2: The MPJPE (in mm) across
3D HPE models against the depth am-
biguity ratio is detailed in Sec.3.2. The
baseline* employs BDC on the baseline
model[24], and H36M* combines source
data with additional data synthesized by
BPG, expanding the total dataset to ten
times the H36M training size.

To mitigate the one-to-many problem in 3D HPE, we de-
veloped the Binary Depth Coordinates (BDC) that recon-
ceptualizes depth estimation as a binary classification task.
Instead of using traditional continuous depth coordinates,
we limit each joint’s depth to two options: front or back.
This simplification is based on geometric principles; once
the length of connected bones is determined, two possible
depth positions (front or back) can be calculated based on
the joint positions. This approach allows us to decompose
each 3D pose into three main components: 2D pose, bone
length, and binary depth decision. This decomposition
effectively reduces depth ambiguity and significantly en-
hances the model’s accuracy and robustness for complex
poses.

As demonstrated in Figure 2, poses with significant depth
ambiguity have shown poorer performance in the baseline
model, with increased data volumes exacerbating this is-
sue. However, when employing the BDC, performance
remains consistent regardless of ambiguity, and notably,
poses with greater depth ambiguity exhibit improved per-
formance as the amount of data increases.

This paper aims to advance the development of scalable
solutions in 3D HPE by addressing these issues, ultimately
contributing to the creation of more accurate and adaptable technologies. By combining our data
generation method with a new approach to resolving depth ambiguity, we aim to establish a foundation
for future research and applications in this dynamic field.
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2 Biomechanical Pose Generator

To address the limitations of current data collection methods, we propose the Biomechanical Pose
Generator (BPG) that does not rely on source data but utilizes biomechanical knowledge. The concept
of ‘Normal Range of Motion (NROM)’ is commonly used in the medical field to describe the standard
limits within which a joint can move without discomfort or injury. Our method applies the NROM
constraint to the forward kinematic function, enabling the autonomous generation of a wide range of
plausible 3D poses. This approach enhances the diversity and reliability of pose data. Recognizing
that adult human proportions are generally consistent, we allow slight variations in proportions to
accommodate a broader range of body types. Consequently, BPG leverages biomechanical knowledge
to generate a broader spectrum of feasible 3D poses, thereby avoiding the popularity bias inherent in
existing datasets. This methodology provides the essential flexibility and adaptability required for
accurately modeling and predicting the diverse range of human poses and activities in real-world
environments.

Figure 3: Osteo-kinematic Model
with Joints and Degrees of Free-
dom.

Osteo-kinematic Model. The human body performs complex
motions constrained by biomechanical principles. To capture
these constraints, we utilize an osteo-kinematic model similar
to [18] for generating realistic 3D human poses. This model
is based on the biomechanical structure of the human body,
including bones, joints, and their respective degrees of freedom
(DOF). In the osteo-kinematic model, bones can rotate at con-
nected joints, and each joint is assigned a specific number of
DOF to represent natural human-like movements. For instance,
elbows and knees each have one degree of rotational freedom
(1-DOF), while shoulders, hips, neck, and pelvis each have
three degrees of rotational freedom (3-DOF). Unlike typical
osteo-kinematic models that use fixed bone lengths, our model
allows for adjustments in human body proportions to generate
poses for a diverse range of subjects. The model includes 17
joints, 16 bone lengths, and 25 angle parameters. This detailed
configuration ensures that the generated poses adhere to the nat-
ural movement constraints of the human body while allowing
for variability in body types. Figure 3 illustrates the joints and
degrees of freedom in the osteo-kinematic model.

Postural Noise. The osteo-kinematic model uses 41 parameters
(lengths and angles) to create a pose. Unconstrained random
sampling of parameters may generate unnatural 3D poses, such
as a backward-bent arm or leg, which do not accurately represent natural human postures. To address
this, we set boundaries using two predetermined human features: a NROM [17] and human limb
bone length ratios [19]. The range of motion (ROM) refers to the extent to which bones can move
through a complete spectrum of movements. Although each individual’s ROM varies, each joint
possesses a NROM representing healthy human movement. NROM encompasses three different axes
of rotation, considering the movement direction of the joint. By aligning these axes with the DOF of
the osteo-kinematic model, we define an interval [θlower

i , θupperi ] for each ith angle parameter. Hence,
these intervals allow a self-created pose to enable natural human motion. Different people exhibit
distinct bone lengths. However, the proportions of the human body remain relatively consistency for
most individuals. This constancy permits us to set a mean value for human limb length ratios l̄j for the
jth bone. To obtain 3D human data with various ratios, we establish a ratio range [(1−α)l̄j , (1+α)l̄j ]
for each jth bone parameter, where α ∈ (0, 1) is a predetermined parameter. Using these intervals,
we randomly obtain the bone parameter set l = {lb}Bj=1 and the angle parameter set θ = {θi}Pi=1,
where B is the number of bones, P is the number of angle parameters, lj ∼ U[(1−α)∗l̄j ,(1+α)∗l̄j ]
represents the bone parameter of the jth bone, and θi ∼ U[θlower

i ,θupper
i ] represents the ith angle

parameter. Finally, we define these two sets as the postural noise Npose = {l,θ}, which can be
acquired randomly within boundaries representing the characteristics of ordinary individuals.

Forward Kinematic Function. Following [25], we use the forward kinematic function T to map
postural noise to joint positions:

T(Npose) = P3D, (1)
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where P3D ∈ RJ×3 represents the synthesized 3D pose (see Appendix C.1). Each joint undergoes
a local coordinate transformation based on its parameters. The global coordinates of each joint are
calculated by multiplying a series of rigid transformation matrices obtained via the parameters from
the root point to itself.

Pose Confidence. Although our method utilizes the NROM of individual joints to create realistic
human poses, the relative positions of all bones must be considered to ensure the plausibility of the
pose. For instance, disregarding the bone position can result in a physical intersection, such as legs
crossing or hands intersecting with the torso. For this reason, we calculate the bone distance dn,m
between the nth and mth bones. We use the indicator function of the interval [d̄n,m,∞), where d̄n,m
is the pre-calculated relative bone radius [19]. The pose confidence C for P3D is given by

C =

B∏
m=n+1

B−1∏
n=1

1[d̄n,m,∞)(dn,m). (2)

If any bones get abnormally close, the confidence value becomes 0; otherwise, it remains 1. This
measure allows us to avoid poses that are anatomically possible but physically impossible. We
eliminate poses with a value of 0 using the pose confidence C and only use poses with a value of 1.

Projection. We project the generated 3D poses into 2D poses using camera parameters, including
a rotation matrix, translation vector, focal length, and principal point. Without predetermined
camera settings, we generate these parameters within our framework. We sample a rotation matrix
R ∈ R3×3 from a uniform distribution on all 3D rotation matrices and the translation vector T ∈ R3

from a uniform distribution on the interval [T lower, Tupper] that sets a camera location to avoid
abnormally close or far positions. Although other methods use a limited rotation distribution, we
use a comprehensive distribution to fairly represent all potential camera settings. For simplicity, we
decide the focal length to be one. The principal point is fixed at zero, as the translation vector and
the principal point serve similar functions. Using the camera parameters c = R, T , we define the
projection function P that projects the self-created pose P3D to a 2D pose P2D ∈ RJ×2 following
Drover et al. [26] as:

P(c,P3D) = P2D. (3)

The projected 2D pose, along with the original 3D pose, constitutes the final output of our generator.
Since this pose is generated solely using biomechanical constraints, this approach ensures the
reliability and diversity of the pose and produces data free from popularity bias.

3 Binary Depth Coordinates

Our goal is to mitigate the depth ambiguity that arises when lifting a 2D pose to 3D. Typical human
pose estimators predict poses in the Camera Space Coordinates (CSC) system, which neglects
perspective, often resulting in substantial projection errors. An alternative, the Normalized Device
Coordinates (NDC), remaps the viewing frustum to a cube but still struggles with the inherent
depth ambiguity in continuous space. The distinction between potential poses in continuous space
is not merely a matter of measurement but one of understanding the multidimensional nature of
human motion, where multiple poses can be correct in different contexts. For instance, a hand
extended forwards towards the camera or backwards away from it could represent equally plausible
positions in a given pose. However, the variance between such positions in continuous space is
significant, introducing a level of complexity that can obfuscate the learning process, as the model
must recognize and account for fundamentally different yet anatomically feasible poses that share
similar 2D projections.

To address this, we introduce the Binary Depth Coordinates (BDC), a novel framework that accom-
modates the binary nature of depth in images and the continuity of real-world space. The BDC
encodes a joint’s position using a tuple (x2D

i , y2Di , li, si, Pi), where x2D
i and x2D

i specify the ith

joint’s location in the image plane. The additional elements li, representing the bone length, and si,
a binary depth parameter indicating depth relative to the plane of the image, provide the necessary
context for a mapping function to estimate the corresponding 3D coordinates (x3D

i , y3Di , z3Di ) within
the CSC. The parameter Pi = [P x

i , P
y
i , P

z
i ] stores the 3D coordinates of the preceding joint in the

skeletal tree, helping to maintain the anatomical structure during transformations. In the BDC, the
3D depth z3D is computed by solving a quadratic equation derived from the geometric constraints of
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Figure 4: Our estimation process using BDC begins by using a fully connected layer to generate
the bone lengths l, refined 2D joint, trajectoriy z3D0 , and the binary depth parameters s from the
input 2D joint positions. These bone lengths and 2D trajectories are then processed through the
quadratic formula to determine possible depth values (z3D+ ,z3D−). The final 3D pose in the camera
coordinate system is obtained by combining the binary depth parameter with the possible depth
values, resulting in the accurate reconstruction of the 3D skeleton.

the joint’s location in space. The equation is formulated as follows:

(x3D
i − P x

i )
2 + (y3Di − P y

i )
2 + (z3Di − P z

i )
2 = l2i , (4)

where x3D
i and y3Di are the coordinates in the CSC calculated by back-projecting a ray from the

image plane using the camera parameters:

x3D
i =

x2D
i − cx

fx
· z3Di , y3Di =

y2Di − cy

fy
· z3Di . (5)

Here, cx and cy denote the camera principal points, while fx and fy represent the focal lengths along
the x and y axes, respectively. The solution to the quadratic equation provides two potential values
for z3Di as z3D+

i and z3D−
i . These values reflect the dual nature of depth perception in perspective

projection. To resolve the ambiguity between these two depths, the binary depth parameter si is
utilized. This parameter, derived from the BDC, indicates whether the joint is closer to or further
from the camera relative to its connected joint. Specifically: When si = 1, it is interpreted that the
joint is closer to the camera, thus selecting z3D+

i as the depth value. Conversely, when si = −1,
the system chooses z3D−

i , indicating that the joint is positioned further away from the camera.
Our method precisely maps 2D poses to their accurate 3D configurations, leveraging observed and
computed depth cues to resolve ambiguities and maintain anatomical consistency. The BDC integrates
perspective projection through binary parameters and detailed bone length measurements, facilitating
the accurate reconstruction of skeletal structure and overcoming depth ambiguity. By accurately
calculating skeletal bone lengths and relationships, BDC enables the precise estimation of 3D poses,
demonstrating a significant advancement over traditional coordinate systems that fall short in such
complex scenarios.

3.1 Integration of BDC with Existing 3D HPE Models

The BDC is designed to integrate seamlessly into existing 3D human pose estimation frameworks
with minimal modifications. This compatibility is achieved by adapting BDC to the final layers of
commonly used neural network architectures. By adjusting the dimensionality of the output layer
to accommodate our parameters, BDC enables the prediction of 2D poses, bone lengths, and the
binary depth parameter si, thereby facilitating its integration into existing models. Additionally,
predicting si independently for each joint may fail to capture the complex interdependencies between
different body parts adequately. To address this, we predict si collectively for anatomically grouped
segments—specifically, the left arm, right arm, right leg, left leg, and torso. For example, when
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predicting si for the left arm, which typically involves three joints, there are 23 = 8 possible
combinations of depth configurations. Thus, the model’s task is to select one of these eight possible
states. To achieve this, we utilize the Gumbel-Softmax, which allows differentiable sampling from
discrete probability distributions. This approach enables the model to efficiently manage the prediction
complexity, enhancing both the accuracy and anatomical consistency of the 3D pose reconstructions.
Figure 4 illustrates the integration of the BDC into the existing lifting model.

3.2 Depth Ambiguity Ratio

This section introduces a Depth Ambiguity Ratio (DAR) to quantitatively express the uncertainty in
depth for each joint in a 3D pose. The DAR quantifies the uncertainty by normalizing the sum of the
potential depth values, z3D+

i and z3D−
i , obtained from the quadratic equation solving for depth. To

ensure the ratio falls between 0 and 1, we normalize this sum by dividing it by twice the bone length,
denoted as 2li:

DAR =
1

J − 1

J∑
i=2

z3D+
i + z3D−

i

2li
. (6)

This normalized metric serves as a universal index to measure depth uncertainty, enhancing the
analysis of 3D modeling accuracy and consistency across different implementations.

4 Related Work

3D human pose estimation. Initial approaches [27, 28, 29, 30, 31, 32, 33, 34, 35, 36] in 3D human
pose estimation attempted to extract 3D poses directly from monocular images without leveraging 2D
pose estimations. However, with significant progress in 2D pose estimation techniques [37, 38, 39],
the method of lifting 2D poses to 3D has emerged as a predominant strategy due to its effectiveness
and scalability. Our work focuses on advancing these lifting-based frameworks [40, 24, 41, 42],
particularly in terms of scalability and generalization to diverse real-world scenarios.

To enhance the lifting-based framework, several complementary approaches have been explored.
Leveraging temporal information apporches [42, 24, 43] across multiple frames is a critical area
in 3D HPE, as it can improve the accuracy and smoothness of 3D pose predictions. [24] utilized
temporal convolutions over sequences of 2D keypoints to model temporal dependencies and reduce
ambiguities inherent in single-frame predictions. Another effective strategy involves using rich image
features. Approaches such as [41] incorporate spatial relationships between keypoints directly from
image features, enhancing the pose estimation process. Addressing the inherent depth ambiguity in
3D pose estimation, multi-hypothesis approaches [12, 44, 45] generate multiple plausible 3D pose
predictions and select the best fit. These methods use an evolutionary training data approach to
generate multiple hypotheses for 3D poses from monocular images, thereby handling ambiguity and
improving robustness.

Cross-domain learning for 3D HPE. Generalizing to rare or unseen poses presents a significant
challenge. Various strategies have been developed to address this by adapting training methods. For
example, [28] introduced a method for optimal network architecture selection for different body
parts, while [46] enhanced robustness by processing local regions of the 2D pose independently. [47]
proposed inference stage optimization to extract distributional knowledge specific to target scenarios.
Despite these advancements, they often struggle with the inherent limitations of training datasets, and
self-supervised training frequently falls short in performance. To further enhance the generalization
ability of 3D HPE, extensive research has focused on pose augmentation methods. Given the
limitations of existing pose datasets and the challenges in collecting 3D pose data, generating
additional 2D-3D pose pairs has proven beneficial. [28] suggested using body-part crossover and
mutation operations to create new 3D poses, though constrained by dependence on the source
dataset and fixed mutation ranges. [48] employed reinforcement learning for joint-angle rotation
control without original datasets, but this self-supervised approach’s performance is limited. [15]
and [13] used GANs for pose augmentation, showing improved cross-dataset performance, primarily
due to variations in camera viewpoints and human positions rather than increased pose diversity.
[49] generated 2D-3D pose pairs from 2D pose labels of the target domain, closely matching its
distribution. [16] introduced network designs like interpolation sub-net and body-part grouping net.
Despite these advances, generated datasets often lack diversity, remain heavily dependent on the
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source dataset, and do not adequately consider the pose estimator’s adaptability to the generated data,
leading to potential training instability with complex poses.

Our work focuses on pose augmentation for 3D HPE. By synthesizing novel 3D poses and integrating
them with source poses, it increases pose diversity and mitigates depth ambiguity issues.

5 Experiments

Our experiments were conducted on the Human3.6M (H36M) [20], MPI-INF-3DHP (3DHP) [21],
and 3DPW [22] benchmarks. H36M [20], a widely used benchmark for 3D human pose estimation,
includes over 3.6 million indoor video frames captured from four angles with 7 subjects denoted as
S1, S5, S6, S7, S8, S9, and S11. 3DHP [21] consists of 1.3 million images and human pose data
captured from 8 subjects using a markerless motion capture system in a green screen studio with 14
cameras, with six indoor and outdoor sequences evaluated following standard protocols. 3DPW [22]
dataset is a challenging collection of in-the-wild 2D and 3D data, uniquely captured using a moving
camera, unlike other datasets. We evaluate pose accuracy on H36M and 3DPW using mean per joint
position error (MPJPE) and procrustes aligned mean per joint position error (PMPJPE), and on 3DHP
with MPJPE, percentage of correct keypoints (PCK) within 150mm, and area under the curve (AUC),
following established protocols.

5.1 Comparison on Pose Augmentation methods

In this section, we assess the generalizability of the data generated by our Biomechanical Pose
Generator (BPG) in comparison to previous Pose Augmentation (PA) methods. Consistent with prior
research and previous works [13, 16, 15], we utilize the single-frame VPose [24] network to lift 2D
poses to 3D. Our training sources include subjects S1, S5, S6, S7, and S8 from the H36M dataset,
and we employ a 16-keypoint human model for evaluation. The volume of synthesized poses matches
that of the source data.

Table 1: Results on the H36M dataset, using the full
set of training data. S9 and S11 are the targets.

Method PA MPJPE↓ P-MPJPE↓
VPose [24] 52.7 40.6

EvoSkeleton [50] ✓ 50.9 38.0
PoseAug [13] ✓ 50.2 39.1
DH-AUG [15] ✓ 49.8 38.3
CEE-Net [16] ✓ 47.3 36.8

BPG ✓ 46.9 36.5
BPG + BDC ✓ 44.0 34.3

Table 2: Results on the H36M dataset, using a subset
of the training data. We report MPJPE for evaluation.

Method PA S1 S1 + S5
VPose [24] 65.2 57.9

EvoSkeleton [50] ✓ 61.5 54.6
PoseAug [13] ✓ 56.7 51.3
DH-AUG [15] ✓ 52.2 47.0
CEE-Net [16] ✓ 51.9 46.7

BPG ✓ 51.5 46.1
BPG + BDC ✓ 46.8 41.2

Source-dataset evaluation results. We con-
ducted a series of experiments to assess the
impact of integrating poses synthesized by
the BPG with source data on the performance
within the source dataset. For the evaluation,
we utilized all available training data from
the source dataset and employed HRnet [37]
to generate predicted 2D keypoints as input,
ensuring consistency with prior approaches.
As depicted in Table 1, our method achieves
improvements in MPJPE by 3.3mm and in
P-MPJPE by 2.5mm. Furthermore, it is evi-
dent that using only the BPG still results in
performance improvements over traditional
methods. These results suggest that our syn-
thesized data can produce a more diverse set
of poses compared to traditional pose aug-
mentation techniques. Furthermore, we ex-
amined the feasibility of achieving high accu-
racy with a reduced amount of training data.
For this evaluation, we utilized subsets of the
source dataset, specifically S1 or S1 + S5,
and used ground truth 2D keypoints as input, maintaining consistency with previous methods. As
illustrated in Table 2, our experiments demonstrate that leveraging medical knowledge to generate
poses allows our method to significantly enhance performance over existing methods, even with
less training data. Notably, the relative performance gains observed with reduced training data were
substantially greater than those achieved with the full training dataset. Furthermore, it is evident
that using only the BPG still results in performance improvements over traditional methods. This
finding underscores the robustness of our approach, which maintains high accuracy and significantly
outperforms conventional methods even when the training data is limited.
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Figure 5: Results of added training data on MPJPE for GraphMDN [45] and GFpose [44]. *: Indicates
that the model uses the BDC. Left: source dataset (H36M). Right: cross-domain (3DHP). The x-axis
shows the ratio of added training data relative to the original dataset size (0 to 8).

Table 3: Cross-dataset evaluation results on 3DHP
dataset.

Method PA PCK↑ AUC↑ MPJPE↓
VPose [24] 80.9 42.5 102.3

EvoSkeleton [50] ✓ 81.2 46.1 99.7
RepNet [51] ✓ 81.8 54.8 92.5

PoseAug [13] ✓ 88.6 577.3 73.0
DH-AUG [15] ✓ 89.3 57.9 71.2
PoseGU [14] ✓ 86.3 57.2 75.0
CEE-Net [16] ✓ 89.9 58.2 69.7

BPG ✓ 91.2 58.3 69.1
BPG + BDC ✓ 91.8 62.3 61.8

Table 4: Cross-dataset evaluation results on 3DPW
dataset.

Method PA P-MPJPE↓ MPJPE↓
VPose [24] 94.6 125.7
VIBE [27] ✓ 81.6 122.5

PoseAug [13] ✓ 81.6 119.0
DH-AUG [15] ✓ 79.3 112.8
PoseGU [14] ✓ 92.3 -
CEE-Net [16] ✓ 76.8 -

BPG ✓ 66.0 96.5
BPG + BDC ✓ 61.1 90.3

Cross-dataset evaluation results. To eval-
uate whether the poses synthesized by the
BPG contribute to improved generalization
performance, we conducted experiments in a
cross-dataset environment using the 3DPW
and MPI-INF-3DHP datasets. For the eval-
uation, we utilized all available training
data from the source dataset and employed
ground truth 2D keypoints as input, consis-
tent with previous methods. Our approach
demonstrated performance improvements
across both datasets. As shown in Table 3,
our method improved PCK by 2%, AUC by
7%, and MPJPE by 7.9mm. Notably, signif-
icant performance gains were observed in
the 3DPW dataset, which features outdoor
scenes with moving cameras. As indicated
in Table 4, our approach achieved improve-
ments of 15.7mm in P-MPJPE. Furthermore,
it is evident that using only the BPG still re-
sults in performance improvements over tra-
ditional methods. These results underscore
the effectiveness of our synthesized data in
enhancing generalization performance, par-
ticularly in challenging real-world environments.

5.2 Analysis on BPG and BDC.

We evaluate the performance of our BDC by comparing poses across varying levels of depth ambiguity,
using the proposed depth ambiguity ratio to quantify and analyze the results. In this experiment, we
utilize multi-hypothesis model [45] for 3D HPE, which are designed to address depth ambiguity.
As illustrated in Figure 2, baseline model exhibit decreased performance on poses with high depth
ambiguity. This trend is exacerbated when additional training data is introduced. However, when
applying the BDC to existing models, performance remains consistent regardless of depth ambiguity.
Furthermore, adding more data improves performance, even for poses with increased depth ambiguity.
This observation highlights the robustness of the BDC in mitigating depth ambiguity problem and
enhancing overall model accuracy.
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Table 5: Ablation study with different BPG strategies on testing H36M, where the model was trained
exclusively on generated data.

Method NROM w/o RR Ratio PC MPJPE P-MPJPE
Kinematic model 122.3 106.2

Variant A ✓ 65.7 56.6
Variant B ✓ ✓ 64.2 54.3
Variant C ✓ ✓ 62.6 53.9
Variant D ✓ ✓ ✓ 61.9 52.3

BPG ✓ ✓ ✓ ✓ 59.8 50.6

Scalability of integrating BDC and BPG. In this experiment, we analyze performance trends as the
size of the training dataset increases using BPG. We utilize a multi-hypothesis model [45] for 3D HPE,
designed to address depth ambiguity. By leveraging BPG, we expand the dataset size based on a fixed
source dataset. As shown in Figure 5, increasing the dataset size using BPG enhances cross-domain
performance. However, for baseline models, performance on the source dataset declines as the dataset
size increases, indicating potential overfitting and increased pose complexity. Conversely, integrating
BDC with baseline models results in improved cross-domain performance and consistent performance
gains on the source dataset as the dataset size increases. This highlights the effectiveness of BDC
in enhancing model robustness and scalability, mitigating the challenges of depth ambiguity, and
improving overall performance in both source and cross-domain evaluations.

Table 6: Results on H36M dataset. S9,S11 are the target.
Task Method MPJPE P-MPJPE

Multi-hypo

GraphMDN [45] 46.2 36.3
GraphMDN* 41.7 30.9
GFpose [44] 36.6 30.5

GFpose* 35.1 29.3

Image features Conpose [41] 41.6 33.9
Conpose* 38.5 33.8

Multi-frame MixSTE [42] 40.9 32.6
MixSTE* 38.3 32.2

BDC effects on 3D HPE models. We in-
vestigated whether utilizing the BDC in
state-of-the-art (SOTA) 3D HPE models
across various tasks could lead to higher
accuracy. For the training phase, we
utilized all available training data from
the source dataset and adhered to each
model’s specific training protocols to en-
sure consistency and fairness in evalua-
tion.

As shown in Table 6, our approach consistently improved performance across all tasks in source
dataset evaluations. The integration of BDC resulted in measurable improvements in key metrics,
demonstrating the robustness and effectiveness of our method in enhancing model accuracy.

Ablation study on BPG. In our ablation study, we evaluated various strategies within our framework,
including normal range of motion (NROM), rotational restriction (RR), body ratio variation, and Pose
Confidence (PC). Only data synthesized with the BPG was used as training data. The results presented
in Table 5 highlight a consistent trend in performance enhancement as each strategy is successively
incorporated. Specifically, NROM, as indicated by Variant A, has the most significant influence on
performance. However, both Variants A and C indicate that introducing RR can somewhat diminish
performance. The findings from Variants C and D emphasize the benefits of incorporating diverse
pose proportions for better generalization. Finally, the outcome of Variant D and BPG warn of the
pitfalls of including physically improbable postures without PC, suggesting that such postures can
hinder effective learning. From these observations, it is clear that the confluence of all strategies is
essential for achieving peak performance.

Table 7: Results on H36M dataset. S9,S11 are the
target.

Method MPJPE P-MPJPE
CSC 46.2 36.3
NDC 44.3 32.4

BDC w/o GS 42.6 31.5
BDC 41.7 30.9

Ablation study on BDC. In this ablation study,
we compare the performance of various coordi-
nate systems on a multi-hypothesis model [45]
for 3D HPE, designed to address depth ambigu-
ity. Specifically, we evaluate the Camera Space
Coordinate (CSC), Normalized Device Coordi-
nate (NDC), and BDC systems. The results,
presented in Table 7, highlight the effectiveness
of the BDC system in improving model performance. The CSC and NDC systems serve as baselines
for comparison. Additionally, we examine the impact of applying BDC without and with grouped
segments (GS). As indicated, the BDC system, particularly when integrated with GS, demonstrates
superior performance in reducing both MPJPE and P-MPJPE. This underscores the potential of BDC
with GS in addressing depth ambiguity and enhancing the overall accuracy of 3D HPE models.
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6 Conclusion

In this study, we introduced the BDC and the BPG to address key challenges in 3D HPE, particularly
the issues of dataset diversity and depth ambiguity. Our approach leverages biomechanical principles
and a binary classification framework to generate a wide array of plausible 3D poses and simplify
depth estimation, respectively.

We demonstrated that integrating BDC and BPG into state-of-the-art 3D HPE models significantly
improves accuracy and generalization across various datasets and tasks. Experiments on the H36M,
3DHP, and 3DPW datasets showed consistent performance enhancements, indicating that our synthe-
sized data offers substantial benefits over traditional pose augmentation techniques, leading to more
reliable 3D pose estimations in diverse scenarios.

Limitations. Despite the promising results, our approach has certain limitations. The BPG generates
poses based on single-frame data only, missing temporal dynamics crucial for motion analysis.
Extending BPG to handle multi-frame data could generate more realistic poses. Additionally, while
integrating BDC and BP enhances model performance, generating additional data beyond a certain
point does not lead to further improvements, suggesting a saturation point. Future work should
optimize the amount and type of synthetic data to maximize performance without unnecessary
computational overhead.
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Appendix

A Implementation Details

For the comparison of pose augmentation methods, without BDC, we utilize the single-frame version
of VPose [24] as the pose estimator. When applying BDC, we introduce four 1D convolution layers
at the end of VPose [24] to estimate parameters such as root depth, 2D pose, bone length, and binary
depth. In the case of the multi-hypothesis model [45], we create four fully connected layers to
estimate the same parameters: root depth, 2D pose, bone length, and binary depth. The training loss
remains consistent with the losses used in the original models. Specifically, VPose [24] employs
Mean Squared Error Loss (MSELoss), while the multi-hypothesis model [45] uses Mixture Density
Network (MDN) loss.

We train the models on the H36M dataset for 50 epochs with a batch size of 1024. All components
are optimized using the Adam optimizer with an initial learning rate of 0.001, which linearly decays
over time. For the BPG, training is conducted on a single Nvidia GTX 3090 Ti GPU with a batch
size of 1024 for 100 epochs, taking approximately two days to complete the experiments. The Adam
optimizer is utilized with an initial learning rate of 3e-4, which decreases linearly during the training
process. To stabilize the training process and enhance performance, we pre-train the models on
synthetic data before end-to-end training. This pre-training phase ensures that the models are better
initialized and capable of more robust learning during the comprehensive training phase.

B Visualization

We conducted extensive experiments to evaluate the impact of our synthesized data using BPG on 3D
HPE models. Figure 6 shows that our synthesized poses occupy a significantly larger area compared
to the existing dataset. However, this did not immediately translate into performance improvement;
rather, it resulted in a performance decline. To identify the cause of this decline, we examined the per-
frame performance of the baseline model’s poses in Figure 5.A. The results indicated that performance
degradation occurred in most scenarios. Nonetheless, there was a promising aspect: in environments
where the baseline model failed, our approach showed performance improvement. Furthermore,
when integrating the BDC into the baseline model, we observed performance enhancement across
almost all regions. In Figure 5.B, the visualization of the areas where performance declined after
pose augmentation revealed that the results of complex poses appeared with flattened depth. This
indicates that the increased pose diversity led to heightened depth ambiguity, causing predictions to
average towards the center. However, by utilizing our BDC, we observed robust predictions even
with increased pose diversity, indirectly mitigating depth ambiguity.

Figure 6: Spherical coordinate distribution for the vector across datasets: H36M [20] and BPG, with
valid regions highlighted in grey (taken from [23]).
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Figure 7: A : Frame-wise comparison on H36M. Baseline* employs BDC on the Baseline model [45],
and H36M* combines source data with additional data synthesized by BPG, expanding the total
dataset to ten times the H36M training size. B: The result of visualizing the poses at the vertical line
in Figure 7.A.

C Formula details

C.1 Forward Kinematics Function.

T(Npose = {l, θ}) takes a joint variable vector θ = [θ1, θ2, . . . , θn] and a link length vector
l = [l1, l2, . . . , ln] as input, and returns a transformation matrix representing the position and attitude
of the end effector. The mathematical representation of this is

T(θ, l) =

[
R(θ, l) d(θ, l)
0⊤ 1

]
where R(θ, l) is a 3× 3 rotation matrix, and d(θ, l) is a 3× 1 position vector. This matrix represents
the position and attitude of the end effector in the robot’s reference frame.

The forward kinematics function is defined as follows

T(θ, l) = A1(θ1, l1)A2(θ2, l2) · · ·An(θn, ln)

where Ai(θi, li) is the individual transformation matrix for each joint i. This transformation matrix
represents the rotation and displacement of each joint, and typically has the form

Ai(θi, li) =

 cos(θi) − sin(θi) 0 li
sin(θi) cos(αi) cos(θi) cos(αi) − sin(αi) −di sin(αi)
sin(θi) sin(αi) cos(θi) sin(αi) cos(αi) di cos(αi)

0 0 0 0 1
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Figure 8: Qualitative results of ground truth poses (blue) and predicted poses (red) on various datasets,
H36M (rows 1, 2), 3DHP (row 3), and 3DPW (rows 4, 5).

Figure 9: Visualization of synthesized poses with our BPG.
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where li is the length of link i, and di and αi are the Denavit-Hartenberg (DH) parameters of the
robot.

So, the full formula for the forward kinematics function is

T(θ, l) =

n∏
i=1

Ai(θi, li)

This formula represents sequentially multiplying the individual transformation matrices for each joint
to compute the overall transformation matrix. This allows us to get the position and pose of the end
effector.

The forward kinematics function T(θ, l) takes a joint variable vector θ = [θ1, θ2, . . . , θn] and a
link length vector l = [l1, l2, . . . , ln] as input, and returns a transformation matrix representing the
position and attitude of the end effector. The mathematical representation of this is

T(θ, l) =

[
R(θ, l) d(θ, l)
0⊤ 1

]
where R(θ, l) is a 3× 3 rotation matrix, and d(θ, l) is a 3× 1 position vector. This matrix represents
the position and attitude of the end effector in the robot’s reference frame.

The forward kinematics function is defined as follows

T(θ, l) = A1(θ1, l1)A2(θ2, l2) · · ·An(θn, ln)

where Ai(θi, li) is the individual transformation matrix for each joint i. This transformation matrix
represents the rotation and displacement of each joint, and typically has the form

Ai(θi, li) =

 cos(θi) − sin(θi) 0 li
sin(θi) cos(αi) cos(θi) cos(αi) − sin(αi) −di sin(αi)
sin(θi) sin(αi) cos(θi) sin(αi) cos(αi) di cos(αi)

0 0 0 0 1


where li is the length of link i, and di and αi are the Denavit-Hartenberg (DH) parameters of the
robot.

So, the full formula for the forward kinematics function is

T(θ, l) =

n∏
i=1

Ai(θi, li) = P3D

This formula represents sequentially multiplying the individual transformation matrices for each joint
to compute the overall transformation matrix. This allows us to get the position and pose of the end
effector.

In summary, the forward kinematics function T maps the initial joint positions and link lengths
(which constitute the kinematic model) to the 3D position and orientation of the end effector:

C.2 The Indicator Function

Let X be a set, and let A be a subset of X . The indicator function 1A(x) of a subset A of a set X is
defined as:

1A(x) =

{
1 if x ∈ A

0 if x /∈ A
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C.3 Camera Projection Function.

The camera projection function P maps a 3D point X = [X,Y, Z, 1]⊤ in homogeneous coordinates
to a 2D point x = [u, v, 1]⊤ on the image plane. The mathematical representation of this function is

x = PX

where P is the camera projection matrix, defined as

P = K[R|T ]

Here, K is the camera intrinsic matrix, R is the rotation matrix representing the camera orientation,
and T is the translation vector representing the camera position. The intrinsic matrix K is given by

K =

[
fx 0 cx
0 fy cy
0 0 1

]

where fx and fy are the focal lengths in the x and y directions, respectively, and cx and cy are the
coordinates of the principal point.

The full camera projection function is thus represented as

x = K[R|t]X

This formula maps a 3D point X in the world coordinate system to a 2D point x on the image plane,
taking into account the camera’s intrinsic parameters and its pose in the world.

C.4 Solving the quadratic equation for z3Di .

Given the equation:

(x3D
i − P x

i )
2 + (y3Di − P y

i )
2 + (z3Di − P z

i )
2 = l2i

and the transformations:

x3D
i =

x2D
i − cx
fx

· z3Di , y3Di =
y2Di − cy

fy
· z3Di

we substitute these into the original equation:(
x2D
i − cx
fx

· z3Di − P x
i

)2

+

(
y2Di − cy

fy
· z3Di − P y

i

)2

+ (z3Di − P z
i )

2 = l2i

Expanding and rearranging terms, we get a quadratic equation in z3Di :

A(z3Di )2 +Bz3Di + C = 0

where:

A =
(x2D

i − cx)
2

f2
x

+
(y2Di − cy)

2

f2
y

+ 1

B = −2
(
(x2D

i − cx)P
x
i

fx
+

(y2Di − cy)P
y
i

fy
+ P z

i

)
C = (P x

i )
2 + (P y

i )
2 + (P z

i )
2 − l2i

The solutions for z3Di are given by the quadratic formula:

z3Di =
−B ±

√
B2 − 4AC

2A
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Therefore, the two roots are:

z3D+
i =

−B +
√
B2 − 4AC

2A

z3D−
i =

−B −
√
B2 − 4AC

2A

D Pseudo-Code

Algorithm 1 Biomechanical Pose Generator (BPG)
1: Input: Normal Range of Motion (NROM) intervals θlower and θupper, mean limb length ratios l̄j ,

proportion range parameter α, Camera intervals T lower and T upper

2: Output: Generated 3D pose P3D, projected 2D pose P2D
3: Initialize pose parameters Npose ← {}
4: for each bone j do
5: Sample lj ∼ U((1− α)l̄j , (1 + α)l̄j)
6: Npose.append(lj)
7: end for
8: for each joint i do
9: Sample θi ∼ U(θlower,i, θupper,i)

10: Npose.append(θi)
11: end for
12: P3D ← T(Npose)
13: for each bone pair (n,m) do
14: Calculate dn,m
15: if dn,m < d̄n,m then
16: Reject pose P3D and resample
17: end if
18: end for
19: Sample rotation matrix R ∼ U(SO(3))
20: Sample translation vector T ∈ R3 ∼ U(T lower, T upper)
21: Set focal length f = 1
22: Set principal point pp = (0, 0)
23: Define camera parameters c = {R, T, f, pp}
24: Project P3D to 2D pose P2D using the projection function p(c, P3D)
25: return P2D, P3D
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Algorithm 2 Binary Depth Coordinates (BDC)
1: Input: 2D joint positions P2D, bone lengths l, binary depth parameter s, camera parameters

(cx, cy, fx, fy), root depth z3D0 , Skeleton Tree T
2: Output: 3D joint positions P3D
3: Initialize P3D ← {}
4: Compute the 3D coordinates of the root joint:
5: x3D

0 ← x2D
0 −cx
fx

· z3D0
6: y3D0 ← y2D

0 −cy
fy

· z3D0
7: Append (x3D

0 , y3D0 , z3D0 ) to P3D
8: for each joint i in tree order T do
9: Compute the 3D coordinates x3D

i , y3Di using:

x3D
i =

x2D
i − cx
fx

· z3Di (7)

y3Di =
y2Di − cy

fy
· z3Di (8)

10: Solve the quadratic equation for z3Di :

(x3D
i − Px,parent(i))

2 + (y3Di − Py,parent(i))
2 + (z3Di − Pz,parent(i))

2 = l2i (9)

11: This yields two potential values: z3D+
i and z3D−

i
12: Use the binary depth parameter si to select the correct depth:

z3Di =

{
z3D+
i if si = 1

z3D−
i if si = −1

(10)

13: Compute x3D
i , y3Di with the selected z3Di :

x3D
i =

x2D
i − cx
fx

· z3Di (11)

y3Di =
y2Di − cy

fy
· z3Di (12)

14: Append (x3D
i , y3Di , z3Di ) to P3D

15: end for
16: return P3D
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction clearly state the contributions
of introducing the Biomechanical Pose Generator (BPG) and Binary Depth Coordinates
(BDC) to address scalability and depth ambiguity in 3D Human Pose Estimation (HPE)
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: The paper discusses the limitations, such as the BPG generating poses based
on single-frame data only and the saturation point of generating additional data beyond a
certain point.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results requiring proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed experimental results, including data on various
datasets like H36M, 3DHP, and 3DPW, and discusses performance metrics and methods.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code can be found in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies training and testing details, including data splits and
evaluation metrics across different datasets and tasks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper includes tables and figures that report performance metrics with
appropriate statistical measures, such as MPJPE and P-MPJPE, though specific error bars
are not mentioned .

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources we used are provided in Appendix A.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no indication that the research violates the NeurIPS Code of Ethics.
The methodologies used align with ethical guidelines for research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper mentions the broader impacts, focusing on the improvements in
3D pose estimation which can benefit various applications such as virtual reality and action
recognition.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose risks related to the misuse of data or models, and no
specific safeguards are mentioned.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites sources and references for datasets and methods used
throughout the research.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper documents new methodologies like the BPG and BDC, providing
sufficient details on their development and application.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects that would require
IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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