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Abstract

This paper explores the task: Chinese spelling001
correction (CSC), from a fine-grained perspec-002
tive by recognizing that existing evaluations003
lack nuanced typology for the spelling errors.004
This deficiency can create a misleading impres-005
sion of models’ performance, incurring an “in-006
visible” bottleneck hindering the advancement007
of CSC research. In this paper, we first catego-008
rize spelling errors into six types and conduct009
a fine-grained evaluation across a wide variety010
of models, including BERT-based models and011
LLMs. Thus, we are able to pinpoint the un-012
derlying weaknesses of existing state-of-the-art013
models - utilizing contextual clues and handling014
co-existence of multiple typos, associated to015
contextual errors and multi-typo errors. How-016
ever, these errors suffer from low occurrence017
in conventional training corpus. Therefore, we018
introduce new error generation methods to syn-019
thesize their occurrence. Eventually, these aug-020
mented data can be leveraged to enhance the021
training process of CSC models. We hope this022
work could provide fresh insight for future CSC023
research.024

1 Introduction025

This paper studies the evaluation principle for Chi-026

nese spelling correction (CSC), a fundamental task027

in natural language processing to rectify all poten-028

tial spelling errors in a Chinese sentence. Evalua-029

tion plays a critical role in CSC research, where the030

researchers are allowed to understand the way mod-031

els behave and guide for further solutions. Due to032

the profoundness of Chinese language, there are di-033

verse misspelling variations in real human corpora.034

However, existing benchmarks (Tseng et al., 2015;035

Lv et al., 2023; Wu et al., 2023b) are constrained to036

producing an overall score for all kinds of spelling037

errors, providing a coarse reflection of models’ per-038

formances. This deficiency incurs an “invisible”039

barrier that bottlenecks the progress of CSC re-040

search. In this paper, we propose a fine-grained041

Phonological Error:
舍 (>> 舌) 尖上的中国。
A bite (>> house) of China.

Morphological Error:
全速以赶 (>> 赴) ，事半功倍，以静制动。
Full speed after (>> ahead) , twice result with half effort...

Non-similarity Error:
关于游戏引擎，下列说法正敏 (>> 确) 的是。
The following statements are sensitive (>> true) about game engines.

Multi-typo Error:
请平时注意休息，饮事 (>> 食) 规律，吃清淡，易消话 (>> 化) 的东西。
Please... make (>> eat) regular... something easy to talk (>> digest).

Semantic Error:
多预演 (>> 语言) 版本，根据用户群体特点和需求，提供多语言服务。
The multipreview (>> lingual) version offers multilingual services...

Figure 1: Samples of different types of spelling errors.

evaluation principle, named FiBench-CSC, in the 042

hope of navigating the follow-up research. 043

We categorize the spelling errors in a Chinese 044

sentence to six distinct types. Figure 1 offers an 045

illustration of five of them. We first categorize the 046

errors by the way they are misspelled. Phonolog- 047

ical error and morphological error are the two 048

most common error types, stemming from pinyin 049

and stroke similarities inherent in Chinese charac- 050

ters (Liu et al., 2010). The former is caused by 051

users’ keyboard input or audio speech recognition, 052

while the latter is caused by handwriting. These 053

two types of errors are rich in the confusion sets, 054

which are used to generate synthetic errors on top 055

of monolingual sentences. We group the remaining 056

errors not conforming to any of these two types to 057

non-similarity error. 058

Second, we categorize the errors by the num- 059

ber of them within a single sentence, i.e. single 060

error and multi-typo error. The latter refers to 061

cases where there is more than one typo in one sen- 062

tence. Co-existence of multiple typos may largely 063

distort the context and create intricacy for correc- 064

tion. For example in Figure 1, there are two typos 065

at the same time, where “饮食” is misspelled to 066

“饮事” and “消化” is misspelled to “消话”. The 067
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correction of the latter typo necessitates the correct068

understanding of the former phrase “饮食规律”,069

which is disturbed by the typo “饮事”.070

Third, we introduce contextual error. This071

type of errors locally manifests as a correct phrase072

within the sentence. However, their correction073

strongly relies on utilizing contextual clues. For074

example in Figure 1, “语言” (lingual) is misspelled075

to “预演” (preview), both of which are legitimate076

Chinese words. Only if referring to the subsequent077

context of “多语言服务” (multilingual services),078

can one figure out the final answer. The edit pairs of079

contextual errors vary case by case and may not be080

found in the confusion sets. Given that many CSC081

models are constructed based on confusion sets,082

correction of contextual errors can be a challenging083

task, requiring much more than memorizing edit084

pairs from the training corpus.085

In FiBench, we reorganize the target dataset into086

six subsets, each associated with one specific er-087

ror type, thus allowing for an ever fine-grained088

insight into models’ strengths and shortcomings.089

Our paper unfolds as below. In §2, we conduct090

a comprehensive FiBench evaluation choosing a091

broad range of CSC models. While state-of-the-art092

counterparts show adeptness in using phonological093

and morphological clues, we pinpoint contextual094

and multi-typo errors that they notably struggle095

with. However, the contextual errors are sparse in096

conventional confusion sets. In §3, we introduce097

new methods for error generation to synthesize the098

contextual and multi-typo errors given arbitrary099

sentences with the assistance of LLMs. In §4, we100

harness the new synthetic sentences to refine the101

training of CSC models, and witness a blazer to102

state-of-the-art performance by boosting the target103

efficacy in specific errors.104

2 FiBench105

In this section, we scrutinize existing benchmarks106

from a fine-grained perspective. The findings in107

this section serve as the foundation for the subse-108

quent methods and experiments in the paper.109

2.1 Categorization Principle110

Phonological & Morphological & Non-similarity111

We obtain the phonological errors and morpholog-112

ical errors by checking if the edit pair in the sen-113

tences exists in the associated confusion set, while114

categorizing the rest into non-similarity errors. The115

confusion sets employed in our study are released116
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Figure 2: Statistics of error types in six chosen domains.

by Liu et al. (2022). 117

Contextual To obtain the contextual errors, we 118

check if the edit pair in the sentence can form a 119

legitimate word within the locality by referring a 120

fixed vocabulary. The logic behind is that if the 121

error cannot form a correct phrase, it can be easily 122

detected without referring to the context. 123

Single & Multi We obtain the single and multi- 124

typo errors simply by counting the number of typos 125

in the sentence. 126

2.2 Datasets 127

We conduct experiments on two public datasets, 128

ECSpell (Lv et al., 2023) and LEMON (Wu et al., 129

2023b). ECSpell is a small-scale CSC benchmark 130

with three specific domains: LAW (law) with 1,960 131

training and 500 test samples, MED (medical treat- 132

ment) with 3,000 training and 500 test samples, 133

and ODW (official document writing) with 1,728 134

training and 500 test samples. LEMON is an open- 135

domain CSC benchmark with a diverse set of real- 136

life spelling errors across multiple domains. In our 137

experiments, we choose three domains as represen- 138

tative: NEW (news title) with 5,887 test samples, 139

CAR (car) with 3,245 test samples, and ENC (en- 140

cyclopedia) with 3,274 test samples. 141

Figure 2 eventually demonstrates the statistics 142

of six error types in ECSpell and LEMON. From 143

our categorization principle, there will be overlap 144

of samples among each error subset. 145

2.3 Models and Methods 146

We span a broad range of CSC methods including 147

BERT-based models and LLMs. 148

BERT The pre-trained BERT (Devlin et al., 149

2019) is the fundamental architecture to perform 150

the CSC task in the way of sequence tagging. 151

Soft-Masked BERT Zhang et al. (2020) apply a 152
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GRU network as the additional detector and mask153

the detected errors in the sentence softly to encour-154

age the correction.155

MDCSpell Zhu et al. (2022) design a paralleled156

detector-corrector network to enhance the correc-157

tion. The new detector network is initialized by158

another BERT encoder.159

CRASpell Liu et al. (2022) augment the original160

sentence by introducing an additional typo in the161

context and optimizing a smoothness loss (Jiang162

et al., 2020; Wu et al., 2023a) on it.163

Masked-Fine-Tuning Above counterparts164

model CSC by sequence tagging. We apply the165

masked-fine-tuning technique (MFT) to boost166

the tagging process (Wu et al., 2023b), which is167

designed to enhance the language modeling aspect168

of CSC learning.169

ReLM Rephrasing Language Model (ReLM)170

(Liu et al., 2024) is a non-autoregressive language171

model, which regards CSC as sentence rephrasing172

on top of entire semantics.173

LLM Similar to ReLM, CSC is a sentence174

rephrasing task for large language models (LLMs),175

where they rephrase the sentence in an autore-176

gressive manner. However, we find that gener-177

ative models suffer from the over-paraphrase is-178

sue. To address this, we use the prompt Detect179

whether there are any misspelled words in180

the sentence. If there are any, please181

correct them. The important trick here is that182

the model won’t do anything on the input sen-183

tence if there are no errors detected, which we184

find useful for reducing the above issue. We adopt185

Baichuan2-7b (Yang et al., 2023) in our experi-186

ments. We find that applying masked-fine-tuning187

technique can boost the performance of Baichuan2-188

7b. We also instruct GPT4 (OpenAI, 2023) and189

Qwen2-72b (Bai et al., 2023; qwe, 2024) to per-190

form this task through in-context learning with191

5 shots. For each sentence, the in-context sam-192

ples are uniformly chosen from sentences into the193

same error type in the training set. The prompt we194

use is Please correct the spelling errors195

in the given sentence, ensuring that the196

modified sentence is the same length as197

the original one. If there are no errors198

in the sentence, please copy it exactly199

as it is. We post-process the output of the LLMs200

to obtain the corrected sentence.201

Tagging vs. Rephrasing In the following paper,202

we will use the term tagging models and rephrasing203

models. It is worth noting that current CSC models204

can be categorized into tagging and rephrasing, by 205

their training objectives. The former corresponds to 206

BERT, Soft-Masked BERT, MDCSpell, CRASpell, 207

while the latter corresponds to ReLM and a series 208

of autoregressive models. 209

2.4 Training Setup 210

For all the experiments of BERT-based models, we 211

adopt the pre-trained models open-sourced by Wu 212

et al. (2023b). Each model is trained on 34 million 213

synthetic pair-wise sentences from wiki2019zh 214

and news2016zh. On ECSpell, we further fine- 215

tune each model separately on the three domains 216

for 5,000 steps with the batch size selected from 217

{32, 128} and learning rate from {2e-5, 5e-5}. Es- 218

pecially for fine-tuning Baichuan2, we set the learn- 219

ing rate to 3e-4 and use LoRA (Hu et al., 2022a) 220

with r = 8 and α = 32 to improve efficiency. On 221

LEMON, We evaluate each pre-trained model in 222

zero-shot learning on each LEMON domain. 223

2.5 Evaluation Result 224

Table 1 reports the performances of a line of CSC 225

models on ECSpell and LEMON. 226

Models show nice adeptness in addressing 227

phonological and morphological errors. From 228

results on ECSpell, We find that current state-of- 229

the-art models perform perfectly (f1 more than 230

0.95) on phonological and morphological errors 231

after domain-specific finetuning. We can also see 232

that these two types of errors are less challenging 233

for models under zero-shot learning, compared to 234

the other types. It indicates that the similarity clues 235

like pronunciations and shapes are rich in the train- 236

ing corpus for CSC models to fit the error model 237

(Wu et al., 2023b). 238

A performance disparity emerges when models 239

moving from addressing a single typo to multi- 240

ple typos. For multi-typo errors, we find distinct 241

trends between fine-tuned models and zero-shot 242

models. Among the fine-tuned models, perfor- 243

mances of all BERT-based models drops slightly 244

when moving from addressing a single typo to mul- 245

tiple typos. This indicates that domain-specific fine- 246

tuning can help train a better language modeling, 247

making multi-typo errors less challenging. How- 248

ever, under zero-shot learning, the performance of 249

all models on multi-typo errors deteriorates sub- 250

stantially, including ReLM, which is considered 251

more powerful in language modeling. This indi- 252

cates a potential issue in conventional training pro- 253

cess that researchers might overlook constructing 254
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Phono. Morpho. Non-s. Single Multi Contextual Overall

EC-LAW

BERTMFT 99.1 99.0 97.1 98.2 93.4 94.9 94.0
Soft-MaskedMFT 99.7 99.0 99.9 99.4 97.0 97.0 96.0
MDCSpellMFT 99.1 99.9 99.9 99.1 97.0 94.9 97.1
CRASpellMFT 99.3 99.0 99.0 98.5 95.2 97.0 95.6
ReLM 99.9 99.5 96.2 98.8 96.4 98.0 95.6
Baichuan2 93.6 92.3 94.3 92.4 85.7 80.8 92.8
Qwen2-72b (5-shot) 85.7 85.9 74.0 84.7 62.6 59.1 72.7
GPT4 (5-shot) 77.7 82.6 80.5 80.2 56.1 56.2 76.6

EC-MED

BERTMFT 99.7 99.4 98.6 97.6 77.8 78.1 86.5
Soft-MaskedMFT 98.8 97.0 94.3 95.2 87.9 86.1 87.4
MDCSpellMFT 98.6 99.4 93.3 96.4 87.0 84.3 88.7
CRASpellMFT 98.2 98.2 96.7 96.4 92.6 83.0 89.6
ReLM 98.4 97.3 97.6 98.3 90.3 74.9 89.9
Baichuan2 90.8 91.6 86.6 86.6 77.7 80.0 79.8
Qwen2-72b (5-shot) 73.2 78.5 80.4 77.8 63.9 58.4 59.7
GPT4 (5-shot) 74.5 80.4 74.9 77.1 62.1 59.9 66.4

EC-ODW

BERTMFT 97.1 96.2 87.7 90.8 83.4 83.4 87.3
Soft-MaskedMFT 96.3 97.1 85.7 90.7 89.7 86.1 88.4
MDCSpellMFT 96.7 96.2 90.7 92.4 89.2 87.0 90.4
CRASpellMFT 96.9 96.2 86.5 90.4 92.3 90.3 89.5
ReLM 97.1 97.1 88.6 92.4 91.3 89.4 91.6
Baichuan2 89.8 94.3 92.1 85.6 87.2 88.8 87.5
Qwen2-72b (5-shot) 94.9 93.3 80.3 87.7 81.9 80.6 81.8
GPT4 (5-shot) 87.1 83.9 75.5 76.6 71.6 61.8 73.3

LE-NEW

BERTMFT
† 71.3 72.0 45.0 63.9 11.3 49.3 56.0

Soft-MaskedMFT
† 71.8 72.1 42.8 64.0 10.8 50.4 55.6

MDCSpellMFT
† 74.9 73.2 37.7 65.6 11.0 53.0 57.3

CRASpellMFT
† 72.9 73.8 38.9 64.4 5.6 50.7 55.4

ReLM† 74.9 75.8 44.0 67.0 10.2 52.2 58.8
Qwen2-72b (5-shot) 64.4 69.2 48.3 60.0 42.7 55.3 57.4
GPT4 (5-shot) 69.1 70.5 50.5 64.7 41.8 67.7 63.4

LE-ENC

BERTMFT
† 62.4 62.1 35.5 53.9 5.7 42.1 45.2

Soft-MaskedMFT
† 59.3 62.1 33.9 52.8 5.6 39.4 44.1

MDCSpellMFT
† 63.8 66.7 33.7 54.7 7.3 41.4 46.1

CRASpellMFT
† 62.8 68.1 39.2 56.8 4.9 43.3 47.6

ReLM† 63.1 63.4 41.4 56.5 3.3 39.8 47.6
Qwen2-72b (5-shot) 55.8 67.0 46.8 54.5 36.7 47.1 48.3
GPT4 (5-shot) 61.1 75.1 56.6 66.1 35.4 61.0 60.6

LE-CAR

BERTMFT
† 74.1 65.9 45.3 64.5 4.2 47.5 51.9

Soft-MaskedMFT
† 73.6 67.4 47.1 64.5 7.6 46.8 52.2

MDCSpellMFT
† 74.8 70.3 38.3 64.0 8.1 43.4 51.9

CRASpellMFT
† 74.6 71.8 42.7 64.7 5.9 45.5 51.9

ReLM† 76.8 66.3 45.0 65.7 9.7 44.7 53.5
Qwen2-72b (5-shot) 55.7 61.7 40.2 49.5 30.4 44.6 45.5
GPT4 (5-shot) 65.0 61.3 52.0 61.7 33.2 50.1 56.5

Table 1: Fine-grained performances on ECSpel (EC-x) and LEMON (LE-x). We report the F1 score for each
error type and the overall F1 score on all sentences. “Non-s.” refers to the non-similarity errors. † refers to the
zero-shot performance of the corresponding models. The subscription MFT indicates that the model is trained using
masked-fine-tuning.

samples that contain multi-typo errors, resulting in255

models’ inability during testing.256

Contextual errors pose a consistent challenge in257

every scenario. For finetuned models, contex-258

tual errors remain challenging, particularly in the259

domain of medical treatment (MED). On average,260

the F1 performance on contextual errors drops by261

7.1 points compared to the overall F1 score across262

five BERT-based methods. However, for zero-shot 263

models, all of them struggle with contextual er- 264

rors. Correspondingly, their performance on non- 265

similarity errors also encounters a big decline. The 266

poor performance in handling non-similarity errors 267

and contextual errors from LEMON highlights the 268

importance of domain-specific knowledge and fea- 269

tures for spelling correction. This indicates that 270

4



open-domain CSC is the greatest challenge cur-271

rently faced by the community.272

LLMs show potential in open-domain CSC,273

but there is room for improvement in handling274

phonological errors. We find that the few-shot275

performances of Qwen-72b and GPT-4 on ECSpell276

are weaker than those of fine-tuned BERT-based277

models. However, on LEMON, an open-domain278

benchmark, their performances surpass those of the279

BERT-based models, particularly in handling multi-280

typo and contextual errors. This is mainly due281

to their strong reasoning ability and the extensive282

knowledge acquired during pre-training. Nonethe-283

less, their performance on phonological typos is284

weaker than that of BERT-based models, which are285

trained on 34 million synthesized examples using a286

confusion set. This fine-grained comparison sug-287

gests directions for further open-domain CSC288

research. For LLMs, incorporating phonological289

similarity could enhance their performance in CSC.290

Additionally, equipping BERT-based models with291

more knowledge is crucial, and data augmentation292

using LLMs can be a potential solution.293

Based on Fibench, we have the following con-294

clusions. Firstly, the performance of CSC models295

fine-tuned on domain-specific data is quite high.296

However, open domain CSC, which is more repre-297

sentative of real-world applications, remains chal-298

lenging and warrants further study. Secondly, exist-299

ing CSC models exhibit deficiencies in address-300

ing two specific types of errors, bottlenecking301

their overall performance in practical applica-302

tions. However, sentences that comprise contextual303

and multi-typo errors are rare in typical training304

sets. Therefore, there emerges a very need for meth-305

ods to generate them artificially, which forms the306

follow-up section.307

3 Error Generation308

In this section, we discuss the error generation309

method to automatically generate contextual errors310

with the assistance of the powerful lexical process-311

ing capability of LLMs, as well as the synthesis312

method to generate multi-typo errors.313

3.1 Contextual Error314

We design a three-step pipeline. Given a sentence,315

we first tokenize it into words using the segmenta-316

tion tool and randomly select one of them as the317

target word. We prompt GPT4 to substitute the318

target word for a new word. The prompt for sub-319

Substitution:
You are a native Chinese speaker to modify the given sentence fol-
lowing the requirements below.

1. Change the word in ''<>'' to a new word using the same number 
of characters.
2. The new word in ''<>'' is correct within the local context.
3. The new word in ''<>'' should induce a wrong or strange meaning 
of the new sentence.
4. Do not change the other words outside of ''<>''.

Input:
比赛至今他从未出现，可见他是一个<鸽子>。
Response 1:
比赛至今他从未出现，可见他是一个<毒瘤>。
Response 2:
比赛至今他从未出现，可见他是一个<歌者>。

Verification:
You are a skilled Chinese writer. People admire you. I will give a 
pair of sentences, please help me decide the following situations:

1. two sentences are in the same meaning, and they are both gram-
matically and contextually correct.
2. two sentences are in different meanings, but they are both gram-
matically and contextually correct.
3. two sentences are supposed to be in the same meaning, but either 
is not grammatically and contextually correct.

Input 1:
比赛至今他从未出现，可见他是一个<鸽子>。
比赛至今他从未出现，可见他是一个<毒瘤>。
Response 1:
2
Input 2:
比赛至今他从未出现，可见他是一个<鸽子>。
比赛至今他从未出现，可见他是一个<歌者>。
Response 2:
3

Figure 3: Prompts we use to generate contextual errors.

stitution is shown in Figure 3. In this prompt, we 320

instruct GPT4 to follow two primary principles: 1. 321

the new word is still a legitimate Chinese word; 2. 322

the new word will introduce an unnatural semantics 323

to the entire sentence. 324

The first step is a tough task even for GPT4. It 325

is likely to solely paraphrase the given sentence 326

or introduce another word, potentially retaining 327

correctness while altering the original meaning. If 328

either of two situations occurs, we will acquire an 329

invalid sentence pair. To address this, we design 330

the second step to verify the validity of the output 331

sentence from the first step. As detailed in Figure 3, 332

we further prompt GPT4 to identify the relationship 333

between the output sentence in the first step and 334

the original one. Only if both sentences convey the 335

same meaning and one contains grammatical and 336

contextual error, do we keep this sentence pair. 337

LLMs like GPT4 lean to make somewhat unsta- 338

ble responses. To ensure reliability, we eventually 339

employ a ruled-based filter to verify if the new 340

word can form a legitimate expression by checking 341

its existence in a word vocabulary. 342

5



Pin Mor Non-sim. Sin. Multi. Context.

LAW 46 4 141 74 58 132
MED 52 16 138 52 76 128
ODW 65 15 156 79 78 157

Table 2: Statistics of the generated contextual errors.

From Table 2, we can find that the generated343

contextual errors contain more non-similarity and344

multi-typo examples, which are also more chal-345

lenging for CSC models. This demonstrates that346

our error generation method can produce additional347

training examples specifically designed to address348

the weaknesses of current CSC models.349

3.2 Multi-typo Error350

We construct a distribution to synthesize multiple351

typos in one sentence. Each typo can be any of a352

contextual error, phonological error, or morpholog-353

ical error. The last two errors are sampled from354

the associated confusion sets, while the contex-355

tual errors are generated using the prior method.356

Given an arbitrary sentence, we introduce N ty-357

pos in it. N follows the p-Binomial distribution358

∼ Binomial(n, p), where n is the number of char-359

acters in the sentence. When N is determined,360

specifically, we uniformly sample N positions in361

the sentence and replace each of them with: 1. a362

phonologically similar character 60% of the time;363

2. a morphologically similar character 30% of the364

time; 3. a character/word making a contextual error365

10% of the time. This is due to the empirical fact366

that contextual errors occur at a lower frequency in367

real-world sentences.368

4 Data Augmentation369

In this section, we refine the existing datasets us-370

ing the error generation methods introduced in § 3.371

Based on the augmented data, we introduce several372

effective training strategies to facilitate stronger373

CSC models.374

4.1 Strategy375

We have observed that models fine-tuned on EC-376

Spell exhibit a greater susceptibility to contextual377

errors. Therefore, we randomly sample a propor-378

tion of the target sentences in the training set and379

generate new contextual errors on them. Given that380

contextual errors occur less frequently in natural381

language, excessive introduction of them may com-382

promise the model’s overall performance. Hence,383

LAW MED ODW

Con All Con All Con All

ReLM 98.0 95.6 74.9 89.9 89.4. 91.6
ReLM♣domain 100.0 96.4 87.7 90.7 95.9 92.1
ReLM♣wiki 97.1 95.0 78.2 90.0 91.9 90.5

BERT 94.9 94.0 78.1 86.5 83.4 87.3
BERT♣domain 95.9 95.5 89.2 89.5 85.7 90.1
BERT♣wiki 93.0 94.9 86.1 88.9 77.7 88.3

NEW ENC CAR

Mul All Mul All Mul All

ReLM 10.2 58.8 3.3 47.6 9.7 53.5
ReLM♣CT 18.7 58.6 12.9 48.3 22.0 54.3
ReLM♣FS 15.7 56.6 14.1 46.2 15.4 52.1

Table 3: Results after data augmentation. “CT” refers
to continue-training and “FS” refers to few-shot.

we complement the training data with 100 new 384

samples with contextual errors for each domain 385

(∼ 5% of original training samples). Additionally, 386

in § 3, we have conjectured that adaption to con- 387

textual errors strongly depends on domain-specific 388

signals. We prepare another 100 samples with con- 389

textual errors for comparison, where the target sen- 390

tences are sourced from Chinese wikipedia. 391

For open-domain CSC, models are pre-trained 392

on a large scale of pair-wise sentences without be- 393

ing fine-tuned on specific training sets. We thus 394

employ two strategies, continue-training and few- 395

shot learning. Instead of undergoing a new round 396

of complete pre-training, we choose to continually 397

train the model on refined sentences. Specifically, 398

we refine the synthetic pair-wise sentences from 399

wiki2019zh (each already with one typo) by im- 400

posing random additional typos to them, and train 401

the prior model for another one epoch. Since the 402

sentence initially contains a typo, we set p for the 403

Binomial distribution to a lower value 0.001. An- 404

other more efficient approach is to construct a few 405

samples with highly concentrated errors to allow 406

the model to quickly adapt to the multi-typo error 407

type. We set p to 0.1 and generate 100 samples 408

with multi-typo errors. However, our experience 409

suggests that this rapid method can trade off the 410

performance on the rest error types. 411

4.2 Result 412

In this section, we conduct experiments on masked- 413

fine-tuned BERT and ReLM, which are tagging and 414

rephrasing models respectively. The upper part of 415

Table 3 showcases the effectiveness of incorporat- 416

ing new contextual errors. Significant performance 417
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domain

improvement can be observed in the domains of418

MED and ODW. For instance, on MED, the per-419

formance on contextual errors of ReLM increases420

from 74.9 to 87.7, which further results in the im-421

provement of the overall performance. On the other422

hand, we find that constructing contextual errors us-423

ing the general corpus doesn’t yield significant ben-424

efit. It indicates that the exploitation of contextual425

information is consistent with our prior hypothesis426

in § 3.427

From the lower part of Table 3, we find that428

continue-training enhances the certain aspects of429

the model in a more stable manner. For multi-typo430

errors, the resultant ReLM gains a significant boost431

from 10.2 to 18.7 on NEW, 3.3 to 12.9 on ENC, and432

9.7 to 22.0 on CAR respectively. The improvement433

brought by few-shot learning is also notable. How-434

ever, we find that it rapidly deteriorates the overall435

performance. In our experiments, each model has436

been fine-tuned for only 3 epochs on few-shot sam-437

ples.438

5 Further Analysis439

5.1 Analysis of Contextual Errors440

As discussed in Section 2, contextual errors present441

significant challenges for CSC models. To ana-442

lyze the impact of context on model predictions,443

we truncate the local phrases surrounding the typo444

and examine how varying the truncation window445

size affects CSC models’ performance. Specifi-446

cally, we symmetrically truncate the source sen-447

tence by retaining only the 2n − 1 neighboring448

words around the erroneous characters, then calcu-449

late the F1 score for these truncated samples.450

From Figure 4, we find unsurprisingly that per-451

formance of all the models improve with the growth452
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Figure 5: Left: Statistics of the number of typos in each
example. Right: Variation of performances (F1) with
the increasing number of typos. We choose LE-ENC as
the representative domain.

of context size. Meanwhile, ReLM, which sig- 453

nificantly outperforms the baseline model BERT- 454

Tagging, performs worse than BERT-Tagging when 455

the context size is below 9. This indicates that 456

ReLM, with its rephrasing training objective, is 457

more dependent on the entire sentence for making 458

corrections rather than relying on the local words. 459

5.2 Analysis of Multi-typo Errors 460

For multi-typo errors, CSC models can be vulnera- 461

ble to contextual noise while making the correction 462

(Zhu et al., 2022; Liu et al., 2022). Furthermore, 463

we look deeper into the impact of the number of 464

typos co-existed in the sentence by grouping the 465

multi-typo errors by their numbers. Considering 466

that multi-typo errors with more than two typos are 467

sparse in the test set of ECSpell, we supplemented 468

the test set with additional examples generated us- 469

ing the method described in Section 3 to investigate 470

the influence of the number of typos in a single sen- 471

tence. 472

The results are depicted in Figure 5. Intuitively, 473

all models experience a decline in performance 474

when the number of typos rises. Among tagging 475

models, CRASpell outperforms other counterparts, 476

suggesting that optimizing the smoothness loss dur- 477

ing training effectively allows the model to adapt 478

to multi-typo errors. We also find that continue- 479

training with more multi-typo errors can signifi- 480

cantly improve the performance on multi-typo er- 481

rors. The F1 score of ReLM keeps above 0.4 with 482

less than 4 typos in one sentence, which demon- 483

strates the effectiveness of our data augmentation 484

method. 485

5.3 Case Study 486

We further offer a closer look on concrete cases. 487

The case study comprises two parts. We first 488
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Case 1: synthetic contextual error

雷击债券余额不超过公司净资产的百分之十。[SRC]
累计债券余额不超过公司净资产的百分之十。[TRG]

Case 2: synthetic multi-typo error

知识单权权利人在许诺合同中进行价格歧视。[SRC]
知识产权权利人在许可合同中进行价格歧视。[TRG]

Bad Case 1: exploiting contextual clues

首先要简单的修剪美貌四周的碎毛。[SRC]
首先要简单的修剪眉毛四周的碎毛。[TRG]
首先要简单的修剪美貌四周的碎毛。[Original]
首先要简单的修剪眉毛四周的碎毛。[Augmented]

Bad Case 2: addressing multi-typo error

契而不舌的艰苦追求,使我们国内领先。[SRC]
锲而不舍的艰苦追求,使我们国内领先。[TRG]
契而不舍的艰苦追求,使我们国内领先。[Original]
锲而不舍的艰苦追求,使我们国内领先。[Augmented]

Table 4: Case study.

demonstrate the newly generated sample (TRG)489

given SRC by our methods. In case 1 (The cu-490

mulative bond balance shall not exceed ten per-491

cent of the company’s net assets), we synthesize492

the contextual error “雷击” (lightning) → “累计”493

(accumulative). The correction of this error neces-494

sitates the model not only to seek clues from the495

context but also consider phonological similarity.496

Case 2 (Intellectual property rights holders engage497

in price discrimination in licensing contracts) con-498

tains two typos, where the correction of the second499

error “许可” (license contract) → “许诺” (promise500

contract) is strongly dependent on the correction of501

the first one “知识单权” → “知识产权” (intellec-502

tual property rights).503

In the second part, we demonstrate the two cases504

where the model could successfully address them505

after undergoing data augmentation. In bad case 1506

(First, trim the stray hairs around the eyebrows),507

the original ReLM fails to detect the contextual508

error “眉毛” → “美貌”. After fine-tuning on aug-509

mented contextual errors, the augmented ReLM510

can successfully address it. In bad case 2 (Persis-511

tent and strenuous efforts have made us a leader512

in the domestic market), the augmented ReLM suc-513

cessfully detects the two typos.514

6 Related Work515

A large body of research in CSC focuses on intro-516

ducing external clues, e.g. phonological and mor-517

phological similarity (Wang et al., 2019; Liu et al.,518

2021; Huang et al., 2021; Sun et al., 2023; Liang519

et al., 2023), negative samples (Li et al., 2022b), 520

retrieval (Song et al., 2023), auxiliary objectives 521

(Liu et al., 2021; Li et al., 2022a). Another line of 522

work focuses on disentangling the detection and 523

correction module (Zhang et al., 2020; Zhu et al., 524

2022; Huang et al., 2023). In contrast to these ef- 525

forts, our work centers on the foundation principles 526

for CSC. 527

Foundation Study for CSC and Benchmark 528

Foundation study plays an essential role in the 529

research of CSC. Wu et al. (2023b) explore the 530

two underlying sub-models behind a general CSC 531

model, the error model and language model. Liu 532

et al. (2024) discuss the primary training objective 533

for the CSC task. This paper focuses on the fun- 534

damental evaluation principle and offers an ever 535

fine-grained perspective. Benchmarking is equally 536

important. Recently, many attempts at benchmarks 537

offer new standards for CSC research, e.g. IME 538

(Hu et al., 2022b) for errors stemming from pinyin 539

similarity, ECSpell for multi-domain (Lv et al., 540

2023), MCSC for medical-specialist (Jiang et al., 541

2022), LEMON for open-domain CSC (Wu et al., 542

2023b). A similar effort is Hu et al. (2022b), which 543

synthesizes a large number of errors by approximat- 544

ing the real error distribution. Yet, diverging from 545

their path, this paper focuses on the refinement of 546

existing benchmarks with synthetic data. It poten- 547

tially skews the real error distribution because we 548

argue that it is those lower-frequency errors that 549

pose the bottleneck of CSC models. 550

7 Conclusion 551

This paper identifies and categorizes spelling er- 552

rors in Chinese into various types. We conduct a 553

fine-grained evaluation across a broad spectrum of 554

CSC models in both finetuning and open-domain 555

benchmarks. The nuanced assessment offers a 556

clear view of each model’s strengths and weak- 557

nesses, especially for LLMs, which is crucial for 558

their practical application and future enhancement. 559

Additionally, we introduce automatic error genera- 560

tion methods specifically designed for contextual 561

errors and multi-typo errors where current mod- 562

els show notable vulnerability. We demonstrate 563

that continue-training on these augmented exam- 564

ples can enhance the corresponding aspect of CSC 565

models. We also study the impact of context and 566

number of typos to CSC models. 567
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8 Limitations568

Our evaluation covers the most representative CSC569

methods in recent years while does not encompass570

all possible ones. Future work can further improve571

the landscape of FiBench. Besides, the experimen-572

tal results demonstrate the potential of LLMs in573

open-domain benchmark and in certain aspects,574

such as tackling multi-typo errors and processing575

contextual signals. However, our paper primarily576

focuses on BERT-based models, without deeper577

exploration of LLMs. In the other hand, our study578

uncovers several valuable future directions. Open-579

domain CSC emerges as a notable challenge with580

sparse exploration. Firstly, we long for effective581

methods for handling negative transfer between582

error types and domains. Secondly, we aim to583

study how to complement the strengths of BERT-584

based models in phonetic similarity, generation585

stability, and efficiency with the powerful semantic586

and knowledge capabilities of large language mod-587

els (LLMs), achieving a synergy of their respective588

advantages. Lastly, we long for greater diversity589

in the training corpus to enhance the base models.590

In this paper, we only consider the models trained591

from the source of wikipedia.592
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