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Abstract

In deep reinforcement learning (DRL), the pres-
ence of dormant neurons leads to a significant
reduction in network capacity, which results in
sub-optimal performance and limited sample ef-
ficiency. Existing training techniques, especially
those relying on periodic resetting (PR), exacerbate
this issue. We propose the Full Network Capacity
(FNC) framework based on PR, which consists
of two novel modules: Dormant Neuron Reactiva-
tion (DNR) and Stable Policy Update (SPU). DNR
continuously reactivates dormant neurons, thereby
enhancing network capacity. SPU mitigates per-
turbation from DNR and PR and stabilizes the Q-
values for the actor, ensuring smooth training and
reliable policy updates. Our experimental evalu-
ations on the Atari 100K and DMControl 100K
benchmarks demonstrate the remarkable sample
efficiency of FNC. On Atari 100K, FNC achieves
a superhuman IQM HNS of 107.3%, outperform-
ing the previous state-of-the-art method BBF by
13.3%. On DMControl 100K, FNC excels in 5 out
of 6 tasks in terms of episodic return and attains
the highest median and mean aggregated scores.
FNC not only maximizes network capacity but also
provides a practical solution for real-world appli-
cations where data collection is costly and time-
consuming. Our implementation is publicly acces-
sible at https://github.com/tlyy/FNC.

1 INTRODUCTION

Deep reinforcement learning (DRL) has emerged as a piv-
otal approach in the realm of artificial intelligence, espe-
cially when dealing with sequential decision-making prob-
lems in environments fraught with uncertainty. Consider the
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domain of autonomous aerial vehicles (AAVs). The AAVs
operate in complex and unpredictable atmospheres, where
factors like sudden gusts, rapidly changing weather condi-
tions, and unforeseen obstacles pose significant challenges.
Each flight path decision they make is subject to a high
degree of uncertainty, and traditional DRL algorithms often
struggle to handle these uncertainties efficiently with limited
data. Similarly, in financial trading, market conditions are
constantly fluctuating due to a myriad of factors as geopo-
litical events, economic policies, and investor sentiment.
Traders using DRL-based strategies need to make decisions
in this highly uncertain environment. However, the large
number of samples required by traditional DRL methods for
effective learning can be an obstacle, as market data is often
expensive to obtain and rapidly changing.

To enhance the practicality of DRL, numerous studies have
concentrated on improving the sample efficiency of DRL
agents[Laskin et al., 2020b, Yarats et al., 2021, Schwarzer
et al., 2021, D’Oro et al., 2023, Yu et al., 2021, Schwarzer
et al., 2023]. Recent research [Nikishin et al., 2022] has
revealed a significant problem: network over-fitting on early
interaction samples. This over-fitting problem is particu-
larly prominent in uncertain environments, as the limited
initial data may not accurately represent all possible scenar-
ios. Consequently, the learned policies become less reliable,
increasing the uncertainty in decision-making. To counter
this over-fitting problem, periodic resetting (PR) of network
parameters has been proposed [Nikishin et al., 2022]. The
BBF method [Schwarzer et al., 2023], which incorporates
PR, has achieved state-of-the-art performance on the Atari
100K [Kaiser et al., 2020] benchmark. Nevertheless, as the
size of the network continues to increase, further improve-
ments become challenging, accompanied by a substantial
increase in computing and storage costs.

Moreover, the neuron dormancy phenomenon in DRL has
been discovered in recent studies [Sokar et al., 2023]. Vast
neurons remain inactive during training, especially when PR
is applied. As depicted in Figure 1, the dormant neuron ratio
spikes after each PR operation and remains high through-
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Figure 1: The dormant neurons ratio (a) and episodic return (b) during training for a baseline, baseline with periodic resetting
(PR), and FNC. A high dormant neuron ratio indicates low network capacity. Although PR improves final performance, it
causes a higher dormant neuron ratio than the baseline. FNC fixes the unsteady capacity of PR, rapidly reducing the dormant
neuron ratio close to 0 and achieving full network capacity for better performance.

out the training process. This under-utilization of network
capacity leads to sub-optimal performance. When neurons
are dormant, the network fails to fully utilize its potential,
reducing its ability to capture complex environment patterns,
which is especially crucial in uncertain scenarios.

To overcome these challenges in DRL under limited sam-
ples, we propose the Full Network Capacity (FNC) frame-
work based on PR. FNC consists of two novel modules:
Dormant Neuron Reactivation (DNR) and Stable Policy
Update (SPU). DNR continuously locates and reactivates
dormant neurons. It ensures that the network operates at its
full capacity, i.e., it rapidly reduces the dormant neuron ratio
close to 0, as shown in Figure 1. However, the parameter
perturbations introduced by DNR and from the original PR
can cause Q-network instability. Therefore, SPU adopts the
momentum Q-network to smooth the perturbations from
DNR and PR and evaluate the value of the actor policy.

We evaluate FNC on two standard benchmarks for DRL
under limited samples: the Atari 100K benchmark [Kaiser
et al., 2020] and the DMControl 100K benchmark [Hafner
et al., 2019]. These benchmarks, although artificial, mimic
the uncertainty present in real-world scenarios. In the Atari
100K benchmark, FNC achieves superhuman sample effi-
ciency, outperforming the previous state-of-the-art method
BBF. In the DMControl 100K benchmark, FNC also shows
remarkable results, leading in most tasks.

Our contributions can be summarized as follows:

• We identify the problem of neuron dormancy reducing
network capacity and performance, especially in the
training framework with PR under limited samples,
which are critical problems in dealing with uncertainty
in DRL.

• We propose the FNC framework with two novel mod-
ules to maximize network capacity and stabilize train-
ing, reducing uncertainty in the learned policies.

• We demonstrate that FNC achieves state-of-the-art per-
formance on the Atari 100K and DMControl 100K
benchmarks with limited computational resources,
providing a practical solution for DRL in uncertain,
sample-constrained settings.

2 RELATED WORK

2.1 SAMPLE EFFICIENCY IN DRL

Sample efficiency is a critical aspect of DRL, as it deter-
mines the ability of agents to learn effectively with a limited
number of interaction samples. High sample complexity has
long been a significant hurdle in the practical application of
DRL agents, especially in real-world scenarios where inter-
actions can be costly, time-consuming, or even dangerous.

Numerous techniques have been proposed to enhance sam-
ple efficiency:

• Experience Replay: Experience replay [Mnih et al.,
2013] stores past experiences (s, a, r, s′) in a replay
buffer. During training, these experiences are randomly
sampled and reused. The replay ratio (RR) [D’Oro
et al., 2023], defined as the ratio of learning updates
to new experiences, plays a crucial role in optimizing
performance on limited data. For instance, the original
DQN algorithm uses an RR of 0.25. However, more
recent and efficient agents often utilize higher ratios,
allowing them to learn more from the available data.

• Data Augmentation: Techniques like DrQ [Yarats
et al., 2021] and RAD [Laskin et al., 2020a] introduce
data augmentation methods to DQN [Mnih et al., 2013,
2015] and SAC [Haarnoja et al., 2018a,b]. These meth-
ods, such as random shift and intensity adjustments,
increase the diversity of the training data. By artifi-
cially creating more varied input data, the agent can



learn more generalizable patterns, leading to improved
performance.

• Self-Supervised Learning: SPR [Schwarzer et al.,
2021] builds on the Rainbow [Hessel et al., 2018] al-
gorithm and incorporates a self-supervised temporal
consistency loss based on BYOL [Grill et al., 2020],
along with data augmentation. The self-supervised loss
helps the agent learn about the underlying structure of
the environment without relying solely on the rewards
provided.

• Model-Based Methods: Algorithms such as SimPLe
[Kaiser et al., 2020] and EfficientZero [Ye et al., 2021]
focus on learning the environment dynamics. By build-
ing a model of how the environment behaves, these
methods can make more informed decisions and re-
quire fewer real-world interactions.

2.2 NETWORK CAPACITY IN DRL

Network capacity, which is related to the number of ac-
tive neurons in a network, is another key factor in DRL.
A higher network capacity improves the agent’s ability to
model complex situations. Two main ways to enhance net-
work capacity are enlarging the network size and increasing
the active neuron ratio in a fixed-size network.

• Scaling Up Networks: Ota et al. [2021] showed how
increasing the number of layers and neurons in a net-
work can improve its representational power. They
also highlighted the challenges, such as increased com-
putational requirements and over-fitting. Schwarzer
et al. [2023] achieved sample-efficient performance by
scaling the neural networks used for value estimation,
combined with other design choices that enabled this
scaling. However, increasing the network size brings
additional computational and storage costs.

• Neuron Dormancy: Recent studies [Sokar et al., 2023,
Abbas et al., 2023, Dohare et al., 2024] have uncovered
the neuron dormancy phenomenon in neuron network,
which means a significant number of neurons remain
inactive during training and do not contribute to the
network’s output. This under-utilization of network
capacity wastes computational resources and limits the
agent’s learning ability.

Most previous methods have focused on enhancing network
capacity by enlarging the network size, which inevitably
brings additional computational and storage burdens. In
contrast, increasing the active neuron ratio in a fixed-size
network has been relatively under-explored. Our approach
belongs to the latter, enhancing network capacity without
introducing additional burdens.

3 PROBLEM FORMULATION

Deep Reinforcement Learning (DRL) trains an agent to
make optimal sequential decisions within an environment.
The goal is to maximize cumulative rewards. The overall
procedure is formalized through the concept of a Markov
Decision Process (MDP) [Puterman, 1994], represented by
the tuple M = (S,A, P,R, ρ0, γ). The set S encompasses
all possible states s that the agent can occupy within the
environment. The set A consists of all the actions a that the
agent can execute. Given a state s and an action a, the transi-
tion probability function P (s′|s, a) quantifies the likelihood
of the environment transitioning from the current state s
to a new state s′. The reward function R(s, a) assigns a
scalar value r to the agent when it takes action a in state s.
ρ0(s) represents the probability distribution over the initial
states. The discount factor γ ∈ [0, 1] determines the rela-
tive importance of future rewards compared to immediate
rewards.

The goal of DRL is to discover a policy πϕ(a|s) that maxi-
mizes the expected cumulative reward, expressed as:

J(π) = E[
∞∑
t=0

γtR(st, at)|π]. (1)

Two crucial functions in DRL algorithms are the state-value
function V π(s) and the action-value function Qπ(s, a):

V π(s) = E[
∞∑
t=0

γtR(st, at)|s0 = s, π]. (2)

Qπ(s, a) = E[
∞∑
t=0

γtR(st, at)|s0 = s, a0 = a, π]. (3)

Common DRL algorithms include Q-learning [Watkins and
Dayan, 1992] and Actor-Critic [Konda, 2002]. Q-learning
updates the action-value function Q(s, a) as follows:

Q(s, a)← Q(s, a)+α(R(s, a)+Q(s′, a′)−Q(s, a)), (4)

where α is the learning rate.

In the Actor-Critic (AC) approach, the actor is responsible
for updating the policy, while the critic evaluates the state or
action values. The critic learns the state-value function V (s)
or the action-value function Q(s, a) and updates it using the
temporal difference (TD) error:

θ ← θ + αCδt∇θV (st), (5)

where
δt = R(s, a) + γV (st+1)− V (st), (6)

and αC is the critic’s learning rate. The actor then updates
the policy using an advantage-based policy gradient:

ϕ← ϕ+ αAδt∇ϕ log π(at|st;ϕ), (7)

where αA is the actor’s learning rate.
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Figure 2: Details of Full Network Capacity (FNC) training framework. FNC introduces two new mechanisms into each
training update: Dormant Neuron Reactivation (DNR) to activate the dormant neurons and Stable Policy Update (SPU) to
smooth the perturbation from DNR and periodic resetting.

4 FULL NETWORK CAPACITY
TRAINING FRAMEWORK

4.1 OVERVIEW

The Full Network Capacity (FNC) framework fully exploits
network capacity when applying periodic resetting (PR)
under limited samples. FNC incorporates two novel mod-
ules into the PR framework: Dormant Neuron Reactivation
(DNR) and Stable Policy Update (SPU), as shown in Fig-
ure 2. These modules work in tandem to enhance network
capacity and ensure stable training, thereby improving the
sample efficiency of DRL agents.

4.2 DORMANT NEURON REACTIVATION

The Dormant Neuron Reactivation (DNR) module addresses
dormant neurons by detecting and reactivating these neu-
rons.

We first identify dormant neurons. The dormant ratio dl,i of
neuron i in layer l is calculated as:

al,i =
Ex∈D|hl

i(x)|
1
Hl

∑
k∈Hl Ex∈D|hl

k(x)|
(8)

where D is the input distribution, hl
i(x) is the neuron’s

activation for input x ∈ D, and H l is the number of neurons
in layer l. Neurons with dl,i ≤ δ form the dormant neuron
index set I:

I = {i|al,i ≤ δ} (9)

Algorithm 1 Dormant Neuron Reactivation (DNR)

1: Input: Online Q network parameters θo, DNR weight
β, dormant threshold δ.

2: Output: Reactivated parameters θrea
3: for each layer l do
4: for each unit i do
5: Compute activation value:

al,i =
Ex∈D|hl

i(x)|
1
Hl

∑
k∈Hl Ex∈D|hl

k(x)|

6: if al,i ≤ δ then
7: Reactive the neuron parameters:

θl,irea = β · θl,io + (1− β) · θl,iinit

8: end if
9: end for

10: end for
11: return θrea

After location, we reactivate dormant neurons using shrink
and perturb operations. To prevent the network from con-
verging to sharp minima, we shrink the parameters of dor-
mant neurons. Given online parameters θo, the shrunk pa-
rameters are:

θl,ishrink = β · θl,io

where β ∈ (0, 1) is the shrink weight. To encourage explo-
ration in the parameter space, we add a fraction of the initial



parameters to the shrunk parameters:

θl,iperturb = (1− β) · θl,iinit

The reactivated parameters combine the two operations:

θl,irea = θl,ishrink + θl,iperturb

The DNR process is summarized in Algorithm 1. We focus
on the dormancy of the critic or the Q-network as empirical
study Ma et al. [2023] shows that critic dormancy has a
more pronounced impact on sample efficiency. Moreover,
directly recovering the actor’s dormancy by DNR introduces
too much instability into the policy.

4.3 STABLE POLICY UPDATE

The perturbation introduced by the DNR and periodic reset-
ting can disrupt the stability of policy updates. The Stable
Policy Update(SPU) mitigates this issue using a momen-
tum Q-network for policy updates. The process is described
in Algorithm 2. The reason why delayed copy update is
not used is that the policy is derived from the momentum
Q-network. The policy does not change within the copy
interval time and is not suitable for collecting new data.

Algorithm 2 Stable Policy Update (SPU)

1: Input: Online Q-network parameters θo, Momentum
Q-network parameters θm, momentum parameter τ

2: Output: Actor policy parameters ϕ
3: Initialize θm = θo
4: for each training step do
5: Update θm using the momentum update rule:

θm = τ · θo + (1− τ) · θm

6: Use θm to compute Q-values for actor policy param-
eters ϕ updates

7: end for
8: return ϕ

In the discrete control setting, although the deep Q-network
(DQN) does not have an explicit actor in the traditional
sense, the Q-network can be regarded as the actor for action
generation. In this case, the parameters of the actor and
the Q-network are identical. SPU treats the momentum Q-
network in DQN as the actor, and the actual policy is:

a = argmaxaQθm(s, a), (10)

which contrasts with previous approaches that typically em-
ploy the online Q-network.

In the continuous control setting, the actor policy is explic-
itly defined with parameters ϕ. SPU optimizes the actor
using the momentum critic as:

Jπ(ϕ) = Qθm(s, πϕ(s))− α ∗ log πϕ(s). (11)

Since DNR-induced perturbations only occur in the online
Q-network during training, and periodic resetting (PR) also
affects the network periodically, SPU plays a crucial role in
preventing drastic changes caused by both PR and DNR. It
generates a stable Q-value for policy updates, which is also
beneficial in preventing the emergence of dormant neurons,
as previously noted in related research [Sokar et al., 2023].
Furthermore, the momentum counterpart is a laggard of the
online Q-network, it tends to have the same dormant neurons
as the online Q-network has. SPU prevents these neurons of
the momentum Q-network from being completely inactive
once they are detected in the online Q-network.

5 EXPERIMENT

We conduct a comprehensive evaluation of the proposed
Full Network Capacity (FNC) framework on two standard
benchmarks for DRL under limited samples. The primary
objectives are to thoroughly assess the performance, net-
work capacity, and distinct advantages of FNC over existing
methods.

5.1 EXPERIMENTAL SETUP

5.1.1 Benchmark Selection Rationale

Two benchmarks employed in our study are the Atari 100K
benchmark [Kaiser et al., 2020] and the DMControl 100K
benchmark [Hafner et al., 2019]. The Atari 100K bench-
mark is a rich source of diverse vision-based control tasks,
consisting of 26 games with low-dimensional discrete ac-
tions. They test an agent’s ability to perceive visual cues,
make quick and accurate action selections, and adapt to dif-
ferent game mechanics. The DMControl 100K benchmark,
focuses on six control tasks with high-dimensional contin-
uous actions. These tasks evaluate an agent’s proficiency
in handling continuous control problems, understanding
complex dynamics, and making fine-grained decisions in
dynamic environments.

5.1.2 Implementation Details

In the discrete action settings, our implementation is
grounded in the SPR algorithm framework [Schwarzer et al.,
2021]. We inherit a similar architecture and incorporate
random shifts and intensity data augmentation techniques
[Yarats et al., 2021]. To ensure a fair and reliable compari-
son, we meticulously follow the same architecture parame-
ters and hyperparameters as those used in the BBF method
[Schwarzer et al., 2023]. This includes the utilization of the
Impala residual network as the encoder and expanding the
network width by 4 times to enhance its representational
capability.



Table 1: Final scores and aggregate metrics for FNC and competing methods [Schwarzer et al., 2021, Agarwal et al., 2021,
D’Oro et al., 2023, Schwarzer et al., 2023] across the 26 Atari 100K games. Scores are averaged across five runs per game
for FNC. We report the standard error for game scores and the 95% bootstrap confidence interval for the aggregate metrics
of our method FNC.

Game Human Random DrQ(ϵ) SPR SR-SPR BBF FNC
Alien 7127.7 227.8 865.2 841.9 1107.8 1121.7 1250.3 ± 76.0
Amidar 1719.5 5.8 137.8 179.7 203.4 236.6 173.7 ± 25.2
Assault 742.0 222.4 579.6 565.6 1088.9 2004.5 2521.4 ± 305.7
Asterix 8503.3 210.0 763.6 962.5 903.1 3169.8 4410.7 ± 562.9
Bank Heist 753.1 14.2 232.9 345.4 531.7 768.8 781.3 ± 169.5
Battle Zone 37187.5 2360.0 10165.3 14834.1 17671.0 23681.4 23338.0 ± 2408.1
Boxing 12.1 0.1 9.0 35.7 45.8 77.4 79.8 ± 6.3
Breakout 30.5 1.7 19.8 19.6 25.5 331.1 374.2 ± 8.2
ChopperCommand 7387.8 811.0 844.6 946.3 2362.1 4251.6 2802.2 ± 995.8
CrazyClimber 35829.4 10780.5 21539.0 36700.5 45544.1 60864.5 63323.2 ± 9785.8
DemonAttack 1971.0 152.1 1321.5 517.6 2814.4 18298.4 20798.0 ± 4223.8
Freeway 29.6 0.0 20.3 19.3 25.4 23.1 27.1 ± 1.4
Frostbite 4334.7 65.2 1014.2 1170.7 2584.8 2023.1 1377.4 ± 705.2
Gopher 2412.5 257.6 621.6 660.6 712.4 1209.4 1629.7 ± 285.9
Hero 30826.4 1027.0 4167.9 5858.6 8524.0 5741.8 5604.6 ± 624.1
Jamesbond 302.8 29.0 349.1 366.5 389.1 1124.6 1058.7 ± 172.8
Kangaroo 3035.0 52.0 1088.4 3617.4 3631.7 5032.1 8202.0 ± 1830.8
Krull 2665.5 1598.0 4402.1 3681.6 5911.8 8069.8 8075.1 ± 59.0
KungFuMaster 22736.3 258.5 11467.4 14783.2 18649.4 16616.9 21508.6 ± 4703.6
Ms Pacman 6951.6 307.3 1218.1 1318.4 1574.1 2217.8 1994.9 ± 206.8
Pong 14.6 -20.7 -9.1 -5.4 2.9 13.7 10.2 ± 6.1
PrivateEye 69571.3 24.9 3.5 86.0 97.9 39.1 54.0 ± 46.0
Qbert 13455.0 163.9 1810.7 866.3 4044.1 3245.3 2897.7 ± 761.7
RoadRunner 7845.0 11.5 11211.4 12213.1 13463.4 26419.0 30723.0 ± 2142.3
Seaquest 42054.7 68.4 352.3 558.1 819.0 988.6 835.6 ± 182.2
UpNDown 11693.2 533.4 4324.5 10859.2 112450.3 15122.7 17093.7 ± 3847.0
IQM HNS (↑) 100.0% 0.0% 28.0% 33.7% 63.1% 94.0% 107.3%[96.2%,120.0%]
OG HNS (↓) 0.0% 100.0% 63.1% 57.7% 43.3% 37.7% 36.7%[34.2%,39.4%]
Median HNS (↑) 100.0% 0.0% 31.3% 39.6% 68.5% 75.5% 89.4%[68.3%,98.1%]
Mean HNS (↑) 100.0% 0.0% 46.5% 61.6% 127.2% 217.5% 240.1%[221.2%,257.8%]

In continuous action settings, we build on the DrQ frame-
work [Yarats et al., 2021], a modified version of SAC
[Haarnoja et al., 2018a] with integrated data augmentation
capabilities. It allows the framework to handle pixel-based
input. All hyperparameters, network architectures, and im-
plementation choices are detailed in the Appendix C.

5.2 FNC IMPROVES AGENT PERFORMANCE

We gauge the agent’s performance by measuring the fi-
nal score after training with limited interaction samples.
In the context of a DRL with a fixed sample budget, perfor-
mance is intrinsically linked to sample efficiency. A high-
performance agent is a strong indicator of high sample effi-
ciency, as the agent can learn effectively with fewer samples.

On the Atari 100K benchmark, we collect the final scores of
the agents across all 26 tasks. To standardize the comparison,
we calculate the human-normalized score (HNS) for each
game using the following formula:

HNS =
SA − SR

SH − SR
, (12)

where SA represents the score achieved by the agent, SR

is the score obtained by random play, and SH is the score
achieved by an expert human player. This normalization
allows for a direct comparison of the agent’s performance
relative to human performance.

Subsequently, we adopt the inter-quartile mean (IQM), opti-
mality gap (OG), median, and mean metrics from the rliable
[Agarwal et al., 2021] framework to aggregate the HNS
values across the 26 games. The IQM metric represents
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Figure 3: The active neuron ratio during training for baseline with periodic resetting (PR) and FNC. The active neuron ratio
of baseline with PR is relatively low, especially at the time after each PR, FNC quickly recovers the full network capacity by
increasing the active neuron ratio close to 100% and maintains it even with the PR executed.
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Figure 4: The effective rank [Roy and Vetterli, 2007] during training for baseline with periodic resetting (PR) and FNC.
FNC enhances the effective rank, enabling a better representation and expressivity on all selected games.

the average score of the middle 50% of the runs combined
across all games and seeds. It reduces the impact of extreme
values, providing a more stable and representative assess-
ment. A higher IQM, mean, and median score indicates a
better overall performance, while a lower OG, which quanti-
fies the performance gap between the agent and the human,
is more favorable.

As presented in Table 1, FNC showcases remarkable per-
formance. It outperforms human performance in 11 games
and surpasses previous model-free methods in 15 out of 26
games in terms of the final score. FNC achieves the highest
IQM HNS of 107.3%, Median HNS of 89.4%, Mean HNS
of 240.1%, and the lowest OG HNS of 36.7%. Notably, FNC
outperforms the previous state-of-the-art method BBF by
13.3% in the IQM score under the same replay ratio of 2.

On the DMControl 100K benchmark, we calculate the final
scores of the six tasks and aggregate them using the median
and mean metrics. As shown in Table 2 in Appendix A, FNC
achieves the best final scores on 5 tasks and attains the best
median and mean scores. These results, on both the Atari
100K and DMControl 100K benchmarks, demonstrate the
effectiveness of FNC in improving sample efficiency.

5.3 FNC IMPROVES NETWORK CAPACITY

To evaluate the network capacity, we monitor the active
neuron ratio. Since the same network architecture is applied
across different variants, the active neuron ratio is reliable
to assess how effective the network is.

We conduct a comparative analysis of the active neuron ratio
of the baseline with periodic resetting and FNC during the
training process on 4 selected Atari games. As illustrated
in Figure 3, the active neuron ratio of the baseline with
periodic resetting remains relatively low, especially imme-
diately after each resetting event. This low ratio indicates
that a significant portion of the network’s potential is left
untapped, leading to under-utilization of the network capac-
ity. In contrast, FNC exhibits a remarkable ability to rapidly
reduce the dormant neuron ratio to close to 0. Even when
periodic resetting is executed, FNC manages to maintain a
high active neuron ratio, suggesting that it can effectively
utilize nearly the entire capacity of the network.

The full utilization of the network capacity endows the net-
work with a higher effective rank [Roy and Vetterli, 2007],
which contributes to better representation and expressivity,
as shown in Figure 4. Consequently, the performance of
FNC is higher than that of the baseline with PR during the
training procedure, as shown in Figure 5.

5.4 FNC REDUCES THE TRAINING
COMPUTATION COST

In the online setting, the agent interacts with the environ-
ment and trains the policy simultaneously. Each interaction
is contingent upon the completion of the update procedure.
Therefore, reducing the cost of updating is vital to minimize
the expenditures and risks associated with interactions in
real-world scenarios.
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Figure 5: The episodic return during training for baseline with period resetting (PR) and FNC. FNC outperforms the baseline
with periodic resetting on all selected games.

To evaluate the computation cost, we record the training run-
time. The IQM HNS and runtime comparison are depicted
in Figure 6, along with relevant model-free [van Hasselt
et al., 2019, Yarats et al., 2021, Schwarzer et al., 2021,
D’Oro et al., 2023, Schwarzer et al., 2023] and model-based
[Micheli et al., 2023, Ye et al., 2021] algorithms. FNC only
consumes approximately the same amount of time as BBF
with a replay ratio of 2 to complete training on a task. How-
ever, its performance rivals BBF with a replay ratio of 8,
which requires four times the computational resources. FNC
achieves superhuman sample efficiency with a low replay ra-
tio of 2 for the first time, demonstrating its cost-effectiveness
in achieving high-performance results.
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Figure 6: Computational cost versus performance, measured
by IQM HNS across 26 games and the total number of GPU
hours spent per environment for Runtime. FNC improves
performance even with lower costs.

5.5 ABLATION STUDY

To gain a deeper understanding of the contribution of each
component of FNC, we conduct a systematic ablation study.
In this study, we remove one component at a time and ob-
serve the impact on the performance of the framework. The
results are presented in Figure 7.

When we remove Dormant Neuron Reactivation (FNC-
DNR), we observe a notable decline in the IQM score. This
decline clearly indicates that the activation of dormant neu-
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FNC-DNR-SPU

FNC-SPU
FNC-DNR

FNC
IQM

Human Normalized Score

Figure 7: Ablation study results show the impact of remov-
ing different components of FNC on the Atari 100K bench-
mark.

rons in each update step is crucial to maintaining high net-
work expressivity. Without DNR, the network fails to fully
exploit its capacity, leading to sub-optimal performance.

Removing the Stable Policy Update (FNC-SPU) also results
in a significant decrease in the IQM score, even worse than
the baseline that only applies PR (FNC-DNR-SPU). It indi-
cates that directly introducing DNR into the PR framework
without SPU causes excess parameter perturbation and un-
steady training. This finding highlights the importance of
SPU in stabilizing the training process.

Hyperparameters β and δ were tuned by grid search in 4
Atari games (Freeway, Gopher, Kangaroo, KungFuMaster).
The results are depicted in Appendix B. We set β = 0.5
and δ = 0.0 to maximize reactivation while avoiding over-
perturbation, achieve the best mean HNS.

6 CONCLUSION

In this study, we have introduced the Full Network Capac-
ity (FNC) framework to address dormant neurons and to
exploit network capacity in deep reinforcement learning
(DRL) under limited samples. The FNC framework, with its
two novel modules, Dormant Neuron Reactivation (DNR)
and Stable Policy Update (SPU), has achieved state-of-the-
art performance on the Atari 100K and DMControl 100K
benchmarks with limited computational resources.

Our work has not only provided a practical solution to the
sample-efficiency problem in DRL but also opened up new
research directions. We believe that the insights gained from



this study will inspire further research in the area of sample-
efficient reinforcement learning, leading to the development
of more advanced and efficient DRL algorithms. These ad-
vancements could have far-reaching implications in various
real-world applications with uncertainty, such as robotics,
autonomous vehicles, and financial trading, where data col-
lection is often costly and time-consuming.
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A DMCONTROL 100K BENCHMARK PERFORMANCE TABLE

Table 2: Scores(mean and standard deviation) and aggregate metrics for FNC and competing methods [Hafner et al., 2020,
Laskin et al., 2020b, Yarats et al., 2021, Yu et al., 2021] across the 6 DMControl 100K games. We run our FNC with five
random seeds per game. The scores of other methods refer to the work of Yu et al.[Yu et al., 2021].

Game Dreamer CURL DrQ PlayVirtual FNC
Ball In Cup Catch 246 ± 174 769 ± 43 913 ± 53 926 ± 31 962 ± 6
Cartpole Swingup 326 ± 27 582 ± 146 759 ± 92 816 ± 36 850 ± 17
Cheetah Run 235 ± 137 299 ± 48 344 ± 67 474 ± 50 475 ± 40
Finger Spin 341 ± 70 767 ± 56 901 ± 104 915 ± 49 799 ± 191
Reacher Easy 314 ± 155 538 ± 233 601 ± 213 785 ± 142 936 ± 87
Walker Walk 277 ± 12 403 ± 24 612 ± 164 460 ± 173 767 ± 92
Median Score 295.5 560.0 685.5 800.5 824.5
Mean Score 289.8 559.7 688.3 729.3 798.2

B HYPERPARAMETER ABLATION STUDY

C EXPERIMENT SETTINGS

We use an open-source JAX implementation of BBF from https://github.com/google-research/
google-research/tree/master/bigger_better_faster, and a JAX implementation of the DrQ algorithm
from https://github.com/evgenii-nikishin/rl_with_resets/tree/main. All experiments are per-
formed on one RTX 3080 Ti GPU and require GPU memory less than 12G. The runtime is about 3-4 hours for one seed on
one game.

The experiments use five random seeds to evaluate performance. We largely reuse the hyperparameters from previous
methods [Schwarzer et al., 2023, Yarats et al., 2021], and report the hyperparameter settings used in the DMControl 100k in
Table 4 and in the Atari 100k experiments in Table 5.

*Corresponding author
*Corresponding author

https://github.com/google-research/google-research/tree/master/bigger_better_faster
https://github.com/google-research/google-research/tree/master/bigger_better_faster
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Table 3: Hyperparameter selection for β and δ in DNR with the human-normalized scores. We run each variant with 3
random seeds per game and report the HNS score.

Freeway Gopher Kangaroo KungFuMaster Mean HNS
β = 0 84.7% 55.0% 110.33% 101.33% 87.8%
β = 0.25 95.7% 74.7% 97.7% 73.0% 85.3%
β = 0.5 97.3% 83.3% 154.3% 93.0% 107.0%
β = 0.75 88.3% 44.0% 125.7% 101.3% 89.8%
β = 1 85.7% 34.3% 125.3% 87.3% 83.2%
δ = 0 97.3% 83.3% 154.3% 93.0% 107.0%
δ = 0.1 87.3% 76.0% 141.7% 107.3% 103.1%
δ = 0.2 76.3% 77.3% 153.7% 87.3% 98.6%

Table 4: Hyperparameters for FNC in DMControl 100K benchmark. The ones introduced by this work are at the bottom of
the table.

Parameter Setting
Grey-scaling True
Observation down-sampling 64× 64
Frames stacked 3
Action repetitions

Cartpole Swingup 8
Reacher Easy 4
Cheetah Run 4
Finger Spin 2
Ball In Cup Catch 4
Walker Walk 2

Memory size 100000
Seed steps 1000
Discount factor 0.99
Minibatch size 512
Optimizer Adam

Learning rate 0.0003
First moment decay 0.9
Second moment decay 0.999
ϵ 0.00015

Critic update frequency 2
Critic Q-function soft-update rate 0.005
Actor update frequency 2
Actor log std bounds [-10, 2]
Init temperature 0.1
Data augmentation Shifts (±4 pixels),

Intensity
Reset interval 20000
Layers getting hard reset Final 3
Dormant threshold δ 0.0
DNR weight β 0.8



Table 5: Hyperparameters for FNC in Atari 100K benchmark. The ones introduced by this work are at the bottom of the
table.

Parameter Setting
Grey-scaling True
Observation down-sampling 84× 84
Frames stacked 4
Action repetitions 4
Reward clipping [-1, 1]
Terminal on loss of life True
Max frames per episode 108k
Update Distributional Q
Dueling True
Support of Q-distribution 51
Discount factor 0.97→ 0.997
Minibatch size 32
Optimizer AdamW

Learning rate 0.0001
First moment decay 0.9
Second moment decay 0.999
ϵ 0.00015
Weight decay 0.1

Max gradient norm 10
Priority exponent 0.5
Priority correction 0.4→ 1
Training steps 100k
Evaluation episodes 100
Memory size Unbounded
Min replay size for sampling 2000
Replay period every 1 step
Updates per step 2
Multi-step return length 10→ 3
Encoder Impala ResNet
Hidden units 2048
Non-linearity ReLU
Target network

Update period 1
EMA coefficient τ 0.005

λ (SPR loss coefficient) 5
K (SPR prediction depth) 5
Data augmentation Shifts (±4 pixels),

Intensity
Action selection Target network
Reset interval 20000
Cycle steps 5000
Layers getting hard reset Final 2
Shrink and Perturb 0.5
Dormant threshold δ 0.0
DNR weight β 0.5
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